EP2326738B9 - Cône de broyage pour concasseur a compression - Google Patents

Cône de broyage pour concasseur a compression Download PDF

Info

Publication number
EP2326738B9
EP2326738B9 EP09782200.1A EP09782200A EP2326738B9 EP 2326738 B9 EP2326738 B9 EP 2326738B9 EP 09782200 A EP09782200 A EP 09782200A EP 2326738 B9 EP2326738 B9 EP 2326738B9
Authority
EP
European Patent Office
Prior art keywords
titanium carbide
micrometric
milling cone
granules
globular particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09782200.1A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP2326738B1 (fr
EP2326738A1 (fr
Inventor
Guy Berton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Magotteaux International SA
Original Assignee
Magotteaux International SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magotteaux International SA filed Critical Magotteaux International SA
Priority to PL09782200T priority Critical patent/PL2326738T3/pl
Publication of EP2326738A1 publication Critical patent/EP2326738A1/fr
Publication of EP2326738B1 publication Critical patent/EP2326738B1/fr
Application granted granted Critical
Publication of EP2326738B9 publication Critical patent/EP2326738B9/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C2/00Crushing or disintegrating by gyratory or cone crushers
    • B02C2/005Lining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/06Casting in, on, or around objects which form part of the product for manufacturing or repairing tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/14Casting in, on, or around objects which form part of the product the objects being filamentary or particulate in form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1039Sintering only by reaction
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • C22C1/053Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor with in situ formation of hard compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/058Mixtures of metal powder with non-metallic powder by reaction sintering (i.e. gasless reaction starting from a mixture of solid metal compounds)
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • C22C1/1068Making hard metals based on borides, carbides, nitrides, oxides or silicides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • C22C33/0228Using a mixture of prealloyed powders or a master alloy comprising other non-metallic compounds or more than 5% of graphite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0292Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with more than 5% preformed carbides, nitrides or borides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C2210/00Codes relating to different types of disintegrating devices
    • B02C2210/02Features for generally used wear parts on beaters, knives, rollers, anvils, linings and the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/002Tools other than cutting tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/005Article surface comprising protrusions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2204/00End product comprising different layers, coatings or parts of cermet

Definitions

  • the present invention relates to a composite grinding cone for compression crushers in the field of rock crushing in extractive industries such as mines, quarries, cement plants, etc., but also in the recycling industry, etc., as well as than a method of manufacturing such cones.
  • compression crusher cone crushers or gyratory crushers equipped with grinding cones constituting the main wear part of these machines.
  • Cone crushers or gyratory crushers have a cone-shaped wear part called the grinding cone. This type of cone is the subject of this patent application.
  • the cone has the function of being in direct contact with the rock or the material to be ground during the process phase, where very high compressive stresses are applied to the material to be crushed.
  • Compression crushers are used in the early stages of the production line to drastically reduce the size of the rock, in the extractive industries (mines, quarries, cement plants, ...) and recycling.
  • the document JP 53 17731 proposes a solution that consists of alternating zones that are more resistant and less resistant to wear, in the direction of the generator of a grinding cone. This technique has the effect of generating on the surface of the cone a relief that would be favorable to the extension of the service life of the part.
  • the present invention discloses a composite grinding cone for compression crushers having improved wear resistance while maintaining good impact resistance. This property is obtained by a composite reinforcement structure specifically designed for this application, a material that alternates on a millimeter scale dense zones in fine micrometric globular particles of metal carbides with zones that are practically free of them within the metallic matrix. grinding cone.
  • the present invention also provides a method for obtaining said reinforcing structure.
  • the present invention discloses a composite grinding cone for compression crushers, said grinding cone comprising a ferrous alloy reinforced at least in part with titanium carbide according to a defined geometry, wherein said reinforced portion comprises an alternating macro-microstructure of zones millimeters concentrated in micrometric globular particles of titanium carbide separated by millimetric zones essentially free of micrometric globular particles of titanium carbide, said zones concentrated in micrometric globular particles of titanium carbide forming a microstructure in which the micrometric interstices between said globular particles are also occupied by said ferrous alloy.
  • the present invention also discloses a composite grinding cone obtained by the method of any one of claims 11 to 13.
  • FIGS 1 and 2 show an overall three-dimensional view of the different types of machines in which grinding cones according to the present invention are used.
  • the figure 3 shows a three-dimensional view of a grinding cone and how the reinforcement (s) can be arranged to achieve the desired purpose. (reinforcement geometry)
  • the figure 5 represents a binocular view of a polished, unengaged surface of a section of the reinforced portion of a cone according to the invention with millimetric zones (in light gray) concentrated micrometric globular titanium carbide (TiC nodules) ).
  • the dark part represents the metal matrix (steel or cast iron) filling at the same time the space between these concentrated zones in micrometric globular titanium carbide but also the spaces between the globules themselves.
  • the figures 6 and 7 represent SEM electron microscopic views of micrometric globular titanium carbide on polished and untouched surfaces at different magnifications. We see that in this particular case most of the globules of titanium carbide have a size less than 10 microns.
  • the figure 8 represents a view of micrometric globular titanium carbide on a fracture surface taken by SEM electron microscope. It can be seen that the globules of titanium carbide are perfectly incorporated in the metal matrix. This proves that the casting metal completely infiltrates (impregnates) the pores during casting once the chemical reaction between titanium and carbon is initiated.
  • the SHS or " s elf-propagating h igh temperature s ynthesis" reaction is a self-propagating, high-temperature synthesis reaction in which reaction temperatures are generally greater than 1500 ° C or even 2000. ° C.
  • reaction temperatures are generally greater than 1500 ° C or even 2000. ° C.
  • the reaction between titanium powder and carbon powder to obtain titanium carbide TiC is highly exothermic. Only a little energy is needed to initiate the reaction locally. Then, the reaction will spontaneously propagate to the entire mixture of reagents thanks to the high temperatures reached. After initiation of the reaction, there is a reaction front which propagates spontaneously (self-propagated) and which makes it possible to obtain titanium carbide from titanium and carbon.
  • the titanium carbide thus obtained is said to be "obtained in situ because it does not come from the cast ferrous alloy.
  • the reactant powder mixtures comprise carbon powder and titanium powder and are compressed into plates and then crushed to obtain granules ranging in size from 1 to 12 mm, preferably from 1 to 6 mm, and particularly preferably from 1.4 to 4 mm. These granules are not 100% compacted. They are generally compressed between 55 and 95% of the theoretical density. These granules allow easy use / handling (see Fig. 3a-3h).
  • millimetric granules of mixed carbon and titanium powders obtained according to the diagrams of FIG. 4a-4h constitute the precursors of the titanium carbide to be created and make it possible to easily fill mold parts of various or irregular shapes.
  • These granules can be held in place in the mold 15 by means of a dam 16, for example.
  • the shaping or assembly of these granules can also be done using an adhesive.
  • the composite grinding cone according to the present invention has a reinforcing macro-microstructure which may alternatively be called an alternating structure of concentrated micrometric globular particles of titanium carbide separated by zones which are substantially free of it.
  • a reinforcing macro-microstructure which may alternatively be called an alternating structure of concentrated micrometric globular particles of titanium carbide separated by zones which are substantially free of it.
  • Such a structure is obtained by the reaction in the mold of the granules comprising a mixture of powders of carbon and titanium. This reaction is initiated by the heat of casting of the cast iron or steel used to pour the whole piece and thus both the unreinforced part and the reinforced part (see Fig. 3e).
  • the casting therefore triggers an exothermic synthesis reaction self-propagated at high temperature of the mixture of powders of carbon and titanium compacted in the form of granules (self-propagating high-temperature synthesis - SHS) and previously placed in the mold 15.
  • the reaction then has the distinction of continuing to spread as soon as it is initiated.
  • This high temperature synthesis allows easy infiltration of all millimetric and micrometric interstices by cast iron or casting steel ( Fig. 4g & 4h ). By increasing the wettability, the infiltration can be done on any thickness or depth of reinforcement of the grinding cone. It advantageously makes it possible, after SHS reaction and infiltration by an external casting metal, to create one or more reinforcement zones on the grinding cone comprising a high concentration of micrometric globular particles of titanium carbide (which could also be called clusters of nodules), which areas have a size of the order of a millimeter or a few millimeters, and which alternate with areas substantially free of globular titanium carbide.
  • the zones of reinforcement where these granules were found show a concentrated dispersion of micrometric globular particles 4 of TiC carbide (globules) whose micrometric interstices 3 have also been infiltrated by the casting metal. which is here cast iron or steel. It is important to note that the millimetric and micrometric interstices are infiltrated by the same metal matrix as that which constitutes the unreinforced part of the grinding cone; this allows a total freedom of choice of the casting metal.
  • the reinforcement zones with a high concentration of titanium carbide are composed of globular micrometric particles of TiC in significant percentage (between about 35 and about 70% by volume) and the ferrous alloy infiltration.
  • Micrometric globular particles are understood to mean globally spheroidal particles having a size ranging from a few ⁇ m to a few tens of ⁇ m at the most, the vast majority of these particles having a size of less than 50 ⁇ m, and even 20 ⁇ m, or even less than 10 ⁇ m.
  • TiC globules This globular form is characteristic of a method for obtaining titanium carbide by self-propagating synthesis SHS (see Fig. 7 ).
  • the process for obtaining the granules is illustrated in FIG. 4a-4h.
  • the granules of carbon / titanium reagents are obtained by compaction between rollers 10 in order to obtain strips that are then crushed in a crusher 11.
  • the mixture of the powders is made in a mixer 8 consisting of a tank equipped with blades , to promote homogeneity.
  • the mixture then passes into a granulation apparatus through a hopper 9.
  • This machine comprises two rollers 10, through which the material is passed. Pressure is applied to these rollers 10, which compresses the material. A strip of compressed material is obtained at the outlet, which is then crushed in order to obtain the granules.
  • These granules are then sieved to the desired particle size in a sieve 13.
  • the degree of compaction of the bands depends on the applied pressure (in Pa) on the rollers (diameter 200 mm, width 30 mm). For a low level of compaction, of the order of 10 6 Pa, we obtain a density on the bands of the order of 55% of the theoretical density. After passing through the rollers 10 to compress this material, the apparent density of the granules is 3.75 x 0.55, ie 2.06 g / cm 3 .
  • the granules obtained from the raw material Ti + C are porous. This porosity varies from 5% for highly compressed granules, to 45% for slightly compressed granules.
  • the granules obtained generally have a size between 1 and 12 mm, preferably between 1 and 6 mm, and particularly preferably between 1.4 and 4 mm.
  • the granules are made as described above. To obtain a three-dimensional structure superstructure / macro-microstructure with these granules, they are available in the areas of the mold where it is desired to reinforce the part. This is achieved by agglomerating the granules either by means of an adhesive, or by confining them in a container, or by any other means (dam 16).
  • the bulk density of the stack of Ti + C granules is measured according to ISO 697 and depends on the level of compaction of the bands, the granulometric distribution of the granules and the crushing mode of the bands, which influences the shape of the granules .
  • the bulk density of these Ti + C granules is generally of the order of 0.9 g / cm 3 to 2.5 g / cm 3 depending on the level of compaction of these granules and the density of the stack.
  • the compactness of the granules was obtained by varying the pressure between the rolls by 10 to 250 ⁇ 10 5 Pa. Reinforcement has been done by placing granules in a metal container, which is then conveniently placed in the mold where the grinding cone is likely to be reinforced. Then we cast the steel or cast in this mold.
  • a grinding cone whose reinforced areas comprise an overall volume percentage of TiC of about 42%.
  • a band is produced by compaction at 85% of the theoretical density of a mixture of C and Ti. After crushing, the granules are sieved to obtain a pellet size of between 1.4 and 4 mm. A bulk density of the order of 2.1 g / cm 3 (35% of space between the granules + 15% of porosity in the granules) is obtained.
  • the granules are placed in the mold at the location of the part to be reinforced, which thus comprises 65% by volume of porous granules.
  • a chromium cast iron (3% C, 25% Cr) was then cast at about 1500 ° C in a non-preheated sand mold.
  • the reaction between Ti and C is initiated by the heat of melting. This casting is done without a protective atmosphere.
  • 65% by volume of zones with a high concentration of approximately 65% of globular titanium carbide are obtained in the reinforced part, ie 42% by global volume of TiC in the reinforced part of the grinding cone.
  • a grinding cone whose reinforced areas comprise a global volume percentage of TiC of about 30%.
  • a 70% compaction band is made of the theoretical density of a mixture of C and Ti.
  • the granules are sieved to obtain a pellet size of between 1.4 and 4 mm.
  • a bulk density of the order of 1.4 g / cm 3 (45% of space between the granules + 30% of porosity in the granules) is obtained.
  • the granules are placed in the part to be reinforced, which thus comprises 55% by volume of porous granules.
  • 55% by volume of zones with a high concentration of approximately 53% of globular titanium carbide, ie approximately 30% by volume of TiC in the reinforced portion of the grinding cone, are obtained.
  • a grinding cone whose reinforced areas comprise a global volume percentage of TiC of about 20%.
  • a 60% compaction band is made of the theoretical density of a mixture of C and Ti.
  • the granules are sieved so as to obtain a granule size of between 1 and 6 mm.
  • a bulk density of the order of 1.0 g / cm 3 (55% of space between the granules + 40% of porosity in the granules) is obtained.
  • the granules are placed in the part to be reinforced, which thus comprises 45% by volume of porous granules.
  • 45% by volume of zones concentrated to about 45% of globular titanium carbide are obtained, ie 20% by global volume of TiC in the reinforced part of the grinding cone.
  • Example 2 it was sought to attenuate the intensity of the reaction between carbon and titanium by adding a ferrous alloy powder.
  • a grinding cone whose reinforced zones comprise a global volume percentage of TiC of about 30%.
  • a compaction band is produced at 85% of the theoretical density of a mixture by weight of 15% of C, 63% of Ti and 22% of Fe.
  • the granules are sieved to obtain a granule size between 1.4 and 4 mm.
  • a bulk density of the order of 2 g / cm 3 (45% of space between the granules + 15% of porosity in the granules) is obtained.
  • the granules are placed in the part to be reinforced, which thus comprises 55% by volume of porous granules. After reaction, 55% by volume of zones with a high concentration of approximately 55% of globular titanium carbide, ie 30% by volume of global titanium carbide in the reinforced macro-microstructure of the grinding cone, are obtained in the reinforced part. .
  • millimetric granules which are crimped into the metal infiltration alloy. These millimetric granules are themselves composed of microscopic particles of globular TiC also crimped in the metal alloy infiltration. This system makes it possible to obtain a grinding cone with a reinforcing zone comprising a macrostructure within which there is an identical microstructure on a scale approximately a thousand times smaller.
  • the reinforcing zone of the grinding cone comprises small globular particles of titanium carbide, hard and finely dispersed in a metal matrix around them, avoids the formation and propagation of cracks (see Fig. 4 & 6 ). There is thus a double dissipative system of cracks.
  • Cracks generally originate at the most fragile places, which in this case are the TiC particle or the interface between this particle and the infiltration metal alloy. If a crack originates at the interface or in the micrometric particle of TiC, the propagation of this crack is then impeded by the infiltration alloy which surrounds this particle. The toughness of the infiltration alloy is greater than that of the TiC ceramic particle. The crack needs more energy to pass from one particle to another, to cross the micrometric spaces that exist between the particles.
  • the expansion coefficient of the TiC reinforcement is lower than that of the ferrous alloy matrix (TiC expansion coefficient: 7.5 ⁇ 10 -6 / K and the ferrous alloy: about 12.0 ⁇ 10 -6 / K).
  • This difference in the expansion coefficients has the consequence of generating tensions in the material during the solidification phase and also during the heat treatment. If these voltages are too great, cracks may appear in the room and lead to scrapping it.
  • a small proportion of TiC reinforcement (less than 50% by volume) is used, resulting in less stress in the part.
  • the presence of a more ductile matrix between the micrometric globular particles of TiC in alternating zones of low and high concentration makes it possible to better manage any local voltages.
  • the boundary between the reinforced portion and the unreinforced portion of the grinding cone is not abrupt because there is a continuity of the metal matrix between the reinforced portion and the unreinforced portion, thereby protect it against a complete tearing of the reinforcement.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Food Science & Technology (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Crushing And Grinding (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Shovels (AREA)
EP09782200.1A 2008-09-19 2009-08-26 Cône de broyage pour concasseur a compression Active EP2326738B9 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL09782200T PL2326738T3 (pl) 2008-09-19 2009-08-26 Stożek kruszący do kruszarki o działaniu zgniatającym

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE2008/0519A BE1018128A3 (fr) 2008-09-19 2008-09-19 Cone de broyage pour concasseur a compression.
PCT/EP2009/060979 WO2010031661A1 (fr) 2008-09-19 2009-08-26 Cône de broyage pour concasseur a compression

Publications (3)

Publication Number Publication Date
EP2326738A1 EP2326738A1 (fr) 2011-06-01
EP2326738B1 EP2326738B1 (fr) 2012-03-21
EP2326738B9 true EP2326738B9 (fr) 2013-06-19

Family

ID=40651814

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09782200.1A Active EP2326738B9 (fr) 2008-09-19 2009-08-26 Cône de broyage pour concasseur a compression

Country Status (17)

Country Link
US (1) US8602340B2 (pt)
EP (1) EP2326738B9 (pt)
CN (1) CN102159739B (pt)
AT (1) ATE550450T1 (pt)
AU (1) AU2009294780B2 (pt)
BE (1) BE1018128A3 (pt)
BR (1) BRPI0913557B1 (pt)
CA (1) CA2743744C (pt)
CL (1) CL2011000575A1 (pt)
DK (1) DK2326738T3 (pt)
ES (1) ES2384089T3 (pt)
MX (1) MX2011003027A (pt)
MY (1) MY150574A (pt)
PL (1) PL2326738T3 (pt)
PT (1) PT2326738E (pt)
WO (1) WO2010031661A1 (pt)
ZA (1) ZA201101790B (pt)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1018130A3 (fr) * 2008-09-19 2010-05-04 Magotteaux Int Materiau composite hierarchique.
WO2012149889A1 (zh) * 2011-05-01 2012-11-08 浙江黑白矿山机械有限公司 一种凹凸面结构的旋转破碎副
US9157469B2 (en) * 2011-07-08 2015-10-13 Metso Minerals Industries, Inc. Locking nut assembly for a cone crusher
LU92152B1 (en) * 2013-02-18 2014-08-19 Amincem S A Metal matrix composite useful as wear parts for cement and mining industries
USD751128S1 (en) * 2013-06-27 2016-03-08 Sandvik Intellectual Property Ab Crushing shell
MY190268A (en) * 2015-03-30 2022-04-11 Yoonsteel M Sdn Bhd Replacement cone crusher wear liners
JP6942702B2 (ja) * 2015-11-12 2021-09-29 インナーコ サパ.ザ オ.オ. 鋳造インサート製造用の粉末組成物および鋳造物に局所複合ゾーンを得る鋳造インサートおよび方法
PL414755A1 (pl) * 2015-11-12 2017-05-22 Innerco Spółka Z Ograniczoną Odpowiedzialnością Sposób wytwarzania lokalnych stref kompozytowych w odlewach i wkładka odlewnicza
CN110020481B (zh) * 2019-04-10 2023-05-02 江西理工大学 多梯度结构增强型圆锥破碎机衬板及其设计方法
CN113766984B (zh) * 2019-04-30 2023-09-22 伊诺科有限责任公司 基于原位制造的合金的用碳化钨增强的复合材料及其生产方法
BE1027444B1 (fr) 2020-02-11 2021-02-10 Magotteaux Int Piece d'usure composite
AU2020440949A1 (en) 2020-04-09 2022-10-13 Sandvik Srp Ab An arm liner for a cone crusher bottom shell assembly
EP3915699A1 (fr) * 2020-05-29 2021-12-01 Magotteaux International SA Pièce d'usure composite céramique-métal
US20230249246A1 (en) 2020-07-07 2023-08-10 Sandvik Srp Ab Crushing or wear part having a localized composite wear zone

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2596106B2 (ja) 1988-12-27 1997-04-02 住友重機械鋳鍛株式会社 複合掘削ツース
US5066546A (en) 1989-03-23 1991-11-19 Kennametal Inc. Wear-resistant steel castings
JPH05317751A (ja) 1991-05-01 1993-12-03 Sumitomo Heavy Ind Ltd パルス荷電型電気集じん機の制御方法
JP2525310B2 (ja) * 1992-05-19 1996-08-21 川崎重工業株式会社 破砕機の歯板
US5720830A (en) * 1992-11-19 1998-02-24 Sheffield Forgemasters Limited Engineering ferrous metals and method of making thereof
US5516053A (en) * 1993-10-07 1996-05-14 Hannu; Donald W. Welded metal hardfacing pattern for cone crusher surfaces
US5967431A (en) * 1996-03-18 1999-10-19 Astec Industries, Inc. Rock crusher having crushing-enhancing inserts, method for its production, and method for its use
CA2468352C (en) * 2001-12-04 2010-06-15 Claude Poncin Cast parts with enhanced wear resistance
FI118525B (fi) * 2006-05-31 2007-12-14 Metso Powdermet Oy Menetelmä monimateriaalikomponentin tai -rakenteen valmistamiseksi
US20080041994A1 (en) * 2006-06-23 2008-02-21 Hall David R A Replaceable Wear Liner with Super Hard Composite Inserts
US7451944B2 (en) * 2006-06-23 2008-11-18 Hall David R Replaceable segmented wear liner

Also Published As

Publication number Publication date
BRPI0913557B1 (pt) 2019-12-24
PT2326738E (pt) 2012-06-28
AU2009294780B2 (en) 2013-04-18
PL2326738T3 (pl) 2012-08-31
CN102159739B (zh) 2013-02-06
AU2009294780A1 (en) 2010-03-25
US20110303778A1 (en) 2011-12-15
ATE550450T1 (de) 2012-04-15
MY150574A (en) 2014-01-30
BRPI0913557A2 (pt) 2015-10-20
ES2384089T3 (es) 2012-06-29
US8602340B2 (en) 2013-12-10
BE1018128A3 (fr) 2010-05-04
CA2743744C (en) 2015-10-06
ZA201101790B (en) 2012-08-29
DK2326738T3 (da) 2012-07-16
EP2326738B1 (fr) 2012-03-21
CL2011000575A1 (es) 2011-08-26
CA2743744A1 (en) 2010-03-25
EP2326738A1 (fr) 2011-06-01
CN102159739A (zh) 2011-08-17
WO2010031661A1 (fr) 2010-03-25
ES2384089T9 (es) 2013-09-16
MX2011003027A (es) 2011-04-12

Similar Documents

Publication Publication Date Title
EP2326738B9 (fr) Cône de broyage pour concasseur a compression
EP2323770B1 (fr) Impacteur composite pour concasseurs à percussion
EP2329052B1 (fr) Dent composite pour le travail du sol ou des roches
EP2334836B9 (fr) Materiau composite hierarchique
EP3563951A1 (fr) Dent composite avec insert tronconique
US12123177B2 (en) Composite tooth with frustoconical insert
FR2580628A1 (fr) Procede de fabrication d'un composite diamante

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110310

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602009006042

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C22C0001050000

Ipc: C22C0047000000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B02C 2/00 20060101ALI20110817BHEP

Ipc: C22C 49/08 20060101ALI20110817BHEP

Ipc: C22C 1/05 20060101ALI20110817BHEP

Ipc: C22C 47/00 20060101AFI20110817BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 550450

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009006042

Country of ref document: DE

Effective date: 20120516

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: CRONIN INTELLECTUAL PROPERTY

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602009006042

Country of ref document: DE

Representative=s name: PRONOVEM-OFFICE VAN MALDEREN S.A, BE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20120621

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2384089

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20120629

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120621

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120321

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120321

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20120321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120321

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20120401405

Country of ref document: GR

Effective date: 20120713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120321

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120321

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120321

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120321

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120321

26N No opposition filed

Effective date: 20130102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009006042

Country of ref document: DE

Effective date: 20130102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120321

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120321

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: CHEMIN DE LA VUARPILLIERE 29, 1260 NYON (CH)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230327

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230731

Year of fee payment: 15

Ref country code: RO

Payment date: 20230811

Year of fee payment: 15

Ref country code: IT

Payment date: 20230822

Year of fee payment: 15

Ref country code: ES

Payment date: 20230912

Year of fee payment: 15

Ref country code: CH

Payment date: 20230902

Year of fee payment: 15

Ref country code: AT

Payment date: 20230728

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230822

Year of fee payment: 15

Ref country code: PL

Payment date: 20230731

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240723

Year of fee payment: 16

Ref country code: FI

Payment date: 20240724

Year of fee payment: 16

Ref country code: IE

Payment date: 20240725

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20240725

Year of fee payment: 16

Ref country code: DK

Payment date: 20240723

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240723

Year of fee payment: 16

Ref country code: PT

Payment date: 20240725

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20240723

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240723

Year of fee payment: 16