EP2329052B1 - Dent composite pour le travail du sol ou des roches - Google Patents

Dent composite pour le travail du sol ou des roches Download PDF

Info

Publication number
EP2329052B1
EP2329052B1 EP09782199A EP09782199A EP2329052B1 EP 2329052 B1 EP2329052 B1 EP 2329052B1 EP 09782199 A EP09782199 A EP 09782199A EP 09782199 A EP09782199 A EP 09782199A EP 2329052 B1 EP2329052 B1 EP 2329052B1
Authority
EP
European Patent Office
Prior art keywords
titanium carbide
tooth
micrometric
granules
areas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09782199A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP2329052A1 (fr
Inventor
Guy Berton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Magotteaux International SA
Original Assignee
Magotteaux International SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magotteaux International SA filed Critical Magotteaux International SA
Priority to PL09782199T priority Critical patent/PL2329052T3/pl
Publication of EP2329052A1 publication Critical patent/EP2329052A1/fr
Application granted granted Critical
Publication of EP2329052B1 publication Critical patent/EP2329052B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • C22C1/053Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor with in situ formation of hard compounds
    • C22C1/055Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor with in situ formation of hard compounds using carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/06Casting in, on, or around objects which form part of the product for manufacturing or repairing tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/14Casting in, on, or around objects which form part of the product the objects being filamentary or particulate in form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/23Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces involving a self-propagating high-temperature synthesis or reaction sintering step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F3/26Impregnating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0242Making ferrous alloys by powder metallurgy using the impregnating technique
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/28Small metalwork for digging elements, e.g. teeth scraper bits
    • E02F9/2808Teeth
    • E02F9/285Teeth characterised by the material used
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/28Small metalwork for digging elements, e.g. teeth scraper bits
    • E02F9/2866Small metalwork for digging elements, e.g. teeth scraper bits for rotating digging elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/001Cutting tools, earth boring or grinding tool other than table ware
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/10Carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2303/00Functional details of metal or compound in the powder or product
    • B22F2303/01Main component
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2303/00Functional details of metal or compound in the powder or product
    • B22F2303/05Compulsory alloy component
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the present invention relates to a composite tooth intended to equip a machine for working the soil or rocks. It relates in particular to a tooth comprising a metal matrix reinforced by particles of titanium carbide.
  • teeth is to be interpreted broadly and includes any element of any size, having a pointed or flattened shape, intended in particular for working the soil, the bottom of rivers or seas, rocks, on the surface or in the mines.
  • the document EP 1 450 973 B1 describes a reinforcement of wearing parts made by placing in the mold intended to receive the casting metal, an insert consisting of reactive powders which react with each other thanks to the heat provided by the metal during the casting at very high temperature (> 1400 ° C). After reaction of SHS type, the powders of the reactive insert will create a relatively uniform porous cluster (conglomerate) of hard particles; once formed, this porous mass will be immediately infiltrated by the casting metal at high temperature. The reaction of the powders is exothermic and self-propagating, which allows a synthesis of the carbides at high temperature and considerably increases the wettability of the porous mass by the infiltration metal.
  • the present invention discloses a composite tooth for a tillage or rock tillage tool, particularly for excavating or dredging tools, with improved wear resistance while maintaining good impact resistance.
  • This property is obtained by a composite reinforcement structure specifically designed for this application, a material that alternates on a millimeter scale dense zones in fine micrometric globular particles of metal carbides with zones that are practically free of them within the metallic matrix. of the tooth.
  • the present invention also provides a method for obtaining said reinforcing structure.
  • the present invention discloses a composite tooth for tillage or rock, said tooth comprising a ferrous alloy reinforced at least in part with titanium carbide in a defined geometry, wherein said reinforced portion comprises an alternating macro-microstructure of zones millimeters millimeter areas concentrated in micrometric globular particles of titanium carbide separated by millimetric areas substantially free of micrometric globular particles of titanium carbide, said micrometrically concentrated micrometric micrometric particles of micrometric titanium carbide particles in which the micrometric interstices between said globular particles are also occupied by said ferrous alloy.
  • the present invention also discloses a composite tooth obtained according to the method of any one of claims 11 to 13.
  • FIGS. 1a and 1b show a three-dimensional view of teeth without reinforcement according to the state of the art.
  • FIGS. 1c to 1h show a three-dimensional view of teeth with reinforcement according to the invention.
  • the figure 2 shows illustrative examples of tools on which the teeth according to the invention are mounted. Excavation and drilling tools.
  • the figure 4 represents a binocular view of a polished, unengaged surface of a section of the reinforced portion of the tooth according to the invention with millimetric areas (in light gray) concentrated micrometric globular titanium carbide (TiC globules).
  • the dark part represents the metal matrix (steel or cast iron) filling at the same time the space between these concentrated zones in micrometric globular titanium carbide but also the spaces between the globules themselves. (See figures 5 and 6 ).
  • the figures 5 and 6 represent SEM electron microscopic views of micrometric globular titanium carbide on polished and untouched surfaces at different magnifications. We see that in this particular case most of the globules of titanium carbide have a size less than 10 microns.
  • the figure 7 represents a view of micrometric globular titanium carbide on a fracture surface taken by SEM electron microscope. It can be seen that the globules of titanium carbide are perfectly incorporated in the metal matrix. This proves that the casting metal completely infiltrates (impregnates) the pores during casting once the chemical reaction between titanium and carbon is initiated.
  • the SHS or " s elf-propagating h igh temperature s ynthesis" reaction is a self-propagating, high-temperature synthesis reaction in which reaction temperatures are generally greater than 1500 ° C or even 2000. ° C.
  • reaction temperatures are generally greater than 1500 ° C or even 2000. ° C.
  • the reaction between titanium powder and carbon powder to obtain titanium carbide TiC is highly exothermic. Only a little energy is needed to initiate the reaction locally. Then, the reaction will spontaneously propagate to the entire mixture of reagents thanks to the high temperatures reached. After initiation of the reaction, one has a reaction front which is propagated spontaneously (self-propagated) and which makes it possible to obtain titanium carbide from titanium and carbon.
  • the titanium carbide thus obtained is said to be "obtained in situ" because it does not come from the cast ferrous alloy.
  • the reactant powder mixtures comprise carbon powder and titanium powder and are compressed into plates and then crushed to obtain granules ranging in size from 1 to 12 mm, preferably from 1 to 6 mm, and particularly preferably from 1.4 to 4 mm. These granules are not 100% compacted. They are generally compressed between 55 and 95% of the theoretical density. These granules allow easy use / handling (see Fig. 3a-3h).
  • These millimetric granules of mixed carbon and titanium powders obtained according to the diagrams of FIG. 3a-3h constitute the precursors of the titanium carbide to be created and make it possible to easily fill mold parts of various or irregular shapes. These granules can be held in place in the mold 15 by means of a dam 16, for example. The shaping or assembly of these granules can also be done using an adhesive.
  • the composite tooth for tillage or rocks according to the present invention has a reinforcing macro-microstructure which can also be called an alternating structure of zones concentrated in micrometric globular particles of titanium carbide separated by zones which are practically free.
  • a reinforcing macro-microstructure which can also be called an alternating structure of zones concentrated in micrometric globular particles of titanium carbide separated by zones which are practically free.
  • Such a structure is obtained by the reaction in the mold of the granules comprising a mixture of powders of carbon and titanium. This reaction is initiated by the heat of casting of the cast iron or steel used to sink any the piece and therefore both the unreinforced and the reinforced part (see Fig. 3rd ).
  • the casting therefore triggers an exothermic reaction of self-propagating synthesis at high temperature of the mixture of powders of carbon and titanium compacted in the form of granules (self-propagating high-temperature synthesis - SHS) and previously placed in the mold 15.
  • the reaction then has the distinction of continuing to spread as soon as it is initiated.
  • This high temperature synthesis allows easy infiltration of all millimetric and micrometric interstices by cast iron or casting steel ( Fig. 3g & 3h ). By increasing the wettability, the infiltration can be done on any thickness or depth of reinforcement of the tooth. It advantageously makes it possible, after SHS reaction and infiltration by an external casting metal, to create one or more reinforcement zones on the tooth comprising a high concentration of micrometric globular particles of titanium carbide (which could also be called clusters of nodules), which areas have a size of the order of a millimeter or a few millimeters, and which alternate with areas substantially free of globular titanium carbide.
  • the zones of reinforcement where these granules were found show a concentrated dispersion of micrometric globular particles 4 of TiC carbide (globules) whose micrometric interstices 3 have also been infiltrated by the casting metal. which is here cast iron or steel. It is important to note that the millimetric and micrometric interstices are infiltrated by the same metallic matrix as that which constitutes the unreinforced part of the tooth; this allows a total freedom of choice of the casting metal.
  • the reinforcement zones with a high concentration of titanium carbide are composed of globular micrometer particles of TiC in a large percentage (between approximately 35 and approximately 70% by volume) and of the ferrous infiltration alloy.
  • Micrometric globular particles are understood to mean globally spheroidal particles having a size ranging from a few ⁇ m to a few tens of ⁇ m at the most, the vast majority of these particles having a size of less than 50 ⁇ m, and even 20 ⁇ m, or even less than 10 ⁇ m.
  • TiC globules This globular form is characteristic of a method for obtaining titanium carbide by self-propagating synthesis SHS (see Fig. 6 ).
  • the process for obtaining the granules is illustrated in FIG. 3a-3h.
  • the granules of carbon / titanium reagents are obtained by compaction between rollers 10 in order to obtain strips that are then crushed in a crusher 11.
  • the mixture of the powders is made in a mixer 8 consisting of a tank equipped with blades , to promote homogeneity.
  • the mixture then passes into a granulation apparatus through a hopper 9.
  • This machine comprises two rollers 10, through which the material is passed. Pressure is applied to these rollers 10, which compresses the material. A strip of compressed material is obtained at the outlet, which is then crushed in order to obtain the granules.
  • These granules are then sieved to the desired particle size in a sieve 13.
  • the degree of compaction of the bands depends on the applied pressure (in Pa) on the rollers (diameter 200 mm, width 30 mm). For a low level of compaction, of the order of 10 6 Pa, we obtain a density on the bands of the order of 55% of the theoretical density. After passing through the rollers 10 to compress this material, the apparent density of the granules is 3.75 x 0.55, ie 2.06 g / cm 3 .
  • the granules obtained from the raw material Ti + C are porous. This porosity varies from 5% for highly compressed granules, to 45% for slightly compressed granules.
  • the granules obtained generally have a size between 1 and 12 mm, preferably between 1 and 6 mm, and particularly preferably between 1.4 and 4 mm.
  • the granules are made as described above. To obtain a three-dimensional structure or superstructure / macro-microstructure with these granules, they are placed in the areas of the mold where it is desired to reinforce the workpiece. This is achieved by agglomerating the granules either by means of an adhesive, or by confining them in a container, or by any other means (dam 16).
  • the bulk density of the stack of Ti + C granules is measured according to ISO 697 and depends on the level of compaction of the bands, the granulometric distribution of the granules and the crushing mode of the bands, which influences the shape of the granules .
  • the bulk density of these Ti + C granules is generally of the order of 0.9 g / cm 3 to 2.5 g / cm 3 depending on the level of compaction of these granules and the density of the stack.
  • a tooth whose reinforced zones comprise an overall volume percentage of TiC of about 42%.
  • a band is produced by compaction at 85% of the density theoretical of a mixture of C and Ti. After crushing, the granules are sieved to obtain a pellet size of between 1.4 and 4 mm. A bulk density of the order of 2.1 g / cm 3 (35% of space between the granules + 15% of porosity in the granules) is obtained.
  • the granules are placed in the mold at the location of the part to be reinforced, which thus comprises 65% by volume of porous granules.
  • a chromium cast iron (3% C, 25% Cr) was then cast at about 1500 ° C in a non-preheated sand mold.
  • the reaction between Ti and C is initiated by the heat of melting. This casting is done without a protective atmosphere.
  • 65% by volume of zones with a high concentration of approximately 65% of globular titanium carbide, ie 42% by global volume of TiC in the reinforced part of the tooth, are obtained in the reinforced part.
  • a tooth whose reinforced zones comprise an overall Tic volume percentage of approximately 30%.
  • a 70% compaction band of the theoretical density of a mixture of C and Ti After crushing, the granules are sieved to obtain a pellet size of between 1.4 and 4 mm. A bulk density of the order of 1.4 g / cm 3 (45% of space between the granules + 30% of porosity in the granules) is obtained.
  • the granules are placed in the part to be reinforced, which thus comprises 55% by volume of porous granules. After reaction, in the reinforced part, 55% by volume of zones with a high concentration of approximately 53% of globular titanium carbide are obtained, ie approximately 30% by total volume of TiC in the reinforced part of the tooth.
  • a tooth whose reinforced areas comprise an overall volume percentage of TiC of about 20%.
  • a band is made by compaction at 60% of the theoretical density of a mixture of C and Ti. After crushing, the granules are sieved so as to obtain a granule size of 1 and 6 mm. A bulk density of the order of 1.0 g / cm 3 (55% of space between the granules + 40% of porosity in the granules) is obtained. The granules are placed in the part to be reinforced, which thus comprises 45% by volume of porous granules. After reaction, 45% by volume of zones concentrated to about 45% of globular titanium carbide, or 20% by volume of TiC in the reinforced portion of the tooth, are obtained in the reinforced portion.
  • Example 2 it was sought to attenuate the intensity of the reaction between carbon and titanium by adding a ferrous alloy powder.
  • a ferrous alloy powder As in Example 2, it is intended to make a tooth whose reinforced areas comprise an overall volume percentage of TiC of about 30%.
  • a compaction band is produced at 85% of the theoretical density of a mixture by weight of 15% of C, 63% of Ti and 22% of Fe.
  • the granules After crushing, the granules are sieved to obtain a granule size between 1.4 and 4 mm. A bulk density of the order of 2 g / cm 3 (45% of space between the granules + 15% of porosity in the granules) is obtained.
  • the granules are placed in the reinforced part, which thus comprises 55% by volume of porous granules. After reaction, in the reinforced part, 55% by volume of zones with a high concentration are obtained. approximately 55% of globular titanium carbide, ie 30% by volume of global titanium carbide in the reinforced macro-microstructure of the tooth.
  • millimetric granules which are crimped into the metal infiltration alloy. These millimetric granules are themselves composed of microscopic particles of globular TiC also crimped in the metal alloy infiltration. This system makes it possible to obtain a tooth with a reinforcement zone comprising a macrostructure within which there is an identical microstructure on a scale approximately a thousand times smaller.
  • the reinforcement zone of the tooth comprises small globular particles of titanium carbide, hard and finely dispersed in a metal matrix which surrounds them, makes it possible to avoid the formation and crack propagation (see Fig. 4 & 6 ). There is thus a double dissipative system of cracks.
  • Cracks generally originate at the most fragile places, which in this case are the TiC particle or the interface between this particle and the infiltration metal alloy. If a crack originates at the interface or in the micrometric particle of TiC, the propagation of this crack is then impeded by the infiltration alloy which surrounds this particle. The toughness of the infiltration alloy is greater than that of the TiC ceramic particle. The crack needs more energy to pass from one particle to another, to cross the micrometric spaces that exist between the particles.
  • the coefficient of expansion of the TiC reinforcement is lower than that of the ferrous alloy matrix (TiC expansion coefficient: 7.5 ⁇ 10 -6 / K and the ferrous alloy: about 12.0 ⁇ 10 -5 / K).
  • This difference in the expansion coefficients has the consequence of generating tensions in the material during the solidification phase and also during the heat treatment. If these voltages are too great, cracks may appear in the room and lead to scrapping it.
  • a small proportion of TiC reinforcement (less than 50% by volume) is used, resulting in less stress in the part.
  • the presence of a more ductile matrix between the micrometric globular particles of TiC in alternating zones of low and high concentration makes it possible to better manage any local voltages.
  • the boundary between the reinforced portion and the unreinforced portion of the tooth is not abrupt because there is a continuity of the metal matrix between the reinforced portion and the unreinforced portion, which allows the protect against a complete tearing of the reinforcement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Silicon Polymers (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Earth Drilling (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Soil Working Implements (AREA)
  • Dental Preparations (AREA)
EP09782199A 2008-09-19 2009-08-26 Dent composite pour le travail du sol ou des roches Active EP2329052B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL09782199T PL2329052T3 (pl) 2008-09-19 2009-08-26 Ząb kompozytowy do obróbki gruntu lub skał

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE2008/0518A BE1018127A3 (fr) 2008-09-19 2008-09-19 Dent composite pour le travail du sol ou des roches.
PCT/EP2009/060978 WO2010031660A1 (fr) 2008-09-19 2009-08-26 Dent composite pour le travail du sol ou des roches

Publications (2)

Publication Number Publication Date
EP2329052A1 EP2329052A1 (fr) 2011-06-08
EP2329052B1 true EP2329052B1 (fr) 2012-03-14

Family

ID=40651784

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09782199A Active EP2329052B1 (fr) 2008-09-19 2009-08-26 Dent composite pour le travail du sol ou des roches

Country Status (19)

Country Link
US (1) US8646192B2 (es)
EP (1) EP2329052B1 (es)
KR (1) KR101633141B1 (es)
CN (1) CN102159740B (es)
AT (1) ATE549425T1 (es)
AU (1) AU2009294779B2 (es)
BE (1) BE1018127A3 (es)
BR (1) BRPI0913715B1 (es)
CA (1) CA2743343C (es)
CL (1) CL2011000574A1 (es)
DK (1) DK2329052T3 (es)
ES (1) ES2383142T3 (es)
HK (1) HK1157824A1 (es)
MX (1) MX2011003026A (es)
MY (1) MY150582A (es)
PL (1) PL2329052T3 (es)
PT (1) PT2329052E (es)
WO (1) WO2010031660A1 (es)
ZA (1) ZA201101623B (es)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1018130A3 (fr) * 2008-09-19 2010-05-04 Magotteaux Int Materiau composite hierarchique.
JP2014527133A (ja) * 2011-08-26 2014-10-09 ボルボ コンストラクション イクイップメント アーベー 掘削歯の摩耗インジケータ及び方法
ITUD20120134A1 (it) 2012-07-25 2014-01-26 F A R Fonderie Acciaierie Roiale S P A Procedimento per la fabbricazione di getti in acciaio e getti in acciaio cosi' fabbricati
JP5373169B1 (ja) * 2012-10-10 2013-12-18 株式会社小松製作所 掘削爪および掘削爪用ボディ
CN103147481A (zh) * 2013-03-19 2013-06-12 中交天津港航勘察设计研究院有限公司 一种挖泥船用复合型破岩刀齿
US20160122970A1 (en) * 2014-10-24 2016-05-05 The Charles Machine Works, Inc. Linked Tooth Digging Chain
US20170233986A1 (en) 2016-02-15 2017-08-17 Caterpillar Inc. Ground engaging component and method for manufacturing the same
US10378188B2 (en) 2016-09-23 2019-08-13 Rockland Manufacturing Company Bucket, blade, liner, or chute with visual wear indicator
JP6804143B2 (ja) * 2016-09-30 2020-12-23 株式会社小松製作所 耐土砂摩耗部品およびその製造方法
EP3563951A1 (fr) 2018-05-04 2019-11-06 Magotteaux International S.A. Dent composite avec insert tronconique
DE102019200302A1 (de) * 2019-01-11 2020-07-16 Thyssenkrupp Ag Zahn zum Anbringen an eine Baggerschaufel
BE1027444B1 (fr) 2020-02-11 2021-02-10 Magotteaux Int Piece d'usure composite
CN111482579B (zh) * 2020-03-17 2022-03-22 内蒙古科技大学 一种耐磨钢结硬质合金复合锤头及其制造方法
EP3885061A1 (en) * 2020-03-27 2021-09-29 Magotteaux International S.A. Composite wear component
AU2021254246B2 (en) * 2020-04-09 2024-02-08 Komatsu Ltd. Wear-resistant component
EP3915699A1 (fr) 2020-05-29 2021-12-01 Magotteaux International SA Pièce d'usure composite céramique-métal
US11882777B2 (en) 2020-07-21 2024-01-30 Osmundson Mfg. Co. Agricultural sweep with wear resistant coating
US20230332383A1 (en) * 2022-04-13 2023-10-19 Hensley Industries, Inc. Reinforced wear member

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2596106B2 (ja) * 1988-12-27 1997-04-02 住友重機械鋳鍛株式会社 複合掘削ツース
US5066546A (en) * 1989-03-23 1991-11-19 Kennametal Inc. Wear-resistant steel castings
GB2257985A (en) * 1991-07-26 1993-01-27 London Scandinavian Metall Metal matrix alloys.
US5720830A (en) * 1992-11-19 1998-02-24 Sheffield Forgemasters Limited Engineering ferrous metals and method of making thereof
UA54398C2 (uk) * 1995-09-27 2003-03-17 Дзе Ішізука Ресеарш Інстітут. Лтд Композиційний матеріал,що містить суперабразивні частинки та спосіб виготовлення цього матеріалу
US6607782B1 (en) * 2000-06-29 2003-08-19 Board Of Trustees Of The University Of Arkansas Methods of making and using cubic boron nitride composition, coating and articles made therefrom
CA2468352C (en) * 2001-12-04 2010-06-15 Claude Poncin Cast parts with enhanced wear resistance
CN1321768C (zh) * 2005-01-19 2007-06-20 华南理工大学 温压弥散颗粒增强钢铁基粉末冶金复合材料的制备方法
JP4707407B2 (ja) * 2005-02-18 2011-06-22 Ntn株式会社 製鋼ダスト固形化物およびその製造方法
US7780798B2 (en) * 2006-10-13 2010-08-24 Boston Scientific Scimed, Inc. Medical devices including hardened alloys

Also Published As

Publication number Publication date
HK1157824A1 (en) 2012-07-06
US8646192B2 (en) 2014-02-11
EP2329052A1 (fr) 2011-06-08
BRPI0913715B1 (pt) 2017-11-21
AU2009294779A1 (en) 2010-03-25
ES2383142T3 (es) 2012-06-18
ATE549425T1 (de) 2012-03-15
PL2329052T3 (pl) 2012-08-31
CL2011000574A1 (es) 2011-08-26
AU2009294779B2 (en) 2013-05-09
BRPI0913715A2 (pt) 2015-10-13
KR101633141B1 (ko) 2016-06-23
PT2329052E (pt) 2012-06-25
KR20110063467A (ko) 2011-06-10
DK2329052T3 (da) 2012-07-09
CA2743343A1 (en) 2010-03-25
WO2010031660A1 (fr) 2010-03-25
BE1018127A3 (fr) 2010-05-04
MX2011003026A (es) 2011-04-12
US20110225856A1 (en) 2011-09-22
CN102159740B (zh) 2013-06-05
ZA201101623B (en) 2012-08-29
CN102159740A (zh) 2011-08-17
CA2743343C (en) 2016-03-29
MY150582A (en) 2014-01-30

Similar Documents

Publication Publication Date Title
EP2329052B1 (fr) Dent composite pour le travail du sol ou des roches
EP2323770B1 (fr) Impacteur composite pour concasseurs à percussion
EP2326738B9 (fr) Cône de broyage pour concasseur a compression
EP2334836B9 (fr) Materiau composite hierarchique
EP3563951A1 (fr) Dent composite avec insert tronconique
US12123177B2 (en) Composite tooth with frustoconical insert

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110310

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 33/02 20060101ALI20110817BHEP

Ipc: C22C 1/05 20060101AFI20110817BHEP

Ipc: C22C 29/06 20060101ALI20110817BHEP

Ipc: E02F 9/28 20060101ALI20110817BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 549425

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120315

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009005932

Country of ref document: DE

Effective date: 20120510

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2383142

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20120618

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20120614

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120614

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 11811

Country of ref document: SK

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20120314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120615

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 549425

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120714

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

26N No opposition filed

Effective date: 20121217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009005932

Country of ref document: DE

Effective date: 20121217

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120826

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120826

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090826

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230327

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230731

Year of fee payment: 15

Ref country code: RO

Payment date: 20230811

Year of fee payment: 15

Ref country code: ES

Payment date: 20230912

Year of fee payment: 15

Ref country code: CZ

Payment date: 20230801

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20230802

Year of fee payment: 15

Ref country code: SE

Payment date: 20230822

Year of fee payment: 15

Ref country code: PL

Payment date: 20230731

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240723

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240723

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20240723

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20240725

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20240723

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240723

Year of fee payment: 16