EP2348255B1 - Système de brûleur à deux circuits et procédé de fonctionnement d'un tel système de brûleur à deux circuits - Google Patents

Système de brûleur à deux circuits et procédé de fonctionnement d'un tel système de brûleur à deux circuits Download PDF

Info

Publication number
EP2348255B1
EP2348255B1 EP11151874.2A EP11151874A EP2348255B1 EP 2348255 B1 EP2348255 B1 EP 2348255B1 EP 11151874 A EP11151874 A EP 11151874A EP 2348255 B1 EP2348255 B1 EP 2348255B1
Authority
EP
European Patent Office
Prior art keywords
burner
valve
ring
innen
inner ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11151874.2A
Other languages
German (de)
English (en)
Other versions
EP2348255A3 (fr
EP2348255A2 (fr
Inventor
Jean Marc Rechentin
Jörn Friedrichs
Jochen Rickert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EGO Elektro Geratebau GmbH
Original Assignee
EGO Elektro Geratebau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EGO Elektro Geratebau GmbH filed Critical EGO Elektro Geratebau GmbH
Publication of EP2348255A2 publication Critical patent/EP2348255A2/fr
Publication of EP2348255A3 publication Critical patent/EP2348255A3/fr
Application granted granted Critical
Publication of EP2348255B1 publication Critical patent/EP2348255B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/007Regulating fuel supply using mechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C3/00Stoves or ranges for gaseous fuels
    • F24C3/12Arrangement or mounting of control or safety devices
    • F24C3/126Arrangement or mounting of control or safety devices on ranges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/14Special features of gas burners
    • F23D2900/14062Special features of gas burners for cooking ranges having multiple flame rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/16Fuel valves variable flow or proportional valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/18Groups of two or more valves

Definitions

  • the invention relates to a two-circuit burner system according to the preamble of claim 1 and a method for operating such a dual-circuit burner system according to the preamble of claim 9.
  • a gas burner with multiple burners wherein the described gas burner has a first central burner arranged in the middle and a second burner arranged circularly around the central burner and at a distance therefrom. Furthermore, it is described that the gas burner has a flame sensor and / or an electrical ignition means.
  • the flame sensor or the ignition means are preferably arranged in the flame region of the central burner and the only ignition means or the only flame sensor.
  • the gas burner has two separate gas inputs, one for the gas supply of the central burner and one for the gas supply of the outer burner, wherein the control of the gas supply to the burner in each case by means of a separate, Separate control valve takes place to be able to modulate the central burner and the outer burner flexible and each separately.
  • a separate control valve and a separate shut-off valve must be provided for each burner.
  • a corresponding partial burner output for the central burner and the outer burner must be set separately.
  • US Pat. No. 3,606,612 and US 2,781,779 A each a two-circuit burner system.
  • US 2,765,810 A describes a burner system with a main burner, a simmer burner and a two-way gas valve.
  • the invention has for its object an initially mentioned two-circuit burner system and a method for operating such a dual-circuit burner system to create, with which problems of the prior art can be eliminated.
  • This object is achieved by a two-circuit burner system having the features of claim 1 and by a method for operating such a dual-circuit burner system having the features of claim 9.
  • Advantageous and preferred embodiments of the invention are the subject of further claims and are explained in more detail below , Some of the following, but not exhaustive, features and properties apply to both the dual circuit burner system and the process. They are sometimes described only once, but apply regardless of both the dual-circuit burner system and the process. The wording of the claims is incorporated herein by express reference.
  • the dual-circuit burner system for a gas hob provided with an operating device for setting a target total burner power and a preferably electronically controllable modulation valve with a control range.
  • the dual-circuit burner system has an inner circle with an inner circle gas supply line and an inner circle burner with a maximum inner burner output.
  • the inner circle gas supply leads in gas flow direction from the modulation valve to the inner circuit burner.
  • the dual-circuit burner system has an outer circuit with an outer-circuit gas supply line and an outer-circle burner with a maximum outer burner output.
  • the outer circle burner is disposed outside and around the inner circle burner, and the outer circle gas supply leads in the gas flow direction from the modulation valve to the outer circle burner.
  • a control unit is provided.
  • the control unit is designed to control at least the modulation valve.
  • the control unit is designed to control the entire two-circuit burner system.
  • the two-circuit burner system is electronically controlled or has an electronic control.
  • the modulation valve has a valve gas inlet, at least one valve gas outlet to the inner circle, and at least one valve gas outlet to the outer circle. Furthermore, the modulation valve has a single actuator for adjusting the gas flow rate to the inner circle and thus to control the internal burner power and to adjust the gas flow rate to the outer circuit and thus to control the outdoor burner power. Furthermore, an electronically controllable servomotor with an output shaft in the modulation valve is advantageously provided for driving the actuator.
  • the servomotor can drive the actuator either directly or indirectly.
  • the actuator is driven indirectly via a transmission, so the gas flow rate to the inner and outer circle and thus the overall burner performance can be finer.
  • a two-circuit burner system is designed such that only one internal burner output is variable by means of the actuator in a part of the setting range and an outside burner output is zero. Furthermore, such a two-circuit burner system is designed so that in another Adjustment range by means of this actuator only the outside burner power can be changed and the internal burner power is maximum.
  • the sum of the internal burner output and the sum of the external burner output results in the total burner output of the dual-circuit burner system.
  • a maximum total burner output of the two-circuit burner system results from the sum of the maximum internal burner output and the maximum external burner output.
  • the burner capacities of the inner circle burner and the outer circle burner are chosen such that the maximum internal burner power is less than the maximum external burner power.
  • a previously described two-circuit burner system is designed such that in the one setting range an overall burner line can be changed or adjusted or modulated by modifying only the internal burner output and that in the other setting range the total burner output is changed.
  • Burner power can be changed or controlled by only the outer burner power is changed.
  • a modulation valve or even a common actuator is required.
  • the dual-circuit burner system has only a single modulation valve with a single actuator.
  • the modulation valve is designed for the simultaneous control of the gas flow rate to the inner circle and the gas flow rate to the outer circle.
  • outer circle burner is preferably circular and arranged at some distance around the inner circle burner around and in particular arranged concentrically around the inner circle burner around.
  • such a dual-circuit burner system to a modulation valve that is designed so that over its entire control range of the valve gas outlet is only open to the outer circle, when the valve gas outlet is open to the inner circle and the opening cross-section to the inner circle and thus thereby set gas flow rate to the inner circle exceeds a defined minimum value.
  • the modulation valve is designed so that the valve gas outlet to the outer circle and thus the gas supply to the outer circle can only be opened when the opening cross section to the inner circle is so large that set by this opening cross-section, defined gas flow to the inner circle has a minimum value exceeds.
  • the actuator and the valve gas outputs to the inner circle and the outer circle are thus designed so that never only the valve gas outlet to the outer circle can be opened alone.
  • the modulation valve is thus designed so that in the control range in which only the internal burner power is variable, the valve gas outlet to the outer circuit is always closed and thus the outside burner power is constantly zero.
  • the minimum value corresponds to a gas flow rate required for the maximum internal burner output.
  • the actuator has one or more openings and the modulation valve is designed so that one or more openings or a closed region of the actuator in response to the actuating position of the actuator overlap the valve gas outlet to the inner circle and the valve gas outlet to the outer circle in that for each parking position either a defined gas flow rate to the inner circle and a defined gas flow rate to the outer circle or only a defined gas flow rate to the inner circle and a closed valve gas outlet to the outer circle or a complete closed position of the modulation valve can be set.
  • the closed area of the actuator overlaps the valve gas outlet to the inner circle and the valve gas outlet to the outer circle respectively Completed.
  • the valve gas outlets to the inner circle and to the outer circle are closed completely and separately from each other at the same time. In this way it can be ensured that a gas supply to the outer circuit and thus an operation of the outer circle burner is only possible if the inner circle burner is already burning and the maximum internal burner power is not sufficient to set the desired target total burner power ,
  • the actuator is. With respect to its at least one opening formed so that starting from the full closed position with an increasing set target total burner power gas flow to the outer circle is adjustable only when the gas flow to the inner circle or the corresponding internal burner power exceeds a required minimum value or its lower tolerance limit.
  • the minimum value is preferably about 90% to 100% of the gas flow rate required for a maximum internal burner output, or 90% to 100% of the maximum internal burner output.
  • the minimum value corresponds to the maximum internal burner power or the gas flow rate required for this power.
  • the modulation valve is a rotor disk valve and has a rotor disk as an actuator.
  • the rotor disk is rotatably mounted on an axle or a shaft and has one or more openings for setting a defined gas flow rate to the inner circle and the outer circle.
  • the rotor disk is arranged in the gas flow direction in front of the valve gas outlet to the inner circle and in front of the valve gas outlet to the outer circle.
  • the opening cross section of the valve gas outlet to the inner circle is preferably smaller than the opening cross section of the valve gas outlet to the outer circle.
  • the rotor disk is mounted directly on the output shaft of the servo motor, which is also the drive shaft of the actuator, and connected thereto in a rotationally secure manner.
  • the rotor disk is mounted on an output shaft of the transmission driven by the servo motor.
  • At least one opening of the rotor disk is elongate and partially formed approximately in the circumferential direction.
  • the opening preferably has a constant, small opening width at one end and a constant, large opening width at the other end. In between, in particular, a transition region connecting these two ends is provided with increasing opening width from the small opening width to the large opening width.
  • an opening width may be designated as large if the opening width corresponds approximately to the opening width of a valve outlet and as small if it is significantly smaller than the opening width of the valve outlet.
  • At least one opening of the rotor disk in the circumferential direction and in approximately silverfish-shaped is designed so that, starting from the complete closed position and thus of a total burner power of zero with an increasingly changing angular position of the rotor disk initially the end with the small opening width overlaps the valve gas outlet to the inner circle and the closed area of the rotor disk the valve gas outlet closes to the outer circle and thus the gas supply to the outer circuit is closed.
  • valve gas outlet to the inner circle With still further increasing angular position then overlaps the transition region of the opening of the rotor disk, the valve gas outlet to the inner circle and the small opening width of the valve gas outlet to the outer circle. This opens the valve gas outlet to the outer circuit and allows a defined gas flow rate to the outer circuit to be set. If the maximum burner output is reached, however, a further increase in the gas flow rate no longer leads to a further increase in the burner output, since the associated gas outlet nozzles of the burner limit an outflow of gas upwards. This means that a further increase in the gas flow rate to the inner circle or outer circle above the corresponding maximum burner power does not lead to a further increase in the internal or external burner performance when the maximum gas outlet volume at the inner circle or outer circle burner is already reached.
  • the inner circle burner can continue to be operated with its maximum power even with increasing angular position, once it has been reached or the required gas flow rate to the inner circle.
  • a defined gas flow rate to the inner circle can be set for a maximum inner burner output.
  • the large opening width overlaps the valve gas outlet to the inner circle and at least the transition area or the large opening width the valve gas outlet to the outer circle, until the opening cross section resulting from the overlap of the opening of the rotor disc with the valve gas outlets is so large that at the same time a defined gas flow rate to the inner circle for maximum internal burner power and a defined gas flow rate to the outer circle for a maximum outdoor burner power and thus for the maximum total burner power can be adjusted to the outer circle.
  • At least one opening of the rotor disk may also be approximately crescent-shaped and partially circumferential in the circumferential direction, and each have a small opening width at both ends and a large opening width in the middle therebetween, each with a transition region from the center to the ends decreasing opening width.
  • the large opening width of this crescent-shaped opening is at least so large that the outer circle required for a maximum outdoor burner power gas flow rate can be adjusted.
  • At the one end, which overlaps the valve gas outlet to the inner circle only in an angular position above the angular position for setting the maximum internal burner output opening width is to be provided at least until the end that the gas flow rate to the inner circle always at least that for a maximum Internal burner power required gas flow rate corresponds.
  • a rotor disk with a plurality of openings which may be formed, for example, in two parts or in several parts.
  • the openings can also be formed in stages and without a transition region.
  • the rotor disk must be designed such that a suitable combination of the adjustable gas flow rate to the inner circle and the adjustable gas flow rate to the outer circle is provided for each defined angular position according to the aforementioned embodiments.
  • the rotor disk is preferably designed so that starting with increasing angular position from the closed position, the adjustable total burner power preferably increases steadily or in stages.
  • the rotor disk valve has two rotation stops. These each limit the possible angle of rotation or the angular position of the rotor disk in one direction of rotation and thus define a permissible angle of rotation range of the rotor disk.
  • the rotation stops are positioned so that a gas supply to the outer circuit can only be set if the valve gas outlet to the inner circuit is open.
  • the rotation stops are preferably designed as mechanical stop elements, for example as pins.
  • the rotor disk has in particular in at least part of its circumference in the radial direction an outwardly projecting outer contour, so that the rotational stop results from the mechanical interaction of a stop element with the specially designed outer contour of the rotor disk.
  • the two-circuit burner system has a gas inlet for connecting a gas supply and additionally at least one electronically controllable shut-off valve, which is advantageously arranged between the gas inlet of the two-circuit burner system and the valve gas inlet of the modulation valve.
  • the shut-off valve is a solenoid valve.
  • the two-circuit burner system on two shut-off valves, in particular two in series shut-off valves.
  • a gas cooking appliance has one or more additional gas burners in addition to the two-circuit burner system, it is particularly advantageous to branch the gas feed line for supplying the further gas burners between the two shut-off valves connected in series so that the gas supply to all gas burners of the gas cooking appliance is closed by the first shut-off valve can be.
  • the modulation valve and at least one shut-off valve form a structural unit.
  • all valves of the two-circuit burner system are combined to form a structural unit.
  • the two-circuit burner system has an electronically controllable ignition device and a Matterzündmaschine, preferably a mechanical Kochzündmaschine.
  • the ignition device is arranged on the inner circle burner and the Matterzündmaschine between the inner circle burner and the outer circle burner.
  • the Studentszündmaschine is arranged so that the outer circle burner can be ignited by means of the inner circle burner and the Matterzündmaschine when the inner circle burner is burning and the gas supply to the outer circle is opened.
  • the electronically controllable ignition device is the only ignition device of the two-circuit burner system.
  • the two-circuit burner system has a flame sensor, which is arranged in the flame region of the inner-circle burner. It is advantageous if the flame sensor can also detect flames in the area of the over-ignition bridge between the burners.
  • the flame sensor is preferably the only flame sensor of the two-circuit burner system.
  • the flame sensor is a thermocouple or an ionization electrode and in particular can be evaluated electronically by the control unit.
  • the two-circuit burner system has an electrode, which is also designed as an ignition device and as a flame sensor.
  • the electrode is arranged in the flame region of the inner-circle burner. This is advantageous because only one common electrode is needed, which saves space and reduces costs.
  • the electrode is the only electrode of the two-circuit burner system.
  • the modulation valve, at least one shut-off valve and / or the ignition device of the electronically controlled two-circuit burner system be controlled by the control unit.
  • the control unit preferably receives at least one signal from the operating device with the set nominal total burner output and in particular additionally at least one signal from a flame sensor with information about the flame state.
  • a method for controlling a target total burner power of an aforementioned electronically-controlled, dual-circuit burner system in a range of total burner power from zero to a maximum total burner power is provided.
  • a nominal total burner output greater than zero is set by opening the gas supply to the modulation valve, opening at least the valve gas outlet to the inner circuit as a function of the nominal total burner output set by the user or the set power requirement by means of the modulation valve.
  • a defined gas flow rate to the inner circle and the outer circle is set and ignited according to the set target total burner power at least the inner-ring burner.
  • a nominal total burner output of zero is set by blocking the gas supply to the inner circle and to the outer circle.
  • the dual-circuit burner system has an electronically controllable ignition device that it is activated at the latest when the gas supply is opened. This means that the gas supply is opened for safety reasons only when the ignition device has already been activated.
  • the ignition device is designed so that it is ready for ignition after a certain time, for example by means of a clocked spark or an annealing electrode.
  • the inner ring burner is ignited for small outputs, especially when the power requirement is less than or equal to the maximum inner burner power, while the valve gas outlet remains closed to the outer circuit. If the power requirement is above the maximum internal burner power, In addition, the outer circle burner is ignited, so that the desired target total burner power can be achieved.
  • the gas supply to the inner circuit and the outer circuit is blocked and thus set a total target burner output of zero by the modulation valve is completely closed, or by means of at least one shut-off valve, the gas supply to the valve gas inlet of the modulation valve and thus to Inner circle and locked to the outer circle.
  • the gas supply to the valve gas inlet of the modulation valve can also be blocked by means of at least one shut-off valve and at the same time the modulation valve can be completely closed, which is particularly advantageous.
  • the complete closed position of the modulation valve is adjusted by closing the valve gas outlets to the inner circle and the outer circle.
  • the two-circuit burner system has two shut-off valves connected in series one behind the other, without the gas supply line branching between them to supply additional gas burners, preferably both are closed. In this way, a high level of security with regard to a shut-off to avoid unwanted gas leakage is possible.
  • a nominal total burner output in a lower power range is set above a stable internal burner output and below a maximum internal burner output by a defined gas flow rate to the inner circuit corresponding to the desired nominal total burner power or temporarily corresponding to a predefined Ignition power is set and the inner circle burner is ignited.
  • the valve gas outlet to the outer circuit remains permanently closed during this time.
  • the stable internal burner output is the smallest internal burner output for which stable flame operation of the internal circuit burner is possible. Only in a stable operating condition above a stable operating burner performance, a stable flame can form and there is no risk that the flame goes out even with small fluctuations in the supplied gas flow rate or low interference from the outside.
  • a burner Do not burn with a stable flame, as even small fluctuations in the gas supply can lead to an irregular flame formation or to extinguishment of the flame.
  • a burner should therefore preferably be operated at least with its operationally stable burner power or above it.
  • a setpoint total burner output is set in an upper power range above the maximum inner burner output, above an operationally stable outer burner output and below a maximum total burner output, by a defined gas flow rate to the inner circuit corresponding to the maximum inner burner output is set and for the outer circle a defined gas flow rate is set according to the required in addition to the maximum indoor burner power outdoor burner power.
  • the inner circle burner is ignited and this ignites the outer circle burner by means of a Studentszündmaschine.
  • the stable external burner power is the smallest external burner power, for a stable flame operation of the outer circle burner is possible.
  • the additionally required external burner output is the external burner output, which results from the difference between the user-set nominal total burner output or power requirement and the maximum internal burner output. So the power that the inner circle burner lacks to reach the performance requirement of the user.
  • a nominal total burner output in the lowest power range of the two-circuit burner system is set below the operationally stable internal burner output by operating the internal-circuit burner in a cycle.
  • the inner circle burner is switched on and off alternately. When switched on, it preferably burns with the operationally stable internal burner output.
  • the clocking takes place by the gas supply to the inner circle and to the outer circle is cyclically locked and opened and is ignited in each cycle of the inner circle burner means of the ignition device again. For igniting the ignition device is controlled by the control unit accordingly.
  • the inner circle burner By clocking the inner circle burner can be operated for a set target total burner capacity below the stable operating internal burner power with a stable operating internal burner power. However, in order to set the desired, set nominal total burner output or the corresponding amount of energy, the inner circuit burner is alternately switched on and off accordingly.
  • a nominal total burner output in the lowermost power range of the outer circuit burner above the maximum inner burner output is set with an additionally required outer burner output below the operationally stable outer burner output by the inner circle burner having its maximum inner burner output.
  • Burner power burns in continuous operation and the outer circuit burner is operated clocking. For the cyclic operation of the outer circle burner this is alternately switched on and off. In the switched-on state, the outer-circle burner preferably burns with the stable outer burner output.
  • the control unit controls the shut-off valve and closes this when the flame sensor detects a flame failure or faulty flame operation or if the set target Total burner power is zero. In this way, the gas supply is closed as soon as the flame operation is faulty or there is a flame failure or power requirement no longer exists or the inner circuit is switched off for clocking. In this case, the control unit receives at least one corresponding signal about the flame condition from the flame sensor.
  • the gas supply to the inner circle and to the outer circle can also be blocked via the modulation valve, however, the dynamics of the shut-off valve is higher. This means that the gas supply via the shut-off valve can be closed faster than by means of the modulation valve. Therefore, it is advantageous for safety reasons to block the gas supply by means of at least one shut-off valve in the event of a flame failure.
  • a predefined ignition position is set or one for the ignition of the inner circle burner sufficient gas flow rate to initiate the re-ignition as soon as possible.
  • the modulation valve closed.
  • the gas supply to the inner circuit is cyclically locked and opened for clocking the inner circle burner by the control unit cyclically activates the shut-off valve for opening and closing and by means of the modulation valve a sufficient for the ignition of the inner circle burner gas flow rate is set to the inner circle. Meanwhile, the valve gas outlet to the outer circuit is permanently closed.
  • the flame sensor located on the inner circuit does not detect a flame failure, leaving the shut-off valve open. If the gas supply to the outer circuit is reopened, the outer-ring burner is ignited again by means of the burning inner-circle burner through the over-ignition bridge.
  • the gas supply to the outer circuit is cyclically locked and opened by the control unit controls the modulation valve so that the gas supply to the outer circuit cyclically open and is closed, while the set gas flow rate to the inner circuit preferably remains constant and corresponds to the gas flow rate for the maximum internal burner power.
  • the gas flow rate to be set to the outer circuit is set in each case slightly above the actually required gas flow rate. To make sure the outer circle burner also really ignites and the gas supply is sufficient, the modulation valve is quasi "overdriven".
  • Fig. 1 shows a schematic representation of an exemplary, inventive dual-circuit burner system 10.
  • the figure shows in detail a two-circuit burner 13 with an outer circle burner 40 and an inner circle burner 36.
  • the inner circle burner 36 is an electronically controllable ignition device 32nd arranged with a Kochzündmaschine 38.
  • the ignition device 32 may be, for example, an ignition electrode for electric spark ignition or a glow starter.
  • a flame sensor 34 is arranged in the flame region of the inner circle burner 36.
  • the embodiment shown has two separate components for the ignition device 32 and the flame sensor 34 for better understanding. However, it is particularly advantageous to provide only a single, common electrode, which is designed both as an ignition device 32 and as a flame sensor 34.
  • the ignition device 32 and the flame sensor 34 are connected to an electronic control unit 26. Via an operating device 11, the electronic control unit 26 receives a nominal total burner power and thus a power requirement for the dual-circuit burner 13. Furthermore, the dual-circuit burner system 10 has a gas inlet 12 for connecting a gas supply 14 with a gas supply V.
  • the inner-circle burner 36 and the inner gas supply 44th are hereinafter referred to collectively as inner circle.
  • the outer circle burner 40 and the outer circle gas supply line 42 are referred to as outer circle accordingly.
  • a defined gas flow rate to the inner circle and the outer circle is adjusted by means of a modulation valve 50.
  • This modulation valve 50 has a servomotor 22 for driving an actuator 52.
  • the actuator 52 is a rotor disk in a rotor disk valve as a modulation valve 50. However, if the actuator 52 is a rotor disk, its axis of rotation is parallel to the gas flow direction within the modulation valve and not as in FIG Fig. 1 for the sake of simplicity, only schematically shown transversely thereto.
  • the modulation valve 50 has a common valve gas inlet 18 and a valve gas outlet 46 to the inner circle and a valve gas outlet 48 to the outer circle.
  • the modulation valve 50 or the associated servomotor 22 of the modulation valve 50 is controlled by the electronic control unit 26.
  • a shut-off valve 16 is arranged in the gas flow direction.
  • the shut-off valve 16 is electronically controllable in this embodiment and is controlled by the control unit 26.
  • generally at least one shut-off valve is combined with the modulation valve to form a structural unit.
  • only one shut-off valve between the gas inlet 12 and the modulation valve 50 is arranged.
  • two shut-off valves are connected in series in this area, wherein in a particularly preferred embodiment of the gas supply line between the two shut-off valves gas supply lines may be diverted to supply additional gas burner.
  • the control unit 26 receives a corresponding power requirement and opens the shut-off valve 16 and thus the gas supply to the modulation valve 50. Furthermore, the modulation valve 50 is also actuated by the control unit 26 and by means of the servomotor 22, the actuator 52 is driven. By means of the actuator 52, a defined gas flow rate to the inner circle and a defined gas flow rate to the outer circuit is set or depending on the height of the power demand only a defined gas flow rate to the inner circuit while the gas supply to the outer circuit remains closed. The setting of a defined gas flow rate to the inner or outer circle takes place by the corresponding valve gas outlet 46 or 48 of the modulation valve 50 is opened correspondingly wide by the actuator 52.
  • the ignition device 32 at the inner circle burner 36 is controlled by the control unit 26 and ignites the inner circle burner 36.
  • the Kochzündmaschine 38 takes place at an open gas supply to the outer circle automatically the ignition of the outer circle burner 40 when the inner-circle burner 36 is burning.
  • Fig. 2 shows a diagram illustrating the individual power ranges of a dual-circuit burner system according to the invention with a total burner power from zero to a maximum total burner power. Shown is the total burner power P total over a defined gas flow rate V, which is supplied to the two-circuit burner system.
  • the defined gas flow rate V is the sum of the inner flow supplied gas flow rate V inside and the outer circle supplied gas flow rate V outside .
  • a minimum gas flow rate V internally stable is required, which corresponds to an associated internal burner output of P inside- stable .
  • the power of the inner circle burner 36 continuously increases up to its maximum internal burner power P innen_max . If the required nominal total burner power is greater than the maximum internal burner power P innen_max , the additional power requirement is ensured by the outer circuit burner 40.
  • the outer circuit burner 40 also requires a researchergas takepoundmenge V personally_stabil for a stable flame operation. Preferably, it is avoided by a corresponding control of the modulation valve to adjust such gas flow rates, the would result in unstable flame operation of the inner circle burner or the outer circle burner.
  • Fig. 3 is for a modulation valve 50, which is designed as a rotor disk valve, a view in the gas flow direction on a rotor disk 60 of a modulation valve 50 of a dual-circuit burner system 10 according to the invention shown in an angular position 72a with maximum gas supply to the inner circle and the outer circle and thus with maximum set total burner power ,
  • the angular position 72a of the rotor disk 60 corresponds to a set gas flow rate for the maximum total burner power P total_max .
  • the figure shows a valve gas outlet to the inner circle 46 and a valve gas outlet 48 to the outer circle.
  • the rotor disk 60 has an opening 64, which is arranged in the circumferential direction oblong, partially encircling and formed in this embodiment silverfish-shaped.
  • the opening 64 has at its one end a region 55 with a constant, large opening width and at its other end a region 54 with a constant small opening width.
  • the rotor disk 60 is rotatably mounted on a drive shaft 62, wherein it is non-rotatably connected to the drive shaft 62, which is not shown here.
  • the drive shaft 62 corresponds to the output shaft of the servomotor 22 of the modulation valve 50.
  • the rotor disc instead of rotation on a drive shaft, also rotatably mounted on a fixed axis and by a pinion with the aid of a on the outer edge of the rotor disk incorporated gear rim are driven.
  • the rotor disk 60 is further shown with an outwardly projecting in an area 56 outer contour, which cooperates with a rotation stop 58.
  • This rotation stop 58 is in this embodiment designed as a stop element, for example in the form of a positioning pin to which the protruding outer contour 56 of the rotor disk 60 abuts in its end position.
  • the position of the rotation stop 58 is selected so that the rotation stop in this direction of rotation in the setting of the maximum total burner power P felj-max , as shown in this figure, is achieved.
  • a further rotation stop 66 is present, which is designed analogously to the rotation stop 58 and is positioned so that a defined closed position of the modulation valve 50 and the rotor disk valve can be adjusted.
  • angular position 72a of the rotor disk 60 results in a defined opening cross section 69a to the inner circle and a defined opening cross section 71a to the outer circle, the gas flow rate to the inner circle or the outer circle is maximum, so that with this angular position, the maximum total burner power P total_max is set.
  • Fig. 4 shows a view of the rotor disk 60 according to Fig. 3 in an angular position 72b with a set maximum internal burner power and a partially open gas supply to the outer circuit.
  • the opening 64 of the rotor disk 60 overlaps with the valve gas outlet 46 to the inner circle such that a defined opening cross-section 69b and thus a defined gas flow rate to the inner circle adjusts, which corresponds to a maximum internal burner power.
  • the defined opening cross section to the inner circle 69b is significantly smaller than in Fig. 3 , the maximum internal burner output is still set. With increasing gas flow rate, the associated burner power can be increased up to a maximum burner output.
  • Fig. 4 is further shown that the opening 64 forms with the valve gas outlet 48 by overlapping a defined opening cross-section 71b to the outer circle and thus partially opens the gas supply to the outer circle and adjusts a defined gas flow rate to the outer circle.
  • the outer circuit is operated at this setting with an external burner power between a stable operating outdoor burner power P au- H_stabil and the maximum outdoor burner power P réelle_max .
  • FIG. 5 is a view of the rotor disk 60 according to 3 and 4 shown in an angular position 72c with set maximum internal burner power P innen_max and closed gas supply to the outer circle.
  • the angular position 72c is shown, which corresponds to a total burner output Ptot below the maximum internal burner power P inside_max .
  • the opening 64 of the rotor disk 60 forms with the valve gas outlet 46 to the inner circle a defined opening cross section 69 c and thus sets a defined gas flow rate to the inner circle. This gas supply to the outer circuit is closed.
  • the closed region of the rotor disk 60 completely covers the valve gas outlet 48 to the outer circle.
  • Fig. 6 is a view of the rotor disk 60 according to Fig. 3, 4 , and 5 shown with an angular position 72d with a partially open gas supply for adjusting an internal burner power below the maximum internal burner power P innen_max .
  • this angular position corresponds to 72d an internal burner power at the lowest limit, namely the smallest internal burner power P innen_stabil at a stable flame operation is possible.
  • the defined opening cross-section 69d is here again significantly smaller than in Fig. 5 , The gas supply to the outer circuit is still closed.
  • Fig. 7 a view of the rotor disk 60 according to Fig. 3, 4 . 5 and 6 shown in the full closed position of the modulation valve 50.
  • the rotor disk 60 is shown in the angular position 72e.
  • the protruding outer contour 56 abuts the rotation stop 66.
  • the closed region of the rotor disk 60 completely covers both valve gas outlets 46 and 48 to the inner circle and to the outer circle.
  • the gas supply is completely closed.
  • the opening 64 of the rotor disk 60 does not overlap with the valve gas outlets 46 and 48.
  • the gas supply to the inner circle and to the outer circle is respectively closed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Regulation And Control Of Combustion (AREA)

Claims (14)

  1. Système de brûleur à deux circuits (10) pour une cuisinière à gaz, comprenant:
    - un dispositif de commande (11) pour ajuster une puissance de consigne totale du brûleur,
    - une vanne papillon de rotor commandable (50) avec une zone de réglage,
    - un circuit interne, le circuit interne présentant une conduite d'alimentation de gaz de circuit interne (44) et un brûleur de circuit interne (36) avec une puissance de brûleur interne maximale (Pinnen_max) et la conduite d'alimentation en gaz de circuit interne (44) conduisant dans la direction du flux de gaz depuis la vanne papillon de rotor (50) jusqu'au brûleur de circuit interne (36),
    - un circuit externe, le circuit externe présentant une conduite d'alimentation en gaz de circuit externe (42) et un brûleur de circuit externe (40) avec une puissance de brûleur externe maximale (Paußen_max), le brûleur de circuit externe (40) étant disposé à l'extérieur du brûleur de circuit interne (36) autour de celui-ci et la conduite d'alimentation en gaz de circuit externe (42) conduisant dans la direction du flux de gaz depuis la vanne papillon de rotor (50) jusqu'au brûleur de circuit externe (40),
    - une unité de commande (26), l'unité de commande (26) étant réalisée de manière à commander au moins la vanne papillon de rotor (50),
    la vanne papillon de rotor (50) présentant:
    - une entrée de gaz de vanne (18),
    - au moins une sortie de gaz de vanne (46) allant au circuit interne,
    - au moins une sortie de gaz de vanne (48) allant au circuit externe,
    - un disque de rotor (52, 60) pouvant être entraîné par un moteur, pour ajuster un débit de gaz (Vinnen) allant au circuit interne et pour ainsi commander la puissance de brûleur interne (Pinnen), et pour ajuster le débit de gaz (Vaußen) allant au circuit externe et pour ainsi commander la puissance de brûleur externe (Paußen), et
    - un moteur de réglage commandable (22) avec un arbre de prise de force (62) pour l'entraînement direct ou indirect du disque de rotor (52, 60),
    - la vanne papillon de rotor (50) étant la seule vanne du système de brûleur à deux circuits (10),
    - la vanne papillon de rotor (50) présentant un actionneur unique en tant que disque de rotor (52, 60),
    à chaque fois une section transversale d'ouverture définie (69a à 69d, 71a à 71b) vers le circuit interne et vers le circuit externe pouvant être ajustée au moyen de la vanne papillon de rotor (50) en fonction d'une puissance de consigne totale du brûleur ajustée et par conséquent en fonction d'un débit de gaz défini respectivement nécessaire (Vinnen, Vaußen) allant au circuit interne et au circuit externe,
    - le système de brûleur à deux circuits (10) étant réalisé de telle sorte que dans une partie de la zone de réglage, seulement une puissance de brûleur interne (Pinnen) puisse être modifiée au moyen du disque de rotor (52, 60) et qu'en l'occurrence une puissance de brûleur externe (Paußen) soit nulle,
    - dans une autre partie de la zone de réglage, seulement la puissance de brûleur externe (Paußen) pouvant être modifiée au moyen de ce disque de rotor (52, 60) et la puissance de brûleur interne (Pinnen) étant maximale,
    - le disque de rotor (60)
    - étant supporté de manière à pouvoir tourner dans la vanne papillon de rotor (50) sur l'arbre de prise de force (62),
    - présentant une ou plusieurs ouvertures (64) pour l'ajustement d'un débit de gaz défini (Vinnen, Vaußen) allant au circuit interne et au circuit externe,
    - étant disposé dans la direction du flux de gaz avant la sortie de gaz de vanne (46) allant au circuit interne et avant la sortie de gaz de vanne (48) allant au circuit externe.
  2. Système de brûleur à deux circuits (10) selon la revendication 1, caractérisé en ce que l'au moins une ouverture (64) est réalisée de telle sorte qu'à partir de la position complètement fermée avec une puissance de consigne totale du brûleur ajustée croissante, un débit de gaz (Vaußen) allant au circuit externe puisse seulement être ajusté lorsque le débit de gaz (Vinnen) allant au circuit interne ou la puissance de brûleur interne correspondante (Pinnen) dépasse une valeur minimale nécessaire, de préférence cette valeur minimale étant d'environ 90 % à 100 % du débit de gaz (Vinnen_max) nécessaire pour une puissance de brûleur interne maximale (Pinnen_max), ou de 90 % à 100 % de la puissance de brûleur interne maximale (Pinnen_max), cette valeur minimale correspondant notamment à cette dernière.
  3. Système de brûleur à deux circuits (10) selon la revendication 1 ou 2, caractérisé en ce que la section transversale d'ouverture de la sortie de gaz de vanne (46) de la vanne papillon de rotor (50) allant au circuit interne est inférieure ou égale à la section transversale d'ouverture de la sortie de gaz de vanne (48) allant au circuit externe.
  4. Système de brûleur à deux circuits (10) selon la revendication 1 ou 3, caractérisé en ce qu'au moins une ouverture (64) du disque de rotor (60) est réalisée sous forme allongée et en partie périphérique, de préférence avec une petite largeur d'ouverture constante (54) à une extrémité et avec une grande largeur d'ouverture constante (55) à l'autre extrémité, une région de transition reliant celles-ci étant notamment prévue entre elles, avec une largeur d'ouverture croissante depuis la petite largeur d'ouverture (54) jusqu'à la grande largeur d'ouverture (55).
  5. Système de brûleur à deux circuits (10) selon la revendication 4, caractérisé en ce que l'ouverture (64) du disque de rotor (60) présente, dans la direction périphérique, un contour extérieur approximativement en forme de poisson d'argent et est réalisée de telle sorte qu'à partir de la position complètement fermée avec une position angulaire (72e à 72a) variant de manière croissante du disque de rotor (60),
    - d'abord l'extrémité avec la petite largeur d'ouverture (54) chevauche la sortie de gaz de vanne (46) allant au circuit interne et la région fermée du disque de rotor (60) ferme la sortie de gaz de vanne (48) allant au circuit externe,
    - qu'ensuite, avec une position angulaire (72e à 72a) variant davantage par la largeur d'ouverture croissante, la section transversale d'ouverture (69d à 69a) allant au circuit interne augmente, et par conséquent le débit de gaz (Vinnen) allant au circuit interne également, tandis que la sortie de gaz de vanne (48) allant au circuit externe est en outre fermée,
    - jusqu'à ce que la section transversale d'ouverture (69d à 69a) allant au circuit interne, produite par le chevauchement de l'ouverture (64) du disque de rotor (60) avec la sortie de gaz de vanne (46), soit suffisamment grande pour qu'un débit de gaz défini (Vinnen, Vinnen_max) allant au circuit interne puisse être ajusté pour une puissance de brûleur interne maximale (Pinnen_max), la sortie de gaz de vanne (48) allant au circuit externe étant toujours fermée, et
    - qu'ensuite, avec une position angulaire (72e à 72a) continuant de croître, la région de transition de l'ouverture (64) du disque de rotor (60) chevauche la sortie de gaz de vanne (46) allant au circuit interne et que la petite largeur d'ouverture (54) chevauche la sortie de gaz de vanne (48) allant au circuit externe et que par conséquent la sortie de gaz de vanne (48) allant au circuit externe soit ouverte et qu'un débit de gaz défini (Vaußen) allant au circuit externe puisse être ajusté, tandis qu'un débit de gaz défini (Vinnen, Vinnen_max) allant au circuit interne peut en outre être ajusté pour une puissance de brûleur interne maximale (Pinnen_max),
    - jusqu'à ce que la section transversale d'ouverture (71b à 71a) allant au circuit externe soit suffisamment grande pour qu'un débit de gaz défini (Vaußen, Vaußen_max) allant au circuit externe puisse être ajusté pour une puissance de brûleur externe maximale (Paußen_max) et par conséquent que la puissance de brûleur totale maximale (Pgesamt_max) puisse être ajustée, tandis qu'un débit de gaz défini (Vinnen, Vinnen_max) allant au circuit interne peut en outre être ajusté pour une puissance de brûleur interne maximale (Pinnen_max).
  6. Système de brûleur à deux circuits (10) selon l'une quelconque des revendications 3 à 5, caractérisé en ce que la vanne papillon de rotor présente deux butées de rotation (58, 66) qui limitent à chaque fois dans un sens de rotation l'angle de rotation possible du disque de rotor (60) et qui définissent ainsi une plage d'angle de rotation admissible, les butées de rotation (58, 66) étant positionnées de telle sorte qu'une alimentation en gaz au circuit externe puisse seulement être ajustée lorsque la sortie de gaz de vanne (46) allant au circuit interne est ouverte, les butées de rotation (58, 66) étant de préférence réalisées sous forme d'éléments de butée mécaniques et notamment le disque de rotor (60), dans au moins une partie de sa périphérie, présentant dans la direction radiale un contour extérieur saillant vers l'extérieur (56).
  7. Système de brûleur à deux circuits (10) selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il présente un dispositif d'allumage à commande électronique (32) et un pont de surallumage (38), de préférence un pont de surallumage mécanique (38), le dispositif d'allumage (32) étant disposé au niveau du brûleur de circuit interne (36) et le pont de surallumage (38) étant disposé entre le brûleur de circuit interne (36) et le brûleur de circuit externe (40) de telle sorte que le brûleur de circuit externe (40) puisse être allumé au moyen du brûleur de circuit interne (36) et du pont de surallumage (38) lorsque le brûleur de circuit interne (36) fonctionne et que l'alimentation en gaz au circuit externe est ouverte, le dispositif d'allumage étant notamment le seul dispositif d'allumage (32) du système de brûleur à deux circuits (10).
  8. Système de brûleur à deux circuits (10) selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il présente un détecteur de flamme (34), le détecteur de flamme (34) étant disposé dans la région de la flamme du brûleur de circuit interne (36) et étant de préférence le seul détecteur de flamme (34) du système de brûleur à deux circuits (10).
  9. Procédé de commande d'une puissance de consigne totale du brûleur d'un système de brûleur à deux circuits (10) selon l'une quelconque des revendications 1 à 8 dans une plage allant de zéro jusqu'à une puissance de brûleur totale maximale (Pgesamt_max), caractérisé en ce qu'une puissance de consigne totale du brûleur supérieure à zéro est ajustée en ouvrant l'alimentation en gaz allant à la vanne papillon de rotor (50), en ouvrant au moins la sortie de gaz de vanne (46) allant au circuit interne au moyen de la vanne papillon de rotor (50) en fonction de la puissance de consigne totale du brûleur ajustée, en ajustant un débit de gaz défini (Vinnen, Vaußen) allant au circuit interne et au circuit externe et en allumant au moins le brûleur de circuit interne (36) en fonction de la puissance de consigne totale du brûleur ajustée, et en ce qu'une puissance de consigne totale du brûleur nulle est ajustée en bloquant l'alimentation en gaz allant au circuit interne et au circuit externe.
  10. Procédé selon la revendication 9 pour la commande d'un système de brûleur à deux circuits (10) comprenant un dispositif d'allumage à commande électronique (32), caractérisé en ce que pour ajuster une puissance de consigne totale du brûleur dans la plage de puissance la plus basse du système de brûleur à deux circuits (10) en dessous d'une puissance de brûleur interne de fonctionnement stable (Pinnen_stabil), le brûleur de circuit interne (36) est mis en fonctionnement de manière cadencée et pour cela l'alimentation en gaz au circuit interne est bloquée et ouverte de manière cyclique et à chaque cycle, le brûleur de circuit interne (36) est à nouveau allumé au moyen du dispositif d'allumage (32), l'allumage s'effectuant en commandant le dispositif d'allumage (32) en fonction de l'unité de commande (26) et en ouvrant l'alimentation en gaz allant au circuit interne de telle sorte que le brûleur de circuit interne (36) soit mis en circuit et déconnecté en alternance et, dans l'état mis en circuit, fonctionne de préférence avec la puissance de brûleur interne de fonctionnement stable (Pinnen_stabil), tandis que l'alimentation en gaz allant au circuit externe reste fermée.
  11. Procédé selon la revendication 9, caractérisé en ce qu'une puissance de consigne totale du brûleur au-dessus d'une puissance de brûleur interne maximale (Pinnen_max) est ajustée avec une puissance de brûleur externe (Paußen) supplémentaire nécessaire en dessous de la puissance de brûleur externe de fonctionnement stable (Paußen_stabil) en faisant fonctionner le brûleur de circuit interne (36) en mode permanent avec sa puissance de brûleur interne maximale (Pinnen_max) et en faisant fonctionner le brûleur de circuit externe (40) de manière cadencée, le brûleur de circuit externe (40) étant à cet effet mis en fonctionnement et déconnecté en alternance et, dans l'état mis en fonctionnement, fonctionnant de préférence avec la puissance de brûleur externe de fonctionnement stable(Paußen_stabil).
  12. Procédé selon la revendication 10 pour la commande d'un système de brûleur à deux circuits (10) comprenant une vanne d'arrêt à commande électronique (16), caractérisé en ce que l'alimentation en gaz allant au circuit interne est bloquée et ouverte de manière cyclique, par le fait que l'unité de commande (26) commande la vanne d'arrêt (16) pour l'ouverture et la fermeture de l'alimentation en gaz de manière cyclique et en ajustant, au moyen de la vanne papillon de rotor (50), un débit de gaz (Vinnen) allant au circuit interne suffisant pour l'allumage du brûleur de circuit interne (36) tandis que la sortie de gaz de vanne (48) allant au circuit externe reste fermée de manière durable.
  13. Procédé selon la revendication 11 pour la commande d'un système de brûleur à deux circuits (10) comprenant un dispositif d'allumage à commande électronique (32) et un pont de surallumage (38), caractérisé en ce que le brûleur de circuit externe (40) est mis en fonctionnement de manière cadencée en bloquant et en ouvrant de manière cyclique l'alimentation en gaz allant au circuit externe, tandis que l'alimentation en gaz allant au circuit interne reste ouverte de manière durable, de préférence de manière constante, le brûleur de circuit interne (36) fonctionnant en mode permanent et après chaque ouverture de l'alimentation en gaz allant au circuit externe, le brûleur de circuit externe (40) étant allumé au moyen du brûleur de circuit interne (36) et du pont de surallumage (38).
  14. Procédé selon la revendication 13, caractérisé en ce que l'alimentation en gaz allant au circuit externe est bloquée et ouverte de manière cyclique par le fait que l'unité de commande (26) commande la vanne papillon de rotor (50) de telle sorte que l'alimentation en gaz au circuit externe soit ouverte et fermée de manière cyclique tandis que le débit de gaz ajusté (Vinnen, Vinnen_max) allant au circuit interne reste constant et correspond à la puissance de brûleur interne maximale (Pinnen_max) de telle sorte que le brûleur de circuit interne (36) fonctionne avec la puissance de brûleur interne maximale (Pinnen_max).
EP11151874.2A 2010-01-25 2011-01-24 Système de brûleur à deux circuits et procédé de fonctionnement d'un tel système de brûleur à deux circuits Active EP2348255B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010006276A DE102010006276A1 (de) 2010-01-25 2010-01-25 Zweikreis-Brennersystem und Verfahren zum Betrieb eines solchen Zweikreis-Brennersystems

Publications (3)

Publication Number Publication Date
EP2348255A2 EP2348255A2 (fr) 2011-07-27
EP2348255A3 EP2348255A3 (fr) 2012-07-18
EP2348255B1 true EP2348255B1 (fr) 2019-07-03

Family

ID=43902739

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11151874.2A Active EP2348255B1 (fr) 2010-01-25 2011-01-24 Système de brûleur à deux circuits et procédé de fonctionnement d'un tel système de brûleur à deux circuits

Country Status (3)

Country Link
EP (1) EP2348255B1 (fr)
DE (1) DE102010006276A1 (fr)
ES (1) ES2745863T3 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20111738A1 (it) * 2011-09-27 2013-03-28 Smeg Spa Bruciatore per un piano di cottura a gas e piano di cottura a gas incorporante tale bruciatore
DE102012200342B4 (de) 2012-01-11 2017-03-23 E.G.O. Elektro-Gerätebau GmbH Verfahren zur Ansteuerung mehrerer Gasbrenner eines Gaskochfeldes
DE102012000753A1 (de) * 2012-01-18 2013-07-18 Ceramaspeed Inc. Gasbrenner mit wenigstens drei Flammenkreisen
DE102012023434A1 (de) * 2012-11-30 2014-06-05 German Gabtec Gmbh Steuern der Gaszufuhr eines Gasbrenners
DE102013218852A1 (de) 2013-09-19 2015-03-19 E.G.O. Elektro-Gerätebau GmbH Anordnung von Gasbrennern
EP2930424B1 (fr) * 2014-04-11 2017-05-31 E.G.O. ELEKTRO-GERÄTEBAU GmbH Procédé de fonctionnement d'un brûleur à gaz
US10619858B2 (en) 2018-02-08 2020-04-14 Haier Us Appliance Solutions, Inc. Fuel supply system for a gas burner assembly
CN110207108B (zh) * 2018-11-26 2024-04-16 华帝股份有限公司 单引射多通道的燃烧器及其方法、灶具
US11739933B2 (en) 2020-09-30 2023-08-29 Midea Group Co., Ltd. Oven broiler gas burner for cooking appliance with variable electromechanical valve
US11732890B2 (en) * 2020-09-30 2023-08-22 Midea Group Co., Ltd. Cooking appliance gas oven burner control during oven warm-up operation

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2765810A (en) * 1951-09-01 1956-10-09 Philip S Harper Gas valves
US2781779A (en) * 1952-01-26 1957-02-19 W J Schoenberger Co Gas range burner control
US3606612A (en) * 1969-10-20 1971-09-20 Columbia Gas Syst Gas burner and control
DE4434742C2 (de) * 1994-09-28 2001-01-11 Imp Werke Gmbh & Co Verfahren und Vorrichtung zum Regeln der Gaszufuhr bei einem Zweikreisgasbrenner
DE19757733A1 (de) * 1997-12-23 1999-06-24 Bosch Siemens Hausgeraete Gasbrenneranordnung
US6318357B1 (en) * 1997-12-23 2001-11-20 Bsh Bosch Und Siemens Hausgeraete Gmbh Gas burner configuration for cooking areas
DE19949600A1 (de) * 1999-10-14 2001-04-19 Bsh Bosch Siemens Hausgeraete Gasbeheiztes Hausgerät
FR2804496B1 (fr) 2000-01-28 2002-07-19 Sourdillon Sa Bruleur a gaz a multiples couronnes de flammes
JP3819307B2 (ja) * 2002-03-04 2006-09-06 リンナイ株式会社 ガス流量制御装置
EP1536181B1 (fr) * 2003-11-26 2011-08-31 BSH Bosch und Siemens Hausgeräte GmbH Robinet de gaz et table de cuisson à gaz
DE102009047914A1 (de) 2009-09-18 2011-03-31 E.G.O. Elektro-Gerätebau GmbH Rotorscheibe, Rotorscheibenventil und Ventileinrichtung
EP2312212B1 (fr) * 2009-10-14 2019-12-11 BSH Hausgeräte GmbH Poste de cuisson au gaz doté d'un brûleur à deux circuits

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2348255A3 (fr) 2012-07-18
EP2348255A2 (fr) 2011-07-27
ES2745863T3 (es) 2020-03-03
DE102010006276A1 (de) 2011-07-28

Similar Documents

Publication Publication Date Title
EP2348255B1 (fr) Système de brûleur à deux circuits et procédé de fonctionnement d'un tel système de brûleur à deux circuits
DE602005002768T2 (de) Haushaltgaskochgerät
DE602005002858T2 (de) Motorbetätigte Ventilvorrichtung
EP2160541B1 (fr) Système de commande pour une cuisinière à gaz
EP2299156B1 (fr) Disque rotorique, vanne papillon de rotor et dispositif de vanne
DE102013216290B4 (de) Heizeinrichtung und Verfahren zum Betrieb einer Heizeinrichtung
EP2998654B1 (fr) Procede de reconnaissance de casserole et plaque de cuisson
EP2312212B1 (fr) Poste de cuisson au gaz doté d'un brûleur à deux circuits
WO2011144492A2 (fr) Ensemble valve à gaz pourvu de deux sorties de gaz
EP2863128A1 (fr) Procédé de reconnaissance de casserole et champ de cuisson
EP1330953B1 (fr) Système de brûleurs avec plusieurs systèmes de transfert de chaleur et appareil de cuisson pourvu d'un tel système de brûleurs
EP2390571A2 (fr) Procédé de commande d'un brûleur à gaz et plaque de cuisson à gaz dotée de plusieurs brûleurs à gaz
DE102011100182A1 (de) Integrales Zündsicherungsventil
DE19752472A1 (de) Anordnung und Verfahren zum Steuern einer Heizvorrichtung für Gaskochmulden
EP2500651A2 (fr) Procédé de commande d'un système de vanne de gaz pour un brûleur à gaz et appareil de cuisson au gaz doté d'un tel système de vanne de gaz
DE212015000268U1 (de) System zum sequentiellen Einstellen für Haushalt-Kochaufsätze mit mehreren Injektorbrennern
EP2652398B1 (fr) Unité vanne à gaz pour un brûleur à deux circuits
DE3703916C2 (fr)
DE102013218852A1 (de) Anordnung von Gasbrennern
EP1207340A2 (fr) Procédé de réglage d'un brûleur
DE102013218014B4 (de) Gasventileinrichtung und Gasgerät mit einer Gasventileinrichtung
DE102008037906B4 (de) Verfahren und Brenner zum Steuern eines Brennstoffluftgemisches einer mittleren bzw. großen Feuerungsanlage
EP3146269B1 (fr) Montage, plaque de cuisson et appareil de cuisson à gaz
WO2000057107A1 (fr) Robinet de regulation de gaz
DE2312305C2 (de) Einrichtung zum Beeinflussen der Leistung eines gasbeheizten Durchlauf-Wassererhitzers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F24C 3/08 20060101ALI20120613BHEP

Ipc: F23N 1/00 20060101AFI20120613BHEP

17P Request for examination filed

Effective date: 20130111

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180301

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502011015860

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F23N0001000000

Ipc: F24C0003120000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F24C 3/12 20060101AFI20190107BHEP

Ipc: F23N 1/00 20060101ALI20190107BHEP

INTG Intention to grant announced

Effective date: 20190123

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1151481

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011015860

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190703

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191003

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191003

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191104

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191004

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191103

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2745863

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011015860

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

26N No opposition filed

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200124

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200124

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200124

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200124

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1151481

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240216

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240119

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240118

Year of fee payment: 14

Ref country code: IT

Payment date: 20240131

Year of fee payment: 14