EP2312554B1 - Medical patient simulator - Google Patents

Medical patient simulator Download PDF

Info

Publication number
EP2312554B1
EP2312554B1 EP10168541.0A EP10168541A EP2312554B1 EP 2312554 B1 EP2312554 B1 EP 2312554B1 EP 10168541 A EP10168541 A EP 10168541A EP 2312554 B1 EP2312554 B1 EP 2312554B1
Authority
EP
European Patent Office
Prior art keywords
plate
air
strap
lung
torso
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10168541.0A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP2312554A1 (en
EP2312554A9 (en
Inventor
Øystein GOMO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Laerdal Medical AS
Original Assignee
Laerdal Medical AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laerdal Medical AS filed Critical Laerdal Medical AS
Publication of EP2312554A1 publication Critical patent/EP2312554A1/en
Publication of EP2312554A9 publication Critical patent/EP2312554A9/en
Application granted granted Critical
Publication of EP2312554B1 publication Critical patent/EP2312554B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • G09B23/30Anatomical models

Definitions

  • the present invention regards a medical patient simulator, in particular a simulator for simulating an infant comprising; a torso having a chest skin and containing at least one lung, with the option of altering the compliance of the at least one lung, where the at least one lung is disposed between a first plate and second plate in the torso, the spacing of the plates being adjustable, the second plate being fixed relative to the torso, and the first plate being movable relative to the torso.
  • US 4 850 876 describes a medical patient simulator having a torso containing at least one lung. It also describes the option of altering the compliance of the lung. The lung is disposed between a middle rigid panel and a rear rigid panel, and the spacing of the places is adjustable. This simulator does not include the possibility of simulating intercostal contractions.
  • the invention concerns systems intended for patient simulators (particularly manikins) used for medical teaching and training. It is an object for a manikin to exhibit various signs of illness as well as both normal and abnormal bodily functions in order to allow the users to make a diagnosis and take corrective measures.
  • the background for the invention is a request from the market for a simulation of the breathing pattern called intercostal retractions, so as to provide a basis for diagnosing breathing problems in the patient.
  • Chest retractions occur when a patient has difficulties breathing due to an obstruction of the respiratory passage or severe asthma and the lungs use a great amount of force in order to get the air through.
  • the retractions are visible as a cavity in the diaphragm (the skin is "sucked” in between the ribs and at the lower edge of the ribs, i.e. below the sternum).
  • the invention comprises a pneumatically driven mechanism being adapted to force the first plate towards the second plate; a flexible means connecting the pneumatically driven mechanism to the second plate to provide the force between the first plate and second plate, said flexible means having an initial slack so that the first plate is free to move relative to the second plate when the pneumatically driven mechanism is inactive; and a strap that is attached to the chest skin for pulling down the chest skin providing an external visible depression of the chest skin below the sternum of the torso, in order to simulate intercostal retractions, the strap pulling being coupled to the lung inflation
  • this can be done by attaching or integrating an elastic strap to the inside of the chest skin in the middle of the area where retractions occur.
  • a pneumatic mechanism pulls this strap in a manner which is synchronized with the lungs' raising and lowering of the chest, giving the desired cavity in the skin.
  • the function can be switched on and off from the instructor's PC or via remote control.
  • the strap may be glued or welded to the chest skin. Most preferably the strap is moulded integrally with the rest of the skin. The latter allows for more efficient production.
  • the skin can be pulled down by pneumatics and a lever mechanism.
  • the skin can be pulled down by en electro-mechanical mechanism, e.g. an electric motor or a solenoid.
  • electro-mechanical mechanism e.g. an electric motor or a solenoid.
  • a strap magnetic material may be fixed to or moulded to the relevant area of the chest skin. Pull-down is carried out by activating an electromagnet placed a distance under the skin.
  • the retractions may occur as a result of suction on the underside of the area in question.
  • Such a solution may also be used to simulate intercostal and mid-clavicular retractions.
  • the suction effect can be produced by forming a closed space underneath the skin through:
  • Figure 1 is a longitudinal section through a patient simulator, showing part of a head 1 and part of a torso 2.
  • the torso 2 comprises a chest skin 3.
  • a shell 4 to represent ribs and sternum.
  • a first plate 5 which may also be termed an upper plate.
  • Under the plate 5 is one or preferably two lungs 6, one on the right side and one on the left side of the rib cage.
  • Under the lung(s) 6 is a second or lower plate 7.
  • An area of the chest skin 3 below the shell has a strap 8 attached to it or integrated into the chest skin. Preferably this is done by moulding the chest skin 3 and the strap 8 at the same stage.
  • the strap 8 is connected to a lever 9 designed to pull on the strap 8.
  • One end of the lever 9 is supported in a hinge 10.
  • an air cushion 11 Between the lever 9 and the upper plate 5 is an air cushion 11.
  • the air cushion 11 is connected via a hose 12 to a source of compressed air (not shown).
  • the lung 6 is connected to a source of compressed air (not shown) via a hose 13.
  • Figure 2 is a longitudinal section similar to Figure 1 . However, Figure 2 also shows a mechanism for reducing the plate's 5 mobility. This comprises a lever 14, one end of which is supported at a hinge 15. The opposite end of the lever 14 is connected to a flexible body 16.
  • the flexible body 16 is functionally engaged with the lower plate 7. To make sure the elastic strap does not prevent the plate 5 from moving in the case of normal lung compliance, the strap has some slack with respect to the plate 7, indicated at 17.
  • the strap 16 may be an endless elastic band, as shown.
  • An air cushion 18 is arranged between the plate 5 and the lever 14. This is connected to a source of compressed air (not shown) via a hose 19. When the air cushion fills with air the lever 14 is lifted to the position indicated by the dotted line at 14'. Thus the slack between the strap 16 and the plate 7 is reduced or eliminated. Upon subsequent filling of the lung 6 the strap 16, which acts between the lever 14 and the lower plate 7, will counteract the movement of the upper plate 5 away from the lower plate 7. This will make the lungs feel less compliant, as it becomes more difficult to fill them with air.
  • FIG 3 is a cross section through the torso 2 of a patient simulator, illustrating a back shell 20.
  • the back shell serves to reinforce the torso.
  • On the outside of the back shell 20 are two recesses 21 and 22, on the left and right sides of the torso, respectively.
  • In each recess 21, 22 is an air cushion 23 and 24, respectively.
  • the air cushions 23, 24 are connected to a source of compressed air (not shown) via respective hoses 25, 26.
  • Preferably rapid deflation of the air cushions is achieved by using a three-way valve (not shown) both for filling and emptying the air cushions. Filling and emptying takes place through the same hose 25, 26. Upon activation of the valve it opens for compressed air from the compressed-air source, and the air cushions are inflated. As soon as the valve is deactivated it closes to compressed air, and the air in the air cushion passes back through the valve and out into the atmosphere.
  • the air cushions can be provided with an orifice which allows rapid deflation after inflation.
  • the orifice is shaped so as to be too small to allow rapid inflation of the air cushion with a fast flow of compressed air, but large enough to give a rapid deflation when the flow of compressed air stops.
  • the air cushions 23, 24 can be used in the following modes:
  • Simulation of normal muscle movements Alternate and regular filling and emptying of air on the left and right sides.
  • Simulation of muscle spasms Rapid and irregular (arbitrary) filling and emptying (inflation and deflation) of the right and left air cushions.
  • the inflation and deflation may in some cases be complete and in some cases incomplete.
  • Figure 4 is a schematic view of a control system for regulating the filling of air cushions and/or lungs in a patient simulator.
  • a pneumatic actuator (e.g. air cushion or lung) 27 is connected to a hose 28.
  • the hose is connected to a purge valve 29 with an air outlet 30.
  • the hose 28 is also connected to a first air duct 31, which in turn is connected to a pressure sensor 32.
  • the air duct 31 is also connected to a second air duct 33, which in turn is connected to a fill valve 34.
  • the fill valve 34 is again connected to a source of compressed air (not shown) via an inlet 36.
  • the second air duct 33 includes a throttle regulator or nozzle 35.
  • the fill valve 34, the purge valve 29, the nozzle 35, the pressure sensor 32 and the first and second air ducts 31, 33 form a control unit 37 and are located in physical proximity to each other and at a distance from the actuator 27.
  • the fill valve When the actuator 27 is to be filled with air the fill valve is manipulated to the open position. At this the air flows via the second air duct 33 and the nozzle 35 into the first air duct 31 and on to the hose 28 and the actuator 27.
  • the nozzle 35 provides pressure equalization to make the pressure in the first air duct 31 (which is the pressure sensed by the pressure sensor 32) approximately equal to the pressure in the actuator 27.
  • the nozzle 35 will delay the inflation of the actuator 27 slightly but not significantly. Therefore the throttling of the nozzle 35 is a compromise between rapid filling of the actuator 27 and pressure equalization between the pressure sensor 32 and the actuator 27.
  • the arrangement of the nozzle 35 will therefore be dependent on the function of the actuator 27.
  • the throttling in the nozzle 35 must only restrict the air flow to the actuator to a small extent.
  • the preferred solution is one in which the pressure is measured in the actual actuator by connecting the pressure sensor directly to the volume therein via a separate hose.
  • the fill valve 34 closes when the pressure in the first air duct 31 reaches a desired value. If the actuator 27 is to be deflated again immediately (as in the case of a lung) the purge valve 29 is opened and the air is released.
  • the pressure in the actuator, hose 28 and the first air duct 31 will be higher than it was at the commencement of the previous inflation. However the pressure sensor will stop the inflation at the same pressure as before. Overinflation of the actuator and any rupturing of this are therefore prevented.
  • Figure 5 is a longitudinal section through the head 1 of the simulator.
  • the head 1 comprises an inflexible inner shell 41 covered in a soft skin 40.
  • a recess 45 in the inner shell 41.
  • an air cushion 43 connected to a source of compressed air (not shown) via a hose 42.
  • a flexible body 44 such as a block of foam rubber is arranged between the air cushion 43 and the skin 40.
  • the air cushion 43 is inflated from the air source via the hose 42, pushing the flexible body 44 against the skin 40, causing this to move outwards. This is indicated by the dotted line 40' and forms a swelling in the head 1.
  • the swelling in the head 1 will be visible and feel soft and yielding, as will be the case with a real patient. Releasing the air from the air cushion 43 will cause the swelling to disappear, as the flexible body 44 returns to the recess 45.
  • the manikin can also be provided with a similar device in the area where the smaller or rear fontanelle is found on an infant.
  • FIG. 6 shows an alternative solution for visualising the retraction function, which is also described with reference to Figure 1 .
  • the retraction function is achieved by attaching the lower end of the strap 8 to a rotating wheel in an eccentric fashion.
  • the rotating wheel is driven by a motor (not shown) and is attached to the upper plate 5 via a fastening stay 51.
  • Upon rotation of the wheel 50 this will produce a retraction of the chest skin 3, in the same manner as described above.
  • the frequency and timing of the retractions can be controlled by adjusting the wheel 50 rotation. It would be appropriate to replace the wheel 50 with a crank handle.
EP10168541.0A 2003-10-06 2004-10-06 Medical patient simulator Not-in-force EP2312554B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NO20034465A NO319063B1 (no) 2003-10-06 2003-10-06 Medisinsk pasientsimulator
EP04775079.9A EP1671299B1 (en) 2003-10-06 2004-10-06 Medical patient simulator

Related Parent Applications (6)

Application Number Title Priority Date Filing Date
WOPCT/NO20/04000298 Previously-Filed-Application 2004-10-06
PCT/NO2004/000298 Previously-Filed-Application WO2005032327A2 (en) 2003-10-06 2004-10-06 Medical patient simulator
EP04775079.9A Division-Into EP1671299B1 (en) 2003-10-06 2004-10-06 Medical patient simulator
EP04775079.9A Division EP1671299B1 (en) 2003-10-06 2004-10-06 Medical patient simulator
EP04775079.9 Division 2004-10-06
WOPCT/NO2004/000298 Previously-Filed-Application 2004-10-06

Publications (3)

Publication Number Publication Date
EP2312554A1 EP2312554A1 (en) 2011-04-20
EP2312554A9 EP2312554A9 (en) 2012-06-27
EP2312554B1 true EP2312554B1 (en) 2016-05-25

Family

ID=29417585

Family Applications (4)

Application Number Title Priority Date Filing Date
EP04775079.9A Not-in-force EP1671299B1 (en) 2003-10-06 2004-10-06 Medical patient simulator
EP10168541.0A Not-in-force EP2312554B1 (en) 2003-10-06 2004-10-06 Medical patient simulator
EP10168537.8A Not-in-force EP2312553B1 (en) 2003-10-06 2004-10-06 Medical patient simulator
EP10168543.6A Not-in-force EP2312555B1 (en) 2003-10-06 2004-10-06 Medical patient simulator

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP04775079.9A Not-in-force EP1671299B1 (en) 2003-10-06 2004-10-06 Medical patient simulator

Family Applications After (2)

Application Number Title Priority Date Filing Date
EP10168537.8A Not-in-force EP2312553B1 (en) 2003-10-06 2004-10-06 Medical patient simulator
EP10168543.6A Not-in-force EP2312555B1 (en) 2003-10-06 2004-10-06 Medical patient simulator

Country Status (9)

Country Link
US (2) US7857625B2 (zh)
EP (4) EP1671299B1 (zh)
JP (1) JP4639191B2 (zh)
CN (4) CN100557661C (zh)
AU (4) AU2004277841B2 (zh)
CA (1) CA2541724A1 (zh)
ES (4) ES2588054T3 (zh)
NO (1) NO319063B1 (zh)
WO (1) WO2005032327A2 (zh)

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8696362B2 (en) 1996-05-08 2014-04-15 Gaumard Scientific Company, Inc. Interactive education system for teaching patient care
US20090148822A1 (en) 2007-12-07 2009-06-11 Gaumard Scientific Company, Inc. Interactive Education System for Teaching Patient Care
US7976312B2 (en) 1996-05-08 2011-07-12 Gaumard Scientific Company, Inc. Interactive education system for teaching patient care
US7811090B2 (en) 1996-05-08 2010-10-12 Gaumard Scientific Company, Inc. Interactive education system for teaching patient care
US8016598B2 (en) 1996-05-08 2011-09-13 Gaumard Scientific Company, Inc. Interactive education system for teaching patient care
US7976313B2 (en) 2000-08-17 2011-07-12 Gaumard Scientific Company, Inc. Interactive education system for teaching patient care
WO2005009291A2 (en) * 2003-07-23 2005-02-03 Synapse Biomedical, Inc. System and method for conditioning a diaphragm of a patient
NO319063B1 (no) * 2003-10-06 2005-06-13 Laerdal Medical As Medisinsk pasientsimulator
EP1575015A1 (en) * 2004-03-12 2005-09-14 Xitact S.A. Actuator for an elongated object for a force feedback generating device
US20070044669A1 (en) * 2005-08-24 2007-03-01 Geise Gregory D Aluminum can compacting mechanism with improved actuation handle assembly
US9050005B2 (en) * 2005-08-25 2015-06-09 Synapse Biomedical, Inc. Method and apparatus for transgastric neurostimulation
EP1934848A2 (en) 2005-09-29 2008-06-25 The General Hospital Corporation Medical training system for casualty simulation
AU2006320444A1 (en) * 2005-12-02 2007-06-07 Synapse Biomedical, Inc. Transvisceral neurostimulation mapping device and method
EP1996284A2 (en) * 2006-03-09 2008-12-03 Synapse Biomedical, Inc. Ventilatory assist system and method to improve respiratory function
JP5171025B2 (ja) * 2006-12-19 2013-03-27 エア・ウォーター防災株式会社 呼吸模擬装置および肺模擬体の制御方法
CA2676119C (en) 2007-01-29 2021-01-19 Simon Fraser University Transvascular nerve stimulation apparatus and methods
WO2008098001A2 (en) * 2007-02-05 2008-08-14 Synapse Biomedical, Inc. Removable intramuscular electrode
US9820671B2 (en) * 2007-05-17 2017-11-21 Synapse Biomedical, Inc. Devices and methods for assessing motor point electromyogram as a biomarker
US8478412B2 (en) * 2007-10-30 2013-07-02 Synapse Biomedical, Inc. Method of improving sleep disordered breathing
US8428726B2 (en) 2007-10-30 2013-04-23 Synapse Biomedical, Inc. Device and method of neuromodulation to effect a functionally restorative adaption of the neuromuscular system
NO20080206L (no) 2008-01-11 2009-07-13 Laerdal Medical As Anordning for a simulere variabel lungestivhet
NO20080200L (no) 2008-01-11 2009-07-13 Laerdal Medical As Mannequin med kjoleplate
US8323030B2 (en) * 2009-04-03 2012-12-04 May Daniel C Heart compression simulation device
US8465294B2 (en) * 2009-04-03 2013-06-18 Daniel C. May Heart compression simulation device
WO2010147129A1 (ja) * 2009-06-19 2010-12-23 国立大学法人京都大学 心肺蘇生法における心臓マッサージ用の可搬タイプの練習器具
WO2011103489A2 (en) 2010-02-19 2011-08-25 Gaumard Scientific Company, Inc. Ultrasound phantom models, materials, and methods
US8500452B2 (en) * 2010-02-19 2013-08-06 Gaumard Scientific Company, Inc. Interactive education system for teaching patient care
US8740624B2 (en) 2010-02-19 2014-06-03 Gaumard Scientific Company, Inc. Interactive education system with physiological modeling
EP2543032A1 (en) 2010-03-05 2013-01-09 Laerdal Medical AS Manikin with simulation of agonal breathing
US11688303B2 (en) * 2010-06-30 2023-06-27 Strategic Operations, Inc. Simulated torso for an open surgery simulator
NO332314B1 (no) * 2010-09-29 2012-08-27 Laerdal Medical As Treningsanordning for brystkompresjon
US8517740B2 (en) * 2011-02-18 2013-08-27 Gaumard Scientific Company, Inc. Lung compliance simulation system and associated methods
CN107126622A (zh) 2012-03-05 2017-09-05 西蒙·弗雷瑟大学 神经刺激系统
US8942800B2 (en) 2012-04-20 2015-01-27 Cardiac Science Corporation Corrective prompting system for appropriate chest compressions
EP2863987B1 (en) 2012-06-21 2023-08-02 Lungpacer Medical Inc. Transvascular diaphragm pacing systems
CN102831813B (zh) * 2012-08-24 2014-10-22 广东工业大学 一种反应式腹部触诊模拟器
CN103839470A (zh) * 2012-11-27 2014-06-04 天津市医学堂科技有限公司 一种模拟小儿心肺复苏的方法及其装置
US20140256213A1 (en) * 2013-03-07 2014-09-11 Steve Copeland Soft body toy with pressure sensing
US9242088B2 (en) 2013-11-22 2016-01-26 Simon Fraser University Apparatus and methods for assisted breathing by transvascular nerve stimulation
WO2015089512A1 (en) * 2013-12-13 2015-06-18 Board Of Regents, The University Of Texas System Systems, apparatuses, and methods for patient simulators
US9576503B2 (en) 2013-12-27 2017-02-21 Seattle Children's Hospital Simulation cart
EP3096835B1 (en) 2014-01-21 2019-08-07 Lungpacer Medical Inc. Systems for optimization of multi-electrode nerve pacing
KR101597141B1 (ko) * 2014-04-30 2016-02-24 가톨릭대학교 산학협력단 호흡 모사 장치
US20160140879A1 (en) * 2014-11-19 2016-05-19 David Hananel Anatomically correct movement or deformation of simulated bodily structures
CN104464475B (zh) * 2014-12-25 2017-03-22 苏州大学 一种医用模拟呼吸系统
US10112119B2 (en) * 2015-11-09 2018-10-30 Disney Enterprises, Inc. Method for modifying local properties of materials
CN105374267A (zh) * 2015-12-09 2016-03-02 天津天堰科技股份有限公司 婴幼儿囟门模拟装置
AT518851B1 (de) 2016-07-05 2018-04-15 Simcharacters Gmbh Patientensimulator
AT520041B1 (de) * 2016-07-05 2019-02-15 Simcharacters Gmbh Patientensimulator
NL2018230B1 (en) * 2017-01-25 2018-08-01 D2D Holding B V Structural composition of a manikin
CN110234408B (zh) 2017-01-27 2021-11-02 科玛科学公司 患者模拟器及相关设备、系统和方法
US10293164B2 (en) 2017-05-26 2019-05-21 Lungpacer Medical Inc. Apparatus and methods for assisted breathing by transvascular nerve stimulation
AT520146B1 (de) 2017-06-28 2019-03-15 Simcharacters Gmbh Patientensimulator
US20190001126A1 (en) 2017-06-30 2019-01-03 Lungpacer Medical Inc. Devices and methods for prevention, moderation, and/or treatment of cognitive injury
US10195429B1 (en) 2017-08-02 2019-02-05 Lungpacer Medical Inc. Systems and methods for intravascular catheter positioning and/or nerve stimulation
US10940308B2 (en) 2017-08-04 2021-03-09 Lungpacer Medical Inc. Systems and methods for trans-esophageal sympathetic ganglion recruitment
CN107822596A (zh) * 2017-10-16 2018-03-23 中国人民解放军海军总医院 胸冲击信号模拟发生装置
EP3701513A1 (en) * 2017-10-26 2020-09-02 IEE International Electronics & Engineering S.A. Method and system for breathing monitoring
DE102019111186A1 (de) * 2018-05-18 2019-11-21 Spiration, Inc. D/B/A Olympus Respiratory America Lungenbeatmungsvorrichtung
CN109166433B (zh) * 2018-08-16 2021-09-28 医博士医教科技(深圳)有限公司 一种医疗模拟人系统
EP3877043A4 (en) 2018-11-08 2022-08-24 Lungpacer Medical Inc. STIMULATION SYSTEM AND ASSOCIATED USER INTERFACES
US11471683B2 (en) 2019-01-29 2022-10-18 Synapse Biomedical, Inc. Systems and methods for treating sleep apnea using neuromodulation
WO2020232333A1 (en) 2019-05-16 2020-11-19 Lungpacer Medical Inc. Systems and methods for sensing and stimulation
US11771900B2 (en) 2019-06-12 2023-10-03 Lungpacer Medical Inc. Circuitry for medical stimulation systems
CN111407281B (zh) * 2020-03-11 2021-06-04 电子科技大学 一种基于杠杆原理的呼吸自驱动微气流传感器及其制备方法
CN112827077A (zh) * 2021-01-11 2021-05-25 赵杰 一种躯干部位肿瘤放疗模拟模具
NL2027643B1 (en) 2021-02-25 2022-09-20 Somnox Holding B V Relaxation device with breathing motion simulator.
CA3178336C (en) 2021-03-29 2023-07-25 Cae Healthcare Canada Inc. Airway resistance device
US11694578B2 (en) * 2021-03-29 2023-07-04 Cae Healthcare Canada Inc. Lung simulator
CN113974577B (zh) * 2021-12-31 2022-03-11 南京阳图医疗科技有限公司 一种多导睡眠监测仪的性能检测装置
US20230252912A1 (en) * 2022-01-14 2023-08-10 Gaumard Scientific Company, Inc. Simulation devices, systems, and associated methods with air trapping for asthma simulation
DE102022104862A1 (de) 2022-03-01 2023-09-07 Messring Gmbh Verfahren und Vorrichtung zur Erprobung von Child-Presence-Detection-Systemen

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1974366A (en) * 1931-06-29 1934-09-18 Pollock Mary Beatrice Figure toy
US2551433A (en) * 1949-12-27 1951-05-01 Julia O Graves Educational apparatus for teaching obstetrics and midwifery
US3049811A (en) * 1958-11-10 1962-08-21 Holger Hesse Artificial human body form for demonstrating reviving of unconscious persons
CH381585A (fr) * 1962-02-15 1964-08-31 Reuge Sa Jouet
US3520071A (en) * 1968-01-29 1970-07-14 Aerojet General Co Anesthesiological training simulator
DE1962083A1 (de) * 1969-12-11 1971-06-16 Laerdal A S UEbungsgeraet fuer die Wiederbelebung durch Beatmung und aeussere Herzmassage
US3662076A (en) * 1970-04-22 1972-05-09 Research Corp Cardiac training mannikin
US4001950A (en) * 1970-09-08 1977-01-11 Testa-Laboratorium A/S Resuscitation training apparatus
US3872609A (en) * 1973-11-26 1975-03-25 Alderson Research Lab Inc Resuscitation training dummy
US4003141A (en) * 1975-04-01 1977-01-18 New Research And Development Lab., Inc. Intracranial pressure monitoring device
SE425595B (sv) * 1978-11-29 1982-10-18 Siemens Elema Ab Anordning vid en andningsapparat
DE3049583C2 (de) 1980-12-31 1984-08-16 Obermayer, Anton, Dipl.-Ing., 7954 Bad Wurzach Atmungsgerät für die technische Ausbildung von Ärzten, Schwestern und Pflegepersonal
US4606328A (en) * 1983-06-16 1986-08-19 Thoman Evelyn B Method and apparatus for treating breathing irregularities
JPS60120471U (ja) * 1984-01-25 1985-08-14 株式会社京都科学 乳房腫瘤触診用モデル
FR2588984B1 (fr) * 1985-10-17 1988-01-15 Raionnoe Energet Upravle Simulateur pour apprentissage de procedes de reanimation urgente
US4915635A (en) * 1987-03-20 1990-04-10 Michael Ingenito Compact interactive training manikin system
US4932879A (en) 1987-03-20 1990-06-12 Michael Ingenito Compact interactive training manikin system
DE3918955A1 (de) * 1989-06-09 1989-12-21 Ringer Michael Technischer nachbau des biologischen muskelprinzips als technischer muskel. tier- oder menschenaehnlicher roboter mit technischen muskeln. teile dieses roboters als prothesen. weitere anwendungen des muskels: als hub- und zugvorrichtung, als muskelmotor, als objektpositionierung durch mehrere muskeln, als federwegeinsteller.
US5153635A (en) * 1991-04-09 1992-10-06 Infographix, Inc. Microfilm viewer/printer projection system
US5584701A (en) * 1992-05-13 1996-12-17 University Of Florida Research Foundation, Incorporated Self regulating lung for simulated medical procedures
US5394766A (en) * 1992-07-21 1995-03-07 The Walt Disney Company Robotic human torso
US5312259A (en) * 1993-04-19 1994-05-17 Stephen Flynn CPR mannequin
IT1277356B1 (it) * 1995-07-26 1997-11-10 Pharmacia & Upjohn Spa Manichino per la simulazione di patologie cardiache
US7192284B2 (en) * 2000-08-17 2007-03-20 Gaumard Scientific Company, Inc. Interactive education system for teaching patient care
CN2268967Y (zh) * 1996-08-01 1997-11-26 温州市五星实业有限公司 人体呼吸运动模型
DE19714684A1 (de) * 1997-04-09 1998-10-15 Medecontrol Electronics Gmbh Vorrichtung zur Prüfung von Beatmungs- und Narkosegeräten
US6273728B1 (en) * 1997-09-04 2001-08-14 The University Of Florida Life support simulation system simulating human physiological parameters
NO984269A (no) * 1998-09-15 1999-10-18 Laerdal Medical As System for kommunikasjon mellom sensorer i treningsutstyr og elektroder til en defibrillator (AED) eller defibrillator-trener (AED-T)
US6077083A (en) * 1999-03-22 2000-06-20 Children's Hospital Of Philadelphia Doll for instruction of sickle cell disease clinical observations
JP2003515194A (ja) * 1999-11-18 2003-04-22 バイタル サインズ,インコーポレーテッド 任意な自動外部細動除去を伴うcpr人体模型
US6910896B1 (en) * 2000-12-15 2005-06-28 Ram Consulting, Inc. Mechanical lungs
JP2002221897A (ja) * 2001-01-24 2002-08-09 Yagami Inc 蘇生法訓練用人体モデル
JP2003076265A (ja) * 2001-08-31 2003-03-14 Sanyo Electric Co Ltd 訓練ロボット
NO319063B1 (no) * 2003-10-06 2005-06-13 Laerdal Medical As Medisinsk pasientsimulator

Also Published As

Publication number Publication date
CN1864185A (zh) 2006-11-15
EP1671299B1 (en) 2016-05-25
EP2312554A1 (en) 2011-04-20
ES2587690T3 (es) 2016-10-26
AU2004277841B2 (en) 2010-08-05
CN100557661C (zh) 2009-11-04
EP2312555B1 (en) 2016-01-13
EP2312553B1 (en) 2016-05-25
EP2312555A9 (en) 2012-06-27
EP2312553A1 (en) 2011-04-20
NO319063B1 (no) 2005-06-13
CN101483018A (zh) 2009-07-15
ES2564927T3 (es) 2016-03-30
ES2588053T3 (es) 2016-10-28
JP4639191B2 (ja) 2011-02-23
WO2005032327A2 (en) 2005-04-14
EP2312555A1 (en) 2011-04-20
AU2010202755B2 (en) 2013-05-23
WO2005032327A3 (en) 2005-05-26
CN101483018B (zh) 2010-12-29
US20100221689A1 (en) 2010-09-02
CN101447141A (zh) 2009-06-03
CN101452654B (zh) 2011-04-20
EP2312553A9 (en) 2012-06-27
ES2588054T3 (es) 2016-10-28
AU2010202756B2 (en) 2013-05-02
US20070087314A1 (en) 2007-04-19
AU2004277841A1 (en) 2005-04-14
CN101447141B (zh) 2012-01-25
EP1671299A2 (en) 2006-06-21
US7857625B2 (en) 2010-12-28
EP2312554A9 (en) 2012-06-27
AU2010202747A1 (en) 2010-08-05
CN101452654A (zh) 2009-06-10
AU2010202755A1 (en) 2010-09-02
NO20034465D0 (no) 2003-10-06
CA2541724A1 (en) 2005-04-14
AU2010202756A1 (en) 2010-08-12
JP2007507745A (ja) 2007-03-29

Similar Documents

Publication Publication Date Title
EP2312554B1 (en) Medical patient simulator
US9262943B2 (en) CPR mannequin
CA2065184C (en) Valve means for training manikin
US5468151A (en) Dummy for practicing cardiopulmonary resuscitation (CPR) of a human being
CN109564739B (zh) 患者模拟装置
US8616889B2 (en) Resuscitation training manikin
JP2008502945A (ja) 呼吸マネキン

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100706

AC Divisional application: reference to earlier application

Ref document number: 1671299

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

RIC1 Information provided on ipc code assigned before grant

Ipc: G09B 23/28 20060101AFI20120420BHEP

17Q First examination report despatched

Effective date: 20130416

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150930

INTG Intention to grant announced

Effective date: 20151223

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 1671299

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Ref country code: AT

Ref legal event code: REF

Ref document number: 802887

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602004049382

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160525

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2588054

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20161028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 802887

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160826

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602004049382

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161006

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20041006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20191104

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200923

Year of fee payment: 17

Ref country code: FR

Payment date: 20200924

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200922

Year of fee payment: 17

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220120

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602004049382

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201007

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211006

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031