EP2308243A1 - Composant micromécanique avec volume postérieur - Google Patents
Composant micromécanique avec volume postérieurInfo
- Publication number
- EP2308243A1 EP2308243A1 EP09779612A EP09779612A EP2308243A1 EP 2308243 A1 EP2308243 A1 EP 2308243A1 EP 09779612 A EP09779612 A EP 09779612A EP 09779612 A EP09779612 A EP 09779612A EP 2308243 A1 EP2308243 A1 EP 2308243A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- semiconductor substrate
- cavity
- opening
- micromechanical
- membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R19/00—Electrostatic transducers
- H04R19/005—Electrostatic transducers using semiconductor materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00015—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
- B81C1/00023—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
- B81C1/00047—Cavities
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00015—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
- B81C1/00023—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
- B81C1/00103—Structures having a predefined profile, e.g. sloped or rounded grooves
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R31/00—Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B2201/00—Specific applications of microelectromechanical systems
- B81B2201/02—Sensors
- B81B2201/0257—Microphones or microspeakers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B2203/00—Basic microelectromechanical structures
- B81B2203/03—Static structures
- B81B2203/0315—Cavities
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B2203/00—Basic microelectromechanical structures
- B81B2203/03—Static structures
- B81B2203/0369—Static structures characterized by their profile
- B81B2203/0392—Static structures characterized by their profile profiles not provided for in B81B2203/0376 - B81B2203/0384
Definitions
- the invention relates to a micromechanical component and a method for its production according to the preambles of the independent claims.
- Micromechanical sensors often use membranes that are located above a cavity. In certain sensors, such as MEMS microphones, the size and shape of this cavity affects the resolution of the
- a MEMS microphone but also a membrane sensor is realized by means of a two-stage process.
- a sensor element 120 which has, for example, a membrane and a counter electrode 130, a on
- a cavern 110 is subsequently introduced into the substrate from the rear side 170 of the semiconductor substrate 100, which reaches as far as the active sensor structure, ie, for a microphone, for example, up to counter-electrode 130.
- the formation of the cavern 110 can be achieved by means of a single Trenchiervonreaes. However, it is necessary here that the etching front must strike the active sensor structure very precisely, since otherwise a mechanical / acoustic short circuit could occur if the cavern opening is displaced from the sensor structure. If, on the other hand, the opening of the cavern is designed too small with respect to the size of the sensor structure, the sensor structure, for example a membrane, is unnecessarily damped.
- a minimum volume must be maintained at the opening below the sensor structure, especially when using an M E M S microphone, to allow sufficient sensitivity. To increase the sensitivity, however, it is desirable to make this volume as large as possible. In contrast, the volume can not be increased arbitrarily, since the surface on the back side 170 of the component is used in further processing to mount the component on printed circuit boards or in housings. Therefore, a middle ground must be found between a large back volume and a sufficiently large mounting surface on the back of the substrate.
- FIG. 1b Another known example of increasing the back volume is shown in FIG. 1b.
- a two-stage Trenchierlui was used in comparison to the device of Figure Ia.
- a cavern 140 with a larger opening than the active sensor structure 130 is introduced into the substrate 100 with a first trench etching step.
- a smaller cavern 150 is generated, which is adapted to the dimensions of the sensor element 120 or the sensor structure 130.
- a larger back volume, consisting of the caverns 140 and 150 and thus an increase in sensitivity can be achieved with this method, the expense associated with the two separate structuring steps is significantly increased compared to the component of FIG.
- any enlargement of the cavity 140 is not possible because on the back side 170 of the substrate 100, a sufficient surface must be provided for attachment.
- the present invention describes a micromechanical component or a method for producing such a component, in which, starting from an opening in the rear side of a monocrystalline semiconductor substrate, a cavity is produced in the substrate.
- the process used for this purpose is controlled in conjunction with the monocrystalline semiconductor substrate used such that a largely rectangular cavity is formed.
- a sensor element is applied to the front side of the semiconductor substrate.
- an opening in the front side of the semiconductor substrate is provided starting from the cavity.
- a microphone is provided as the sensor element, in which a media exchange between the cavity and the region between the membrane and the counter electrode is necessary as pressure equalization.
- the counterelectrode is structured directly in the front side of the semiconductor substrate and the membrane is applied as an additional component to the semiconductor substrate.
- the walls are aligned in the use of a monocrystalline semiconductor substrate in the corresponding crystal directions.
- a monocrystalline semiconductor substrate for example, in the case of a (100) crystal, formation of walls in the ⁇ 110> direction can be observed, while the transitions between the walls run in the ⁇ 100> direction. These transitions are diminished by the
- the inventive design of the rectangular cavity below the membrane or counter electrode can be realized in the semiconductor substrate, a larger volume compared to an oval configuration. This allows a larger media intake. In addition, an increase in the sensitivity of the sensor element can be achieved thereby. Furthermore, it is thus possible to produce thinner and smaller sensor elements, in particular microphones.
- FIGS. 2a to 2d show the production of the rectangular cavity.
- FIG. 3 shows a cross section through the cavity according to the invention.
- FIG. 4 shows a particular exemplary embodiment in FIG
- a sensor element 220 is applied to a monocrystalline semiconductor substrate 200.
- a monocrystalline semiconductor substrate 200 This may be both a conventional micromechanical membrane sensor but also a micromechanically manufactured microphone.
- the membrane or the counter element or the counter electrode 230 can be applied directly to the substrate.
- the sensor element 220 it is also possible for the sensor element 220 to be applied to the front side 310 of the substrate 200 in such a way that there is a greater or lesser distance between the membrane and the counter element, in order to prevent direct contact and thus damage during production avoid.
- a mask 240 is applied to the rear side of the substrate 200, which forms the later cavity
- the trench etching process As shown in FIG. 2 a, an approximately perpendicular depression is introduced into the substrate 200, which forms the cavity 210.
- a passivation 250 builds up on the side wall of the cavern.
- the trench etching process should be approximately half the thickness of the
- Substrate 200 are performed.
- an isotropic etching step for example by means of an SF 6 etch, can be introduced into the depth of the substrate. This optional step shortens the
- the size of the cavity 270 i. the lateral extent of the cavity 270 in the substrate 200 can be determined over the etching time. It is thus possible to produce a cavity which extends laterally with respect to the sensor element 220 or the membrane or the counter-electrode 230 and which has the same depth on all sides.
- the cavity 270 is opened to the sensor element 220 or to the membrane or the counterelectrode 230 by means of an (ansisotropic) trench etching process through the opening 215 produced in the first trench etching process.
- an (ansisotropic) trench etching process through the opening 215 produced in the first trench etching process.
- the etching mask 240 and the passivation layer 250 can also be removed in a further step before the component is separated.
- the effect of the different propagation of the etching fronts on the basis of the crystal orientations in a monocrystalline semiconductor substrate can be illustrated.
- the etch rate in the ⁇ 100> direction 340 is smaller than in the ⁇ 110> direction 350, and therefore, the walls 320 of the cavity 270 are nearly square.
- the anisotropic etching process also acts on the mask opening 215 in that there likewise arises a rectangular or square etching front 330.
- Opening 280 a plurality of smaller openings 400 to produce as a through hole to the sensor element 420, as shown in Figure 4. It can also be provided that the counterelectrode 410 is introduced directly into the front side of the substrate 200. If appropriate, an additional doping of this area can also be undertaken.
- the advantage of this embodiment is that not the entire ME MS microphone has to be applied to the substrate 200, but only the sensor element 420 provided with the membrane 430. R324370
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Pressure Sensors (AREA)
- Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
Abstract
La présente invention concerne un composant micromécanique ainsi qu'un procédé de fabrication d'un tel composant. À partir d'une ouverture (215) dans le côté arrière d'un substrat semi-conducteur monocristallin (200), un espace vide (270) est produit dans le substrat. Pour ce faire, le processus utilisé à cette fin est commandé en liaison avec le substrat semi-conducteur monocristallin utilisé afin d'obtenir un espace vide substantiellement rectangulaire.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102008040597A DE102008040597A1 (de) | 2008-07-22 | 2008-07-22 | Mikromechanisches Bauelement mit Rückvolumen |
PCT/EP2009/056774 WO2010009934A1 (fr) | 2008-07-22 | 2009-06-03 | Composant micromécanique avec volume postérieur |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2308243A1 true EP2308243A1 (fr) | 2011-04-13 |
Family
ID=40940224
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09779612A Withdrawn EP2308243A1 (fr) | 2008-07-22 | 2009-06-03 | Composant micromécanique avec volume postérieur |
Country Status (5)
Country | Link |
---|---|
US (1) | US8692339B2 (fr) |
EP (1) | EP2308243A1 (fr) |
CN (1) | CN102106161B (fr) |
DE (1) | DE102008040597A1 (fr) |
WO (1) | WO2010009934A1 (fr) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008040597A1 (de) * | 2008-07-22 | 2010-01-28 | Robert Bosch Gmbh | Mikromechanisches Bauelement mit Rückvolumen |
DE102010028450B4 (de) * | 2010-04-30 | 2012-02-16 | Robert Bosch Gmbh | Vorrichtung zum Regeln einer Gerätefunktion |
CN102387455A (zh) * | 2011-09-28 | 2012-03-21 | 美律电子(深圳)有限公司 | 具扩增背腔空间的微机电麦克风芯片 |
CN105430581B (zh) * | 2014-08-28 | 2019-03-29 | 中芯国际集成电路制造(上海)有限公司 | 一种麦克风结构的形成方法 |
CN106211003A (zh) * | 2015-05-05 | 2016-12-07 | 中芯国际集成电路制造(上海)有限公司 | Mems麦克风及其形成方法 |
US11712766B2 (en) * | 2020-05-28 | 2023-08-01 | Toyota Motor Engineering And Manufacturing North America, Inc. | Method of fabricating a microscale canopy wick structure having enhanced capillary pressure and permeability |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4473435A (en) * | 1983-03-23 | 1984-09-25 | Drytek | Plasma etchant mixture |
US4945769A (en) * | 1989-03-06 | 1990-08-07 | Delco Electronics Corporation | Semiconductive structure useful as a pressure sensor |
US4993143A (en) * | 1989-03-06 | 1991-02-19 | Delco Electronics Corporation | Method of making a semiconductive structure useful as a pressure sensor |
US6046100A (en) * | 1996-12-12 | 2000-04-04 | Applied Materials, Inc. | Method of fabricating a fabricating plug and near-zero overlap interconnect line |
DE69930099T2 (de) * | 1999-04-09 | 2006-08-31 | Stmicroelectronics S.R.L., Agrate Brianza | Herstellung von vergrabenen Hohlräumen in einer einkristallinen Halbleiterscheibe und Halbleiterscheibe |
FR2795554B1 (fr) * | 1999-06-28 | 2003-08-22 | France Telecom | Procede de gravure laterale par trous pour fabriquer des dis positifs semi-conducteurs |
US6627965B1 (en) * | 2000-02-08 | 2003-09-30 | Boston Microsystems, Inc. | Micromechanical device with an epitaxial layer |
US7294536B2 (en) * | 2000-07-25 | 2007-11-13 | Stmicroelectronics S.R.L. | Process for manufacturing an SOI wafer by annealing and oxidation of buried channels |
US6712983B2 (en) * | 2001-04-12 | 2004-03-30 | Memsic, Inc. | Method of etching a deep trench in a substrate and method of fabricating on-chip devices and micro-machined structures using the same |
ITTO20020809A1 (it) * | 2002-09-17 | 2004-03-18 | St Microelectronics Srl | Micropompa, in particolare per un dispositivo integrato di analisi del dna. |
DE10247913A1 (de) * | 2002-10-14 | 2004-04-22 | Robert Bosch Gmbh | Plasmaanlage und Verfahren zum anisotropen Einätzen von Strukturen in ein Substrat |
EP1427011B1 (fr) * | 2002-12-04 | 2008-09-10 | STMicroelectronics S.r.l. | Procédé de réalisation de micro-canaux dans une structure intégrée |
US20050118832A1 (en) * | 2003-12-01 | 2005-06-02 | Korzenski Michael B. | Removal of MEMS sacrificial layers using supercritical fluid/chemical formulations |
EP1541991A1 (fr) * | 2003-12-12 | 2005-06-15 | STMicroelectronics S.r.l. | Réacteur chimique integré de matériel semiconducteur pour la surveillance des réactions biologiques en temps réel |
DE102004043356A1 (de) * | 2004-09-08 | 2006-03-09 | Robert Bosch Gmbh | Sensorelement mit getrenchter Kaverne |
EP2096448B1 (fr) * | 2005-01-25 | 2016-01-20 | STMicroelectronics Srl | Procédé de fabrication d'un dispositif de surveillance de la pression doté d'un accéléromètre piézorésistif triaxial |
DE102005007540A1 (de) | 2005-02-18 | 2006-08-31 | Robert Bosch Gmbh | Mikromechanischer Membransensor mit Doppelmembran |
EP1719993A1 (fr) * | 2005-05-06 | 2006-11-08 | STMicroelectronics S.r.l. | Capteur de pression différentiel integré et procédé pour son fabrication |
US7425507B2 (en) * | 2005-06-28 | 2008-09-16 | Micron Technology, Inc. | Semiconductor substrates including vias of nonuniform cross section, methods of forming and associated structures |
US7439093B2 (en) * | 2005-09-16 | 2008-10-21 | Dalsa Semiconductor Inc. | Method of making a MEMS device containing a cavity with isotropic etch followed by anisotropic etch |
CN100407366C (zh) * | 2005-10-13 | 2008-07-30 | 探微科技股份有限公司 | 制作腔体的方法与缩减微机电元件的尺寸的方法 |
DE602007007198D1 (de) | 2006-03-30 | 2010-07-29 | Sonion Mems As | Akustischer einchip-mems-wandler und herstellungsverfahren |
DE102006016811A1 (de) | 2006-04-10 | 2007-10-11 | Robert Bosch Gmbh | Verfahren zur Herstellung eines mikromechanischen Bauelements |
US7628932B2 (en) * | 2006-06-02 | 2009-12-08 | Micron Technology, Inc. | Wet etch suitable for creating square cuts in si |
US7709341B2 (en) * | 2006-06-02 | 2010-05-04 | Micron Technology, Inc. | Methods of shaping vertical single crystal silicon walls and resulting structures |
US20080019543A1 (en) | 2006-07-19 | 2008-01-24 | Yamaha Corporation | Silicon microphone and manufacturing method therefor |
US7786014B2 (en) * | 2006-09-22 | 2010-08-31 | Ipdia | Electronic device and method for making the same |
US7607355B2 (en) * | 2007-02-16 | 2009-10-27 | Yamaha Corporation | Semiconductor device |
ITTO20070190A1 (it) * | 2007-03-14 | 2008-09-15 | St Microelectronics Srl | Procedimento di fabbricazione di una membrana di materiale semiconduttore integrata in, ed isolata elettricamente da, un substrato |
DE102007026450A1 (de) | 2007-06-06 | 2008-12-11 | Robert Bosch Gmbh | Sensor mit Nut zur mechanischen Stress Reduzierung und Verfahren zur Herstellung des Sensors |
FR2932923B1 (fr) * | 2008-06-23 | 2011-03-25 | Commissariat Energie Atomique | Substrat heterogene comportant une couche sacrificielle et son procede de realisation. |
DE102008040597A1 (de) * | 2008-07-22 | 2010-01-28 | Robert Bosch Gmbh | Mikromechanisches Bauelement mit Rückvolumen |
US8263986B2 (en) * | 2009-07-02 | 2012-09-11 | The Royal Institution For The Advancement Of Learning/Mcgill University | Optically interrogated solid state biosensors incorporating porous materials—devices |
US8425787B2 (en) * | 2009-08-26 | 2013-04-23 | Hewlett-Packard Development Company, L.P. | Inkjet printhead bridge beam fabrication method |
-
2008
- 2008-07-22 DE DE102008040597A patent/DE102008040597A1/de not_active Ceased
-
2009
- 2009-06-03 EP EP09779612A patent/EP2308243A1/fr not_active Withdrawn
- 2009-06-03 WO PCT/EP2009/056774 patent/WO2010009934A1/fr active Application Filing
- 2009-06-03 CN CN200980128720.3A patent/CN102106161B/zh active Active
- 2009-06-03 US US12/737,521 patent/US8692339B2/en active Active
Non-Patent Citations (1)
Title |
---|
See references of WO2010009934A1 * |
Also Published As
Publication number | Publication date |
---|---|
CN102106161A (zh) | 2011-06-22 |
WO2010009934A1 (fr) | 2010-01-28 |
CN102106161B (zh) | 2014-06-04 |
US8692339B2 (en) | 2014-04-08 |
US20110198713A1 (en) | 2011-08-18 |
DE102008040597A1 (de) | 2010-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102012206531B4 (de) | Verfahren zur Erzeugung einer Kavität innerhalb eines Halbleitersubstrats | |
EP2308243A1 (fr) | Composant micromécanique avec volume postérieur | |
DE102008002332B4 (de) | Verfahren zur Herstellung einer mikromechanischen Membranstruktur mit Zugang von der Substratrückseite | |
EP3143777A1 (fr) | Haut-parleur mems comprenant une structure d'actionnement et une membrane espacée de celle-ci | |
DE102010000888A1 (de) | Verfahren zum Ausbilden von Gräben in einem Halbleiterbauelement | |
DE102009026682A9 (de) | Bauelement mit einer mikromechanischen Mikrofonstruktur und Verfahren zu dessen Herstellung | |
DE102013208825A1 (de) | Mikrostrukturbauelement und Verfahren zur Herstellung eines Mikrostrukturbauelements | |
DE102012219465A1 (de) | Verfahren zum Herstellen einer Kappe für ein MEMS-Bauelement und hybrid integriertes Bauteil mit einer solchen Kappe | |
DE102013209479B4 (de) | Verfahren zur Verarbeitung eines Wafers an unmaskierten Bereichen und zuvor maskierten Bereichen zur Reduzierung einer Waferdicke | |
DE102005055473A1 (de) | Mikromechanische Vorrichtung und Verfahren zur Herstellung einer mikromechanischen Vorrichtung | |
DE102010061795A1 (de) | Verfahren zum Erzeugen einer mikromechanischen Membranstruktur und MEMS-Bauelement | |
DE102020108433B4 (de) | Vorrichtung mit einer Membran und Herstellungsverfahren | |
EP2019812B1 (fr) | Procédé de fabrication d'un élément micromécanique ayant une membrane et élément micromécanique | |
DE102010061782B4 (de) | Verfahren zum Herstellen eines mikromechanischen Bauelements | |
DE10316777B4 (de) | Verfahren zum Erzeugen einer Schutzabdeckung für ein Bauelement | |
WO2010060684A2 (fr) | Procédé de fabrication d'un composant micromécanique, composant micromécanique fabriqué selon ce procédé et son utilisation | |
DE102014108740B4 (de) | MEMS-Mikrofon mit verbesserter Empfindlichkeit und Verfahren zur Herstellung | |
WO2018041498A1 (fr) | Composant micromécanique à deux membranes et procédé de fabrication d'un composant micromécanique à deux membranes | |
DE102017207111A1 (de) | Verfahren zum Herstellen eines mikromechanischen Inertialsensors | |
DE102005055478A1 (de) | Mikromechanische Struktur zum Empfang und/oder zur Erzeugung von akustischen Signalen, Verfahren zur Herstellung einer mikromechanischen Struktur und Verwendung einer mikromechanischen Struktur | |
EP1762542A2 (fr) | Element d'un capteur microméchanique et son procédé de réalisation | |
DE102017206777A1 (de) | MEMS-Mikrofon sowie Herstellungsverfahren | |
DE10221660B4 (de) | Verfahren zur Herstellung eines mikromechanischen, kapazitiven Wandlers | |
EP2522153B1 (fr) | Composant avec une structure de microphone micromécanique et procédé de fabrication d'un tel composant | |
EP3737637B1 (fr) | Dispositif mems comportant substrat intercalaire et procédé de fabrication correspondant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20110222 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20160218 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20160629 |