NL2018230B1 - Structural composition of a manikin - Google Patents

Structural composition of a manikin Download PDF

Info

Publication number
NL2018230B1
NL2018230B1 NL2018230A NL2018230A NL2018230B1 NL 2018230 B1 NL2018230 B1 NL 2018230B1 NL 2018230 A NL2018230 A NL 2018230A NL 2018230 A NL2018230 A NL 2018230A NL 2018230 B1 NL2018230 B1 NL 2018230B1
Authority
NL
Netherlands
Prior art keywords
manikin
recognition points
hard
mannequin
medical
Prior art date
Application number
NL2018230A
Other languages
Dutch (nl)
Inventor
Demirtas Dervis
Demirtas Aziz
Middel Dimitri
Original Assignee
D2D Holding B V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by D2D Holding B V filed Critical D2D Holding B V
Priority to NL2018230A priority Critical patent/NL2018230B1/en
Application granted granted Critical
Publication of NL2018230B1 publication Critical patent/NL2018230B1/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • G09B23/281Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine for pregnancy, birth or obstetrics
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • G09B23/288Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine for artificial respiration or heart massage
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • G09B23/30Anatomical models
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • G09B23/30Anatomical models
    • G09B23/34Anatomical models with removable parts

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Medical Informatics (AREA)
  • Algebra (AREA)
  • Computational Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Gynecology & Obstetrics (AREA)
  • Pregnancy & Childbirth (AREA)
  • Reproductive Health (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Instructional Devices (AREA)

Abstract

This invention is on the structural composition of a manikin, designed for medical training purposes. Through an innovative multi-layer system of hard material and softer layers of foam and silicon the manikin will provide a higher degree of realism, while keeping its interactive properties for a reduced production cost. The manikin can be of different sizes, from neonatal to adult. By selectively using the materials the composition can be used to accurately simulate the landmarks and dimensions of the human skeleton for the use of medical training purposes.

Description

Octrooicentrum
Nederland
Θ 2018230 © BI OCTROOI (21) Aanvraagnummer: 2018230 © Aanvraag ingediend: 25/01/2017 (51) Int. CL:
G09B 23/30 (2017.01) G09B 23/28 (2017.01) G09B
23/24 (2017.01)
(Tl) Aanvraag ingeschreven: © Octrooihouder(s):
01/08/2018 D2D Holding B.V. te Rotterdam.
© Aanvraag gepubliceerd:
- © Uitvinder(s):
Dervis Demirtas te Rotterdam.
© Octrooi verleend: Aziz Demirtas te Arnhem.
01/08/2018 Dimitri Middel te Eindhoven.
© Octrooischrift uitgegeven:
07/08/2018 © Gemachtigde:
Geen.
© Structural composition of a manikin
This invention is on the structural composition of a manikin, designed for medical training purposes. Through an innovative multi-layer system of hard material and softer layers of foam and silicon the manikin will provide a higher degree of realism, while keeping its interactive properties for a reduced production cost.
The manikin can be of different sizes, from neonatal to adult. By selectively using the materials the composition can be used to accurately simulate the landmarks and dimensions of the human skeleton for the use of medical training purposes.
NL Bl 2018230
Dit octrooi is verleend ongeacht het bijgevoegde resultaat van het onderzoek naar de stand van de techniek en schriftelijke opinie. Het octrooischrift komt overeen met de oorspronkelijk ingediende stukken.
Structural composition of a manikin
The present invention relates to the structural composition of a patient simulating manikin, to be used preferably in a medical training setting.
There is a need for high fidelity simulators used in medical training to become increasingly realistic, as to more accurately recreate the conditions that take place during actual medical practice, procedures and operations. Realistic, interactive and responsive manikins maximize the effectivity and realism of training for medical professionals. The current norm in medical practice and training is to use manikins with a hardened outer shell, harboring the electronical and mechanical parts. This limits realism, but is a necessity due to manufacturing costs and design limitations. This invention describes a structural solution to overcome this problem, encompassing a particular combination and configuration of materials. With the layered approach, for which the specific layers have functional, aesthetic and tactile selection criteria, the structure more accurately simulates the human patient.
Therefore, we provide a specific combination and composition of materials. A hard structure is the core of the composition. This material is a hard plastic or a metal or a combination of the two. The electronical and mechanical parts are attached to this structure, either within or outside the structure. The hard structure is enveloped and cushioned by foam, which creates a softer tactile sensation, emulating the sensation of muscles and the inner skin. This foam is necessary in places to cushion the hard parts and electronics. Those two layers are further enveloped by a soft, preferably silicon, continuous external structure, which emulates the tactile sensation of outer skin. Figure 1 shows a schematic diagram of the composition of the three materials and the different ways the electronic and mechanical parts are positioned.
Adding additional layers of different materials to the composition is a possibility. Another possibility, though not preferential, is to have floating mechanical or electronical components within the layers. Floating in this case means that the parts aren't attached to the hard core. For instance, this could be floating and wireless sensors and switches.
With this structural composition a set of immediate problems are solved. Firstly, the electronical and mechanical parts can be attached to the hard structure, thereby negating the need for a hard outer shell. Secondly, the internal foam and external soft structures emulate the tactile sensation of skin, muscles and fats. Thirdly, the materials within the layers are flexible to use and cost-efficient. Fourthly, by selectively raising, lowering or removing parts of the hard structure the user is able to distinguish the general shape and landmark features of the human skeleton. Fifthly, the foam is useful in cushioning both the hard structure and any protruding electronic and mechanical elements, wherever desirable.
The realization of specific landmark features of the human skeleton increases the level of realism and can be used for accurately positioning the different simulated medical procedures which are part of the simulation training. The chest structure has recognizable and countable ribs, with a sternum, with an indicative spot for cardiopulmonary resuscitation (CPR). The manikin furthermore has recognizable collarbones; a spine, with raised structures indicating the vertebrae; hip joints, elbow joints and shoulder joints, which simulate the movement degrees of a human skeleton; fontanelles, that can be set to different states; two shinbones, on top of which a hard bonelike structure can be attached for repeated intraosseous infusion drilling exercises .
Figure 1 shows a schematic diagram of the composition of the layers of materials. 1 is a hard material, plastic or metal; 2 is the softer foam structure; 3 is the silicon or rubber or similarly softer and flexible material; the electronic and mechanical components 4, 5 and 6 show the different states of protrusion, within and through the different layers, connected to hard material 1. Within the hard material 1 electronic and mechanical components can also completely reside. A specific realization of this schematic composition of materials in an infant-sized human model is shown in figures 2, 3 and 4.
Figure 2 shows the frontal view of the structure of a realized infant human patient simulator, revealing the hard structure and foam, without the external silicon layer. The specifics of the electronic and mechanical parts used fall out of the scope of this patent. In figure 2 the rib cage 7 is visible, with the sternum, with attachment points of the ribcage 8 and 9. To attach an umbilical cord there is an attachment point 10 in the structure. On the bottom of the baby is an opening resembling the urethra 11, to be used for simulation of catheterization. The shins 12 are hard structures. The leg material 13 surrounding it is an example of the foam used in the material composition. Underneath the shin structure there is a knee joint 14. The structure of the upper-leg 15 is another example of the use of foam. The underarm 16 is similarly constructed, with a foam structure enveloping a hard internal structure. The opening at the side of the ribcage 17 an attachment point for simulated pneumothorax treatment. The cushioning part 18 and 19 rest upon the hard structure which is visible in 20, which is attached to an elbow joint and shoulder joint. The risen and lowered points of the hard structure of the manikin 21 is used to emulate the collar bones. The head is attached to the body through a jointed structure 22. The jawbone 23 is a hard structure, which has two degrees of freedom of movement to simulate the procedure of a jaw thrust, it holds the simulated airway 24, which also includes the nostrils 25. Within the skull there are structures representing the eyes 26.
Figure 3 shows the external posterior view of the realized infant human patient simulator as also shown in figure 2, showing the hard structure and foam. Here the fontanelles 27 are visible on the top of the skull, which can be set to different modes. The posterior view shows the shoulder blade 29, a landmark feature, is set on top of the rib cage. On the back the spine runs from top to bottom with raised hard material resembling the vertebrae 30.
Figure 4 is a drawing of the external frontal view of a realized infant human patient simulator, showing the continuous external structure, a rubber or silicon skin, enveloping the other structures within the manikin.

Claims (10)

CONCLUSIESCONCLUSIONS 1. De structurele opbouw van een interactief medisch simulatieapparaat, dat een medische oefenpop, een mannequin, bevat die kan worden geprogrammeerd om een verscheidenheid aan feedback en interactiviteit te genereren, om bij voorkeur te worden gebruik bij scenario-gestuurde medische of paramedische trainingen, met het kenmerk dat de mannequin een specifieke combinatie en configuratie van materialen bevat, in de volgende zinnen nader beschreven. De mannequin heeft een harde plastic of metalen interne structuur, die de dimensies, herkenningspunten en bewegingsvrijheid emuleert van een menselijk skelet. Deze harde structuur is opgevuld of omringt door een laag van schuim. Deze twee lagen zijn volledig omhuld door een siliconen of rubberen laag. Deze combinatie van materialen vergroot de tactiele feedback en het realisme van de mannequin.1. The structural structure of an interactive medical simulation device, comprising a medical manikin, a manikin, that can be programmed to generate a variety of feedback and interactivity, to be used preferably in scenario-driven medical or paramedical training, with the characteristic that the mannequin contains a specific combination and configuration of materials, described in more detail in the following sentences. The mannequin has a hard plastic or metal internal structure that emulates the dimensions, landmarks and freedom of movement of a human skeleton. This hard structure is filled or surrounded by a layer of foam. These two layers are completely covered by a silicone or rubber layer. This combination of materials increases the tactile feedback and the realism of the mannequin. 2 . De harde interne structuur beschreven in conclusie 1, met het kenmerk dat er elektronische en mechanische componenten in verwerkt zijn en dat de structuur dient als bevestigingspunt voor elektronische en mechanische componenten. Deze componenten zijn onder andere sensoren, switches, en actuatoren.2. The hard internal structure described in claim 1, characterized in that it incorporates electronic and mechanical components and that the structure serves as an attachment point for electronic and mechanical components. These components include sensors, switches, and actuators. 3. De mannequin beschreven in conclusie 1, met het kenmerk dat deze de groottes en vormen van een baby tot een volwassene kan hebben.The manikin described in claim 1, characterized in that it can have the sizes and shapes of a baby into an adult. 4. De mannequin beschreven in conclusie 1 met het kenmerk dat een van de herkenningspunten een ribbenkast is. De ribben kunnen worden geteld, voor de correcte positionering van een gesimuleerde behandeling van een pneumothorax.The manikin described in claim 1, characterized in that one of the recognition points is a rib cage. The ribs can be counted for the correct positioning of a simulated treatment of a pneumothorax. 5. De mannequin beschreven in conclusie 1 met het kenmerk dat een van de herkenningspunten een borstbeen is. Het borstbeen heeft een voelbaar reliëf om de positie aan te geven waar gesimuleerde hartmassage dient plaats te vinden.The manikin described in claim 1, characterized in that one of the recognition points is a breastbone. The breastbone has a noticeable relief to indicate the position where simulated heart massage should take place. 6. De mannequin beschreven in conclusie 1 met het kenmerk dat een van de herkenningspunten een paar scheenbenen is. Op de scheenbenen kunnen opzetstukken bevestigd worden voor het simuleren van het prepareren van een IO-infuus.The manikin described in claim 1, characterized in that one of the recognition points is a pair of shins. Attachments can be attached to the shins for simulating preparation of an IO infusion. 7. De mannequin beschreven in conclusie 1 met het kenmerk datThe manikin described in claim 1, characterized in that 5 de bewegingsvrijheid en herkenningspunten worden gesimuleerd door schoudergewrichten, heupgewrichten, ellebooggewrichten en een nekconstructie.5 the freedom of movement and recognition points are simulated by shoulder joints, hip joints, elbow joints and a neck construction. 8. De mannequin beschreven in conclusie 1 met het kenmerk dat een van de herkenningspunten een paar schouderbladen is.The manikin described in claim 1, characterized in that one of the recognition points is a pair of shoulder blades. 10 9. De mannequin beschreven in conclusie 1 met het kenmerk dat een van de herkenningspunten een paar sleutelbeenderen is.9. The manikin described in claim 1, characterized in that one of the recognition points is a pair of key bones. 10. De mannequin beschreven in conclusie 1 met het kenmerk dat een van de herkenningspunten een kaakstructuur is, met 2 graden van bewegingsvrijheid. De kaak maakt het mogelijk deThe mannequin described in claim 1, characterized in that one of the recognition points is a jaw structure, with 2 degrees of freedom of movement. The jaw allows the 15 behandeling van een kaaklift te simuleren.15 simulate treatment of a jaw lift.
NL2018230A 2017-01-25 2017-01-25 Structural composition of a manikin NL2018230B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NL2018230A NL2018230B1 (en) 2017-01-25 2017-01-25 Structural composition of a manikin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2018230A NL2018230B1 (en) 2017-01-25 2017-01-25 Structural composition of a manikin

Publications (1)

Publication Number Publication Date
NL2018230B1 true NL2018230B1 (en) 2018-08-01

Family

ID=58213298

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2018230A NL2018230B1 (en) 2017-01-25 2017-01-25 Structural composition of a manikin

Country Status (1)

Country Link
NL (1) NL2018230B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3797130A (en) * 1972-11-21 1974-03-19 Univ Kentucky Res Found Dynamic childbirth simulator for teaching maternity patient care
US5061188A (en) * 1990-11-15 1991-10-29 Mccollum Linda L Pneumothorax diagnostic and treatment manikin
WO2005032327A2 (en) * 2003-10-06 2005-04-14 Laerdal Medical As Medical patient simulator
US20140272876A1 (en) * 2013-03-15 2014-09-18 Gaumard Scientific Company, Inc. Birthing Simulation Devices, Systems, and Methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3797130A (en) * 1972-11-21 1974-03-19 Univ Kentucky Res Found Dynamic childbirth simulator for teaching maternity patient care
US5061188A (en) * 1990-11-15 1991-10-29 Mccollum Linda L Pneumothorax diagnostic and treatment manikin
WO2005032327A2 (en) * 2003-10-06 2005-04-14 Laerdal Medical As Medical patient simulator
US20140272876A1 (en) * 2013-03-15 2014-09-18 Gaumard Scientific Company, Inc. Birthing Simulation Devices, Systems, and Methods

Similar Documents

Publication Publication Date Title
US4773865A (en) Training mannequin
US8647124B2 (en) Methods and apparatus for providing realistic medical training
US20100099067A1 (en) Mannequin for Medical Training
BR102016022139B1 (en) equipment for motor rehabilitation of upper and lower limbs
AU2012273670A1 (en) Simulation apparatus
Tavkar et al. Simulation in dentistry
Everson et al. Virtual reality and haptic cardiopulmonary resuscitation training approaches: A review
CN201097386Y (en) Simulation electronic standard patient for comprehensive puncturing and percussing examination
NL2018230B1 (en) Structural composition of a manikin
Chun et al. Exploration of visuo-haptic interactions to support learning leopold's maneuvers process in virtual reality
Choi et al. 3D-printed ophthalmic-retrobulbar-anesthesia simulator: mimicking anatomical structures and providing tactile sensations
Ayuni et al. Emulation of muscle tone of upper limb spasticity and rigidity
RU175309U9 (en) Educational dynamic model of a baby simulation robot
Vega-Medina et al. VR central venous access simulation system for newborns
JP2019003015A (en) Apparatus for practicing cardiac massage
ES2447826T3 (en) Pulse simulation unit
Frey et al. Physical interaction with a virtual knee joint—The 9 DOF haptic display of the Munich knee joint simulator
Medina-Papaqayo et al. Intraousseous access simulator in newborns vr system
Lauer et al. Humanoid Animatronic Learning Simulator for Medical Interactive Training (HALSMIT)
Dunaj et al. Human-robot communication in rehabilitation devices
JP2019120851A (en) Human phantom
CN218768467U (en) Human body model for cardio-pulmonary resuscitation teaching
RU2799123C1 (en) Method of learning using interaction with physical objects in virtual reality
WO2023089696A1 (en) Medical simulator
Riener et al. A new haptic interface for VR medical training

Legal Events

Date Code Title Description
MM Lapsed because of non-payment of the annual fee

Effective date: 20200201