EP2337044A1 - Procédés de fabrication d'un plot de contact électrique et d'un contact électrique - Google Patents

Procédés de fabrication d'un plot de contact électrique et d'un contact électrique Download PDF

Info

Publication number
EP2337044A1
EP2337044A1 EP09179852A EP09179852A EP2337044A1 EP 2337044 A1 EP2337044 A1 EP 2337044A1 EP 09179852 A EP09179852 A EP 09179852A EP 09179852 A EP09179852 A EP 09179852A EP 2337044 A1 EP2337044 A1 EP 2337044A1
Authority
EP
European Patent Office
Prior art keywords
powder
contact
grains
support
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09179852A
Other languages
German (de)
English (en)
Inventor
Gilles Rolland
Michel Jeandin
Christine Bourda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metalor Technologies International SA
Original Assignee
Metalor Technologies International SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42138780&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2337044(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Metalor Technologies International SA filed Critical Metalor Technologies International SA
Priority to EP09179852A priority Critical patent/EP2337044A1/fr
Priority to PCT/EP2010/069885 priority patent/WO2011073314A1/fr
Priority to US13/516,807 priority patent/US20120305300A1/en
Priority to CA2788260A priority patent/CA2788260A1/fr
Priority to CN201080064059.7A priority patent/CN102763183B/zh
Priority to MX2012007066A priority patent/MX337345B/es
Priority to EP10793241.0A priority patent/EP2513932B1/fr
Priority to JP2012543748A priority patent/JP2013514614A/ja
Priority to BR112012014648A priority patent/BR112012014648A2/pt
Publication of EP2337044A1 publication Critical patent/EP2337044A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/027Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal matrix material comprising a mixture of at least two metals or metal phases or metal matrix composites, e.g. metal matrix with embedded inorganic hard particles, CERMET, MMC.
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H11/00Apparatus or processes specially adapted for the manufacture of electric switches
    • H01H11/04Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts
    • H01H11/048Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts by powder-metallurgical processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/023Composite material having a noble metal as the basic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/025Composite material having copper as the basic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49204Contact or terminal manufacturing
    • Y10T29/49208Contact or terminal manufacturing by assembling plural parts

Definitions

  • the present invention relates to the field of electrical contacts. It relates, more particularly, to a method of manufacturing an electrical contact pad and a method of manufacturing an electrical contact, as well as an electrical contact pad and an electrical contact that can be obtained by their manufacturing method. respective.
  • low voltage electrical contacts that is to say whose operating range is approximately between 10 and 1000V and between 1 and 10000A, are generally used in the domestic, industrial and automotive fields, as well as in electricity. AC current, for switches, relays, contactors and circuit breakers, etc.
  • one solution consists in using pseudoalloys comprising a matrix of silver or copper in order to make the stud, and, inserted in this matrix, a fraction consisting of approximately 10 to 50% by volume.
  • refractory particles for example, Ni, C, W, WC, CdO, SnO 2
  • the material thus obtained is more resistant to the energy released by the electric arc.
  • the pad can be obtained from powders, by compacting-sintering or compacting-sintering-extrusion-rolling-cutting. Then, the stud is assembled on a suitable contact support, very good conductor of electricity and heat, to get electrical contact.
  • the assembly of the stud on the contact support can be done by welding, brazing or riveting, for example.
  • the contact support is traditionally copper.
  • the pad being made to be resistant to welding, the assembly of the pad on the copper by welding is difficult. It is therefore necessary to add on the pad a silver bonding layer for example.
  • An object of the present invention is therefore to overcome these disadvantages by providing a method of manufacturing an electrical contact pad and methods of manufacturing an electrical contact to simplify the known methods by reducing the number of operations.
  • Another object of the present invention is to provide a method of manufacturing an electrical contact making it easier to use aluminum as an electrical contact support material.
  • a method of manufacturing at least one electrical contact pad comprising a pad support and at least one contact layer, said method comprising a step of deposition, by dynamic spraying by cold gas, of a first powder on said pad support to form said contact layer, said first powder containing at least particles comprising grains of at least one refractory material incorporated in a matrix based on conductive metal selected from silver or copper.
  • the invention relates to a method for manufacturing an electrical contact comprising a contact support and at least one contact layer, said method comprising a deposition step, by dynamic cold gas projection, of a first powder on said contact support for forming said contact layer, said first powder containing at least particles comprising grains of at least one refractory material incorporated into a conductive metal matrix selected from silver or copper.
  • the present invention also relates to an electrical contact pad that can be obtained by the method of manufacturing an electrical contact pad defined above.
  • the present invention also relates to an electrical contact that can be obtained by one or other of the methods of manufacturing an electrical contact defined above.
  • the present invention relates to a method of manufacturing at least one electrical contact pad comprising a pad support and at least one contact layer and a similar method applied to the manufacture of at least one electrical contact comprising a support of contact and at least one contact layer.
  • the methods according to the invention are distinguished first of all in that they use the cold gas dynamic projection technique to deposit a first powder on said pad support or said contact support in order to form said contact layer.
  • This technique of depositing a powder by dynamic projection by cold gas also called “cold spray” is characterized, contrary to other thermal spraying processes, by a low projection temperature and a high speed of spraying powder particles up to Mach 5.
  • the cold spray from a projection gas temperature generally not exceeding 600 ° C, does not cause melting of the particles which remain in the solid state throughout the duration of projection.
  • the particles deform plastically and agglomerate to form a deposit.
  • the advantage of the cold spray process compared to plasma spraying for example is not to overheat the particles comprising the deposit and the support, resulting in favorable low oxidation to obtain better electrical conductivity and good cohesion.
  • the cold spray process is for example described in the patent EP 0 484 533 .
  • the powder 1 with a particle size ideally comprised between 5 and 50 ⁇ m, is conveyed under pressure at the level of the spray nozzle 2 via a carrier gas, generally of the same nature as the propellant gas 3.
  • the kinetic energy input The particles are effected by means of a carrier gas which can be heated between 200 ° C and 650 ° C in order to increase the expansion and therefore its speed.
  • the powder + carrier gas mixture is brought to a supersonic speed at the outlet of the nozzle 4 by virtue of its particular shape (Laval nozzle 5) which carries the mixture at its outlet at a speed that is largely supersonic.
  • the divergent nozzle 5 causes a relaxation of the gases and therefore a significant lowering of temperature (650 ° C to 250 ° C).
  • the powder particles which moreover have an extremely limited residence time in the flow of hot gases, remain in all cases in a solid or slightly viscous state (surface heating).
  • the main influence parameter on the quality of the deposits obtained is the projection speed of the particles. Indeed, too slow a speed causes poor cohesion between the powder particles.
  • the processes according to the invention are also distinguished in that the powder deposited to form the contact layer of the pad or electrical contact, hereinafter referred to as the first powder, contains at least particles comprising grains of at least one refractory material. embedded in a conductive metal matrix selected from silver or copper.
  • the first powder is prepared prior to the deposit. More particularly, the particles comprising the grains of at least one refractory material incorporated in the conductive metal matrix are obtained from a process selected from the group consisting of physical vapor deposition (PVD) processes, chemical vapor deposition (CVD) processes, electroless processes, chemical precipitation on suspended particles.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • electroless processes chemical precipitation on suspended particles.
  • Particles obtained by chemical precipitation on suspended particles are particularly preferred. Indeed, these particles have a spongy structure, with "percolating" porosity, that is to say communicating with each other, resulting in a great ability to deform so as not to bounce during deposition by cold spray.
  • the refractory material may be chosen from the group comprising CdO, CuO, SnO 2 , ZnO, Bi 2 O 3 , C, WC, MgO, In 2 O 3 , as well as Ni, Fe, Mo, Zr , W or their oxides.
  • the first powder may contain between 2% and 50%, and preferably between 10% and 40% by volume of grains of refractory material relative to the total volume of the first powder.
  • the conductive metal present in the contact layer of the pad or electrical contact may constitute 100% of the matrix comprising the grains of refractory material or a smaller amount.
  • the first powder further contains pure metal particles corresponding to the conductive metal of the matrix containing the grains of refractory material, representing the conductive metal residue present in the contact layer.
  • the first powder may also contain at least one doping agent.
  • particles comprising grains of at least one doping agent are incorporated in a metal matrix whose metal corresponds to the conductive metal of the matrix containing the grains of refractory material. These particles are prepared in the same way as the particles comprising the grains of refractory material incorporated in the conductive metal matrix, and are then mixed with said particles comprising the grains of refractory material incorporated in the conductive metal matrix and optionally to pure metal particles to form the first powder.
  • At least one doping agent is incorporated with grains of refractory material to combine them in their conductive metal matrix.
  • At least one doping agent is introduced into the matrix containing the grains of refractory material.
  • the doping agent is a metal or an oxide of this metal, said metal being chosen from the group comprising Bi, Mo, W, Re, In and Cu.
  • the particle size of the first powder is between 10 ⁇ m and 300 ⁇ m.
  • this shaping can be done for example by plastic deformation (stamping, pegging, rolling), by removal of material (milling, planing, grinding) or both.
  • the method of manufacturing an electrical contact makes it possible to directly obtain an electrical contact comprising a contact support and at least one contact layer as defined above.
  • the contact support is a conductive support, preferably consisting of a very good metal conductor of electricity and heat.
  • the contact support may be made of a material selected from the group consisting of copper, aluminum, copper alloys, aluminum alloys, or a composite consisting of a conductive metal and a metal with high elastic limit, for example copper on steel.
  • the contact support may be coated with a galvanic deposit of silver or cu drunk.
  • the contact support may be in the form of individual pre-cut pieces.
  • the contact support may also be in the form of a continuous strip.
  • the process may further comprise a step of cutting said strip to form the electrical contacts.
  • the contact support is in the form of a strip, the contact layer can be deposited on the contact support by cold spray deposition, in accordance with the invention, so as to form discrete contact points or at least one continuous track.
  • the electrical contact manufacturing method according to the invention makes it possible to directly obtain an electrical contact, in a few operations, contrary to conventional methods of manufacturing electrical contacts.
  • the cold spray deposition method also has the advantage of cleaning the support of any traces of oxide, the particles of powder sprayed at the beginning of the process acting as a sanding of the surface of the support. The adhesion of the powder particles then projected is improved.
  • Such a method notably makes it possible to eliminate the oxides present on the aluminum supports, and thus to deposit the first powder on an aluminum support to form an electrical contact comprising an aluminum contact support.
  • the method of manufacturing an electrical contact is such that the electrical contact is manufactured in two stages: a step of manufacturing the pad on a pad support, in accordance with the manufacturing method of a plot described above, and a step of assembling the pad on a suitable electrical contact support for use as an electrical contact.
  • the stud support may consist of a thin continuous band of silver or copper (0.1-1 mm) which serves as an underlayer for soldering or welding.
  • the deposition of the first powder by cold spray to form the contact layer can take place directly on this band.
  • this band will be able to undergo a final shaping operation, either by plastic deformation (rolling), or by removal of material (milling, planing, grinding), or possibly both. It is also possible to start from a solder band, then to add the different layers described above. A multi-metallic strip is then obtained.
  • the method may further comprise a step of cutting said strip to form pads to be assembled by a conventional method (welding or soldering) for use as an electrical contact.
  • the method of manufacturing an electrical contact according to the invention may comprise, in addition, prior to the step of depositing the contact layer, at least one step of applying at least one underlayer connecting between the contact support and the contact layer.
  • said step of applying the bonding sub-layer is carried out by dynamic projection by cold gas, of a second powder on said contact support to form the bonding sub-layer, said second powder containing at least particles of a conductive metal compound.
  • link sublayer The presence of such a link sublayer is optional.
  • the bonding sub-layer may consist of a metal or a metal alloy having a hardness of the same order of magnitude as that of the support and a relatively high electrical conductivity, for example silver, a silver alloy with 5% copper or silver solder.
  • the method for manufacturing an electrical pad according to the invention may comprise, in addition, prior to the step of depositing the contact layer, at least one application step, by dynamic projection by cold gas, at least one second powder on said pad support to form at least one bonding sub-layer between the pad support and the contact layer.
  • the melting range of the bonding sub-layer must be significantly higher than the solder subsequently used for the assembly of the stud on the contact support.
  • the particle size of the second powder is between 10 microns and 300 microns.
  • the manufacturing process of the stud or the manufacturing of the electrical contact may furthermore comprise, after the deposition step of the contact layer, at least one deposition step, by dynamic projection by cold gas, of at least one third powder for forming at least one overlayer, said third powder having a composition different from the first powder.
  • the particle size of the third powder is between 10 microns and 300 microns.
  • another advantage of the cold spray deposition method is to be able to modify the spray nozzle, the composition of the powders used and the flow rates to obtain above the contact layer, different layers, which can correspond to different contact layers having different compositions.
  • a layer adapted to weak currents may be provided on the surface, and another layer adapted to stronger currents below.
  • a protective overcoat to protect the pad or the contact during storage, this overcoating being made of a material chosen to be eliminated rapidly when using the electrical contact.
  • the "Kinetic 3000M” model manufactured by Cold Gas Technology (CGT) is used as a cold gas dynamic projection system. It includes a control cabinet, a LINDSPRAY® Cold Spray Heater HT 800/30, a CGT-PF4000 Comfort powder dispenser, and a POWER-JET 3000 spray gun.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Contacts (AREA)
  • Manufacture Of Switches (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

La présente invention concerne un procédé de fabrication d'un plot de contact électrique comprenant un support de plot et au moins une couche de contact, ainsi qu'un procédé de fabrication d'un contact électrique comprenant un support de contact et au moins une couche de contact. Lesdits procédés comprennent une étape de dépôt, par projection dynamique par gaz froid, d'une première poudre sur ledit support de plot ou de contact pour former ladite couche de contact, ladite première poudre contenant au moins des particules comprenant des grains d'au moins un matériau réfractaire incorporés dans une matrice à base de métal conducteur choisi parmi l'argent ou le cuivre. L'invention concerne également les plots et les contacts électriques obtenus par lesdits procédés de fabrication respectifs.

Description

    Domaine technique
  • La présente invention se rapporte au domaine des contacts électriques. Elle concerne, plus particulièrement, un procédé de fabrication d'un plot de contact électrique et un procédé de fabrication d'un contact électrique, ainsi qu'un plot de contact électrique et un contact électrique susceptibles d'être obtenus par leur procédé de fabrication respectif.
  • Etat de la technique
  • Les contacts électriques dits "basse tension", c'est-à-dire dont la plage de fonctionnement se situe approximativement entre 10 et 1000V et entre 1 et 10000A, sont utilisés généralement dans les domaines domestique, industriel et automobile, aussi bien en courant continu qu'en courant alternatif, pour des interrupteurs, des relais, des contacteurs et des disjoncteurs, etc.
  • Les contacts électriques sont réalisés à partir de matériaux qui doivent satisfaire les trois exigences suivantes:
    • une résistance de contact faible et stable pour éviter un échauffement excessif lors du passage du courant;
    • bonne résistance au soudage en présence d'un arc électrique ; et
    • faible érosion sous l'effet de l'arc.
  • Pour satisfaire ces exigences partiellement contradictoires, une solution consiste à utiliser, pour réaliser le plot, des pseudo-alliages comportant une matrice d'argent ou de cuivre et, insérée dans cette matrice, une fraction constituée d'environ 10 à 50% en volume de particules réfractaires (par exemple, Ni, C, W, WC, CdO, SnO2) d'une taille généralement comprise entre 1 et 5 µm. Le matériau ainsi obtenu résiste mieux à l'énergie dégagée par l'arc électrique.
  • D'une manière classique connue de l'homme du métier, le plot peut être obtenu à partir de poudres, par compactage-frittage ou compactage-frittage-extrusion-laminage-découpage. Puis, le plot est assemblé sur un support de contact approprié, très bon conducteur d'électricité et de chaleur, pour obtenir un contact électrique. L'assemblage du plot sur le support de contact peut se faire par soudage, brasage ou rivetage par exemple.
  • Plus particulièrement, le support de contact est traditionnellement du cuivre. Le plot étant réalisé pour être résistant au soudage, l'assemblage du plot sur le cuivre par soudage est difficile. II est donc nécessaire d'ajouter sur le plot une couche de liaison en argent par exemple.
  • Ces procédés classiques comportent de nombreuses opérations qui entrainent un coût de fabrication élevé.
  • Par ailleurs, il est très difficile d'assembler le plot par soudage ou brasage sur un support de contact en aluminium, car cela demande de chauffer le support à une température proche de son point de fusion.
  • Un but de la présente invention est donc de pallier ces inconvénients, en proposant un procédé de fabrication d'un plot de contact électrique et des procédés de fabrication d'un contact électrique permettant de simplifier les procédés connus en réduisant le nombre d'opérations.
  • Un autre but de la présente invention est de proposer un procédé de fabrication d'un contact électrique permettant d'utiliser plus facilement l'aluminium comme matériau de support de contact électrique.
  • Divulgation de l'invention
  • A cet effet, et conformément à un premier aspect de la présente invention, il est proposé un procédé de fabrication d'au moins un plot de contact électrique comprenant un support de plot et au moins une couche de contact, ledit procédé comprenant une étape de dépôt, par projection dynamique par gaz froid, d'une première poudre sur ledit support de plot pour former ladite couche de contact, ladite première poudre contenant au moins des particules comprenant des grains d'au moins un matériau réfractaire incorporés dans une matrice à base de métal conducteur choisi parmi l'argent ou le cuivre.
  • Selon un autre aspect, l'invention concerne un procédé de fabrication d'un contact électrique comprenant un support de contact et au moins un plot, ledit procédé comprenant :
    • une étape de fabrication dudit plot par le procédé de fabrication d'un plot défini ci-dessus, et
    • une étape d'assemblage dudit plot sur ledit support de contact.
  • Selon un autre aspect, l'invention concerne un procédé de fabrication d'un contact électrique comprenant un support de contact et au moins une couche de contact, ledit procédé comprenant une étape de dépôt, par projection dynamique par gaz froid, d'une première poudre sur ledit support de contact pour former ladite couche de contact, ladite première poudre contenant au moins des particules comprenant des grains d'au moins un matériau réfractaire incorporés dans une matrice à base de métal conducteur choisi parmi l'argent ou le cuivre.
  • La présente invention concerne également un plot de contact électrique susceptible d'être obtenu par le procédé de fabrication d'un plot de contact électrique défini ci-dessus.
  • La présente invention concerne également un contact électrique susceptible d'être obtenu par l'un ou l'autre des procédés de fabrication d'un contact électrique définis ci-dessus.
  • Brève description des dessins
  • L'invention sera mieux comprise à la lecture de la description qui suit, faite en référence à la figure 1 annexée, représentant schématiquement un pistolet de projection par cold spray.
  • Modes de réalisation de l'invention
  • La présente invention concerne un procédé de fabrication d'au moins un plot de contact électrique comprenant un support de plot et au moins une couche de contact ainsi qu'un procédé similaire appliqué à la fabrication d'au moins un contact électrique comprenant un support de contact et au moins une couche de contact. Les procédés selon l'invention se distinguent tout d'abord en ce qu'ils utilisent la technique de projection dynamique par gaz froid pour déposer une première poudre sur ledit support de plot ou ledit support de contact afin de former ladite couche de contact.
  • Cette technique de dépôt d'une poudre par projection dynamique par gaz froid, également appelée « cold spray » se caractérise, contrairement aux autres procédés de projection thermique, par une faible température de projection et une forte vitesse de projection des particules de poudre pouvant aller jusqu'à Mach 5. A la différence des procédés plasma ou HVOF où les particules de poudres sont fondues avant d'impacter le substrat, le cold spray, de part une température de gaz de projection n'excédant généralement pas 600°C, ne provoque pas de fusion des particules qui restent donc à l'état solide durant toute la durée de projection. Lors de l'impact sur le substrat, les particules se déforment plastiquement et s'agglomèrent pour former un dépôt. L'intérêt du procédé cold spray par rapport à la projection plasma par exemple est de ne pas trop chauffer les particules composant le dépôt ainsi que le support, d'où une faible oxydation favorable pour obtenir une meilleure conductivité électrique et une bonne cohésion. Le procédé cold spray est par exemple décrit dans le brevet EP 0 484 533 .
  • Dans la pratique, le principe du procédé cold spray peut être décrit de la manière suivante en référence à la figure 1. La poudre 1, d'une granulométrie idéalement comprise entre 5 et 50 µm, est acheminée sous pression au niveau de la buse de projection 2 via un gaz porteur, généralement de même nature que le gaz propulseur 3. L'apport d'énergie cinétique aux particules s'effectue par l'intermédiaire d'un gaz porteur pouvant être chauffé entre 200°C et 650°C afin d'augmenter l'expansion et donc sa vitesse. Le mélange poudre + gaz porteur est porté à une vitesse supersonique en sortie de buse 4 grâce à sa forme particulière (tuyère de Laval 5) qui porte le mélange en sortie à une vitesse largement supersonique. Bien que la température des gaz puisse sembler élevée au premier abord, le divergent de la tuyère 5 entraine une détente des gaz et par conséquent un abaissement de température non négligeable (de 650°C à 250°C). Les particules de poudres, qui par ailleurs ont un temps de séjour extrêmement limité dans le flux de gaz chauds, restent dans tous les cas dans un état solide ou légèrement visqueux (chauffage en surface).
  • On peut considérer que les dépôts cold spray se forment de la façon suivante :
    • décapage de la surface du substrat : sert de sablage pour nettoyer le support (par exemple élimination des oxydes de surface), afin de permettre ensuite une bonne adhésion de la première couche
    • formation de la première couche sur le substrat
    • construction du dépôt et densification des couches.
  • Dans le procédé cold spray, il est possible de contrôler sept paramètres, à savoir :
    • la nature du gaz propulseur (air, azote, hélium et leurs mélanges)
    • la température du gaz propulseur
    • la géométrie de la tuyère
    • la pression d'introduction des gaz dans la buse de projection (détente ensuite dans la buse)
    • les caractéristiques intrinsèques à la poudre (nature, forme, granulométrie, état d'oxydation)
    • la distance de projection (qui influence la vitesse d'impact sur le substrat)
    • l'angle de projection.
  • Le principal paramètre d'influence sur la qualité des dépôts obtenus est la vitesse de projection des particules. En effet, une vitesse trop faible entraine une mauvaise cohésion entre les particules de poudres.
  • Un autre paramètre important à considérer est la nature de la poudre utilisée.
  • Les procédés selon l'invention se distinguent également en ce que la poudre déposée pour former la couche de contact du plot ou du contact électrique, appelée par la suite première poudre, contient au moins des particules comprenant des grains d'au moins un matériau réfractaire incorporés dans une matrice à base de métal conducteur choisi parmi l'argent ou le cuivre.
  • La première poudre est donc préparée préalablement au dépôt. Plus particulièrement, les particules comprenant les grains d'au moins un matériau réfractaire incorporés dans la matrice de métal conducteur sont obtenues à partir d'un procédé choisi parmi le groupe comprenant les procédés de dépôt physique en phase vapeur (Physical Vapour Deposition PVD), les procédés de dépôt chimique en phase vapeur (Chemical Vapour Deposition CVD), les procédés electroless, la précipitation chimique sur particules en suspension.
  • Les particules obtenues par précipitation chimique sur particules en suspension, procédé décrit par exemple dans les brevets US 5,846,288 et US 5,963,772 , sont particulièrement préférées. En effet, ces particules présentent une structure spongieuse, avec porosité « percolante », c'est-à-dire communiquant entre elles, d'où une grande aptitude à se déformer de façon à ne pas rebondir lors du dépôt par cold spray.
  • D'une manière avantageuse, le matériau réfractaire peut être choisi parmi le groupe comprenant CdO, CuO, SnO2, ZnO, Bi2O3, C, WC, MgO, ln2O3, ainsi que Ni, Fe, Mo, Zr, W ou leurs oxydes.
  • La première poudre peut contenir entre 2% et 50%, et de préférence entre 10% et 40%, en volume de grains de matériau réfractaire par rapport au volume total de la première poudre.
  • Le métal conducteur présent dans la couche de contact du plot ou du contact électrique peut constituer 100% de la matrice comprenant les grains de matériau réfractaire ou une quantité inférieure. Dans ce dernier cas, la première poudre contient en outre des particules de métal pur correspondant au métal conducteur de la matrice renfermant les grains de matériau réfractaire, représentant le reste de métal conducteur présent dans la couche de contact.
  • De plus, la première poudre peut contenir également au moins un agent dopant.
  • Selon une première possibilité, des particules comprenant des grains d'au moins un agent dopant sont incorporés dans une matrice métallique dont le métal correspond au métal conducteur de la matrice renfermant les grains de matériau réfractaire. Ces particules sont préparées de la même manière que les particules comprenant les grains de matériau réfractaire incorporés dans la matrice de métal conducteur, et sont ensuite mélangées auxdites particules comprenant les grains de matériau réfractaire incorporés dans la matrice de métal conducteur et éventuellement aux particules de métal pur pour former la première poudre.
  • Selon une deuxième possibilité, au moins un agent dopant est incorporé avec des grains de matériau réfractaire pour les combiner dans leur matrice de métal conducteur.
  • Selon une troisième possibilité, au moins un agent dopant est introduit dans la matrice renfermant les grains de matériau réfractaire.
  • De préférence, l'agent dopant est un métal ou un oxyde de ce métal, ledit métal étant choisi parmi le groupe comprenant Bi, Mo, W, Re, In et Cu.
  • De préférence, la taille des particules de la première poudre est comprise entre 10 µm et 300 µm.
  • A la fin des procédés selon l'invention, il peut en outre être prévu une étape de mise en forme du plot ou du contact, au niveau de sa surface. Cette mise en forme peut se faire par exemple par déformation plastique (étampage, bouterollage, laminage), par enlèvement de matière (fraisage, rabotage, meulage) ou par les deux éventuellement.
  • Selon une première variante de l'invention, le procédé de fabrication d'un contact électrique permet d'obtenir directement un contact électrique comprenant un support de contact et au moins une couche de contact telle que définie ci-dessus.
  • Le support de contact est un support conducteur, constitué préférentiellement d'un métal très bon conducteur d'électricité et de chaleur. Typiquement, le support de contact peut être réalisé dans un matériau choisi parmi le groupe comprenant le cuivre, l'aluminium, les alliages de cuivre, les alliages d'aluminium, ou encore un composite constitué d'un métal conducteur et d'un métal à haute limite élastique, par exemple cuivre sur acier.
  • Le support de contact peut être revêtu d'un dépôt galvanique d'argent ou de cu ivre.
  • Le support de contact peut se présenter sous la forme de pièces individuelles prédécoupées. Le support de contact peut également se présenter sous la forme d'une bande continue. Dans ce cas, le procédé peut comprendre en outre une étape de découpe de ladite bande pour former les contacts électriques. Si le support de contact se présente sous la forme d'une bande, la couche de contact peut être déposée sur le support de contact par un dépôt par cold spray, conformément à l'invention, de manière à former des points de contacts discrets ou au moins une piste continue.
  • Dans cette variante, le procédé de fabrication de contact électrique selon l'invention permet d'obtenir directement un contact électrique, en peu d'opérations, contrairement aux procédés classiques de fabrication de contacts électriques.
  • Le procédé de dépôt par cold spray a également pour avantage de nettoyer le support de toutes traces d'oxyde, les particules de poudre projetées au début du processus agissant comme un sablage de la surface du support. L'adhésion des particules de poudre projetées ensuite est donc améliorée.
  • Un tel procédé permet notamment d'éliminer les oxydes présents sur les supports en aluminium, et ainsi de déposer la première poudre sur un support en aluminium pour former un contact électrique comprenant un support de contact en aluminium.
  • Selon une deuxième variante de l'invention, le procédé de fabrication d'un contact électrique est tel que le contact électrique est fabriqué en deux temps : une étape de fabrication du plot sur un support de plot, conformément au procédé de fabrication d'un plot décrit ci-dessus, et une étape d'assemblage du plot sur un support de contact électrique approprié en vue d'une utilisation comme contact électrique.
  • Dans cette variante, le support de plot peut être constitué d'une fine bande continue d'argent ou de cuivre (0.1-1 mm) qui sert de sous-couche pour le brasage ou le soudage. Le dépôt de la première poudre par cold spray pour former la couche de contact peut avoir lieu directement sur cette bande. Comme décrit ci-dessus, cette bande pourra encore subir une opération de mise en forme finale, soit par déformation plastique (laminage), soit par enlèvement de matière (fraisage, rabotage, meulage), soit éventuellement les deux. Il est également possible de partir d'une bande de brasure, puis d'y ajouter les différentes couches décrites ci-dessus. On obtient alors une bande multi-métallique. Le procédé peut en outre comprendre une étape de découpe de ladite bande pour former des plots destinés à être assemblés par un procédé classique (soudage ou brasage) pour leur utilisation comme contact électrique.
  • Par ailleurs, le procédé de fabrication d'un contact électrique selon l'invention peut comprendre, en outre, préalablement à l'étape de dépôt de la couche de contact, au moins une étape d'application d'au moins une sous-couche de liaison entre le support de contact et la couche de contact.
  • D'une manière avantageuse, ladite étape d'application de la sous-couche de liaison est réalisée par projection dynamique par gaz froid, d'une seconde poudre sur ledit support de contact pour former la sous-couche de liaison, ladite seconde poudre contenant au moins des particules d'un composé métallique conducteur.
  • La présence d'une telle sous-couche de liaison est facultative.
  • La sous-couche de liaison peut être constituée d'un métal ou d'un alliage métallique ayant une dureté du même ordre de grandeur que celle du support et une conductibilité électrique relativement élevée, par exemple de l'argent, un alliage d'argent avec 5% de cuivre ou une brasure à base d'argent.
  • D'une manière similaire, le procédé de fabrication d'un plot électrique selon l'invention peut comprendre, en outre, préalablement à l'étape de dépôt de la couche de contact, au moins une étape d'application, par projection dynamique par gaz froid, d'au moins une seconde poudre sur ledit support de plot pour former au moins une sous-couche de liaison entre le support de plot et la couche de contact. Dans ce cas, l'intervalle de fusion de la sous-couche de liaison devra être nettement plus élevé que la brasure éventuellement utilisée par la suite pour l'assemblage du plot sur le support de contact.
  • Comme pour la première poudre, la taille des particules de la seconde poudre est comprise entre 10 µm et 300 µm.
  • Par ailleurs, les procédé de fabrication du plot ou de fabrication du contact électrique peuvent comprendre, en outre, postérieurement à l'étape de dépôt de la couche de contact, au moins une étape de dépôt, par projection dynamique par gaz froid, d'au moins une troisième poudre pour former au moins une surcouche, ladite troisième poudre présentant une composition différente de la première poudre.
  • Comme pour les première et deuxième poudres, la taille des particules de la troisième poudre est comprise entre 10 µm et 300 µm.
  • Plus particulièrement, un autre avantage du procédé de dépôt par cold spray est de pouvoir modifier la buse de projection, la composition des poudres utilisées ainsi que les débits de projection afin d'obtenir au-dessus de la couche de contact, différentes couches, pouvant correspondre à différentes couches de contact présentant des compositions différentes. On peut prévoir par exemple en surface une couche adaptée à des courants faibles, et une autre couche adaptée à des courants plus forts en dessous. On peut également prévoir le dépôt d'une surcouche protectrice pour protéger le plot ou le contact pendant le stockage, cette surcouche étant réalisée dans un matériau choisi pour s'éliminer rapidement lors de l'utilisation du contact électrique.
  • Les exemples suivants illustrent la présente invention sans toutefois en limiter la portée.
  • Exemples
  • Dans les exemples 1 à 3 décrits ci-dessous, on utilise comme système de projection dynamique par gaz froid le modèle « Kinetic 3000M » fabriqué par la société Cold Gas Technology (CGT). Il comprend une armoire de commande, un réchauffeur de gaz LINDSPRAY® Cold Spray Heater HT 800/30, un distributeur de poudre CGT-PF4000 Comfort, et un pistolet de projection POWER-JET 3000.
  • Exemple 1 (comparatif)
  • On réalise un mélange de poudres d'argent dont la taille était comprise entre 30 et 80 microns et d'un oxyde d'étain dont les grains étaient inférieurs à 20 microns, la composition étant de 8% massique en oxyde (environ 12% volume).
  • Ledit mélange de poudres a été projeté par cold spray, à 30 bars et 300°C sur une plaque de cuivre de 1,5 mm d'épaisseur. Une couche de 2 mm a été déposée.
    1. a. la porosité du dépôt ne dépassait pas 3%
    2. b. la structure était macroscopiquement homogène, mais microscopiquement hétérogène
    3. c. mais la composition de la couche obtenue ne correspondait pas à la composition initiale : il y avait une perte d'oxyde d'environ 50%.
  • Exemple 2 (Invention)
  • Une poudre d'un oxyde d'étain a été revêtue d'argent par CVD, de manière à atteindre la composition volumique désirée (20 %). La taille des grains se situait entre 10 et 40 microns. Une couche de 1.5 mm a été projetée par cold spray sur des supports prédécoupés en cuivre et en laiton UZ15 (épaisseur 1.5 mm) dans les conditions optimisées pour cette granulométrie. Les conditions étaient 30 bars et 400°C.
    1. a. la porosité du dépôt était faible (< 0,5%)
    2. b. la structure était homogène
    3. c. la composition de la couche obtenue était celle de la poudre projetée
    4. d. toutefois, un recuit de détente a mis en évidence une fissuration du dépôt, et
    5. e. un test électrique dans les conditions AC3 sur un appareil du commerce (3x400 VAC, 37A) a montré une érosion anormalement élevée comparée au matériau standard obtenu par métallurgie des poudres traditionnelle
  • Exemple 3 (Invention)
  • Une poudre spongieuse d'argent et d'oxyde d'étain obtenue par voie chimique (14% poids d'oxyde, -20% volume) selon la méthode décrite dans le brevet US 5,846,288 a été projetée par cold spray à 30 bars et 600°C, sur des supports préformés en cuivre (épaisseur déposée : 3 mm, support: 4 mm). Sa granulométrie se situait entre 40 et 300 microns.
    1. a. la porosité du dépôt était inférieure à 0,1%
    2. b. la structure était homogène
    3. c. la composition de la couche obtenue était celle de la poudre projetée
    4. d. un test électrique dans les conditions AC3 (460Ampères, 3x400V) sur un appareil du commerce a montré que la durée de vie était de l'ordre de grandeur de celle des contacts habituels à ce type d'appareil. Une fissuration en fin de vie a été constatée, similaire à celle du matériau standard mais moins profonde.
  • Exemple 4 (Comparatif)
  • Des contacts en argent - oxyde réfractaires, de la même composition que ceux de l'exemple 3, mais élaborés par métallurgie des poudres traditionnelle (compactage billettes, extrusion, laminage, découpe) ont été brasés sur des supports en cuivre par courant induit (soudage HF).
    1. a. la porosité était très inférieure au 1 % (extrusion)
    2. b. la structure était homogène
    3. c. le même test électrique AC3 sur les appareils du même type que ceux de l'exemple 3 a mis en évidence une fissuration importante dès le premier tiers de leur « vie ».

Claims (23)

  1. Procédé de fabrication d'au moins un plot de contact électrique comprenant un support de plot et au moins une couche de contact, caractérisé en ce qu'il comprend une étape de dépôt, par projection dynamique par gaz froid, d'une première poudre sur ledit support de plot pour former ladite couche de contact, ladite première poudre contenant au moins des particules comprenant des grains d'au moins un matériau réfractaire incorporés dans une matrice à base de métal conducteur choisi parmi l'argent ou le cuivre.
  2. Procédé de fabrication d'au moins un contact électrique comprenant un support de contact et au moins un plot, caractérisé en ce qu'il comprend :
    - une étape de fabrication dudit plot par le procédé selon la revendication 1, et
    - une étape d'assemblage dudit plot sur ledit support de contact.
  3. Procédé de fabrication d'au moins un contact électrique comprenant un support de contact et au moins une couche de contact, caractérisé en ce qu'il comprend une étape de dépôt, par projection dynamique par gaz froid, d'une première poudre sur ledit support de contact pour former ladite couche de contact, ladite première poudre contenant au moins des particules comprenant des grains d'au moins un matériau réfractaire incorporés dans une matrice à base de métal conducteur choisi parmi l'argent ou le cuivre.
  4. Procédé de fabrication d'un plot de contact électrique selon la revendication 1 ou d'un contact électrique selon l'une quelconque des revendications 2 et 3, caractérisé en ce que la première poudre contient en outre des particules de métal pur, correspondant au métal conducteur de la matrice renfermant les grains de matériau réfractaire.
  5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la première poudre contient en outre des particules comprenant des grains d'au moins un agent dopant incorporés dans une matrice métallique dont le métal correspond au métal conducteur de la matrice renfermant les grains de matériau réfractaire.
  6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'au moins un agent dopant est incorporé avec des grains de matériau réfractaire dans leur matrice de métal conducteur.
  7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'au moins un agent dopant est introduit dans la matrice renfermant les grains de matériau réfractaire.
  8. Procédé selon l'une quelconque des revendications 5 à 7, caractérisé en ce que l'agent dopant est un métal ou un oxyde de ce métal, ledit métal étant choisi parmi le groupe comprenant Bi, Mo, W, Re, In et Cu.
  9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le matériau réfractaire est choisi parmi le groupe comprenant CdO, CuO, SnO2, ZnO, Bi2O3, C, WC, MgO, ln2O3, ainsi que Ni, Fe, Mo, Zr, W ou leurs oxydes.
  10. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la première poudre contient entre 2% et 50%, et de préférence entre 10% et 40%, en volume de grains de matériau réfractaire par rapport au volume total de la première poudre.
  11. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les particules comprenant les grains d'au moins un matériau réfractaire incorporés dans la matrice de métal conducteur sont obtenues à partir d'un procédé choisi parmi le groupe comprenant les procédés de dépôt physique en phase vapeur (Physical Vapour Deposition PVD), les procédés de dépôt chimique en phase vapeur (Chemical Vapour Deposition CVD), les procédés electroless, la précipitation chimique sur particules en suspension.
  12. Procédé selon la revendication 3, caractérisé en ce que le support de contact se présente sous la forme de pièces individuelles prédécoupées.
  13. Procédé selon la revendication 3, caractérisé en ce que le support de contact se présente sous la forme d'une bande continue, et en ce que ledit procédé comprend en outre une étape de découpe de ladite bande pour former des contacts électriques.
  14. Procédé selon la revendication 13, caractérisé en ce que la couche de contact forme sur la bande des points de contact discrets.
  15. Procédé selon la revendication 13, caractérisé en ce que la couche de contact forme sur la bande au moins une piste continue.
  16. Procédé selon l'une quelconque des revendications 12 à 15, caractérisé en ce que le support de contact est réalisé dans un matériau choisi parmi le groupe comprenant le cuivre, l'aluminium, les alliages de cuivre, les alliages d'aluminium et un composite acier-cuivre.
  17. Procédé selon l'une quelconque des revendications 3 et 12 à 16, caractérisé en ce qu'il comprend en outre, préalablement à l'étape de dépôt de la couche de contact, au moins une étape d'application, par projection dynamique par gaz froid, d'au moins une seconde poudre sur ledit support de contact pour former au moins une sous-couche de liaison, ladite seconde poudre contenant au moins des particules d'un composé métallique conducteur.
  18. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend en outre, postérieurement à l'étape de dépôt de la couche de contact, au moins une étape de dépôt, par projection dynamique par gaz froid, d'au moins une troisième poudre pour former au moins une surcouche, ladite troisième poudre présentant une composition différente de la première poudre.
  19. Procédé selon la revendication 1, caractérisé en ce qu'il comprend en outre, préalablement à l'étape de dépôt de la couche de contact, au moins une étape d'application, par projection dynamique par gaz froid, d'au moins une seconde poudre sur ledit support de plot pour former au moins une sous-couche de liaison.
  20. Procédé selon l'une quelconque des revendications 17 à 19, caractérisé en ce que la taille des particules des première, seconde et troisième poudres est comprise entre 10 µm et 300 µm.
  21. Procédé selon la revendication 1, caractérisé en ce que le support de plot se présente sous la forme d'une bande continue, et en ce que ledit procédé comprend en outre une étape de découpe de ladite bande pour former des plots de contact électrique.
  22. Contact électrique susceptible d'être obtenu par le procédé selon l'une quelconque des revendications 2 et 3 et 12 à 17.
  23. Plot de contact électrique susceptible d'être obtenu par le procédé selon l'une quelconque des revendications 1, 19 et 21.
EP09179852A 2009-12-18 2009-12-18 Procédés de fabrication d'un plot de contact électrique et d'un contact électrique Withdrawn EP2337044A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP09179852A EP2337044A1 (fr) 2009-12-18 2009-12-18 Procédés de fabrication d'un plot de contact électrique et d'un contact électrique
BR112012014648A BR112012014648A2 (pt) 2009-12-18 2010-12-16 método para manufatura de uma ilha de contato elétrico e contato elétrico
CN201080064059.7A CN102763183B (zh) 2009-12-18 2010-12-16 制造电接触垫和电触头的方法
US13/516,807 US20120305300A1 (en) 2009-12-18 2010-12-16 Methods for manufacturing an electric contact pad and electric contact
CA2788260A CA2788260A1 (fr) 2009-12-18 2010-12-16 Procedes de fabrication d'un plot de contact electrique et d'un contact electrique
PCT/EP2010/069885 WO2011073314A1 (fr) 2009-12-18 2010-12-16 Procedes de fabrication d'un plot de contact electrique et d'un contact electrique
MX2012007066A MX337345B (es) 2009-12-18 2010-12-16 Metodos para manufacturar una almohadilla de contacto electrico y contacto electrico.
EP10793241.0A EP2513932B1 (fr) 2009-12-18 2010-12-16 Procedes de fabrication d'un plot de contact electrique et d'un contact electrique
JP2012543748A JP2013514614A (ja) 2009-12-18 2010-12-16 電気接点パッドおよび電気接点を製造する方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP09179852A EP2337044A1 (fr) 2009-12-18 2009-12-18 Procédés de fabrication d'un plot de contact électrique et d'un contact électrique

Publications (1)

Publication Number Publication Date
EP2337044A1 true EP2337044A1 (fr) 2011-06-22

Family

ID=42138780

Family Applications (2)

Application Number Title Priority Date Filing Date
EP09179852A Withdrawn EP2337044A1 (fr) 2009-12-18 2009-12-18 Procédés de fabrication d'un plot de contact électrique et d'un contact électrique
EP10793241.0A Revoked EP2513932B1 (fr) 2009-12-18 2010-12-16 Procedes de fabrication d'un plot de contact electrique et d'un contact electrique

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP10793241.0A Revoked EP2513932B1 (fr) 2009-12-18 2010-12-16 Procedes de fabrication d'un plot de contact electrique et d'un contact electrique

Country Status (8)

Country Link
US (1) US20120305300A1 (fr)
EP (2) EP2337044A1 (fr)
JP (1) JP2013514614A (fr)
CN (1) CN102763183B (fr)
BR (1) BR112012014648A2 (fr)
CA (1) CA2788260A1 (fr)
MX (1) MX337345B (fr)
WO (1) WO2011073314A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111029179A (zh) * 2019-12-11 2020-04-17 哈尔滨东大高新材料股份有限公司 一种低压电器用触头材料与铜复合方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013014915A1 (de) * 2013-09-11 2015-03-12 Airbus Defence and Space GmbH Kontaktwerkstoffe für Hochspannungs-Gleichstrombordsysteme
CN103589897B (zh) * 2013-11-22 2015-11-25 福达合金材料股份有限公司 银金属氧化物钨复合电触头材料的制备方法及其产品
DE102016123816A1 (de) * 2016-12-08 2018-06-14 Air Liquide Deutschland Gmbh Anordnung und Vorrichtung zum Behandeln einer Oberfläche
US10446336B2 (en) 2016-12-16 2019-10-15 Abb Schweiz Ag Contact assembly for electrical devices and method for making
WO2018180216A1 (fr) * 2017-03-27 2018-10-04 日本電産株式会社 Contact électrique, relais électromagnétique le comprenant, et procédé de fabrication de contact électrique
WO2018180217A1 (fr) * 2017-03-27 2018-10-04 日本電産株式会社 Contact électrique, relais électromagnétique pourvu dudit contact, et procédé de fabrication de contact électrique
DE102022129225A1 (de) * 2022-11-04 2024-05-08 Te Connectivity Germany Gmbh Kontaktelement mit einer Sprühbeschichtung sowie Verbindungsanordnung, Verwendung eines Sprühmittels und Verfahren zum Herstellen eines Kontaktelements

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0484533A1 (fr) 1990-05-19 1992-05-13 Anatoly Nikiforovich Papyrin Procede et dispositif de revetement
US5846288A (en) 1995-11-27 1998-12-08 Chemet Corporation Electrically conductive material and method for making
DE10045783A1 (de) * 2000-05-08 2001-11-22 Ami Doduco Gmbh Verfahren zum Herstellen von Werkstücken, welche der Leitung von elektrischem Strom dienen und mit einem überwiegend metallischen Material beschichtet sind
US20060093736A1 (en) * 2004-10-29 2006-05-04 Derek Raybould Aluminum articles with wear-resistant coatings and methods for applying the coatings onto the articles
US20070116890A1 (en) * 2005-11-21 2007-05-24 Honeywell International, Inc. Method for coating turbine engine components with rhenium alloys using high velocity-low temperature spray process
DE102005062225B3 (de) * 2005-12-21 2007-06-21 Siemens Ag Legierungsprodukt vom MCrAIX-Typ und Verfahren zur Herstellung einer Schicht aus diesem Legierungsprodukt
EP1921176A2 (fr) * 2006-11-13 2008-05-14 Sulzer Metco (US) Inc. Matériau et procédé de fabrication d'un joint de soudure doté de grande conductivité thermique et électrique
DE102008015464A1 (de) * 2008-03-18 2009-09-24 Siemens Aktiengesellschaft Bauteil mit einer elektrischen Kontaktfläche für ein elektrisches Kontaktelement, insbesondere Stromschiene
FR2931303A1 (fr) * 2008-05-15 2009-11-20 Daniel Bernard Contact electrique et son procede de fabrication associe

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5206059A (en) * 1988-09-20 1993-04-27 Plasma-Technik Ag Method of forming metal-matrix composites and composite materials
US6139913A (en) * 1999-06-29 2000-10-31 National Center For Manufacturing Sciences Kinetic spray coating method and apparatus
WO2001086018A2 (fr) * 2000-05-08 2001-11-15 Ami Doduco Gmbh Procede de fabrication de pieces qui servent a conduire du courant electrique et qui sont couvertes d'une matiere principalement metallique
US6685988B2 (en) * 2001-10-09 2004-02-03 Delphi Technologies, Inc. Kinetic sprayed electrical contacts on conductive substrates
US6759085B2 (en) * 2002-06-17 2004-07-06 Sulzer Metco (Us) Inc. Method and apparatus for low pressure cold spraying
US20060121187A1 (en) * 2004-12-03 2006-06-08 Haynes Jeffrey D Vacuum cold spray process
DE102004059716B3 (de) * 2004-12-08 2006-04-06 Siemens Ag Verfahren zum Kaltgasspritzen
DE102005050045B3 (de) * 2005-10-19 2007-01-04 Praxair Surface Technologies Gmbh Verfahren zur Beschichtung eines Bauteils

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0484533A1 (fr) 1990-05-19 1992-05-13 Anatoly Nikiforovich Papyrin Procede et dispositif de revetement
US5846288A (en) 1995-11-27 1998-12-08 Chemet Corporation Electrically conductive material and method for making
US5963772A (en) 1995-11-27 1999-10-05 Chemet Corporation Electrically conductive material and method of making
DE10045783A1 (de) * 2000-05-08 2001-11-22 Ami Doduco Gmbh Verfahren zum Herstellen von Werkstücken, welche der Leitung von elektrischem Strom dienen und mit einem überwiegend metallischen Material beschichtet sind
US20060093736A1 (en) * 2004-10-29 2006-05-04 Derek Raybould Aluminum articles with wear-resistant coatings and methods for applying the coatings onto the articles
US20070116890A1 (en) * 2005-11-21 2007-05-24 Honeywell International, Inc. Method for coating turbine engine components with rhenium alloys using high velocity-low temperature spray process
DE102005062225B3 (de) * 2005-12-21 2007-06-21 Siemens Ag Legierungsprodukt vom MCrAIX-Typ und Verfahren zur Herstellung einer Schicht aus diesem Legierungsprodukt
EP1921176A2 (fr) * 2006-11-13 2008-05-14 Sulzer Metco (US) Inc. Matériau et procédé de fabrication d'un joint de soudure doté de grande conductivité thermique et électrique
DE102008015464A1 (de) * 2008-03-18 2009-09-24 Siemens Aktiengesellschaft Bauteil mit einer elektrischen Kontaktfläche für ein elektrisches Kontaktelement, insbesondere Stromschiene
FR2931303A1 (fr) * 2008-05-15 2009-11-20 Daniel Bernard Contact electrique et son procede de fabrication associe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111029179A (zh) * 2019-12-11 2020-04-17 哈尔滨东大高新材料股份有限公司 一种低压电器用触头材料与铜复合方法

Also Published As

Publication number Publication date
JP2013514614A (ja) 2013-04-25
WO2011073314A1 (fr) 2011-06-23
US20120305300A1 (en) 2012-12-06
EP2513932A1 (fr) 2012-10-24
BR112012014648A2 (pt) 2017-03-14
MX337345B (es) 2014-08-22
CN102763183B (zh) 2015-03-11
EP2513932B1 (fr) 2013-11-27
CA2788260A1 (fr) 2011-06-23
MX2012007066A (es) 2012-10-03
CN102763183A (zh) 2012-10-31

Similar Documents

Publication Publication Date Title
EP2513932B1 (fr) Procedes de fabrication d&#39;un plot de contact electrique et d&#39;un contact electrique
EP2695972B1 (fr) Stratifié et procédé de fabrication d&#39;un stratifié
JP5730089B2 (ja) 導電材料、積層体および導電材料の製造方法
US11600454B2 (en) Contact assembly for electrical devices and method for making
JP4851672B2 (ja) 改良されたスパッタリングターゲット及びその製法並びに使用
CA2207579A1 (fr) Piece frittee a surface anti-abrasive et procede pour sa realisation
WO1994013426A1 (fr) Materiau et procede pour la formation d&#39;un revetement protecteur sur un substrat en un alliage a base de cuivre
CN114209218B (zh) 复合材料、不粘炊具及制造不粘炊具的方法
KR100771434B1 (ko) 스퍼터링 타겟의 제조방법 및 스퍼터링 타겟
US4308321A (en) Laminated bearing material produced by thermokinetic plating
JP2003112269A (ja) ベリリウムと銅または銅合金の接合体の製造方法およびその接合体
EP0169858A1 (fr) Materiau pour pulverisation thermique et son procede de fabrication
FR2516941A1 (fr) Poudre pour pulverisation par flamme
CN112226723B (zh) 一种大气氛围下含铝合金涂层的制备方法
CA2849416C (fr) Dispositif delivrant des fibres de verre a teneur reduite en metaux precieux
WO2013061934A1 (fr) Procédé de fabrication d&#39;une matière composite et matière composite
EP0794026A1 (fr) Procédé de fabrication d&#39;un fil stratifié de petit diamètre et en particulier d&#39;un fil électrode pour usinage par électroérosion et fil électrode obtenu
FR2931303A1 (fr) Contact electrique et son procede de fabrication associe
EP2371994B1 (fr) Procédé pour réaliser un revêtement d&#39;acier inoxydable sur une matrice en cuivre
WO2014091634A1 (fr) Matériau d&#39;électrode de déclenchement thermique et son procédé de production
WO2014091633A1 (fr) Matériau d&#39;électrode pour fusible thermique et procédé pour sa production

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20111223