EP2344282B1 - Method for cleaning a vacuum pump - Google Patents

Method for cleaning a vacuum pump Download PDF

Info

Publication number
EP2344282B1
EP2344282B1 EP09740158A EP09740158A EP2344282B1 EP 2344282 B1 EP2344282 B1 EP 2344282B1 EP 09740158 A EP09740158 A EP 09740158A EP 09740158 A EP09740158 A EP 09740158A EP 2344282 B1 EP2344282 B1 EP 2344282B1
Authority
EP
European Patent Office
Prior art keywords
pump chamber
pump
cleaning liquid
cleaning
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09740158A
Other languages
German (de)
French (fr)
Other versions
EP2344282A1 (en
Inventor
Ingo Kannen
Hagen GÖTTLICH
Stefan Schneider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TEL Solar AG
Leybold GmbH
Original Assignee
Oerlikon Solar AG
Oerlikon Leybold Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41565980&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2344282(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Oerlikon Solar AG, Oerlikon Leybold Vacuum GmbH filed Critical Oerlikon Solar AG
Publication of EP2344282A1 publication Critical patent/EP2344282A1/en
Application granted granted Critical
Publication of EP2344282B1 publication Critical patent/EP2344282B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/10Vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2280/00Arrangements for preventing or removing deposits or corrosion
    • F04C2280/02Preventing solid deposits in pumps, e.g. in vacuum pumps with chemical vapour deposition [CVD] processes

Definitions

  • the invention relates to a method for cleaning a vacuum pump having a pump chamber with at least one pump rotor.
  • TCO layers transparent conductive oxide layers
  • TCO layers are made by combining water and diethylzinc. Water and diethylzinc can react violently at atmospheric pressure. At low pressure of a few millibar, the reaction is much slower.
  • the two materials are therefore reacted in process chambers under vacuum in order to force a slow reaction.
  • the reaction of water with diethyl zinc as a by-product impurities in the form of dust particles which lead to deposits in the pump housing and on the rotor. These reactions can also take place in the pump. These deposits reduce the maximum operating life of the pump.
  • the cleaning of a vacuum pump is cumbersome and time consuming and usually requires a complete disassembly of the pump.
  • WO 2004/036047 A1 describes a cleaning method for a vacuum pump. Through an intermediate inlet, a cleaning fluid is applied directly to the surface of a rotor.
  • the invention has for its object to provide a simple method for cleaning a vacuum pump without the pump has to be dismantled or removed from the plant.
  • a cleaning liquid e.g. in the form of an acid, a lye, a solvent or a plasticizer.
  • the cleaning solution is distributed in the pump chamber, so that the cleaning solution also reaches hard to reach areas in the pump chamber. Moving the rotor creates a mixture of cleaning fluid and dissolved impurities. This mixture is then drained from the pump chamber.
  • a simple cleaning process is created with which the maximum operating time of the vacuum pump can be increased. Clogging the pump with the contaminant deposits and thus potentially damaging or even destroying the pump can be avoided by using the cleaning process.
  • the cleaning process is more efficient than traditional simple rinsing procedures. The duration of the cleaning process is shortened compared to conventional methods, whereby the available usage time of the pump is increased.
  • the advantage is that by filling a cleaning fluid into the pump chamber and distributing the cleaning fluid within the pump chamber regardless of the actual rinsing process impurities can be solved better. This is especially the case if the cleaning process does not take place during pump operation at rated speed.
  • the pump chamber inlet and the pump chamber outlet should be closed and the pump chamber should be completely flooded with the cleaning fluid.
  • the vacuum pump may e.g. be rinsed by applying the known rinsing method.
  • the pump chamber is rinsed with a rinsing liquid, for example water, and then dried before the pump is put back into operation.
  • the Cleaning fluid may be an acidic cleaning solution.
  • the acidic cleaning solution dissolves zinc-containing deposits.
  • cleaning liquid is advantageously replenished into the pump chamber and distributed by moving the rotor again in the pump chamber, so that fresh cleaning liquid reaches the still remaining deposits for releasing the same. Since the dissolved deposits consume the cleaning liquid, a multiple refilling and moving the rotor may be necessary to increase the effectiveness.
  • a secondary gas is, for example, nitrogen, which is used as a seal shaft purge between the pump chamber and the adjacent gear housing of the pump rotor or as a gas ballast intended to prevent condensing of the compressed gas.
  • the supply of the gas ballast is stopped and the sealing gas flow is reduced.
  • a degassing opening can be produced in the upper region of the pump chamber, through which the secondary gas can escape upwards out of the pump chamber to the atmosphere. Secondary gases can prevent a uniform distribution of the cleaning liquid and thus reduce the effectiveness of the cleaning process.
  • the vent may be provided with a removable plug.
  • a degasification pipe can be placed on the degassing opening, through which the escaping secondary gas is led to the atmosphere.
  • the degassing pipe is connected to an exhaust pipe for the pump chamber outlet.
  • the acid content of the cleaning solution should be high enough for effective cleaning and low enough to avoid unnecessary attack on the pump components. These properties are fulfilled with an acid content of between 2% and 15%. A particularly advantageous acid content is about 10%.
  • a beneficial acid for the cleaning solution is citric acid.
  • the illustrated vacuum pump 10 has a pump chamber 12 (pump chamber), in which a rotor 14 is mounted axially compressing.
  • the rotor 14 is driven by a gear arranged outside the pump chamber 12, which is contained in a gear chamber 16.
  • the pump chamber 12 is surrounded by a housing 18.
  • the housing 18 has a pump chamber inlet 20 and a pump chamber outlet 22.
  • the shaft 15 of the rotor 14 is guided by a passage 17 between the housing 18 and the gear chamber 16 of the pump chamber 12 in the gear chamber 16.
  • the implementation 17 is in detail in FIG. 2 shown.
  • a degassing opening 24 is formed, on which a degassing pipe 26 is placed.
  • the degassing pipe 26 is connected to an exhaust pipe 30 connected to the pump chamber outlet 22.
  • degassing opening 24 In order to prevent accumulations of secondary gas to keep the cleaning solution away from deposits, secondary gases are discharged through the degassing opening 24. Since the degassing opening 24 is formed in the upper region of the housing 18, secondary gas in the form of gas bubbles rising upwards in the cleaning solution can escape through the degassing opening 24. On the vent 24, a degassing 26 is placed, which dissipates the leaked secondary gas to the atmosphere. In the in FIG. 1 In the embodiment shown, the degasification pipe 26 is guided into the exhaust pipe 30 of the pump chamber outlet 22.
  • a typical secondary gas is nitrogen.
  • nitrogen is used as a gas ballast to prevent water vapor from condensing during pump operation.
  • Nitrogen is also used as a sealing gas to the Carrying out 17 seal the rotor shaft from the gear chamber 16 in the pump chamber 12, so that no impurities from the pump into the gear chamber and thus the cleaning fluid can not escape into the transmission.
  • the sealing gas is supplied via a Dichtgaszumoltechnisch 32 the gap 34 of the shaft seal 36 and flows from the gap 34 into the pump chamber 12.
  • a discharge is required. This discharge is created by the degassing opening 24 being formed above the outlet 38 of the passage 17, because the sealing gas emerging from the gap 34 rises in the cleaning liquid 28 within the pump chamber 12 and accumulates in the area above the passage outlet 38. Through the degassing opening 24, the sealing gas is discharged.
  • the cleaning liquid 28 is discharged from the pump chamber 12 together with the dissolved impurities. Subsequently, the pump chamber 12 is rinsed with clear water and then dried. In this case, in particular, a rinsing method known from the prior art can be used. After drying, the cleaning process is completed and the vacuum pump 10 can be put back into operation.

Abstract

The invention relates to an effective method for cleaning a vacuum pump (10) comprising a pump chamber (12) with at least one pump rotor (14), characterized by the steps of: a) filling the pump chamber (12) with a cleaning fluid (28), b) distributing the cleaning fluid (28) in the pump chamber (12), c) dissolving impurities using the cleaning fluid (28) and d) draining the cleaning fluid (28) from the pump chamber (12).

Description

Die Erfindung betrifft ein Verfahren zum Reinigen einer Vakuumpumpe, die eine Pumpenkammer mit mindestens einem Pumpenrotor aufweist.The invention relates to a method for cleaning a vacuum pump having a pump chamber with at least one pump rotor.

Bei verschiedenen Anwendungen derartiger Vakuumpumpen besteht das Problem von Verunreinigungen, die während des Betriebs entstehen und sich im Schöpfraum der Pumpe (Pumpenkammer) anreichern. Solche Anwendungen sind zum Beispiel MOCVD-Prozesse, LPCVD-Prozesse, PECVD-Prozesse, PVD-Prozesse oder Lamination von z.B. Photovoltaik Modulen. Es handelt sich um Prozesse, bei denen Prozess-Gase eingesetzt werden oder in der Prozesskammer Reaktionsprodukte entstehen, die sich in der Vakuumpumpe aufgrund der Druck/Temperaturverhältnisse zersetzen oder miteinander reagieren. Als Folge entstehen Partikel, die als Schichten aufwachsen oder staubförmig anfallen.In various applications of such vacuum pumps, there is the problem of impurities that arise during operation and accumulate in the pump chamber (pump chamber). Such applications are for example MOCVD processes, LPCVD processes, PECVD processes, PVD processes or lamination of eg photovoltaic modules. These are processes in which process gases are used or in the process chamber reaction products that arise in the vacuum pump due to the pressure / temperature conditions decompose or react with each other. As a result, particles form, which grow up as layers or are dusty.

Eine solche Anwendung einer Vakuumpumpe ist beispielsweise das Auftragen transparenter leitfähiger Oxidschichten (TCO-Schichten) für die Herstellung von Solarzellen mit Hilfe von Vakuumpumpen. TCO-Schichten werden beispielsweise durch Kombination von Wasser und Diethylzink hergestellt. Wasser und Diethylzink können bei atmosphärischem Druck heftig miteinander reagieren. Bei geringem Druck von wenigen Millibar ist die Reaktion deutlich langsamer. Zur Herstellung der TCO-Schichten werden die beiden Materialien daher in Prozesskammern unter Vakuum zur Reaktion gebracht, um eine langsame Reaktion zu erzwingen. Bei der Reaktion von Wasser mit Diethylzink entstehen als Nebenprodukt Verunreinigungen in Form von Staubpartikeln, die zu Ablagerungen in dem Pumpengehäuse und an dem Rotor führen. Diese Reaktionen können auch in der Pumpe erfolgen. Durch diese Ablagerungen ist die maximale Betriebsdauer der Pumpe reduziert. Das Reinigen einer Vakuumpumpe ist umständlich und zeitaufwändig und erfordert in der Regel eine komplette Demontage der Pumpe.One such application of a vacuum pump is, for example, the application of transparent conductive oxide layers (TCO layers) for the production of solar cells by means of vacuum pumps. For example, TCO layers are made by combining water and diethylzinc. Water and diethylzinc can react violently at atmospheric pressure. At low pressure of a few millibar, the reaction is much slower. For the preparation of the TCO layers, the two materials are therefore reacted in process chambers under vacuum in order to force a slow reaction. In the reaction of water with diethyl zinc as a by-product impurities in the form of dust particles, which lead to deposits in the pump housing and on the rotor. These reactions can also take place in the pump. These deposits reduce the maximum operating life of the pump. The cleaning of a vacuum pump is cumbersome and time consuming and usually requires a complete disassembly of the pump.

Aus DE 10 2004 063 058 A1 ist ein Spülverfahren zum Reinigen einer Vakuumschraubenpumpe bekannt, bei dem die Pumpe während des Betriebs mit Nenndrehzahl mit einem Reinigungsfluid gespült wird, wobei das Reinigungsfluid ein Gemisch aus einer Spülflüssigkeit und einem Spülgas ist.Out DE 10 2004 063 058 A1 For example, there is known a rinsing method of cleaning a vacuum screw pump in which the pump is purged with a cleaning fluid during operation at nominal speed, the cleaning fluid being a mixture of a rinsing fluid and a purge gas.

WO 2004/036047 A1 beschreibt ein Reinigungsverfahren für eine Vakuumpumpe. Durch einen Zwischeneinlass wird ein Reinigungsfluid direkt auf die Oberfläche eines Rotors aufgebracht. WO 2004/036047 A1 describes a cleaning method for a vacuum pump. Through an intermediate inlet, a cleaning fluid is applied directly to the surface of a rotor.

Der Erfindung liegt die Aufgabe zugrunde, ein einfaches Verfahren zum Reinigen einer Vakuumpumpe zu schaffen, ohne dass die Pumpe dazu demontiert oder aus der Anlage ausgebaut werden muss.The invention has for its object to provide a simple method for cleaning a vacuum pump without the pump has to be dismantled or removed from the plant.

Das erfindungsgemäße Verfahren ist definiert durch die Merkmale von Patentanspruch 1.The method according to the invention is defined by the features of patent claim 1.

In die Pumpenkammer wird eine Reinigungsflüssigkeit z.B. in Form einer Säure, einer Lauge, eines Lösungsmittels oder eines Weichmachers eingefüllt. Durch Bewegen des Rotors wird die Reinigungslösung in der Pumpenkammer verteilt, so dass die Reinigungslösung auch schwer zugängliche Bereiche in der Pumpenkammer erreicht. Durch Bewegen des Rotors entsteht ein Gemisch aus Reinigungsflüssigkeit und gelösten Verunreinigungen. Dieses Gemisch wird anschließend aus der Pumpenkammer abgelassen. Durch das Auflösen der Verunreinigungen mit der Reinigungsflüssigkeit wird ein einfaches Reinigungsverfahren geschaffen, mit dem die maximale Betriebsdauer der Vakuumpumpe erhöht werden kann. Ein Verstopfen der Pumpe mit den Verunreinigungsablagerungen und somit ein mögliches Beschädigen oder gar Zerstören der Pumpe ist durch Anwendung des Reinigungsverfahrens vermeidbar. Das Reinigungsverfahren ist effizienter als herkömmliche einfache Spülverfahren. Die Dauer des Reinigungsvorgangs ist gegenüber herkömmlichen Verfahren verkürzt, wodurch die verfügbare Nutzungszeit der Pumpe erhöht ist.In the pumping chamber is a cleaning liquid, e.g. in the form of an acid, a lye, a solvent or a plasticizer. By moving the rotor, the cleaning solution is distributed in the pump chamber, so that the cleaning solution also reaches hard to reach areas in the pump chamber. Moving the rotor creates a mixture of cleaning fluid and dissolved impurities. This mixture is then drained from the pump chamber. By dissolving the contaminants with the cleaning liquid, a simple cleaning process is created with which the maximum operating time of the vacuum pump can be increased. Clogging the pump with the contaminant deposits and thus potentially damaging or even destroying the pump can be avoided by using the cleaning process. The cleaning process is more efficient than traditional simple rinsing procedures. The duration of the cleaning process is shortened compared to conventional methods, whereby the available usage time of the pump is increased.

Gegenüber dem bekannten Spülverfahren unter Verwendung eines Spülfluids während des Pumpenbetriebs mit Nenndrehzahl besteht der Vorteil darin, dass durch Einfüllen einer Reinigungsflüssigkeit in die Pumpenkammer und Verteilen der Reinigungsflüssigkeit innerhalb der Pumpenkammer unabhängig von dem eigentlich Spülvorgang Verunreinigungen besser gelöst werden können. Dies ist insbesondere dann der Fall, wenn der Reinigungsvorgang nicht während des Pumpenbetriebs mit Nenndrehzahl erfolgt. Hierzu sollte der Pumpenkammer-Einlass und der Pumpenkammer-Auslass verschlossen werden und die Pumpenkammer vollständig mit der Reinigungsflüssigkeit geflutet werden. Nach dem Reinigungsvorgang kann die Vakuumpumpe z.B. durch Anwenden des bekannten Spülverfahrens gespült werden.Compared to the known rinsing method using a rinsing fluid during pump operation at rated speed, the advantage is that by filling a cleaning fluid into the pump chamber and distributing the cleaning fluid within the pump chamber regardless of the actual rinsing process impurities can be solved better. This is especially the case if the cleaning process does not take place during pump operation at rated speed. For this purpose, the pump chamber inlet and the pump chamber outlet should be closed and the pump chamber should be completely flooded with the cleaning fluid. After the cleaning process, the vacuum pump may e.g. be rinsed by applying the known rinsing method.

Vorzugsweise wird nach Ablassen der Reinigungsflüssigkeit die Pumpenkammer mit einer Spülflüssigkeit, beispielsweise Wasser, gespült und anschließend getrocknet, bevor die Pumpe wieder in Betrieb genommen wird. Die Reinigungsflüssigkeit kann eine säurehaltige Reinigungslösung sein. Die säurehaltige Reinigungslösung löst zinkhaltige Ablagerungen.Preferably, after draining the cleaning liquid, the pump chamber is rinsed with a rinsing liquid, for example water, and then dried before the pump is put back into operation. The Cleaning fluid may be an acidic cleaning solution. The acidic cleaning solution dissolves zinc-containing deposits.

Zur Erhöhung der Effektivität des Reinigungsverfahrens wird vorteilhafterweise Reinigungsflüssigkeit in die Pumpenkammer nachgefüllt und durch erneutes Bewegen des Rotors in der Pumpenkammer verteilt, damit frische Reinigungsflüssigkeit an die noch verbliebenen Ablagerungen zum Lösen derselben gelangt. Da die gelösten Ablagerungen die Reinigungsflüssigkeit aufbrauchen, kann ein mehrmaliges Nachfüllen und Bewegen des Rotors zur Steigerung der Effektivität notwendig sein.To increase the effectiveness of the cleaning process, cleaning liquid is advantageously replenished into the pump chamber and distributed by moving the rotor again in the pump chamber, so that fresh cleaning liquid reaches the still remaining deposits for releasing the same. Since the dissolved deposits consume the cleaning liquid, a multiple refilling and moving the rotor may be necessary to increase the effectiveness.

Bevor die Reinigungsflüssigkeit in die Pumpenkammer eingefüllt wird, sollte der Pumpenbetrieb gestoppt werden. Der Pumpenkammer-Einlass und der Pumpenkammer-Auslass werden dann verschlossen. Insbesondere ist es vorteilhaft, mögliche Sekundärgase während des Reinigungsvorgangs aus der Pumpenkammer entweichen zu lassen. Ein Sekundärgas ist zum Beispiel Stickstoff, der als Dichtgas ("seal shaft purge") zwischen Pumpenkammer und angrenzendem Getriebegehäuse des Pumpenrotors oder als Gasballast, der ein Kondensieren des komprimierten Gases verhindern soll, verwendet wird. So wird beispielsweise die Zufuhr des Gasballasts gestoppt und der Dichtgasstrom vermindert. Zur Ableitung kann im oberen Bereich der Pumpenkammer eine Entgasungsöffnung hergestellt werden, durch die das Sekundärgas nach oben aus der Pumpenkammer zur Atmosphäre hin entweichen kann. Sekundärgase können ein gleichmäßiges Verteilen der Reinigungsflüssigkeit verhindern und somit die Effektivität des Reinigungsvorganges senken. Die Entgasungsöffnung kann mit einem abnehmbaren Stopfen versehen sein. Zum Entweichenlassen der Sekundärgase kann auf die Entgasungsöffnung eine Entgasungsrohrleitung aufgesetzt werden, durch die das entweichende Sekundärgas zur Atmosphäre hin geführt wird. Vorzugsweise ist die Entgasungsrohrleitung mit einer Abgasleitung für den Pumpenkammer-Auslass verbunden.Before the cleaning fluid is filled into the pump chamber, pump operation should be stopped. The pump chamber inlet and the pump chamber outlet are then closed. In particular, it is advantageous to allow possible secondary gases to escape from the pump chamber during the cleaning process. A secondary gas is, for example, nitrogen, which is used as a seal shaft purge between the pump chamber and the adjacent gear housing of the pump rotor or as a gas ballast intended to prevent condensing of the compressed gas. For example, the supply of the gas ballast is stopped and the sealing gas flow is reduced. For the derivation, a degassing opening can be produced in the upper region of the pump chamber, through which the secondary gas can escape upwards out of the pump chamber to the atmosphere. Secondary gases can prevent a uniform distribution of the cleaning liquid and thus reduce the effectiveness of the cleaning process. The vent may be provided with a removable plug. To allow the secondary gases to escape, a degasification pipe can be placed on the degassing opening, through which the escaping secondary gas is led to the atmosphere. Preferably, the degassing pipe is connected to an exhaust pipe for the pump chamber outlet.

Bei Verwendung einer säurehaltigen Reinigungslösung sollte der Säureanteil der Reinigungslösung ausreichend hoch für eine effektive Reinigung und hierbei ausreichend gering sein, um die Pumpenkomponenten nicht unnötig anzugreifen. Diese Eigenschaften sind bei einem Säureanteil zwischen 2% und 15% erfüllt. Ein besonders vorteilhafter Säureanteil beträgt etwa 10%. Eine vorteilhafte Säure für die Reinigungslösung ist Zitronensäure.When using an acidic cleaning solution, the acid content of the cleaning solution should be high enough for effective cleaning and low enough to avoid unnecessary attack on the pump components. These properties are fulfilled with an acid content of between 2% and 15%. A particularly advantageous acid content is about 10%. A beneficial acid for the cleaning solution is citric acid.

Im Folgenden wird anhand der Figuren ein Ausführungsbeispiel der Erfindung näher erläutert.In the following an embodiment of the invention will be explained in more detail with reference to FIGS.

Es zeigen:

Figur 1
einen Schnitt durch eine Vakuumpumpe mit einer Pumpenkammer und mit einem Pumpenrotor und
Figur 2
einen vergrößerten Ausschnitt aus Figur 1.
Show it:
FIG. 1
a section through a vacuum pump with a pump chamber and with a pump rotor and
FIG. 2
an enlarged section FIG. 1 ,

Die dargestellte Vakuumpumpe 10 weist eine Pumpenkammer 12 (Schöpfraum) auf, in der ein Rotor 14 axial verdichtend gelagert ist. Der Rotor 14 wird von einem außerhalb der Pumpenkammer 12 angeordneten Getriebe angetrieben, das in einem Getrieberaum 16 enthalten ist. Die Pumpenkammer 12 ist von einem Gehäuse 18 umgeben. Das Gehäuse 18 weist einen Pumpenkammer-Einlass 20 und einen Pumpenkammer-Auslass 22 auf. Die Welle 15 des Rotors 14 ist durch eine Durchführung 17 zwischen Gehäuse 18 und Getrieberaum 16 von der Pumpenkammer 12 in den Getrieberaum 16 geführt. Die Durchführung 17 ist im Detail in Figur 2 gezeigt.The illustrated vacuum pump 10 has a pump chamber 12 (pump chamber), in which a rotor 14 is mounted axially compressing. The rotor 14 is driven by a gear arranged outside the pump chamber 12, which is contained in a gear chamber 16. The pump chamber 12 is surrounded by a housing 18. The housing 18 has a pump chamber inlet 20 and a pump chamber outlet 22. The shaft 15 of the rotor 14 is guided by a passage 17 between the housing 18 and the gear chamber 16 of the pump chamber 12 in the gear chamber 16. The implementation 17 is in detail in FIG. 2 shown.

In der Oberseite des Gehäuses ist eine Entgasungsöffnung 24 ausgebildet, auf die eine Entgasungsrohrleitung 26 aufgesetzt ist. Die Entgasungsrohrleitung 26 ist mit einer Abgasleitung 30, die mit dem Pumpenkammer-Auslass 22 verbunden ist, verbunden.In the top of the housing, a degassing opening 24 is formed, on which a degassing pipe 26 is placed. The degassing pipe 26 is connected to an exhaust pipe 30 connected to the pump chamber outlet 22.

Beim Betrieb der Vakuumpumpe mit Wasserdampf und Diethylzink reagieren diese miteinander bei steigendem Druck und bilden metallische oder oxidische Ablagerungen in Form von Zink oder Zinkoxid in der Pumpenkammer. Zum Lösen dieser Verunreinigungen wird zunächst der Betrieb der Pumpe 10 gestoppt und Pumpenkammer-Einlass 20 und Pumpenkammer-Auslass 22 verschlossen. Anschließend wird die Pumpenkammer 12 mit einer Reinigungsflüssigkeit 28 in Form einer zitronensäurehaltigen Reinigungslösung geflutet. Durch anschließendes Bewegen des Rotors 14 wird die Reinigungsflüssigkeit 28 gleichmäßig verteilt und gelangt dadurch an alle innenliegenden Flächen in der Pumpenkammer 12 und insbesondere auch in schwer zugängliche Bereiche der Pumpenkammer und Rotore. Die Reinigungsflüssigkeit löst die Ablagerungen und bildet mit diesen eine Lösung. Durch mehrmaliges Nachfüllen frischer Reinigungsflüssigkeit 28 und Bewegen des Rotors 14 zum Verteilen der Reinigungsflüssigkeit kann noch frische Reinigungsflüssigkeit an verbliebene Verunreinigungen gelangen und auch diese lösen.When operating the vacuum pump with water vapor and diethylzinc they react with each other with increasing pressure and form metallic or oxidic deposits in the form of zinc or zinc oxide in the pump chamber. To solve these contaminants, first the operation of the pump 10 is stopped and the pump chamber inlet 20 and pump chamber outlet 22 are closed. Subsequently, the pump chamber 12 is flooded with a cleaning liquid 28 in the form of a citric acid-containing cleaning solution. By subsequently moving the rotor 14, the cleaning liquid 28 is evenly distributed and thereby reaches all internal surfaces in the pump chamber 12 and in particular in hard to reach areas of the pump chamber and rotors. The cleaning fluid dissolves the deposits and forms a solution with them. By refilling fresh cleaning liquid 28 several times and moving the rotor 14 to distribute the cleaning liquid, fresh cleaning liquid can still reach remaining contaminants and also dissolve them.

Um zu verhindern, dass Ansammlungen von Sekundärgas die Reinigungslösung von Ablagerungen fernhalten, werden Sekundärgase durch die Entgasungsöffnung 24 abgeführt. Da die Entgasungsöffnung 24 im oberen Bereich des Gehäuses 18 ausgebildet ist, kann Sekundärgas in Form von nach oben in der Reinigungslösung aufsteigenden Gasblasen durch die Entgasungsöffnung 24 entweichen. Auf die Entgasungsöffnung 24 ist eine Entgasungsrohrleitung 26 aufgesetzt, die das entwichene Sekundärgas zur Atmosphäre hin abführt. In dem in Figur 1 gezeigten Ausführungsbeispiel ist die Entgasungsrohrleitung 26 in die Abgasleitung 30 des Pumpenkammer-Auslasses 22 geführt.In order to prevent accumulations of secondary gas to keep the cleaning solution away from deposits, secondary gases are discharged through the degassing opening 24. Since the degassing opening 24 is formed in the upper region of the housing 18, secondary gas in the form of gas bubbles rising upwards in the cleaning solution can escape through the degassing opening 24. On the vent 24, a degassing 26 is placed, which dissipates the leaked secondary gas to the atmosphere. In the in FIG. 1 In the embodiment shown, the degasification pipe 26 is guided into the exhaust pipe 30 of the pump chamber outlet 22.

Ein typisches Sekundärgas ist Stickstoff. Stickstoff wird beispielsweise als Gasballast eingesetzt, um zu vermeiden, dass der Wasserdampf beim Betrieb der Pumpe kondensiert. Stickstoff wird ferner als Dichtgas eingesetzt, um die Durchführung 17 der Rotorwelle vom Getrieberaum 16 in die Pumpenkammer 12 abzudichten, damit keine Verunreinigungen aus der Pumpe in den Getrieberaum gelangen und damit die Reinigungsflüssigkeit nicht in das Getriebe entweichen kann. Hierbei wird das Dichtgas über eine Dichtgaszuführleitung 32 dem Spalt 34 der Wellendichtung 36 zugeführt und strömt aus dem Spalt 34 in die Pumpenkammer 12. Dadurch wird mit Hilfe des Dichtgases Stickstoff im Bereich des Austritts 38 der Durchführung 17 eine dichtende Gasansammlung gebildet, die ein Eindringen der Reinigungsflüssigkeit 28 in den abzudichtenden Bereich verhindern kann. Um zu vermeiden, dass sich darüber hinaus Dichtgas ansammelt und die zu reinigende Oberfläche abschirmt, ist eine Ableitung erforderlich. Diese Ableitung wird dadurch geschaffen, dass die Entgasungsöffnung 24 oberhalb des Austritts 38 der Durchführung 17 ausgebildet wird, weil das aus dem Spalt 34 austretende Dichtgas in der Reinigungsflüssigkeit 28 innerhalb der Pumpenkammer 12 aufsteigt und sich in dem Bereich oberhalb des Durchführungsaustritts 38 ansammelt. Durch die Entgasungsöffnung 24 wird das Dichtgas abgeleitet.A typical secondary gas is nitrogen. For example, nitrogen is used as a gas ballast to prevent water vapor from condensing during pump operation. Nitrogen is also used as a sealing gas to the Carrying out 17 seal the rotor shaft from the gear chamber 16 in the pump chamber 12, so that no impurities from the pump into the gear chamber and thus the cleaning fluid can not escape into the transmission. Here, the sealing gas is supplied via a Dichtgaszuführleitung 32 the gap 34 of the shaft seal 36 and flows from the gap 34 into the pump chamber 12. Thus, with the aid of the sealing gas nitrogen in the region of the outlet 38 of the bushing 17 is formed a sealing gas accumulation, the penetration of the Cleaning liquid 28 can prevent in the sealed area. In order to avoid the accumulation of sealing gas and shielding the surface to be cleaned, a discharge is required. This discharge is created by the degassing opening 24 being formed above the outlet 38 of the passage 17, because the sealing gas emerging from the gap 34 rises in the cleaning liquid 28 within the pump chamber 12 and accumulates in the area above the passage outlet 38. Through the degassing opening 24, the sealing gas is discharged.

Nachdem die Verunreinigungen von der Reinigungslösung gelöst wurden, wird die Reinigungsflüssigkeit 28 zusammen mit den gelösten Verunreinigungen aus der Pumpenkammer 12 abgelassen. Anschließend wird die Pumpenkammer 12 mit klarem Wasser gespült und danach getrocknet. Hierbei kann insbesondere ein aus dem Stand der Technik bekanntes Spülverfahren zum Einsatz kommen. Nach dem Trocknen ist der Reinigungsvorgang beendet und die Vakuumpumpe 10 kann wieder in Betrieb genommen werden.After the contaminants have been released from the cleaning solution, the cleaning liquid 28 is discharged from the pump chamber 12 together with the dissolved impurities. Subsequently, the pump chamber 12 is rinsed with clear water and then dried. In this case, in particular, a rinsing method known from the prior art can be used. After drying, the cleaning process is completed and the vacuum pump 10 can be put back into operation.

Claims (13)

  1. A method for cleaning a vacuum pump (10) comprising a pump chamber (12) with at least one pump rotor (14),
    characterized by
    the steps:
    a) stopping the pump operation and/or closing the pump chamber inlet (20) and the pump chamber outlet (22),
    b) completely filling the pump chamber (12) with a cleaning liquid (28),
    c) distributing the cleaning liquid (28) within the pump chamber (12),
    d) detaching impurities with the aid of the cleaning liquid (28), and
    e) discharging the cleaning liquid (28) from the pump chamber (12).
  2. The method according to claim 1, characterized by the further steps:
    f) rinsing the pump chamber (12) with the aid of a rinsing liquid,
    g) drying the pump chamber (12).
  3. The method according to claim 2, characterized in that the cleaning liquid (28) is an acid-containing cleaning solution and/or that the rinsing liquid is water.
  4. The method according to any one of claims 1-3, characterized in that the cleaning liquid is distributed in the pump chamber (12) by movement of the rotor (14).
  5. The method according to any one of claims 1-4, characterized in that said steps b) - d) are repeated.
  6. The method according to any one of claims 1-5, characterized in that said cleaning liquid (28) contains citric acid and has an acid fraction from about 2% to 15%.
  7. The method according to claim 6, characterized in that the acid fraction is about 10%.
  8. The method according to any one of claims 1-7, characterized in that the supply of a gas ballast, provided to prevent condensation of the compressed gas, to the pump chamber (12) is stopped.
  9. The method according to any one of claims 1-8, characterized in that a sealing-gas region between the pump chamber (12) and the adjacent transmission housing of the pump rotor (14) is reduced.
  10. The method according to any one of claims 1-9, characterized in that a degassing opening (24) is formed in the upper region of the pump chamber (12) so that gas accumulations preventing a reaction of the cleaning liquid (28) with impurities which shall be removed, are allowed to escape from the pump chamber (12) via said degassing opening (24).
  11. The method according to claim 10, characterized in that the degassing opening (24) is formed in the region above the exit opening (38) of a rotor-shaft passage (17) from the transmission chamber (16) into the pump chamber (12).
  12. The method according to claim 10 or 11, characterized in that the degassing opening (24) has a degassing tube conduit (26) mounted thereon, the escaping gas being guided toward the atmosphere via said tube conduit (26).
  13. The method according to claim 10 or 11, characterized in that the degassing opening (24) has a degassing tube conduit (26) mounted thereon which leads into an exhaust gas conduit (30) connected to the pump chamber outlet (22).
EP09740158A 2008-10-28 2009-10-27 Method for cleaning a vacuum pump Not-in-force EP2344282B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008053522A DE102008053522A1 (en) 2008-10-28 2008-10-28 Method for cleaning a vacuum pump
PCT/EP2009/064122 WO2010049407A1 (en) 2008-10-28 2009-10-27 Method for cleaning a vacuum pump

Publications (2)

Publication Number Publication Date
EP2344282A1 EP2344282A1 (en) 2011-07-20
EP2344282B1 true EP2344282B1 (en) 2012-08-08

Family

ID=41565980

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09740158A Not-in-force EP2344282B1 (en) 2008-10-28 2009-10-27 Method for cleaning a vacuum pump

Country Status (9)

Country Link
US (1) US20110232689A1 (en)
EP (1) EP2344282B1 (en)
JP (1) JP2012506765A (en)
KR (1) KR20110084519A (en)
CN (1) CN102202805A (en)
DE (1) DE102008053522A1 (en)
RU (1) RU2011120977A (en)
TW (1) TW201024547A (en)
WO (1) WO2010049407A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010021240A1 (en) * 2010-05-21 2011-11-24 Oerlikon Leybold Vacuum Gmbh Method for surface treatment of pumping elements or pump chamber inner walls of vacuum pump, involves flushing pump chamber with dispersion medium which is deposited on pump chamber inner walls or surfaces of pump elements
EP2752559A1 (en) * 2013-01-08 2014-07-09 Siemens Aktiengesellschaft Method of cleaning of a gas turbine rotor within a housing
DE102013206526A1 (en) * 2013-04-12 2014-10-16 Oerlikon Leybold Vacuum Gmbh Method for cleaning a vacuum pump
DE102013013543B4 (en) * 2013-08-13 2023-11-02 Wilo Se Disinfection in a centrifugal pump or in a pump system containing at least one centrifugal pump
CN108240319A (en) * 2017-12-30 2018-07-03 河南永煤碳纤维有限公司 Parking disc pump installation and metering pump maintaining method
CN108714587A (en) * 2018-06-06 2018-10-30 南京采孚汽车零部件有限公司 A kind of pump class interiors of products cleaning device
CN111500309A (en) * 2020-04-27 2020-08-07 中山凯旋真空科技股份有限公司 Dry vacuum pump and crude oil vacuum flash processing device
CN113385471B (en) * 2021-08-16 2021-10-29 南通银河水泵有限公司 Automatic change vacuum pump and wash equipment
KR20230134080A (en) 2022-03-13 2023-09-20 한국표준과학연구원 Apparatus for improving vacuum pump performance, vacuum pump and plasma process system having the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3013652B2 (en) * 1993-06-01 2000-02-28 富士通株式会社 Exhaust device and its cleaning method
PT834017E (en) * 1995-06-21 2000-04-28 Sterling Ind Consult Gmbh PUMP VACUUM
DE19522554A1 (en) * 1995-06-21 1997-01-02 Sihi Ind Consult Gmbh Compressor operative chamber surface cleaning method
EP1552152B1 (en) * 2002-10-14 2013-03-20 Edwards Limited Rotary piston vacuum pump with washing installation
US7107775B2 (en) * 2003-06-27 2006-09-19 Mid-South Products Engineering, Inc. Cold control damper assembly
WO2005028871A1 (en) * 2003-09-23 2005-03-31 The Boc Group Plc Cleaning method of a rotary piston vacuum pump
DE102004063058A1 (en) * 2004-12-22 2006-07-13 Leybold Vacuum Gmbh Method for cleaning a vacuum screw pump
US20070203041A1 (en) * 2006-02-24 2007-08-30 Ki-Jeong Lee Cleaning composition for removing impurities and method of removing impurities using the same
DE102006039529A1 (en) * 2006-08-23 2008-03-06 Oerlikon Leybold Vacuum Gmbh A method of reacting auto-ignitable dusts in a vacuum pumping apparatus

Also Published As

Publication number Publication date
DE102008053522A1 (en) 2010-04-29
US20110232689A1 (en) 2011-09-29
JP2012506765A (en) 2012-03-22
CN102202805A (en) 2011-09-28
TW201024547A (en) 2010-07-01
KR20110084519A (en) 2011-07-25
WO2010049407A1 (en) 2010-05-06
RU2011120977A (en) 2012-12-10
EP2344282A1 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
EP2344282B1 (en) Method for cleaning a vacuum pump
EP2054626B1 (en) Method for reacting self-igniting dusts in a vacuum pump device
EP1833622B2 (en) Method for cleaning a vacuum screw-type pump
EP1664546A1 (en) Compressor cleaning system
EP2609310B1 (en) Method and device for cleaning of coked cavities, in particular for intake passages and valves in an internal combustion engine
WO2013087713A2 (en) Device and method for evacuating a chamber and purifying the gas extracted from said chamber
DE10048439A1 (en) Steam turbine plant and method for operating a steam turbine plant
EP2516868A1 (en) Water turbine or water pump or other hydraulic machine
DE112006002967B4 (en) Residual steam discharge mechanism and residual steam removal process for a steam cooling duct of a gas turbine
WO2003083307A1 (en) Pump device, method for operating a pump device and the use thereof in a steam turbine installation
WO2001073278A1 (en) Waste gas turbocharger radial turbine
AT513223B1 (en) Method for removing impurities from the diffuser of a turbocharger and device for its implementation
EP1687512B1 (en) Turbocharger with a cleaning device
DE2853264A1 (en) Vacuum pump with injection cooling - injects water instead of oil, which also acts as sealant, lubricant and cleaning agent
EP2923065B1 (en) Fuel injection device for an combustion engine
EP3798412B1 (en) Steam engine and combined heat and power plant comprising the steam engine
DE10262172B4 (en) Onboard fuel cell system in vehicles, includes flow passages through which oxygen-off gas and hydrogen-off gas from fuel cell pass, respectively
WO2016120169A1 (en) Method for catalytic generation of formic acid at an oxygen partial pressure below 1 bar and regeneration of the catalyst used therefor
EP4226444A1 (en) Method for starting up a fuel cell system after a standstill
DE4132148C1 (en)
DE102012224293B4 (en) Device for applying a fluid with alternating pressure
DE1048934B (en) Device for extracting gas components from a gas-steam mixture
DD137132B1 (en) DEVICE ON OIL-REFLECTED SCREW COMPRESSOR
DE1501354B2 (en) DEVICE TO FACILITATE THE START-UP PROCESS OF A STEAM POWER PLANT
AT510140A1 (en) METHOD FOR FILLING FLUID DYNAMIC BEARINGS WITH BEARING FLUID

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110419

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHNEIDER, STEFAN

Inventor name: KANNEN, INGO

Inventor name: GOETTLICH, HAGEN

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHNEIDER, STEFAN

Inventor name: GOETTLICH, HAGEN

Inventor name: KANNEN, INGO

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 569464

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009004336

Country of ref document: DE

Effective date: 20121004

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120808

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121108

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120808

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121208

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120808

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120808

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120808

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120808

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121210

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120808

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121109

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120808

BERE Be: lapsed

Owner name: OERLIKON SOLAR AG, TRUBBACH

Effective date: 20121031

Owner name: OERLIKON LEYBOLD VACUUM G.M.B.H.

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120808

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120808

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120808

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120808

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120808

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120808

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: EDWARDS LIMITED

Effective date: 20130508

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130501

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121108

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502009004336

Country of ref document: DE

Effective date: 20130508

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009004336

Country of ref document: DE

Effective date: 20130501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121119

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121027

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120808

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091027

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131027

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120808

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 569464

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141027

PLBD Termination of opposition procedure: decision despatched

Free format text: ORIGINAL CODE: EPIDOSNOPC1

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 502009004336

Country of ref document: DE

PLBM Termination of opposition procedure: date of legal effect published

Free format text: ORIGINAL CODE: 0009276

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION PROCEDURE CLOSED

27C Opposition proceedings terminated

Effective date: 20160609