EP2312129A1 - System zum Speichern von thermoelektrischer Energie mit einem internen Wärmetauscher und Verfahren zur Speicherung von thermoelektrischer Energie - Google Patents
System zum Speichern von thermoelektrischer Energie mit einem internen Wärmetauscher und Verfahren zur Speicherung von thermoelektrischer Energie Download PDFInfo
- Publication number
- EP2312129A1 EP2312129A1 EP09172831A EP09172831A EP2312129A1 EP 2312129 A1 EP2312129 A1 EP 2312129A1 EP 09172831 A EP09172831 A EP 09172831A EP 09172831 A EP09172831 A EP 09172831A EP 2312129 A1 EP2312129 A1 EP 2312129A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat exchanger
- working fluid
- cycle
- discharging
- storage medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K3/00—Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
- F01K3/12—Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having two or more accumulators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K11/00—Plants characterised by the engines being structurally combined with boilers or condensers
- F01K11/04—Plants characterised by the engines being structurally combined with boilers or condensers the boilers or condensers being rotated in use
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K3/00—Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
- F01K3/006—Accumulators and steam compressors
Definitions
- the present invention relates generally to the storage of electric energy. It relates in particular to a system and method for storing electric energy in the form of thermal energy in thermal energy storage.
- Base load generators such as nuclear power plants and generators with stochastic, intermittent energy sources such as wind turbines and solar panels, generate excess electrical power during times of low power demand.
- Large-scale electrical energy storage systems are a means of diverting this excess energy to times of peak demand and balance the overall electricity generation and consumption.
- thermoelectric energy storage converts excess electricity to heat in a charging cycle, stores the heat, and converts the heat back to electricity in a discharging cycle, when necessary.
- TEES thermoelectric energy storage
- Such an energy storage system is robust, compact, site independent and is suited to the storage of electrical energy in large amounts.
- Thermal energy can be stored in the form of sensible heat via a change in temperature or in the form of latent heat via a change of phase or a combination of both.
- the storage medium for the sensible heat can be a solid, liquid, or a gas.
- the storage medium for the latent heat occurs via a change of phase and can involve any of these phases or a combination of them in series or in parallel.
- the round-trip efficiency of an electrical energy storage system can be defined as the percentage of electrical energy that can be discharged from the storage in comparison to the electrical energy used to charge the storage, provided that the state of the energy storage system after discharging returns to its initial condition before charging of the storage.
- the efficiencies of both modes need to be maximized inasmuch as their mutual dependence allows.
- the roundtrip efficiency of the TEES system is limited for various reasons rooted in the second law of thermodynamics.
- the first reason relates to the coefficient of performance of the system.
- the charging cycle of a TEES system is also referred to as a heat pump cycle and the discharging cycle of a TEES system is also referred to as a heat engine cycle.
- heat needs to be transferred from a hot working fluid to a thermal storage medium during the charging cycle and back from the thermal storage medium to the working fluid during the discharging cycle.
- a heat pump requires work to move thermal energy from a cold source to a warmer heat sink. Since the amount of energy deposited at the hot side, i.e. the thermal storage medium part of a TEES, is greater than the compression work by an amount equal to the energy taken from the cold side, i.e.
- a heat pump deposits more heat per work input to the hot storage than resistive heating.
- the ratio of heat output to work input is called coefficient of performance, and it is a value larger than one. In this way, the use of a heat pump will increase the round-trip efficiency of a TEES system.
- the charging cycle of a known TEES system comprises a work recovering expander, an evaporator, a compressor and a heat exchanger, all connected in series by a working fluid circuit. Further, a cold storage tank and a hot storage tank containing a fluid thermal storage medium are coupled together via the heat exchanger. Whilst the working fluid passes through the evaporator, it absorbs heat from the ambient or from a thermal bath and evaporates.
- the discharging cycle of a known TEES system comprises a pump, a condenser, a turbine and a heat exchanger, all connected in series by a working fluid circuit. Again, a cold storage tank and a hot storage tank containing a fluid thermal storage medium are coupled together via the heat exchanger.
- the working fluid passes through the condenser, it exchanges heat energy with the ambient or the thermal bath and condenses.
- the same thermal bath such as a river, a lake or a water-ice mixture pool, is used in both the charging and discharging cycles.
- Figure 1 shows an enthalpy-pressure diagram of the heat transfer from the cycles in a known TEES system.
- the solid line quadrangle shows both the charging and discharging cycles.
- the charging cycle can be considered to start at the lower left corner (indicated as I) and follows an anti-clockwise direction.
- Point I corresponds to the working fluid state before receiving heat from the evaporator 14.
- the temperature of the working fluid in this state is approximately -5°C to 10°C.
- the working fluid is evaporated at constant pressure and temperature to reach point II of Figure 1 .
- the working fluid is then compressed isentropically to the state shown as point III.
- the temperature of the working fluid in this state is approximately 90°C to 120°C.
- the pressure of the working fluid may be up to the order of 20MPa due to the proximity to the critical point.
- Heat from the working fluid is transferred in an isobaric process between points III and IV to the thermal storage medium in a counter-current flow heat exchanger.
- the working fluid is then expanded between points IV and I, in an isentropic expansion device, which enables recovery of the energy contained in the pressurized working fluid.
- thermoelectric energy storage having a high roundtrip efficiency, whilst minimising the system costs involved.
- thermoelectric energy storage system for converting electrical energy into thermal energy to be stored and converted back to electrical energy with an improved round-trip efficiency.
- This objective is achieved by a thermoelectric energy storage system according to claim 1 and a method according to claim 6. Preferred embodiments are evident from the dependent claims.
- thermoelectric energy storage system which has a charging cycle for providing thermal energy to a thermal storage, and a discharging cycle for generating electricity by retrieving the thermal energy from the thermal storage.
- the thermoelectric energy storage system comprises a working fluid circuit for circulating a working fluid through a first heat exchanger and a second heat exchanger, a thermal storage medium circuit for circulating a thermal storage medium.
- the thermal storage medium circuit has at least one hot storage tank coupled to a cold storage tank via the first heat exchanger.
- the second heat exchanger further cools the working fluid at the output of the first heat exchanger, and the amount of heat energy stored in the thermal storage medium is adjusted to ensure similar thermal storage medium temperatures during the charging cycle and discharging cycle.
- the second heat exchanger pre-heats the working fluid at the input into the first heat exchanger, and the amount of heat energy extracted from the thermal storage medium is adjusted to ensure similar thermal storage medium temperatures during the charging cycle and discharging cycle.
- the amount of heat energy stored is tuned such that the thermal storage medium temperature in the hot storage tank is approximately the same during charging and discharging, and that the thermal storage medium temperature in the cold storage tank is approximately the same during charging and discharging.
- the temperature in the hot storage tank is 120° C and the temperature in the cold storage tank is 10° C.
- the present invention utilises low cost storage materials and the first and second heat exchangers operate at a high efficiency.
- the thermal storage medium is a liquid, and is preferably water.
- the working fluid of the present invention is preferably carbon dioxide.
- the second heat exchanger comprises; a first input from the first heat exchanger connected to a first output leading to an expander, and a second input from a condenser connected to a second output leading to a compressor.
- the second heat exchanger comprises; a first input from a pump connected to a first output leading to the first heat exchanger, and a second input from a thermodynamic machine connected to a second output leading to a condenser.
- At least one section of a charging cycle or a discharging cycle runs transcritically.
- either the charging cycle or the discharging cycle may run without the second heat exchanger.
- a method for storing and retrieving energy in a thermoelectric energy storage system.
- the method comprises charging the system by heating a thermal storage medium, wherein the thermal storage medium circulates between at least one hot storage tank coupled to a cold storage tank, and discharging the system by heating a working fluid in a working fluid circuit with heat from the thermal storage medium and expanding the working fluid through a thermodynamic machine.
- the method further comprises cooling further the working fluid output from a first heat exchanger during charging to enable the amount of heat energy stored in the thermal storage medium to be adjusted to ensure similar thermal storage medium temperatures during the charging cycle and discharging cycle, and pre-heating the working fluid input into the first heat exchanger during discharging to enable the amount of heat energy extracted from the thermal storage medium to be adjusted to ensure similar thermal storage medium temperatures during the charging cycle and discharging cycle.
- the minimization of the temperature difference between the charging and discharging of the thermal storage medium in the hot tank and the cold tank results in a higher round-trip efficiency of the system.
- the step of cooling further the working fluid output from the first heat exchanger during charging further comprises transferring heat from the working fluid exiting the first heat exchanger to the working fluid output from an evaporator.
- the step of pre-heating the working fluid input into the first heat exchanger during discharging further comprises transferring heat from the working fluid exiting the thermodynamic machine to the working fluid input into the first heat exchanger.
- the thermodynamic machine may also be referred to as a turbine.
- At least one section of a charging cycle or a discharging cycle is performed transcritically.
- the present invention minimises the amount of heat energy required for the adjustment of storage medium temperatures for charging and discharging, thereby minimising the size of the thermal storage required.
- the present invention maximises the work performed by the cycle during charging and discharging for a given maximum pressure and maximum temperature of the working fluid at point IV, Figure 4 in the cycle.
- this maximises the round-trip efficiency of the system.
- FIGS 2 and 3 schematically depict a charging cycle system and a discharging cycle system, respectively, of a TEES system in accordance with an embodiment of the present invention.
- the charging cycle system 10 shown in Figure 2 comprises a work recovering expander 12, an evaporator 14, a compressor 16, a high temperature heat exchanger 18, and an internal heat exchanger 20.
- a working fluid circulates through the components as indicated by the solid line with arrows in Figure 2 .
- both the output from the evaporator 14 and the output from the high temperature heat exchanger 18 are passed through the internal heat exchanger 20.
- a cold storage tank 22 and a hot storage tank 24 containing a liquid thermal storage medium are coupled together via the heat exchanger 18.
- the thermal storage liquid flows between the cold storage tank 22 and the hot storage tank 24 as indicated by the dashed line with arrows.
- the charging cycle system 10 performs a thermodynamic cycle and the working fluid flows around the TEES system in the following manner.
- the vaporized working fluid exiting the evaporator 14 is circulated to the compressor 16 via the internal heat exchanger 20.
- the surplus electrical energy which is to be stored is utilized to compress and heat the working fluid in the compressor 16.
- the working fluid is at the highest temperature and pressure of the cycle.
- the working fluid is fed through the high temperature heat exchanger 18 where the working fluid discards heat into the thermal storage medium.
- the compressed working fluid exits the heat exchanger 18 and enters the internal heat exchanger 20, where the remaining heat is transferred out of the compressed working fluid and into the working fluid at the outlet of the evaporator 14.
- the cooled working fluid then enters the expander 12.
- the working fluid is expanded to a lower pressure which corresponds to the evaporator inlet pressure.
- the working fluid flows from the expander 12 back into the evaporator 14.
- the fluid thermal storage medium is pumped from the cold storage tank 22 through the heat exchanger 18 to the hot storage tank 24.
- the heat energy discarded from the working fluid into the thermal storage medium is stored in the form of sensible heat.
- the discharging cycle system 26 shown in Figure 3 comprises a pump 28, a condenser 30, a turbine 32, a high temperature heat exchanger 18, and an internal heat exchanger 20.
- a working fluid circulates through these components as indicated by the dotted line with arrows in Figure 3 .
- a cold storage tank 22 and a hot storage tank 24 containing a fluid thermal storage medium are coupled together via the high temperature heat exchanger 18.
- the thermal storage medium represented by the dashed line in Figure 3 , is pumped from the hot storage tank 24 through the heat exchanger to the cold storage tank 22.
- the discharging cycle system 26 performs a thermodynamic cycle reversing the charging cycle and the working fluid flows around the TEES system in the following manner.
- the working fluid in liquid form is pumped to a high pressure by pump 28.
- the working fluid then enters the internal heat exchanger 20, where it is preheated by the working fluid leaving the turbine 32.
- the working fluid then continues to the high temperature heat exchanger 18 in which heat energy is transferred from the thermal storage medium to the working fluid and the working fluid reaches its highest temperature level in the cycle.
- the working fluid then exits the high temperature heat exchanger 18 and enters the turbine 32 where the working fluid is expanded thereby causing the turbine 32 coupled to a generator (not illustrated) to generate electrical energy.
- the working fluid enters the condenser 30, where the working fluid is condensed by exchanging heat energy with a further thermal storage medium (not illustrated).
- the condensed working fluid exits the condenser 30 via an outlet and is pumped again into the internal heat exchanger 20 via the pump 28.
- the internal heat exchanger 20, the condenser 14, 30, the high temperature heat exchanger 18, cold storage tank 22, hot storage tank 24 and thermal storage medium are common to both.
- the condenser 14, 30 may be common to both the charging and discharging cycle systems. The charging and discharging cycles may be performed consecutively, not simultaneously.
- the high temperature heat exchanger is a counterflow heat exchanger, and the working fluid of the cycle is preferably carbon dioxide.
- the internal heat exchanger is a counter-flow heat exchanger.
- the thermal storage medium is a liquid, and is preferably water.
- the compressor of the present embodiment is an electrically powered compressor.
- thermodynamic cycle of the present invention includes heat exchange in a subcritical range as well as in a supercritical range; therefore the process follows a transcritical cycle.
- Figure 4 shows an enthalpy-pressure diagram of the heat transfer from the cycles in a TEES system of the present invention having an internal heat exchanger.
- the solid line quadrangle shows both the charging and discharging cycles.
- the charging cycle can be considered to start at the lower left corner (indicated as I) and follows an anti-clockwise direction.
- Point I corresponds to the working fluid state before receiving heat from the evaporator 14. Generally, the temperature of the working fluid in this state is approximately -5°C to 10°C.
- the working fluid is evaporated at constant pressure and temperature to reach point II of Figure 4 .
- the working fluid is then heated in the internal heat exchanger 20 to reach point III.
- the working fluid is then compressed isentropically to the state shown as point IV.
- the temperature of the working fluid in this state is approximately 100°C to 180°C.
- the pressure of the working fluid may be up to the order of 20MPa due to the proximity to the critical point.
- Heat from the working fluid is transferred in an isobaric process between points IV and V to the thermal storage medium in a counter-current flow heat exchanger.
- the residual heat in the working fluid is discarded in the internal heat exchanger, shown from points V to VI. This residual heat provides the heat energy used to heat the working fluid between points II and III.
- the working fluid is then expanded between points VI and I, in an isentropic expansion device, which enables recovery of the stored energy.
- the TEES system with an internal heat exchanger within the working fluid circuit advantageously facilitates matching of the charging and discharging modes of operation. Such matching is required in order to achieve a high degree of reversibility.
- the degree of reversibility (heat loss minimization) depends on the inlet and outlet temperatures of the working fluid stream entering and exiting the high temperature heat exchanger (with the thermal storage medium).
- the operating temperatures of the TEES system in the charging mode of operation are chosen to ensure that the minimum required amount of heat at the minimum required temperature range is stored in the thermal storage medium to enable operation of the discharging mode. Therefore, in the charging cycle, the temperature of the working fluid stream leaving the high temperature heat exchanger and entering the internal heat exchanger should be chosen according to this minimizing condition. Similarly, in the discharging cycle, the superheat remaining in the working fluid stream leaving the turbine should be used to the maximum extent for preheating the working fluid stream entering the high temperature heat exchanger. In this way, the amount of heat energy needed from the thermal storage medium is minimized, which in turn will minimize the volume of thermal storage medium required.
- the operating temperatures of the internal heat exchanger are then determined based on the combined conditions from charging and discharging modes of operation. The size of the internal heat exchanger may be chosen to accommodate the larger of the heat energy loads from the charging mode and the discharging mode.
- the use of such an internal heat exchanger may be referred to as a "regenerative TEES scheme".
- the regenerative charging and discharging cycles may be considered to result in two competing effects, in both the charging and discharging modes of operation.
- the positive effect is the increased heat input via the evaporator 14 and the negative effect is the increased compression work due to higher compressor inlet temperature.
- the evaporator 14 takes heat from a low temperature heat source, such as ice or cold water, and therewith evaporates working fluid passing through the evaporator.
- the positive effect is the increased heat input to the high pressure side of the system and the negative effect is the loss of recovered work due to extraction of a portion of the working fluid vapor from a lower pressure stage of the system.
- the positive effects outweigh the negative ones and such regenerative operation results in a net gain of efficiency.
- the internal heat exchanger 20 may be used either during the charging mode or the discharging mode, and bypassed during the other mode. Such an embodiment is dependent upon the operating conditions and relative temperatures of the evaporator 14 and condenser 30.
- the size and type of internal heat exchanger 20 may be varied dependent upon the specific TEES design. For instance, if an additional low grade waste heat source is available, the charging cycle may be modified, and the properties of the internal heat exchanger would have to be readapted in order to ensure a high degree of reversibility with minimal heat loss.
- thermal storage medium is generally water (if necessary, in a pressurized container), other materials, such as oil or molten salt, may also be used.
- the condenser and the evaporator in the TEES system may be replaced with a multi-purpose heat exchange device that can assume both roles, since the use of the evaporator in the charging cycle and the use of the condenser in the discharging cycle will be carried out in different periods.
- the turbine and the compressor roles can be carried out by the same machinery, referred to herein as a thermodynamic machine, capable of achieving both tasks.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09172831A EP2312129A1 (de) | 2009-10-13 | 2009-10-13 | System zum Speichern von thermoelektrischer Energie mit einem internen Wärmetauscher und Verfahren zur Speicherung von thermoelektrischer Energie |
RU2012119524/06A RU2012119524A (ru) | 2009-10-13 | 2010-10-11 | Система аккумулирования термоэлектрической энергии с встроенным теплообменником и способ аккумулирования термоэлектрической энергии |
JP2012532631A JP2013507559A (ja) | 2009-10-13 | 2010-10-11 | 内部熱交換器を有する熱電気エネルギー貯蔵システム及び熱電気エネルギーを蓄えるための方法 |
PCT/EP2010/065217 WO2011045282A2 (en) | 2009-10-13 | 2010-10-11 | Thermoelectric energy storage system having an internal heat exchanger and method for storing thermoelectric energy |
CN2010800469777A CN102575529A (zh) | 2009-10-13 | 2010-10-11 | 具有内部热交换器的热电能量存储系统和用于储存热电能量的方法 |
US13/444,451 US20120222423A1 (en) | 2009-10-13 | 2012-04-11 | Thermoelectric energy storage system having an internal heat exchanger and method for storing thermoelectric energy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09172831A EP2312129A1 (de) | 2009-10-13 | 2009-10-13 | System zum Speichern von thermoelektrischer Energie mit einem internen Wärmetauscher und Verfahren zur Speicherung von thermoelektrischer Energie |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2312129A1 true EP2312129A1 (de) | 2011-04-20 |
Family
ID=42145343
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09172831A Withdrawn EP2312129A1 (de) | 2009-10-13 | 2009-10-13 | System zum Speichern von thermoelektrischer Energie mit einem internen Wärmetauscher und Verfahren zur Speicherung von thermoelektrischer Energie |
Country Status (6)
Country | Link |
---|---|
US (1) | US20120222423A1 (de) |
EP (1) | EP2312129A1 (de) |
JP (1) | JP2013507559A (de) |
CN (1) | CN102575529A (de) |
RU (1) | RU2012119524A (de) |
WO (1) | WO2011045282A2 (de) |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2532843A1 (de) * | 2011-06-09 | 2012-12-12 | ABB Research Ltd. | System zum Speichern von thermoelektrischer Energie mit einer Anordnung zum Speichern von Eis und Verfahren zur Speicherung von thermoelektrischer Energie |
EP2587005A1 (de) * | 2011-10-31 | 2013-05-01 | ABB Research Ltd. | System zum Speichern von thermoelektrischer Energie mit regenerativem Wärmeaustausch und Verfahren zur Speicherung von thermoelektrischer Energie |
DE102012019791A1 (de) | 2012-10-04 | 2014-04-10 | Technische Universität Ilmenau | Kugelumlauf-Wärmespeicher |
JP2014145321A (ja) * | 2013-01-30 | 2014-08-14 | Akira Nagao | 発電装置 |
WO2014044549A3 (de) * | 2012-09-24 | 2015-01-08 | Siemens Aktiengesellschaft | Verfahren zum laden und entladen eines speichermediums in einem wärmespeicher und anlage zur durchführung dieses verfahrens |
US9932830B2 (en) | 2010-03-04 | 2018-04-03 | X Development Llc | Adiabatic salt electric energy storage |
US10012448B2 (en) | 2012-09-27 | 2018-07-03 | X Development Llc | Systems and methods for energy storage and retrieval |
US10082045B2 (en) | 2016-12-28 | 2018-09-25 | X Development Llc | Use of regenerator in thermodynamic cycle system |
US10082104B2 (en) | 2016-12-30 | 2018-09-25 | X Development Llc | Atmospheric storage and transfer of thermal energy |
US10221775B2 (en) | 2016-12-29 | 2019-03-05 | Malta Inc. | Use of external air for closed cycle inventory control |
US10233787B2 (en) | 2016-12-28 | 2019-03-19 | Malta Inc. | Storage of excess heat in cold side of heat engine |
US10233833B2 (en) | 2016-12-28 | 2019-03-19 | Malta Inc. | Pump control of closed cycle power generation system |
WO2019076897A1 (de) * | 2017-10-16 | 2019-04-25 | BME Dr. Golbs & Partner GmbH | Energiespeichersystem |
US10280804B2 (en) | 2016-12-29 | 2019-05-07 | Malta Inc. | Thermocline arrays |
US10436109B2 (en) | 2016-12-31 | 2019-10-08 | Malta Inc. | Modular thermal storage |
US10458284B2 (en) | 2016-12-28 | 2019-10-29 | Malta Inc. | Variable pressure inventory control of closed cycle system with a high pressure tank and an intermediate pressure tank |
US10801404B2 (en) | 2016-12-30 | 2020-10-13 | Malta Inc. | Variable pressure turbine |
US10934895B2 (en) | 2013-03-04 | 2021-03-02 | Echogen Power Systems, Llc | Heat engine systems with high net power supercritical carbon dioxide circuits |
US11053847B2 (en) | 2016-12-28 | 2021-07-06 | Malta Inc. | Baffled thermoclines in thermodynamic cycle systems |
US11187112B2 (en) | 2018-06-27 | 2021-11-30 | Echogen Power Systems Llc | Systems and methods for generating electricity via a pumped thermal energy storage system |
US11286804B2 (en) | 2020-08-12 | 2022-03-29 | Malta Inc. | Pumped heat energy storage system with charge cycle thermal integration |
US11293309B2 (en) | 2014-11-03 | 2022-04-05 | Echogen Power Systems, Llc | Active thrust management of a turbopump within a supercritical working fluid circuit in a heat engine system |
US11396826B2 (en) | 2020-08-12 | 2022-07-26 | Malta Inc. | Pumped heat energy storage system with electric heating integration |
CN114857973A (zh) * | 2022-04-24 | 2022-08-05 | 西安热工研究院有限公司 | 一种电热储能系统及换热方法 |
US11435120B2 (en) | 2020-05-05 | 2022-09-06 | Echogen Power Systems (Delaware), Inc. | Split expansion heat pump cycle |
US11454167B1 (en) | 2020-08-12 | 2022-09-27 | Malta Inc. | Pumped heat energy storage system with hot-side thermal integration |
US11480067B2 (en) | 2020-08-12 | 2022-10-25 | Malta Inc. | Pumped heat energy storage system with generation cycle thermal integration |
US11486305B2 (en) | 2020-08-12 | 2022-11-01 | Malta Inc. | Pumped heat energy storage system with load following |
US11629638B2 (en) | 2020-12-09 | 2023-04-18 | Supercritical Storage Company, Inc. | Three reservoir electric thermal energy storage system |
IT202100030965A1 (it) * | 2021-12-09 | 2023-06-09 | Nuovo Pignone Tecnologie Srl | Sistema per immagazzinare e utilizzare energia termica |
US11678615B2 (en) | 2018-01-11 | 2023-06-20 | Lancium Llc | Method and system for dynamic power delivery to a flexible growcenter using unutilized energy sources |
US11852043B2 (en) | 2019-11-16 | 2023-12-26 | Malta Inc. | Pumped heat electric storage system with recirculation |
US11982228B2 (en) | 2020-08-12 | 2024-05-14 | Malta Inc. | Pumped heat energy storage system with steam cycle |
US12123347B2 (en) | 2022-10-31 | 2024-10-22 | Malta Inc. | Pumped heat energy storage system with load following |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK2220343T3 (da) | 2007-10-03 | 2013-08-05 | Isentropic Ltd | Apparat til energilagring og fremgangsmåde til energilagring |
CN102865112B (zh) * | 2011-05-17 | 2016-02-17 | 成都奥能普科技有限公司 | 背热循环发电及多级背热循环发电及多联产系统 |
EP2570759A1 (de) * | 2011-09-15 | 2013-03-20 | Siemens Aktiengesellschaft | Wärmeenergiespeicher und Wiedergewinnungsanordnung |
EP2574740A1 (de) * | 2011-09-29 | 2013-04-03 | Siemens Aktiengesellschaft | Anlage zur Speicherung thermischer Energie |
DE102011086374A1 (de) * | 2011-11-15 | 2013-05-16 | Siemens Aktiengesellschaft | Hochtemperatur-Energiespeicher mit Rekuperator |
EP2594753A1 (de) * | 2011-11-21 | 2013-05-22 | Siemens Aktiengesellschaft | Wärmeenergiespeicher- und -rückgewinnungssystem mit einer Speicheranordnung und einer Lade-/Entladeanordnung, die über einen Wärmetauscher miteinander verbunden sind |
EP2602443A1 (de) | 2011-12-08 | 2013-06-12 | Alstom Technology Ltd | Stromspeicher |
EP2927435B1 (de) | 2014-04-01 | 2017-06-14 | General Electric Technology GmbH | System zur reversiblen Speicherung von elektrischer Energie als thermische Energie |
US9695715B2 (en) * | 2014-11-26 | 2017-07-04 | General Electric Company | Electrothermal energy storage system and an associated method thereof |
GB2542796A (en) * | 2015-09-29 | 2017-04-05 | Highview Entpr Ltd | Improvements in heat recovery |
PT3379040T (pt) * | 2017-03-20 | 2021-04-15 | Lumenion Gmbh | Central de produção de energia elétrica e método de funcionamento de uma central de produção de energia elétrica |
CN111219216B (zh) * | 2020-02-28 | 2022-03-15 | 中国科学院工程热物理研究所 | 一种可利用外界热源和冷源的热泵蓄能系统及方法 |
DK180997B1 (en) * | 2021-03-04 | 2022-09-12 | Stiesdal Storage As | Method of operating a thermal energy storage system |
US11721980B2 (en) | 2021-11-15 | 2023-08-08 | Kalindha Rashmi LLC | Power generation system employing power amplifying thermo-mechanical inverter technology |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4089744A (en) | 1976-11-03 | 1978-05-16 | Exxon Research & Engineering Co. | Thermal energy storage by means of reversible heat pumping |
DE3508624A1 (de) * | 1985-03-11 | 1986-09-11 | Siemens AG, 1000 Berlin und 8000 München | Waermepumpe |
JPS63253101A (ja) | 1987-04-08 | 1988-10-20 | Mitsubishi Heavy Ind Ltd | 複合発電装置 |
DE10159892A1 (de) * | 2001-12-06 | 2003-06-26 | Stiebel Eltron Gmbh & Co Kg | Kältemaschine mit einem Rekuperator |
DE202004013299U1 (de) * | 2004-08-24 | 2004-11-04 | Adoratec Gmbh | Vorrichtung zum Ausführen eines verbesserten ORC-Prozesses |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61151007U (de) * | 1985-03-12 | 1986-09-18 | ||
JPS63253102A (ja) * | 1987-04-08 | 1988-10-20 | Mitsubishi Heavy Ind Ltd | 複合発電装置 |
JPH04254168A (ja) * | 1991-01-31 | 1992-09-09 | Mitsubishi Heavy Ind Ltd | 発電兼ヒートポンプシステム |
JP5015389B2 (ja) * | 2001-08-01 | 2012-08-29 | 高砂熱学工業株式会社 | 発電・冷却システム及びその運転方法 |
EP1577548A1 (de) | 2004-03-16 | 2005-09-21 | Abb Research Ltd. | Vorrichtung und Verfahren zur Speicherung thermischer Energie und Erzeugung von Elektrizität |
US20070144195A1 (en) * | 2004-08-16 | 2007-06-28 | Mahl George Iii | Method and apparatus for combining a heat pump cycle with a power cycle |
US7313926B2 (en) * | 2005-01-18 | 2008-01-01 | Rexorce Thermionics, Inc. | High efficiency absorption heat pump and methods of use |
CN1285867C (zh) * | 2005-04-30 | 2006-11-22 | 陈志� | 一种制冷方法及装置 |
EP2014880A1 (de) * | 2007-07-09 | 2009-01-14 | Universiteit Gent | Verbessertes kombiniertes Wärme- und Stromsystem |
US20090126381A1 (en) * | 2007-11-15 | 2009-05-21 | The Regents Of The University Of California | Trigeneration system and method |
US7997076B2 (en) * | 2008-03-31 | 2011-08-16 | Cummins, Inc. | Rankine cycle load limiting through use of a recuperator bypass |
-
2009
- 2009-10-13 EP EP09172831A patent/EP2312129A1/de not_active Withdrawn
-
2010
- 2010-10-11 CN CN2010800469777A patent/CN102575529A/zh active Pending
- 2010-10-11 RU RU2012119524/06A patent/RU2012119524A/ru not_active Application Discontinuation
- 2010-10-11 WO PCT/EP2010/065217 patent/WO2011045282A2/en active Application Filing
- 2010-10-11 JP JP2012532631A patent/JP2013507559A/ja active Pending
-
2012
- 2012-04-11 US US13/444,451 patent/US20120222423A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4089744A (en) | 1976-11-03 | 1978-05-16 | Exxon Research & Engineering Co. | Thermal energy storage by means of reversible heat pumping |
DE3508624A1 (de) * | 1985-03-11 | 1986-09-11 | Siemens AG, 1000 Berlin und 8000 München | Waermepumpe |
JPS63253101A (ja) | 1987-04-08 | 1988-10-20 | Mitsubishi Heavy Ind Ltd | 複合発電装置 |
DE10159892A1 (de) * | 2001-12-06 | 2003-06-26 | Stiebel Eltron Gmbh & Co Kg | Kältemaschine mit einem Rekuperator |
DE202004013299U1 (de) * | 2004-08-24 | 2004-11-04 | Adoratec Gmbh | Vorrichtung zum Ausführen eines verbesserten ORC-Prozesses |
Cited By (71)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10094219B2 (en) | 2010-03-04 | 2018-10-09 | X Development Llc | Adiabatic salt energy storage |
US10907513B2 (en) | 2010-03-04 | 2021-02-02 | Malta Inc. | Adiabatic salt energy storage |
US9932830B2 (en) | 2010-03-04 | 2018-04-03 | X Development Llc | Adiabatic salt electric energy storage |
US11761336B2 (en) | 2010-03-04 | 2023-09-19 | Malta Inc. | Adiabatic salt energy storage |
WO2012168472A3 (en) * | 2011-06-09 | 2014-05-30 | Abb Research Ltd | Thermoelectric energy storage system with an evaporative ice storage arrangement and method for storing thermoelectric energy |
EP2532843A1 (de) * | 2011-06-09 | 2012-12-12 | ABB Research Ltd. | System zum Speichern von thermoelektrischer Energie mit einer Anordnung zum Speichern von Eis und Verfahren zur Speicherung von thermoelektrischer Energie |
EP2587005A1 (de) * | 2011-10-31 | 2013-05-01 | ABB Research Ltd. | System zum Speichern von thermoelektrischer Energie mit regenerativem Wärmeaustausch und Verfahren zur Speicherung von thermoelektrischer Energie |
WO2013064524A1 (en) * | 2011-10-31 | 2013-05-10 | Abb Research Ltd | Thermoelectric energy storage system with regenerative heat exchange and method for storing thermoelectric energy |
WO2013064317A1 (en) * | 2011-10-31 | 2013-05-10 | Abb Research Ltd | Thermoelectric energy storage system with regenerative heat exchange and method for storing thermoelectric energy |
WO2014044549A3 (de) * | 2012-09-24 | 2015-01-08 | Siemens Aktiengesellschaft | Verfahren zum laden und entladen eines speichermediums in einem wärmespeicher und anlage zur durchführung dieses verfahrens |
US10288357B2 (en) | 2012-09-27 | 2019-05-14 | Malta Inc. | Hybrid pumped thermal systems |
US10428694B2 (en) | 2012-09-27 | 2019-10-01 | Malta Inc. | Pumped thermal and energy storage system units with pumped thermal system and energy storage system subunits |
US11156385B2 (en) | 2012-09-27 | 2021-10-26 | Malta Inc. | Pumped thermal storage cycles with working fluid management |
US10458283B2 (en) | 2012-09-27 | 2019-10-29 | Malta Inc. | Varying compression ratios in energy storage and retrieval systems |
US10458721B2 (en) | 2012-09-27 | 2019-10-29 | Malta Inc. | Pumped thermal storage cycles with recuperation |
US10443452B2 (en) | 2012-09-27 | 2019-10-15 | Malta Inc. | Methods of hot and cold side charging in thermal energy storage systems |
US10012448B2 (en) | 2012-09-27 | 2018-07-03 | X Development Llc | Systems and methods for energy storage and retrieval |
US11754319B2 (en) | 2012-09-27 | 2023-09-12 | Malta Inc. | Pumped thermal storage cycles with turbomachine speed control |
US10428693B2 (en) | 2012-09-27 | 2019-10-01 | Malta Inc. | Pumped thermal systems with dedicated compressor/turbine pairs |
US10422250B2 (en) | 2012-09-27 | 2019-09-24 | Malta Inc. | Pumped thermal systems with variable stator pressure ratio control |
DE102012019791A1 (de) | 2012-10-04 | 2014-04-10 | Technische Universität Ilmenau | Kugelumlauf-Wärmespeicher |
JP2014145321A (ja) * | 2013-01-30 | 2014-08-14 | Akira Nagao | 発電装置 |
US10934895B2 (en) | 2013-03-04 | 2021-03-02 | Echogen Power Systems, Llc | Heat engine systems with high net power supercritical carbon dioxide circuits |
US11293309B2 (en) | 2014-11-03 | 2022-04-05 | Echogen Power Systems, Llc | Active thrust management of a turbopump within a supercritical working fluid circuit in a heat engine system |
US12012902B2 (en) | 2016-12-28 | 2024-06-18 | Malta Inc. | Variable pressure inventory control of closed cycle system with a high pressure tank and an intermediate pressure tank |
US10907510B2 (en) | 2016-12-28 | 2021-02-02 | Malta Inc. | Storage of excess heat in cold side of heat engine |
US11927130B2 (en) | 2016-12-28 | 2024-03-12 | Malta Inc. | Pump control of closed cycle power generation system |
US11591956B2 (en) | 2016-12-28 | 2023-02-28 | Malta Inc. | Baffled thermoclines in thermodynamic generation cycle systems |
US11512613B2 (en) | 2016-12-28 | 2022-11-29 | Malta Inc. | Storage of excess heat in cold side of heat engine |
US10458284B2 (en) | 2016-12-28 | 2019-10-29 | Malta Inc. | Variable pressure inventory control of closed cycle system with a high pressure tank and an intermediate pressure tank |
US11454168B2 (en) | 2016-12-28 | 2022-09-27 | Malta Inc. | Pump control of closed cycle power generation system |
US10233787B2 (en) | 2016-12-28 | 2019-03-19 | Malta Inc. | Storage of excess heat in cold side of heat engine |
US10920674B2 (en) | 2016-12-28 | 2021-02-16 | Malta Inc. | Variable pressure inventory control of closed cycle system with a high pressure tank and an intermediate pressure tank |
US10920667B2 (en) | 2016-12-28 | 2021-02-16 | Malta Inc. | Pump control of closed cycle power generation system |
US10233833B2 (en) | 2016-12-28 | 2019-03-19 | Malta Inc. | Pump control of closed cycle power generation system |
US11053847B2 (en) | 2016-12-28 | 2021-07-06 | Malta Inc. | Baffled thermoclines in thermodynamic cycle systems |
US10082045B2 (en) | 2016-12-28 | 2018-09-25 | X Development Llc | Use of regenerator in thermodynamic cycle system |
US11371442B2 (en) | 2016-12-28 | 2022-06-28 | Malta Inc. | Variable pressure inventory control of closed cycle system with a high pressure tank and an intermediate pressure tank |
US10280804B2 (en) | 2016-12-29 | 2019-05-07 | Malta Inc. | Thermocline arrays |
US10221775B2 (en) | 2016-12-29 | 2019-03-05 | Malta Inc. | Use of external air for closed cycle inventory control |
US11578622B2 (en) | 2016-12-29 | 2023-02-14 | Malta Inc. | Use of external air for closed cycle inventory control |
US10907548B2 (en) | 2016-12-29 | 2021-02-02 | Malta Inc. | Use of external air for closed cycle inventory control |
US10082104B2 (en) | 2016-12-30 | 2018-09-25 | X Development Llc | Atmospheric storage and transfer of thermal energy |
US11352951B2 (en) | 2016-12-30 | 2022-06-07 | Malta Inc. | Variable pressure turbine |
US10801404B2 (en) | 2016-12-30 | 2020-10-13 | Malta Inc. | Variable pressure turbine |
US11655759B2 (en) | 2016-12-31 | 2023-05-23 | Malta, Inc. | Modular thermal storage |
US10436109B2 (en) | 2016-12-31 | 2019-10-08 | Malta Inc. | Modular thermal storage |
US10830134B2 (en) | 2016-12-31 | 2020-11-10 | Malta Inc. | Modular thermal storage |
WO2019076897A1 (de) * | 2017-10-16 | 2019-04-25 | BME Dr. Golbs & Partner GmbH | Energiespeichersystem |
US11502628B2 (en) | 2017-10-16 | 2022-11-15 | BME Dr. Golbs & Partner GmbH | Energy storage system |
US11678615B2 (en) | 2018-01-11 | 2023-06-20 | Lancium Llc | Method and system for dynamic power delivery to a flexible growcenter using unutilized energy sources |
US11187112B2 (en) | 2018-06-27 | 2021-11-30 | Echogen Power Systems Llc | Systems and methods for generating electricity via a pumped thermal energy storage system |
US11852043B2 (en) | 2019-11-16 | 2023-12-26 | Malta Inc. | Pumped heat electric storage system with recirculation |
US11435120B2 (en) | 2020-05-05 | 2022-09-06 | Echogen Power Systems (Delaware), Inc. | Split expansion heat pump cycle |
US11480067B2 (en) | 2020-08-12 | 2022-10-25 | Malta Inc. | Pumped heat energy storage system with generation cycle thermal integration |
US11846197B2 (en) | 2020-08-12 | 2023-12-19 | Malta Inc. | Pumped heat energy storage system with charge cycle thermal integration |
US11396826B2 (en) | 2020-08-12 | 2022-07-26 | Malta Inc. | Pumped heat energy storage system with electric heating integration |
US11982228B2 (en) | 2020-08-12 | 2024-05-14 | Malta Inc. | Pumped heat energy storage system with steam cycle |
US11578650B2 (en) | 2020-08-12 | 2023-02-14 | Malta Inc. | Pumped heat energy storage system with hot-side thermal integration |
US11486305B2 (en) | 2020-08-12 | 2022-11-01 | Malta Inc. | Pumped heat energy storage system with load following |
US11286804B2 (en) | 2020-08-12 | 2022-03-29 | Malta Inc. | Pumped heat energy storage system with charge cycle thermal integration |
US11885244B2 (en) | 2020-08-12 | 2024-01-30 | Malta Inc. | Pumped heat energy storage system with electric heating integration |
US11840932B1 (en) | 2020-08-12 | 2023-12-12 | Malta Inc. | Pumped heat energy storage system with generation cycle thermal integration |
US11454167B1 (en) | 2020-08-12 | 2022-09-27 | Malta Inc. | Pumped heat energy storage system with hot-side thermal integration |
US11629638B2 (en) | 2020-12-09 | 2023-04-18 | Supercritical Storage Company, Inc. | Three reservoir electric thermal energy storage system |
WO2023104333A1 (en) * | 2021-12-09 | 2023-06-15 | Nuovo Pignone Tecnologie - S.R.L. | System for storing and using thermal energy |
IT202100030965A1 (it) * | 2021-12-09 | 2023-06-09 | Nuovo Pignone Tecnologie Srl | Sistema per immagazzinare e utilizzare energia termica |
WO2023206816A1 (zh) * | 2022-04-24 | 2023-11-02 | 西安热工研究院有限公司 | 一种电热储能系统及换热方法 |
CN114857973A (zh) * | 2022-04-24 | 2022-08-05 | 西安热工研究院有限公司 | 一种电热储能系统及换热方法 |
US12123347B2 (en) | 2022-10-31 | 2024-10-22 | Malta Inc. | Pumped heat energy storage system with load following |
US12123327B2 (en) | 2023-02-10 | 2024-10-22 | Malta Inc. | Pumped heat energy storage system with modular turbomachinery |
Also Published As
Publication number | Publication date |
---|---|
JP2013507559A (ja) | 2013-03-04 |
RU2012119524A (ru) | 2013-11-20 |
US20120222423A1 (en) | 2012-09-06 |
CN102575529A (zh) | 2012-07-11 |
WO2011045282A2 (en) | 2011-04-21 |
WO2011045282A3 (en) | 2012-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2312129A1 (de) | System zum Speichern von thermoelektrischer Energie mit einem internen Wärmetauscher und Verfahren zur Speicherung von thermoelektrischer Energie | |
EP2157317B1 (de) | Thermoelektrisches Energiespeichersystem und Verfahren zum Speichern von thermoelektrischer Energie | |
EP2241737B1 (de) | System zur Speicherung von thermoelektrischem Strom mit zwei Wärmebädern und Verfahren zum Speichern von thermoelektrischem Strom | |
EP2390473A1 (de) | Thermoelektrisches Energiespeichersystem und Verfahren zum Speichern von thermoelektrischer Energie | |
EP2182179B1 (de) | Thermoelektrisches Energiespeichersystem und Verfahren zur Speicherung von thermoelektrischer Energie | |
EP2275649B1 (de) | Thermoelektrisches Energiespeichersystem mit einem Zwischenspeichertank und Verfahren zum Speichern der thermoelektrischen Energie | |
US20140060051A1 (en) | Thermoelectric energy storage system | |
AU2017313360B2 (en) | Thermodynamic cycle apparatus and method | |
EP2587005A1 (de) | System zum Speichern von thermoelektrischer Energie mit regenerativem Wärmeaustausch und Verfahren zur Speicherung von thermoelektrischer Energie | |
CN101397983B (zh) | 工质相变焓差海水温差动力机 | |
JP7557227B1 (ja) | エネルギー貯蔵プラント |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
17P | Request for examination filed |
Effective date: 20110407 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: HEMRLE, JAROSLAV Inventor name: MERCANGOEZ, MEHMET Inventor name: KAUFMANN, LILIAN |
|
17Q | First examination report despatched |
Effective date: 20131219 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20140501 |