EP2318241A1 - Systeme et procede de gestion du freinage d'un vehicule automobile - Google Patents

Systeme et procede de gestion du freinage d'un vehicule automobile

Info

Publication number
EP2318241A1
EP2318241A1 EP09740464A EP09740464A EP2318241A1 EP 2318241 A1 EP2318241 A1 EP 2318241A1 EP 09740464 A EP09740464 A EP 09740464A EP 09740464 A EP09740464 A EP 09740464A EP 2318241 A1 EP2318241 A1 EP 2318241A1
Authority
EP
European Patent Office
Prior art keywords
engine
state
brake
vehicle
stopping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09740464A
Other languages
German (de)
English (en)
Inventor
Arnaud Losq
Pascal Febrer
Alessandro Monti
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP2318241A1 publication Critical patent/EP2318241A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • B60T13/746Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive and mechanical transmission of the braking action
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • B60T17/22Devices for monitoring or checking brake systems; Signal devices
    • B60T17/221Procedure or apparatus for checking or keeping in a correct functioning condition of brake systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger

Definitions

  • the present invention relates to the braking management of a motor vehicle equipped with an assisted parking brake
  • This type of automatically assisted parking brake is a significant advance over conventional motor vehicle hand brakes. Indeed, it becomes possible to tighten the rear brakes when stopping the vehicle in optimal conditions without the tightening is too important or too weak. It becomes possible to automatically release the clamping of the parking brake as soon as the driver wishes to advance the vehicle, for example as soon as the driver engages a gear ratio and accelerates enough to put the vehicle in motion.
  • the parking brake can also be manually tightened by a control on the dashboard of the vehicle, actuable by the driver. In all cases, the automatic release of the parking brake is a hill start assistance.
  • the brake management system can indeed in this case release the tightening as soon as the engine provides enough torque to advance the vehicle according to the slope determined by a sensor and taken into account by the on-board computer on the vehicle.
  • Such assisted parking brake systems have many security features.
  • the parking brake is applied with a determined clamping force, which corresponds to the maximum possible tightening, which has the disadvantage of not taking into account the conditions of use of the vehicle and may lead to long excessive wear reducing the service life of the system. It may be envisaged not to proceed initially to a maximum tightening, being content with a temporary tightening according to the conditions of use of the vehicle.
  • the clamping force can then, in particular, take into account the slope on which the vehicle is.
  • Tightening below maximum tightening can also be achieved when the engine continues to run although the vehicle is stationary, which means that the driver is considering temporary immobilization. In these situations, however, it is necessary to retighten the parking brake if there is a loss of clamping force over time, or if the conditions of use of the vehicle change. However, this requires the use of additional sensors such as clamping force sensors, and causes a monitoring constraint in time which can be detrimental in particular in terms of energy consumption.
  • the present invention aims to solve these difficulties and to propose a braking management system and method of a motor vehicle equipped with an assisted parking brake, which allows an initial tightening taking into account the conditions of use of the vehicle. and which allows automatic tightening by simple means that do not require a sensor or additional member that can increase the power consumption.
  • a braking management system of a motor vehicle equipped with an assisted parking brake with at least one brake actuator capable of acting on at least one wheel of the vehicle comprises means for clamping the vehicle. parking brake and means for automatically increasing the clamping of the parking brake after stopping the vehicle engine.
  • the parking brake is automatically tightened without the need to measure a possible loss of clamping force over time. It becomes possible to apply, during the first tightening, a clamping force less than the maximum tightening and adapted to the conditions of use, such as the slope of the roadway or situations in which the vehicle engine is running. The endurance of the parking brake and its longevity are increased.
  • the means for automatically increasing the clamping comprise an engine stop detection module and a clamp increase control module.
  • the engine stop detection module advantageously comprises means for transmitting a signal characteristic of stopping the engine as a function of the state of the engine and the state of the engine power supply.
  • the state of the engine ie whether the engine is running or stopped, can be detected by information from the fuel injection control in the engine, information that is available, in particular on the local control network. (commonly called CAN) which interconnects the various engine components and a power supply module with an electronic control unit or a computer on board the vehicle.
  • CAN commonly called CAN
  • the clamping increase control module preferably comprises means for transmitting a tightening demand signal according to the state of the brake actuators and the characteristic signal of the motor stop.
  • the engine stop is detected, preferably taking into account the state of the engine and the condition of the engine power supply.
  • information can be used from either a local control network (CAN network) or a direct wire connection to know the state of the motor and the state of the motor supply.
  • CAN network CAN network
  • direct wire connection to know the state of the motor and the state of the motor supply.
  • a tightening demand signal is then issued according to the state of the brake actuators and a characteristic signal of the motor stop.
  • a tightening demand request signal it is determined whether each actuator is already tightened or being tightened and the operating state of each actuator is determined.
  • FIG. 1 schematically represents the main elements of a braking management system of a motor vehicle according to the invention
  • FIG. 2 schematically illustrates the structure of a motor stop detection module
  • FIG. 3 schematically illustrates the structure of a module for determining tightening conditions.
  • a braking management system is adapted to a motor vehicle not shown in the figure comprising an assisted parking brake (FPA).
  • the vehicle comprises a powertrain schematically in the form of a motor 1 which may comprise a heat engine and one or more electrical machines, and whose operation is controlled by an electronic control unit represented in the form of an engine management computer referenced 2 in the figure.
  • a power supply module 3 connected to the computer 2 by a connection 4 is connected to the motor 1 by a connection 5 so as to provide the power supply necessary for the operation of the motor.
  • the main members of the brake management system are grouped together in an assembly 6 which comprises an engine stop detection module referenced 7, and a clamping increase control module referenced 8.
  • the module 8 comprises, for its part, a module for determining the conditions for increasing the tightening of the parking brake, referenced 9 and a request module 10 for tightening tightening.
  • the engine stop detection module 7 receives, via a connection 11, information on the state of the engine, that is to say in particular if the engine is stopped or if the engine is running. Information on the power supply to the motor is also provided to the detection module 7 via a connection 12 from the power supply module 3, that is to say if the electrical contact is switched on or off.
  • the engine stop detection module 7 emits signals corresponding to the engine stop, these signals being transmitted by the connection 13 to the module 9 for determining the tightening conditions.
  • the module 9 also receives information on the state of the parking brake actuators.
  • the braking system comprises two parking brake actuators, No. 1 and No. 2, referenced respectively 14 and 15.
  • the state of these two actuators 14 and 15 is transmitted by the respective connections 16 and 17 to the module 9.
  • the module 9 is connected by connections 18 to the tightening demand request module 10, which is able to issue tightening commands which are transmitted by the connections 19 and 20 to the parking brake actuators 14 and 15.
  • the stop detection module 7 is capable, depending on the state of the engine, that it comes from the connection 1 1, and the state of the power supply of the motor which comes to it via the connection 12, to reliably transmit on the output connection 13, a signal corresponding to an effective stop of the motor.
  • the module for determining the tightening tightening conditions 9 takes into account the state of the brake actuators 14 and 15, which is transmitted to it by the respective connections 16 and 17. If the two actuators are in working order and are further tightened, which corresponds to a first tightening performed at a previous time, the module 9 is able to emit a signal on the output connections 18 when it has received a signal corresponding to the stop of the motor, signal that has been transmitted to it by the connection 13 from the stop detection module 7.
  • the module 10 elaborates the control signals that act via the connections 19 and 20 on the two actuators 14 and 15 so as to cause the tightening to increase.
  • FIG. 2 illustrates a possible embodiment of the stop detection module of the motor referenced 7 in FIG. 1.
  • the module illustrated in FIG. 2 emits a stopped motor signal after a series of logic tests corresponding to FIG. certain conditions which relate to the parameters of entry which are, in the example illustrated, to the number of five, namely:
  • - Valid M state which is a parameter reflecting the fact that the engine status signal is validated, that is to say, effectively corresponds to the state of the engine in the absence of malfunction, for example the computer 2;
  • - Alim Confirm is a parameter representing the confirmation of the status of the power supply of the motor appearing on the local control network (CAN network);
  • - Valid Confirm Alim is a parameter that translates the validated character of the preceding parameter, that is to say the absence of malfunction in the CAN network;
  • - Wire feed is a parameter that corresponds to the power supply of the motor which results this time from information coming from a direct wire connection and no longer from the CAN control network. This parameter is able to provide power supply information even in the event of a malfunction of the CAN network.
  • the first logical tests that are carried out concern the state of the engine. For this purpose, it is first checked in the equality block 21 that the parameter M_Status is equal to the reference value M_off.
  • a logic signal is transmitted to one of the inputs of an AND logic block 22.
  • the validity of the parameter relating to the state of the motor is checked.
  • the parameter M Valid State is brought to the second input of the logic block 22. If these two inputs actually correspond to a stopped state of the engine, this state being valid, a logic signal appears at the output of the AND block 22 and is brought to one of the inputs of the OU output block 23.
  • the Alim Confirm parameter is compared, in the equality block 29, with the reference value ras of contact. If the power supply of the motor is effectively cut off, a logic signal appears at the output of the equality block 29 and is brought to one of the inputs of an AND logic block 25. At the same time, it is checked that the information concerning the motor power supply is valid, that is to say that there is no malfunction on the CAN network. For this purpose, the Valid Confirm Alim parameter is set to the second input of the AND logic block 25. If the power supply is actually turned off and this information is valid, a signal appears at the output of the AND logic block 25 and is brought to one of the inputs of an OR logic block 30.
  • a NO block 28 to which the Valid Confirm Alim parameter is supplied transmits at its output a logic signal on one of the inputs of an AND block 26.
  • the second input of this AND block 26 receives a logic signal originating from a block NO 27 which receives at its input the parameter Alim_Fil. If the power is cut off and this information can not come from the CAN network because of a malfunction but comes from the wired connection of the vehicle, a logic signal appears at the output of the AND block 26, this signal being brought to the second input of the OR block 30 which also receives the output of the AND logic block 25.
  • a logic signal appears at one of the inputs of the logic block OR which emits on its output a signal which is fed to the second input of the AND logic block 31.
  • the latter also receives on its first input a logic signal emitted by a block NO 24, which receives on its input the parameter M Status Valid .
  • a logic signal appears at the output of the AND block 31, provided that a lack of power supply has been confirmed as indicated above, or that the signal corresponding to the state of the motor is not valid.
  • a logic signal at the output of the AND block 31 is brought to the second input of the OR block 23.
  • the increase in clamping of the brake actuators is systematically requested as soon as a stopping of the motor is actually observed. If the engine status information is not available on the CAN network, the information on the power supply is used. If the motor and power status information is not available on the CAN network, the information from the wire connections is used directly. However, only one valid information is used thanks to the existence of the OR block 23 in order to limit false engine stop detections.
  • FIG. 3 illustrates a possible embodiment for the module 9 for determining tightening conditions.
  • the module for determining tightening tightening conditions performs various logical tests from information concerning the brake actuators No. 1 and 2, referenced 14 and 15 in FIG. 1. This information is symbolized by parameters which are The following :
  • - State Actl is the state of the actuator No. 1, referenced 14 in Figure 1. This state corresponds to the clamping done beforehand or to a situation during tightening,
  • the broken Actl parameter corresponds to a malfunction of the actuator # 1
  • the parameter Act_state2 corresponds to the state of the actuator n ° 2 referenced 15 in FIG. 1, and
  • the parameter Act2_cassé corresponds to a malfunction of the actuator n ° 2.
  • the first logical test is performed in the equal blocks 32a, 33a and 32b, 33b.
  • the indices "a” correspond to the actuator n ° 1 while the indices "b” correspond to the actuator n ° 2.
  • the state of each of the actuators is checked by comparing the information coming from the actuator corresponding to a tight brake value or a clamping brake.
  • a logic signal corresponding to one or other of these situations is brought to the input of two OR blocks 34a, 34b which emit a logic signal which is then brought to the input of two other blocks OR 35a, 35b .
  • it is checked whether each of the actuators is in operation from the parameter Act 1 broken and the parameter Act 2_cassed.
  • a malfunction situation gives rise to a logic signal which is fed to the second input of the respective OR blocks 35a and 35b.
  • corresponding logic signals are output from the respective NO blocks 36a, 36b at the input of the block OR 37.
  • the outputs of the blocks OR 35a, 35b and 37 are fed to the input of the AND block 38 which further receives as input the stopped motor signal from the engine stop detection module referenced 7 in FIG. 1, and which carries out the illustrated logic tests
  • Fig. 2 at the output 18 of the AND block 38, there appears the clamp increase control signal which is transmitted to the module 10 illustrated in Fig. 1 for controlling the increase in clamping of at least one two brake actuators 14 and 15.
  • a tightening command in a stopped engine situation is therefore issued according to the following conditions: - detection of an effective engine stop,

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)

Abstract

Le système de gestion du freinage d'un véhicule automobile équipé d'un frein de parking assisté avec au moins un actionneur de frein ( 14, 15) capable d' agir sur au moins une roue du véhicule et des moyens de serrage du frein de parking, comprend des moyens (6) d' augmentation automatique du serrage du frein de parking après l'arrêt du moteur du véhicule. Ces moyens comprennent un module (7) de détection d' arrêt du moteur et un module (9) de commande d' augmentation de serrage. Le module (7) est capable d' émettre un signal caractéristique de l'arrêt du moteur en fonction de l' état du moteur et de l' état de l' alimentation électrique. Le module (9) est capable d'émettre un signal de demande d' augmentation de serrage en fonction de l' état des actionneurs de frein ( 14, 15) et du signal caractéristique de l' arrêt du moteur provenant du module (7).

Description

Système et procédé de gestion du freinage d'un véhicule automobile
La présente invention concerne la gestion du freinage d'un véhicule automobile équipé d'un frein de parking assisté
(généralement connu sous l' abréviation FPA).
Ce type de frein de parking assisté automatiquement constitue une avancée significative par rapport aux freins à main classiques des véhicules automobiles. En effet, il devient possible de serrer les freins arrière lors d'un arrêt du véhicule dans des conditions optimales sans que le serrage soit trop important ou trop faible. Il devient possible de libérer automatiquement le serrage du frein de parking dès que le conducteur souhaite faire avancer le véhicule, par exemple dès que le conducteur engage un rapport de transmission et accélère suffisamment pour mettre le véhicule en mouvement. Le serrage du frein de parking peut également être effectué manuellement par une commande sur le tableau de bord du véhicule, actionnable par le conducteur. Dans tous les cas, le relâchement automatique du frein de parking constitue une assistance au démarrage en côte. Le système de gestion de freinage peut en effet dans ce cas relâcher le serrage dès que le moteur fournit assez de couple pour faire avancer le véhicule en fonction de la pente déterminée par un capteur et prise en compte par le calculateur embarqué sur le véhicule.
De tels systèmes de frein de parking assisté comportent de nombreuses fonctions de sécurité. On pourra se reporter en particulier à la demande de brevet français 2 906 515 appartenant à la demanderesse, dans laquelle il est prévu un serrage automatique du frein de parking en cas de dysfonctionnement de moyens d' alarme signalant une absence de serrage. De manière générale, le serrage du frein de parking se fait avec un effort de serrage déterminé, qui correspond au maximum du serrage possible, ce qui présente l'inconvénient de ne pas tenir compte des conditions d'utilisation du véhicule et peut entraîner à la longue une usure exagérée réduisant la durée de vie du système. II peut être envisagé de ne pas procéder initialement à un serrage maximal, en se contentant d'un serrage provisoire en fonction des conditions d'utilisation du véhicule. L' effort de serrage peut alors, en particulier, tenir compte de la pente sur laquelle se trouve le véhicule. On peut également procéder à un serrage inférieur au serrage maximal lorsque le moteur continue à tourner bien que le véhicule soit immobilisé, ce qui signifie que le conducteur envisage une immobilisation temporaire. Dans ces différentes situations néanmoins, il est nécessaire de procéder à un resserrage du frein de parking si on constate une perte d' effort de serrage dans le temps, ou si les conditions d'utilisation du véhicule se modifient. Cela nécessite cependant l'utilisation de capteurs supplémentaires tels que des capteurs d' effort de serrage, et entraîne une contrainte de surveillance dans le temps qui peut être pénalisante notamment en termes de consommation d' énergie.
La présente invention a pour objet de résoudre ces difficultés et de proposer un système et un procédé de gestion du freinage d'un véhicule automobile équipé d'un frein de parking assisté, qui autorise un serrage initial tenant compte des conditions d'utilisation du véhicule et qui permet un resserrage automatique par des moyens simples ne nécessitant pas de capteur ou d'organe supplémentaire susceptible d' augmenter la consommation d' énergie.
L 'invention a également pour objet d' améliorer la sécurité du frein de parking assisté équipant un véhicule automobile. Dans un mode de réalisation, un système de gestion du freinage d'un véhicule automobile équipé d'un frein de parking assisté avec au moins un actionneur de frein capable d'agir sur au moins une roue du véhicule, comprend des moyens de serrage du frein de parking et des moyens d'augmentation automatique du serrage du frein de parking après l'arrêt du moteur du véhicule. Ainsi, le frein de parking se trouve automatiquement resserré sans qu'il soit besoin de mesurer une éventuelle perte d' effort de serrage dans le temps. Il devient possible d' appliquer, lors du premier serrage, un effort de serrage inférieur au serrage maximum et adapté aux conditions d'utilisation, telles que la pente de la chaussée ou des situations dans lesquelles le moteur du véhicule est en marche. L 'endurance du frein de parking et sa longévité s 'en trouvent augmentées.
Dans un mode de réalisation préféré, les moyens d' augmentation automatique du serrage comprennent un module de détection d' arrêt du moteur et un module de commande d' augmentation de serrage.
Le module de détection d' arrêt du moteur comprend avantageusement des moyens pour émettre un signal caractéristique de l' arrêt du moteur en fonction de l'état du moteur et de l' état de l' alimentation du moteur.
L ' état du moteur, c ' est à dire si le moteur est tournant ou arrêté, peut être détecté par des informations provenant de la commande d'injection de carburant dans le moteur, informations qui sont disponibles, notamment sur le réseau local de commande (généralement appelé CAN) qui relie entre eux les différents organes du moteur et un module d' alimentation électrique avec une unité électronique de commande ou un calculateur embarqué sur le véhicule.
Le module de commande d' augmentation de serrage comprend de préférence des moyens pour émettre un signal de demande d' augmentation de serrage en fonction de l' état des actionneurs de frein et du signal caractéristique de l' arrêt du moteur.
Il est ainsi possible en particulier, de ne pas procéder à une augmentation du serrage si l'actionneur de frein unique ou tous les actionneurs de frein sont défectueux ou si le conducteur du véhicule ne souhaite pas serrer le frein de parking, auquel cas, tous les actionneurs se trouvent à l' état desserré.
Selon un autre aspect, il est proposé un procédé de gestion du freinage d'un véhicule automobile équipé d'un frein de parking assisté avec au moins un actionneur de frein capable d' agir sur au moins une roue du véhicule dans lequel on commande automatiquement ou sur requête du conducteur du véhicule, le serrage et le desserrage du frein de parking et dans lequel on commande automatiquement une augmentation du serrage du frein de parking après l' arrêt du moteur du véhicule. On détecte l' arrêt du moteur en tenant compte de préférence de l' état du moteur et de l' état de l'alimentation du moteur.
A cet effet, on peut utiliser des informations provenant soit d'un réseau local de commande (réseau CAN) soit d'une connexion filaire directe pour connaître l' état du moteur et l' état de l' alimentation du moteur.
On émet ensuite un signal de demande d' augmentation de serrage en fonction de l' état des actionneurs de frein et d'un signal caractéristique de l' arrêt du moteur. De préférence, avant d'émettre un signal de demande d' augmentation de serrage, on détermine si chaque actionneur est déj à serré ou en cours de serrage et on détermine l' état de fonctionnement de chaque actionneur.
En variante, on peut également détecter un serrage insuffisant c' est à dire inférieur à un seuil, et procéder alors à une augmentation du serrage.
Le système et le procédé mentionnés ci-dessus s' appliquent au cas de freins de parking ne comportant qu'un seul actionneur de frein comme au cas de freins de parking comportant plusieurs actionneurs et en particulier un actionneur sur chaque étrier de serrage de frein.
D ' autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée d'un mode de réalisation de l'invention, donnée à titre d' exemple nullement limitatif et faite en référence aux dessins annexés, sur lesquels : - la figure 1 représente schématiquement les principaux éléments d'un système de gestion du freinage d'un véhicule automobile selon l' invention ;
- la figure 2 illustre schématiquement la structure d'un module de détection de l' arrêt du moteur ; et - la figure 3 illustre schématiquement la structure d'un module de détermination des conditions d'augmentation de serrage.
Tel qu'il est illustré sur la figure 1 , un système de gestion de freinage est adapté à un véhicule automobile non représenté sur la figure comportant un frein de parking assisté (FPA). Le véhicule comporte un groupe motopropulseur schématisé sous la forme d'un moteur 1 qui peut comprendre un moteur thermique et une ou plusieurs machines électriques, et dont le fonctionnement est piloté par une unité électronique de commande représentée sous la forme d'un calculateur de gestion du moteur référencé 2 sur la figure. Un module d' alimentation 3 relié au calculateur 2 par une connexion 4 est connecté au moteur 1 par une connexion 5 de façon à assurer l' alimentation électrique nécessaire au fonctionnement du moteur.
Les organes principaux du système de gestion de freinage sont regroupés dans un ensemble 6 qui comprend un module de détection d' arrêt du moteur référencé 7, et un module de commande d' augmentation de serrage référencé 8. Le module 8 comporte quant à lui un module de détermination des conditions d' augmentation de serrage du frein de stationnement, référencé 9 et un module 10 de demande d' augmentation de serrage.
Le module 7 de détection d'arrêt du moteur reçoit par une connexion 1 1 des informations sur l'état du moteur, c 'est-à-dire en particulier si le moteur est à l' arrêt ou si le moteur tourne. Une information sur l'alimentation électrique du moteur est également fournie au module de détection 7 par une connexion 12 en provenance du module d'alimentation 3 , c 'est-à-dire si le contact électrique est mis ou non.
Le module de détection d' arrêt du moteur 7 émet des signaux qui correspondent à l'arrêt du moteur, ces signaux étant transmis par la connexion 13 au module 9 de détermination des conditions d' augmentation de serrage. Le module 9 reçoit également des informations sur l'état des actionneurs de frein de parking. Dans l' exemple illustré, le système de freinage comprend deux actionneurs de frein de parking, n° 1 et n° 2, référencés respectivement 14 et 15. L ' état de ces deux actionneurs 14 et 15 est transmis par les connexions respectives 16 et 17 au module 9. Le module 9 est relié par des connexions 18 au module de demande d' augmentation de serrage 10, qui est capable d' émettre des ordres d'augmentation de serrage qui sont transmis par les connexions 19 et 20 aux actionneurs de frein de parking 14 et 15.
Le système ainsi décrit fonctionne de la manière suivante : le module de détection d' arrêt 7 est capable, en fonction de l' état du moteur, qui lui provient par la connexion 1 1 , et de l' état de l' alimentation du moteur qui lui provient par la connexion 12, d' émettre de manière fiable sur la connexion de sortie 13 , un signal correspondant à un arrêt effectif du moteur.
Le module de détermination des conditions d'augmentation de serrage 9 tient compte quant à lui de l' état des actionneurs de frein 14 et 15 , qui lui est transmis par les connexions respectives 16 et 17. Si les deux actionneurs sont en ordre de marche et sont en outre serrés, ce qui correspond à un premier serrage effectué à un moment antérieur, le module 9 est capable d' émettre un signal sur les connexions de sortie 18 lorsqu'il a reçu en outre un signal correspondant à l' arrêt du moteur, signal qui lui a été transmis par la connexion 13 en provenance du module de détection d' arrêt 7. Le module 10 élabore les signaux de commande qui viennent agir par les connexions 19 et 20 sur les deux actionneurs 14 et 15 de façon à provoquer l' augmentation du serrage.
La figure 2 illustre un mode de réalisation possible du module de détection d' arrêt du moteur référencé 7 sur la figure 1. Le module illustré sur la figure 2 émet un signal moteur arrêté à l'issue d'une série de tests logiques correspondant à certaines conditions qui portent sur les paramètres d' entrée qui sont, dans l'exemple illustré, au nombre de cinq, à savoir :
- Etat M qui correspond à l' état du moteur fourni par le calculateur 2 illustré sur la figure 1 ;
- Etat M Valide qui est un paramètre traduisant le fait que le signal d' état du moteur est validé, c' est-à-dire correspond effectivement à l' état du moteur en l' absence de dysfonctionnement, par exemple du calculateur 2 ; - Alim Confirm est un paramètre représentant la confirmation de l'état de l' alimentation électrique du moteur apparaissant sur le réseau local de commande (réseau CAN) ;
- Alim Confirm Valide est un paramètre qui traduit le caractère validé du paramètre précédent, c' est-à-dire l' absence de dysfonctionnement dans le réseau CAN ;
- Alim Fil est un paramètre qui correspond à l' alimentation électrique du moteur qui résulte cette fois d'une information provenant d'une connexion filaire directe et non plus du réseau de commande CAN. Ce paramètre est capable de fournir une information sur l'alimentation électrique même en cas de dysfonctionnement du réseau CAN.
Les premiers tests logiques qui sont effectués portent sur l' état du moteur. A cet effet, on vérifie tour d' abord dans le bloc d' égalité 21 , que le paramètre Etat_M est égal à la valeur de référence Arrêt_M.
Si c' est le cas, un signal logique est transmis à l'une des entrées d'un bloc logique ET 22. Parallèlement, on vérifie la validité du paramètre concernant l' état du moteur. A cet effet, le paramètre Etat M Valide est amené à la deuxième entrée du bloc logique 22. Si ces deux entrées correspondent effectivement à un état arrêté du moteur, cet état étant valide, un signal logique apparaît en sortie du bloc ET 22 et est amené à l'une des entrées du bloc de sortie OU 23.
Un certain nombre de tests logiques sont en outre effectués sur l' alimentation électrique du moteur. Tout d' abord, le paramètre Alim Confirm est comparé, dans le bloc d' égalité 29, avec la valeur de référence ras de contact. Si l' alimentation du moteur est effectivement coupée, un signal logique apparaît en sortie du bloc d' égalité 29 et est amené à l'une des entrées d'un bloc logique ET 25. Parallèlement, on vérifie que l'information concernant l' alimentation électrique du moteur est bien valide, c 'est-à-dire qu'il n'y a pas de dysfonctionnement sur le réseau CAN. A cet effet, le paramètre Alim Confirm Valide est amené sur la deuxième entrée du bloc logique ET 25. Si l' alimentation est effectivement coupée et que cette information est valide, un signal apparaît en sortie du bloc logique ET 25 et est amené à l'une des entrées d'un bloc logique OU 30.
On tient également compte du cas où un dysfonctionnement apparaîtrait sur le réseau CAN. Dans ce cas, un bloc NON 28 auquel est amené le paramètre Alim Confirm Valide transmet à sa sortie un signal logique sur l'une des entrées d'un bloc ET 26. La deuxième entrée de ce bloc ET 26 reçoit un signal logique provenant d'un bloc NON 27 qui reçoit sur son entrée le paramètre Alim_Fil. Si l' alimentation est coupée et que cette information ne peut provenir du réseau CAN en raison d'un dysfonctionnement mais provient de la connexion filaire du véhicule, un signal logique apparaît donc à la sortie du bloc ET 26, ce signal étant amené à la deuxième entrée du bloc OU 30 qui reçoit par ailleurs la sortie du bloc logique ET 25.
Dans ces conditions, que l'absence d'alimentation soit transmise normalement par le réseau CAN, ou, en cas de défaillance de celui-ci, par le réseau filaire, un signal logique apparaît à l'une des entrées du bloc logique OU 30 qui émet sur sa sortie un signal qui est amené à la deuxième entrée du bloc logique ET 31. Celui-ci reçoit par ailleurs sur sa première entrée un signal logique émis par un bloc NON 24, qui reçoit sur son entrée le paramètre Etat M Valide. C 'est ainsi qu'un signal logique apparaît à la sortie du bloc ET 31 , dès lors qu'une absence d' alimentation électrique a été confirmée comme indiqué précédemment, ou que le signal correspondant à l' état du moteur n' est pas valide. Un signal logique en sortie du bloc ET 3 1 est amené sur la deuxième entrée du bloc OU 23.
La détection d'un arrêt du moteur se fait donc selon les conditions suivantes :
- Etat M (une information fournie par le réseau CAN et correspondant par exemple à l'injection de carburant dans le moteur) passe de « moteur tournant » à « moteur arrêté »
OU l' information Etat M n'est pas valide ET l' information sur l'alimentation électrique du moteur
(information apparaissant sur le réseau CAN et provenant du module d' alimentation 3 de la figure 1 ) est coupée OU l' information Etat M et l'information Alim Confirm ne sont pas valides sur le réseau CAN
ET l' information filaire sur l' alimentation est coupée.
De cette manière, l' augmentation de serrage des actionneurs de frein est systématiquement demandée dès qu'un arrêt du moteur est effectivement constaté. Si l' information sur l' état du moteur n' est pas disponible sur le réseau CAN, on utilise l'information relative à l' alimentation électrique. Si les informations d' état du moteur et de l' alimentation électrique ne sont pas disponibles sur le réseau CAN, on utilise directement l'information provenant des connexions filaires. Toutefois, une seule information valide est utilisée grâce à l'existence du bloc OU 23 afin de limiter les fausses détections d' arrêt du moteur.
La figure 3 illustre un mode de réalisation possible pour le module 9 de détermination des conditions d'augmentation de serrage.
Le module de détermination des conditions d'augmentation de serrage procède à différents tests logiques à partir d'informations concernant les actionneurs de frein n° 1 et 2, référencés 14 et 15 sur la figure 1. Ces informations sont symbolisées par des paramètres qui sont les suivants :
- Etat Actl est l' état de l'actionneur n° l , référencé 14 sur la figure 1. Cet état correspond au serrage effectué préalablement ou à une situation en cours de serrage,
- le paramètre Actl cassé correspond à un dysfonctionnement de l'actionneur n° l ,
- le paramètre Etat_Act2 correspond à l' état de l'actionneur n°2 référencé 15 sur la figure 1 , et
- le paramètre Act2_cassé correspond à un dysfonctionnement de l'actionneur n°2.
Le premier test logique est effectué dans les blocs d' égalité 32a, 33a et 32b, 33b. Les indices « a » correspondent à l' actionneur n° l tandis que les indices « b » correspondent à l' actionneur n°2. Au cours de ces tests, on vérifie l' état de chacun des actionneurs en comparant l'information provenant de l' actionneur correspondant à une valeur frein serré ou frein en serrage. Un signal logique correspondant à l'une ou l' autre de ces situations est amené à l'entrée de deux blocs OU 34a, 34b qui émettent un signal logique qui est ensuite amené à l' entrée de deux autres blo c OU 35a, 35b. On vérifie en outre si chacun des actionneurs est en fonctionnement à partir du paramètre Act l cassé et du paramètre Act2_cassé. Une situation de dysfonctionnement donne lieu à un signal logique qui est amené sur la deuxième entrée des blocs OU respectifs 35a et 35b. Lorsque les deux actionneurs n° l et n°2 sont tous deux en bon état de fonctionnement, des signaux logiques correspondant sont amenés en sortie des blocs NON respectifs 36a, 36b à l'entrée du blo c OU 37. Les sorties des blocs OU 35a, 35b et 37 sont amenées à l'entrée du bloc ET 38 qui reçoit en outre en entrée le signal de moteur arrêté provenant du module de détection d' arrêt de moteur référencé 7 sur la figure 1 , et qui effectue les tests logiques illustrés sur la figure 2. En sortie 18 du bloc ET 38, apparaît le signal de commande d' augmentation du serrage qui est transmis au module 10 illustré sur la figure 1 en vue de commander l' augmentation du serrage d' au moins l'un des deux actionneurs de frein 14 et 15.
Un ordre d' augmentation de serrage dans une situation de moteur arrêté est donc émis selon les conditions suivantes : - détection d'un arrêt effectif du moteur,
ET les actionneurs de frein de parking sont à l'état serré ou en cours de serrage,
OU l'un des actionneurs est défaillant tandis que l' autre actionneur est à l' état serré ou en cours de serrage,
En revanche il n'y a pas de requête d'augmentation du serrage lorsque les deux actionneurs sont en état de dysfonctionnement. L ' augmentation de serrage est alors inhibée pour des raisons de sécurité. Il n'y a pas non plus de requête d' augmentation de serrage si les freins sont à l'état desserré, ce qui correspond à un souhait spécifique du conducteur.
Bien que dans l' exemple illustré, on ait utilisé deux actionneurs de frein de parking n° l et n°2, on comprendra que l' invention s'applique sans modification majeure au cas d'un système de frein de parking assisté ne possédant qu'un seul actionneur.
Il serait également possible de commander une augmentation de serrage en cas de détection d'un serrage insuffisant, les blocs logiques d' égalité 32a, 33 a et 32b et 33b pouvant alors comparer l' état de chacun des actionneurs à une valeur correspondant à un serrage insuffisant.

Claims

REVENDICATIONS
1. Système de gestion du freinage d'un véhicule automobile équipé d'un frein de parking assisté avec au moins un actionneur de frein ( 14, 15) capable d' agir sur au moins une roue du véhicule et des moyens de serrage du frein de parking, caractérisé par le fait qu'il comprend des moyens (6) d' augmentation automatique du serrage du frein de parking après l' arrêt du moteur du véhicule.
2. Système selon la revendication 1 dans lequel les moyens d' augmentation automatique du serrage comprennent un module (7) de détection d' arrêt du moteur et un module (9) de commande d' augmentation de serrage.
3. Système selon la revendication 2 dans lequel le module (7) de détection d' arrêt du moteur comprend des moyens pour émettre un signal caractéristique de l' arrêt du moteur en fonction de l' état du moteur et de l' état de l' alimentation du moteur.
4. Système selon la revendication 3 dans lequel le module (9) de commande d'augmentation de serrage comprend des moyens pour émettre un signal de demande d'augmentation de serrage en fonction de l' état des actionneurs de frein et du signal caractéristique de l' arrêt du moteur.
5. Procédé de gestion du freinage d'un véhicule automobile équipé d'un frein de parking assisté avec au moins un actionneur de frein capable d' agir sur au moins une roue du véhicule dans lequel on commande automatiquement ou sur requête du conducteur du véhicule, le serrage et le desserrage du frein de parking, caractérisé par le fait qu'on commande automatiquement une augmentation du serrage du frein de parking après l' arrêt du moteur du véhicule.
6. Procédé selon la revendication 5 dans lequel on détecte l' arrêt du moteur en tenant compte de l' état du moteur et de l' état de l' alimentation du moteur.
7. Procédé selon la revendication 6 dans lequel on utilise des informations provenant soit d'un réseau local de commande soit d'une connexion filaire directe pour connaître l' état du moteur et l' état de l' alimentation du moteur
8. Procédé selon l'une des revendications 6 ou 7 dans lequel on émet un signal de demande d' augmentation de serrage en fonction de l' état des actionneurs de frein et d'un signal caractéristique de l' arrêt du moteur.
9. Procédé selon la revendication 8 dans lequel, avant d' émettre un signal de demande d' augmentation de serrage, on détermine si chaque actionneur est déjà serré ou en cours de serrage et on détermine l' état de fonctionnement de chaque actionneur.
EP09740464A 2008-09-05 2009-08-14 Systeme et procede de gestion du freinage d'un vehicule automobile Withdrawn EP2318241A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0855990A FR2935656B1 (fr) 2008-09-05 2008-09-05 Systeme et procede de gestion du freinage d'un vehicule automobile
PCT/FR2009/051590 WO2010026330A1 (fr) 2008-09-05 2009-08-14 Systeme et procede de gestion du freinage d'un vehicule automobile

Publications (1)

Publication Number Publication Date
EP2318241A1 true EP2318241A1 (fr) 2011-05-11

Family

ID=39916616

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09740464A Withdrawn EP2318241A1 (fr) 2008-09-05 2009-08-14 Systeme et procede de gestion du freinage d'un vehicule automobile

Country Status (6)

Country Link
US (1) US9120477B2 (fr)
EP (1) EP2318241A1 (fr)
JP (1) JP5529136B2 (fr)
CN (1) CN102202945B (fr)
FR (1) FR2935656B1 (fr)
WO (1) WO2010026330A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2958586B1 (fr) * 2010-04-12 2014-05-09 Renault Sa Systeme de commande d'un actionneur de transfert de couple a modes de fonctionnement multiples.
FR2996194B1 (fr) * 2012-10-03 2016-07-22 Peugeot Citroen Automobiles Sa Procede d'activation d'une fonction serrage automatique d'un frein de stationnement electrique (fse) d'un vehicule automobile
DE102014202165A1 (de) * 2014-02-06 2015-08-06 Robert Bosch Gmbh Verfahren zum Bereitstellen einer durch eine automatische Parkbremse erzeugten Klemmkraft für ein Fahrzeug
US9517770B2 (en) * 2014-07-24 2016-12-13 Ford Global Technologies, Llc Brake control for stop/start vehicle
DE102016213645A1 (de) * 2016-07-26 2018-02-01 Robert Bosch Gmbh Verfahren zum Betreiben einer automatisierten Feststellbremse
KR102479850B1 (ko) * 2017-05-15 2022-12-21 에이치엘만도 주식회사 전자식 주차 브레이크
DE102020107548A1 (de) * 2020-03-19 2021-09-23 Ford Global Technologies Llc Kraftfahrzeug und Verfahren zum Betreiben eines Kraftfahrzeugs

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070029876A1 (en) * 2005-08-08 2007-02-08 Fuji Jukogyo Kabushiki Kaisha Electric parking brake system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0848222A (ja) * 1994-08-08 1996-02-20 Akebono Brake Ind Co Ltd 車両用停止維持装置
JP3684965B2 (ja) * 1999-12-06 2005-08-17 トヨタ自動車株式会社 車両制御装置
DE10023063A1 (de) * 2000-05-11 2001-12-06 Volkswagen Ag Wegrollsicherung für ein Kraftfahrzeug und Verfahren zur Steuerung der Wegrollsicherung
DE10061064B4 (de) * 2000-12-08 2004-02-26 Conti Temic Microelectronic Gmbh Verfahren zum Betrieb eines motorangetriebenen Kraftfahrzeugs
JP3894733B2 (ja) * 2001-02-15 2007-03-22 本田技研工業株式会社 電動駐車ブレーキ装置
CN2513852Y (zh) * 2001-11-18 2002-10-02 龚正乾 汽车自动驻车制动装置
JP2004175203A (ja) * 2002-11-27 2004-06-24 Advics:Kk 電動パーキングブレーキ装置
DE10357121A1 (de) * 2003-12-06 2005-07-07 Daimlerchrysler Ag Verfahren zum Schließen einer Feststellbremse
DE102004006374A1 (de) * 2004-02-09 2005-08-25 Volkswagen Ag Verfahren und Vorrichtung zum Aktivieren einer elektrischen Parkbremse
CN100381312C (zh) * 2004-12-24 2008-04-16 比亚迪股份有限公司 汽车驻车系统
JP4814045B2 (ja) * 2006-10-06 2011-11-09 富士重工業株式会社 電動パーキングブレーキ制御装置
CN100491172C (zh) * 2007-01-22 2009-05-27 余晓鹏 电动驻车制动装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070029876A1 (en) * 2005-08-08 2007-02-08 Fuji Jukogyo Kabushiki Kaisha Electric parking brake system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2010026330A1 *

Also Published As

Publication number Publication date
US9120477B2 (en) 2015-09-01
FR2935656A1 (fr) 2010-03-12
CN102202945A (zh) 2011-09-28
JP2012501894A (ja) 2012-01-26
JP5529136B2 (ja) 2014-06-25
FR2935656B1 (fr) 2015-03-20
CN102202945B (zh) 2015-01-21
US20110272225A1 (en) 2011-11-10
WO2010026330A1 (fr) 2010-03-11

Similar Documents

Publication Publication Date Title
EP2318241A1 (fr) Systeme et procede de gestion du freinage d'un vehicule automobile
EP1794446B1 (fr) Procede de controle d'une commande de demarrage/arret automatique d'un vehicule
FR2759953A1 (fr) Vehicule comprenant une transmission et un dispositif de commande d'embrayage automatisee
FR2743762A1 (fr) Vehicule automobile a boite de vitesses equipe d'une logique de commande a fonction de verrouillage du levier de vitesses en position parking et fonction de verrouillage de la clef de contact
FR2765840A1 (fr) Vehicule automobile
EP2310238A1 (fr) Procede de desserrage de freins d'un vehicule automobile equipe d'un dispositif d'assistance au demarrage en cote, un tel dispositif d'assistance et vehicule automobile le comportant
EP2901007A1 (fr) Procédé et dispositif de gestion d'arret et de redemarrage d'un moteur de vehicule automobile et véhicule automobile comprenant un tel dispositif
EP1753984A1 (fr) Dispositif et procede de commande d'une boite de vitesses automatisee pour piloter les pontages et depontages.
FR2764249A1 (fr) Dispositif pour commander un etat d'enclenchement
EP2555940B1 (fr) Procédé de commande du fonctionnement d'un moyen de couplage mécanique des premier et deuxième essieux d'un véhicule automobile
FR2936206A1 (fr) Systeme de freinage pour vehicule automobile mettant en oeuvre la machine electrique de traction via un dispositif de frein de stationnement electromecanique et procede d'utilisation d'un tel systeme
FR2763108A1 (fr) Dispositif de commande d'un etat d'embrayage
FR2906515A1 (fr) Procede et dispositif de gestion du freinage d'un vehicule automobile.
EP3615828B1 (fr) Procédé de protection thermique d'un dispositif d'embrayage d'un véhicule, notamment automobile
FR2935658A1 (fr) Systeme et procede de gestion du freinage d'un vehicule automobile
FR2835481A1 (fr) Procede et dispositif de redemarrage automatique de l'unite motrice d'un vehicule automobile
FR2804384A1 (fr) Procede de commande pour vehicule automobile equipe d'un systeme de controle automatique de transmission
FR2788243A1 (fr) Vehicule automobile
EP2268524B1 (fr) Procede et systeme de diagnostic de l'etat de fonctionnement d'un mode de demarrage assiste d'un vehicule automobile
FR2941757A1 (fr) Systeme de freinage d'un vehicule automobile.
EP2242671B1 (fr) Procede de desserrage de freins d'un vehicule automobile equipe d'un dispositif d'assisance au demarrage en cote, un tel dispositif d'assistance et vehicule automobile le comportant
FR2788733A1 (fr) Systeme d'entrainement de vehicule automobile
FR2841834A1 (fr) Procede de commande d'un groupe motopropulseur de vehicule automobile a transmission assistee, et dispositif de mise en oeuvre d'un tel procede
FR2788734A1 (fr) Systeme d'entrainement et procede de commande d'un tel systeme
FR3043045A1 (fr) Procede de controle d'une boite de vitesses a actionnement manuel interagissant avec un embrayage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110224

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20170412

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20171024