EP2300357A1 - Niedrigenergie-verfahren zur herstellung von ammoniak oder methanol - Google Patents

Niedrigenergie-verfahren zur herstellung von ammoniak oder methanol

Info

Publication number
EP2300357A1
EP2300357A1 EP09800005A EP09800005A EP2300357A1 EP 2300357 A1 EP2300357 A1 EP 2300357A1 EP 09800005 A EP09800005 A EP 09800005A EP 09800005 A EP09800005 A EP 09800005A EP 2300357 A1 EP2300357 A1 EP 2300357A1
Authority
EP
European Patent Office
Prior art keywords
steam
supercritical steam
supercritical
steam generator
superheater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09800005A
Other languages
English (en)
French (fr)
Inventor
Dennis Lippmann
Joachim Johanning
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Industrial Solutions AG
Original Assignee
Uhde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uhde GmbH filed Critical Uhde GmbH
Priority to EP09800005A priority Critical patent/EP2300357A1/de
Publication of EP2300357A1 publication Critical patent/EP2300357A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/025Preparation or purification of gas mixtures for ammonia synthesis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1838Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines the hot gas being under a high pressure, e.g. in chemical installations
    • F22B1/1846Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines the hot gas being under a high pressure, e.g. in chemical installations the hot gas being loaded with particles, e.g. waste heat boilers after a coal gasification plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/007Control systems for waste heat boilers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • C01B2203/0288Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step containing two CO-shift steps
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/061Methanol production
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/068Ammonia synthesis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • C01B2203/0888Methods of cooling by evaporation of a fluid
    • C01B2203/0894Generation of steam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the invention relates to a process for utilizing synthesis gas heat for the generation of supercritical steam in a low energy ammonia or methanol plant and to the apparatus suitable for operating that process, hereby achieving energy savings and overall cost advantages, i.e. better process economics.
  • the invention integrates a method for the generation of supercritical steam in a way which will prevent metal dusting corrosion on the tubes of the steam generator.
  • the temperature of the supercritical steam is getting controlled and kept constant by the adjustment of the feedwater flow to the supercritical steam generator.
  • Synthesis gases contain different amounts of carbon monoxide, carbon dioxide and hydrogen. They are generated either out of coal, heavy fuel oil or similar feedstocks by gasification or via steam reforming of hydrocarbon fuels such as natural gas or naphtha. Synthesis gases are used for example as intermediates for the production of methanol or ammonia in industry.
  • Synthesis gas production can be realized in several ways utilising the two basic steps partial oxidation and steam reforming either separately or in sequence.
  • the most widely used method is the combination of the endothermic steam reforming reaction in a primary reformer followed by the exothermal partial oxidation plus again an endothermic reforming reaction step in a secondary reformer.
  • process schemes partly bypassing the endothermic reforming step have been proposed.
  • the reforming steps are carried out over special catalysts.
  • entirely endothermal steam reforming without a secondary reforming step as well as entirely autothermal reforming, i.e. exothermal partial oxidation plus an endothermic reforming reaction step in a vessel similar to a secondary reformer are feasible options.
  • the energy consumption of ammonia and methanol plants is fairly high due to the energy requirements of the reforming reaction to generate the synthesis gas and the compression energy required for the ammonia or methanol synthesis at elevated pressures.
  • the waste heat from the reforming section in ammonia or methanol plants is used to generate steam which is utilized in the turbines of the compressor drives according to the Clausius-Rankine cycle.
  • the conventional steam systems usually employ the following three expensive pieces of equipment in this section: a boiler with the higher steam cycle pressure on the shell side and a steam drum plus a steam superheater. Due to the insufficient metal dusting corrosion resistance of all known materials full superheating of the steam is not possible in the process gas line. Hence, at least one additional superheater utilizing flue gas heat from either a reformer waste gas section or a fired heater has to be positioned in the steam line to achieve reasonable thermodynamic efficiency.
  • each compressor is driven by its own single casing steam turbine.
  • the turbines are specifically designed to run at relatively high speed, thus eliminating the necessity of gearboxes, at least for the low-pressure casings of the compressors.
  • gearboxes As the mechanical outputs of the turbines have to match the power demands of the individual compressors, their respective steam consumptions are thus also specified.
  • the steam systems further have to provide process steam to the reformers at appropriate pressure levels. These typically medium pressure levels are fixed by the operating pressures of the respective synthesis gas preparation sections. To provide the amounts of steam required, usually steam is extracted from the larger turbines at the respective pressure levels. These extraction capabilities complicate turbine design and lead to comparatively expensive machines in common plants. [0009]
  • the object of the invention therefore is to provide a process which is both energy saving and cost-effective and which integrates a method for the generation of supercritical steam of the optimum temperature and pressure, enabling the problems of metal dusting corrosion of the steam generator tubes to be circumvented as described above. It is also the object of the invention to provide the apparatus suitable for operating such a process. '
  • a process for utilizing synthesis gas heat for the generation of supercritical steam in a low-energy ammonia or methanol plant comprising a reforming or partial oxidation stage, at least one supercritical steam generator, at least one superheater, at least one back pressure turbine, at least one extraction and condensing turbine, and at least one boiler feedwater pump.
  • synthesis gas is synthesized in the reforming or partial oxidation stage and a supercritical steam generator is used for heat recovery.
  • the synthesized synthesis gas is sent to the shell side of the supercritical steam generator, the supercritical steam generator is fed with pressurized feedwater, the feedwater flow is adjusted to maintain the steam temperature at the exit of the supercritical steam generator in the range of 375 - 500 0 C to prevent the onset of metal dusting corrosion the exact temperature value depending on the composition of the process gas and the steam generator design, the supercritical steam is generated in the supercritical steam generator at a pressure of 225 - 450 bar, the supercritical steam is further heated in a superheater to a temperature of 500 - 750 0 C, and the supercritical steam exiting the superheater is fed to a back pressure turbine.
  • the reforming or partial oxidation stage where the synthesis gas is produced is selected from a group comprising a primary reformer, a primary and secondary reformer combination, a gas-heated reformer, an autothermal reformer, a partial oxidation chamber, a membrane reactor with oxygen transport membranes, a catalytic POx, or a combination of these.
  • the inlet temperature on the process side is recommended to be in the range of 550 - 1100 0 C and depends on the nature of the reforming or partial oxidation stage installed in the plant. Since a definite amount of heat is provided by the process gas, both feedwater flowrate and inlet temperature to the steam generator determine the critical steam outlet temperature.
  • the temperature of the supercritical steam leaving the supercritical steam generator is kept constant and can be optionally adjusted via a speed- controllable feedwater pump. Unlike prior art where only subcritical steam parameters are implemented, the higher temperature and pressure of supercritical steam allow for a higher efficiency according to the Carnot cycle.
  • Further embodiments according to the present invention are related to the back pressure turbine that extracts thermal energy from the pressurized steam and converts it into mechanical work.
  • the process can be designed in a way that the back pressure turbine is the sole driver of either the process air compressor or the synthesis gas compressor.
  • the supercritical steam is reduced to a steam pressure level of 100 - 130 bar in the back pressure turbine, then it is mixed with saturated high-pressure steam produced by a steam boiler in the ammonia and methanol synthesis section and is further superheated. This steam is then fed to a conventional high pressure steam turbine with medium pressure steam extraction and condensing part.
  • the outlet pressure level of the back pressure turbine can be identical to the regular medium pressure steam level.
  • regular medium pressure steam level is somewhat higher than the process pressure level of the synthesis gas generation to be able to provide steam to the process.
  • the outlet pressure level of the back pressure turbine does not necessarily have to be equal to the regular medium pressure steam level of the plant but can be positioned between the high pressure pressure steam level and the medium pressure steam level. This way, a higher pressure synthesis gas generation can be supplied with steam in an economic way without affecting the regular medium pressure steam level for other turbines.
  • the described process for utilizing synthesis gas heat for the generation of supercritical steam in a low energy ammonia or methanol plant is to be operated in a set of apparatus comprising a reforming or partial oxidation stage, at least one supercritical steam generator, at least one superheater for supercritical steam, a temperature measuring device downstream of the supercritical steam generator, at least one back pressure turbine, at least one extraction and condensing turbine, at least one boiler feedwater pump, a means for feeding the synthesized synthesis gas to the shell side of the supercritical steam generator, a means for conveying the pressurized feedwater to the supercritical steam generator, a means for adjusting the feedwater flow to keep a constant supercritical steam temperature at the exit of the supercritical steam generator, a means for conveying the supercritical steam produced in the supercritical steam generator to a superheater, and a means for conveying the superheated steam to a back pressure turbine.
  • a further option of the apparatus is that the supercritical steam generator is designed with a vertical tube bundle.
  • a further option of the apparatus is that it additionally comprises a means for connecting the temperature measuring device to a speed-controllable feedwater pump. [0017] A further option of the apparatus is that it comprises a superheater upstream of the back pressure turbine which is located in the convection section of the primary reformer or as an alternative in a fired heater.
  • An alternative option of the apparatus is that it comprises a superheater located upstream of the extraction and condensing turbine which is designed as a reformer convection section or a fired heater coil.
  • An alternative option of the apparatus is that it additionally comprises a means for combining the saturated high pressure steam coming from a steam boiler in the synthesis section with the steam out of the back pressure turbine and conveying the joint flow to a common superheater.
  • a further option of the apparatus is that it comprises a means for combining the steam flow from the back pressure turbine and the steam extracted from the extraction and condensing turbine.
  • a further option of the apparatus is that it comprises a supercritical steam generator in the synthesis gas line that is on the steam side as well as on the synthesis gas side followed by a supercritical steam generator.
  • a further option of the apparatus is that it comprises a high temperature CO- shift converter that is arranged between the supercritical team generator and the supercritical team superheater in the synthesis gas line.
  • FIG. 1 to 4 show block diagrams exemplifying different ways of employing the described process for utilizing synthesis gas heat for the generation of supercritical steam in a low energy ammonia or methanol plant.
  • the block diagram in Fig. 1 shows a reforming or partial oxidation stage (1) in which synthesis gas is produced.
  • This stage is selected from a group comprising a primary reformer, a primary and secondary reformer combination, a gas-heated reformer, an autothermal reformer, a partial oxidation chamber, a membrane reactor with oxygen transport membranes, a catalytic POX 1 or a combination of these.
  • the generated synthesis gas (2) is conveyed to the shell side of a supercritical steam generator (3).
  • the feedwater flow (4) is preheated (5, 6) and pressurized (7, 8) before entering the supercritical steam generator (3).
  • the gas (9) leaving the supercritical steam generator 1 is further processed in one or more CO-shift units (10, 11).
  • heating of the preheaters (5, 6) is achieved by using the waste heat (12, 30) of the CO-shift reactors (10, 11).
  • the generated supercritical steam (13) is sent to a superheater (14) that is located in the convection section of the primary reformer or in a fired heater.
  • the temperature of the supercritical steam is controlled via a temperature measuring device (15) that is connected to a speed- controllable feedwater pump (7) to adjust the feedwater flow (4) of the supercritical steam generator (3) in order to keep the supercritical steam temperature at a constant level.
  • the further heated supercritical steam (16) from the superheater (14) is fed to a back pressure turbine (17).
  • the expanded steam (18) from the back pressure turbine (17) is mixed with saturated high pressure steam (19) produced by a steam boiler in the ammonia or methanol synthesis section (20) and is further superheated in a superheater (21).
  • This superheater (21) can be designed as a reformer convection section or a fired heater coil.
  • the superheated steam (22) is then fed into an extraction and condensing turbine (23).
  • connection (24) may serve to control the supercritical steam temperature by adjusting the flow of the feedwater (4) of the supercritical steam generator (3) automatically but it may also be omitted and the flow of the feedwater is controlled by other means.
  • an option is to divide the feedwater flow into two parts. Part 1 is sent to the synthesis section and part 2 (4) is used to feed the supercritical steam generator with feedwater which can be further pressurized (7) and preheated (5) before entering the supercritical steam generator (3).
  • Fig. 1 shows a process configuration in which the saturated high pressure steam (19) coming from a steam boiler in the synthesis section (20) is combined with the steam (18) generated in the back pressure turbine (17) and the joint flow is conveyed to a common superheater (21).
  • the process can also be configured in a way that only one of the streams (18) and (19) is superheated in a reformer convection coil while the other one is superheated in a fired heater coil and both streams are then combined after being superheated individually.
  • FIG. 2 shows a variation of this process where the saturated high pressure steam (19) coming from a steam boiler in the synthesis section (20) is heated in the superheater (21) and fed into the extraction and condensing turbine (23).
  • the supercritical steam (16) is fed into the back pressure turbine (17) where it is expanded.
  • the steam outlet of the back pressure turbine (27) and the extraction steam (28) of the extraction and condensing turbine are combined (29) for further application.
  • Fig. 3 shows an additional variation of the processes described in Figs. 1 and 2.
  • the process described in Fig. 3 is equal to the one outlined in Fig. 2 up to the point where it comes to the combination of the resulting streams out from the back pressure turbine (27) and from the extraction and condensing turbine (28).
  • these two streams (27, 28) remain separately.
  • Disconnecting the back pressure level (27) from the regular medium pressure steam level (29) allows a different operating pressure of the reforming or partial oxidation stage (1), e. g. for high pressure steam reforming or high pressure autothermal reforming.
  • the high efficiency of the extraction and condensing turbine (23) and other turbines operating on the medium pressure steam level (29) is retained despite the higher process steam pressure.
  • Figs. 1 to 3 represent plant concepts which are designated for maximum power generation.
  • the plants are not balanced with respect to their own power demands, i.e. will have considerable steam export. This is not always desirable as there are many locations, where no suitable consumers are to be found in the vicinity. In such cases a balanced plant is the preferred option.
  • Such a scheme is provided by the variation of the invention shown in Fig. 4.
  • the generated synthesis gas (2) is again conveyed to a supercritical steam generator (3).
  • the supercritical feedwater flow (4) is coming directly from the supercritical feedwater pump (7).
  • the supercritical steam (31) generated in (3) is now conveyed to an additional superheater (32) in the synthesis gas line (33), where part of the superheating is conducted.
  • the exit stream (13) then enters the usual superheater (14) for final conditioning.
  • the synthesis gas (33) leaving the supercritical steam generator 1 (3) is passed on to the superheater (32).
  • the high temperature CO-shift converter (10) can be positioned in line (33). The conversion step in this location significantly lowers the CO-content of the synthesis gas, thus reducing its metal dusting aggressiveness accordingly. This allows higher metal temperatures in superheater (32) and a higher preheating temperature for the supercritical steam (13).
  • the process variation presented in Fig. 4 can be combined with the variations shown in Figs 1 to 3, thus offering full flexibility to adjust the steam cycle to the requirements of the process and the available heat sources.
  • the comparison is based on a combined power output of 60 MW for all turbines. This figure is in the order of todays world scale ammonia and methanol plants. Also, a steam flowrate of 120 t/h at 45 bar and 430 °C as process steam for the reforming stage is assumed.
  • Table 1 shows further process data used in this comparison as well as the results.
  • the table illustrates the marked difference in heat input required between the conventional steam system and the proposed new process variation utilizing the supercritical steam system.
  • the table also lists the resulting differences in annual operating costs based on an energy price of 4 €/GJ.
EP09800005A 2008-07-22 2009-07-03 Niedrigenergie-verfahren zur herstellung von ammoniak oder methanol Withdrawn EP2300357A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09800005A EP2300357A1 (de) 2008-07-22 2009-07-03 Niedrigenergie-verfahren zur herstellung von ammoniak oder methanol

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08013158A EP2147896A1 (de) 2008-07-22 2008-07-22 Niedrigenergie-Verfahren zur Herstellung von Ammoniak oder Methanol
PCT/EP2009/004812 WO2010009802A1 (en) 2008-07-22 2009-07-03 Low energy process for the production of ammonia or methanol
EP09800005A EP2300357A1 (de) 2008-07-22 2009-07-03 Niedrigenergie-verfahren zur herstellung von ammoniak oder methanol

Publications (1)

Publication Number Publication Date
EP2300357A1 true EP2300357A1 (de) 2011-03-30

Family

ID=40227587

Family Applications (2)

Application Number Title Priority Date Filing Date
EP08013158A Withdrawn EP2147896A1 (de) 2008-07-22 2008-07-22 Niedrigenergie-Verfahren zur Herstellung von Ammoniak oder Methanol
EP09800005A Withdrawn EP2300357A1 (de) 2008-07-22 2009-07-03 Niedrigenergie-verfahren zur herstellung von ammoniak oder methanol

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP08013158A Withdrawn EP2147896A1 (de) 2008-07-22 2008-07-22 Niedrigenergie-Verfahren zur Herstellung von Ammoniak oder Methanol

Country Status (10)

Country Link
US (1) US20110120127A1 (de)
EP (2) EP2147896A1 (de)
CN (1) CN102099283B (de)
BR (1) BRPI0916369A2 (de)
CA (1) CA2731306C (de)
EG (1) EG26693A (de)
MX (1) MX2011000820A (de)
MY (1) MY158120A (de)
RU (1) RU2461516C1 (de)
WO (1) WO2010009802A1 (de)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9561476B2 (en) 2010-12-15 2017-02-07 Praxair Technology, Inc. Catalyst containing oxygen transport membrane
US9486735B2 (en) 2011-12-15 2016-11-08 Praxair Technology, Inc. Composite oxygen transport membrane
WO2013089895A1 (en) 2011-12-15 2013-06-20 Praxair Technology, Inc. Composite oxygen transport membrane
CN102679314B (zh) * 2012-06-04 2014-01-29 上海迪吉特控制系统有限公司 超临界锅炉动态加速前馈的自适应校正方法
US9969645B2 (en) 2012-12-19 2018-05-15 Praxair Technology, Inc. Method for sealing an oxygen transport membrane assembly
US9453644B2 (en) 2012-12-28 2016-09-27 Praxair Technology, Inc. Oxygen transport membrane based advanced power cycle with low pressure synthesis gas slip stream
US9611144B2 (en) 2013-04-26 2017-04-04 Praxair Technology, Inc. Method and system for producing a synthesis gas in an oxygen transport membrane based reforming system that is free of metal dusting corrosion
US9296671B2 (en) 2013-04-26 2016-03-29 Praxair Technology, Inc. Method and system for producing methanol using an integrated oxygen transport membrane based reforming system
US9212113B2 (en) 2013-04-26 2015-12-15 Praxair Technology, Inc. Method and system for producing a synthesis gas using an oxygen transport membrane based reforming system with secondary reforming and auxiliary heat source
US9938145B2 (en) 2013-04-26 2018-04-10 Praxair Technology, Inc. Method and system for adjusting synthesis gas module in an oxygen transport membrane based reforming system
US9023245B2 (en) * 2013-04-26 2015-05-05 Praxair Technology, Inc. Method and system for producing a synthesis gas using an oxygen transport membrane based reforming system with secondary reforming
US9486765B2 (en) 2013-10-07 2016-11-08 Praxair Technology, Inc. Ceramic oxygen transport membrane array reactor and reforming method
WO2015054363A2 (en) 2013-10-08 2015-04-16 Praxair Technology, Inc. System method for temperature control in an oxygen transport membrane based reactor
CN105764842B (zh) 2013-12-02 2018-06-05 普莱克斯技术有限公司 使用具有二段转化的基于氧转运膜的重整系统生产氢气的方法和系统
WO2015123246A2 (en) 2014-02-12 2015-08-20 Praxair Technology, Inc. Oxygen transport membrane reactor based method and system for generating electric power
WO2015160609A1 (en) 2014-04-16 2015-10-22 Praxair Technology, Inc. Method and system for oxygen transport membrane enhanced integrated gasifier combined cycle (igcc)
WO2016057164A1 (en) 2014-10-07 2016-04-14 Praxair Technology, Inc Composite oxygen ion transport membrane
AU2016281723B2 (en) * 2015-06-26 2021-06-24 The Regents Of The University Of California High temperature synthesis for power production and storage
US10441922B2 (en) 2015-06-29 2019-10-15 Praxair Technology, Inc. Dual function composite oxygen transport membrane
US10118823B2 (en) 2015-12-15 2018-11-06 Praxair Technology, Inc. Method of thermally-stabilizing an oxygen transport membrane-based reforming system
US9938146B2 (en) 2015-12-28 2018-04-10 Praxair Technology, Inc. High aspect ratio catalytic reactor and catalyst inserts therefor
CA3019320A1 (en) 2016-04-01 2017-10-05 Praxair Technology, Inc. Catalyst-containing oxygen transport membrane
RU2663167C2 (ru) * 2016-08-23 2018-08-01 Общество с ограниченной ответственностью "Оргнефтехим-Холдинг" Способ совместного производства аммиака и метанола
DE102016011657A1 (de) * 2016-09-27 2018-03-29 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Dampfreformierung
US10465562B2 (en) * 2016-11-01 2019-11-05 General Electric Technology Gmbh System and method for providing supercritical steam
CN108661730A (zh) * 2017-03-30 2018-10-16 中石化广州工程有限公司 一种利用重整装置余热发电的方法及装置
EP3797085A1 (de) 2018-05-21 2021-03-31 Praxair Technology, Inc. Otm-synthesegaspaneel mit gasbeheiztem reformer
CN114060216A (zh) * 2021-11-25 2022-02-18 西安热工研究院有限公司 一种基于合成氨的压缩气体储能和化学储能方法及系统

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1958033A1 (de) * 1969-11-19 1971-06-03 Metallgesellschaft Ag Erzeugung von Wasserstoff oder Ammoniaksynthesegas bei mittlerem Durck
DE2024301C3 (de) * 1970-05-19 1974-07-04 Metallgesellschaft Ag, 6000 Frankfurt Verfahren zur Herstellung von Methanol
US3705009A (en) * 1970-06-12 1972-12-05 Grace W R & Co Heat recycling for ammonia preparation
US3904386A (en) * 1973-10-26 1975-09-09 Us Interior Combined shift and methanation reaction process for the gasification of carbonaceous materials
ZA751143B (en) * 1974-03-16 1976-01-28 Uhde Gmbh Friedrich Control system for steam flowrate and steam pressure
US4315893A (en) * 1980-12-17 1982-02-16 Foster Wheeler Energy Corporation Reformer employing finned heat pipes
US4372124A (en) * 1981-03-06 1983-02-08 Air Products And Chemicals, Inc. Recovery of power from the vaporization of natural gas
US4476683A (en) * 1982-12-20 1984-10-16 General Electric Company Energy efficient multi-stage water gas shift reaction
US4725380A (en) * 1984-03-02 1988-02-16 Imperial Chemical Industries Plc Producing ammonia synthesis gas
FR2698659B1 (fr) * 1992-12-02 1995-01-13 Stein Industrie Procédé de récupération de chaleur en particulier pour cycles combinés appareillage pour la mise en Óoeuvre du procédé et installation de récupération de chaleur pour cycle combiné.
UA66957C2 (uk) * 2000-03-03 2004-06-15 Process Man Enterprises Ltd Спосіб виробництва аміаку та апарат для його здійснення
ATE556987T1 (de) * 2000-03-22 2012-05-15 Ammonia Casale Sa Verfahren zur kohlenwasserstoffreformierung
EP1377730B1 (de) * 2001-04-09 2010-03-24 ALSTOM Technology Ltd Dampfkraftwerk mit nachrüstsatz und verfahren zum nachrüsten eines dampfkraftwerks
US6695983B2 (en) * 2001-04-24 2004-02-24 Praxair Technology, Inc. Syngas production method utilizing an oxygen transport membrane
US20030039601A1 (en) * 2001-08-10 2003-02-27 Halvorson Thomas Gilbert Oxygen ion transport membrane apparatus and process for use in syngas production
US20030213246A1 (en) * 2002-05-15 2003-11-20 Coll John Gordon Process and device for controlling the thermal and electrical output of integrated micro combined heat and power generation systems
MY128179A (en) * 2001-10-05 2007-01-31 Shell Int Research System for power generation in a process producing hydrocarbons
US20030162846A1 (en) * 2002-02-25 2003-08-28 Wang Shoou-L Process and apparatus for the production of synthesis gas
CA2511342C (en) * 2002-09-10 2012-11-06 Manufacturing And Technology Conversion International, Inc. Steam reforming process and apparatus
EP1445429A1 (de) * 2003-02-07 2004-08-11 Elsam Engineering A/S Dampfturbinensystem
DE102004049076A1 (de) 2004-10-08 2006-04-13 Uhde Gmbh Verfahren zur Erzeugung von Synthesegas für eine Ammoniakanlage
US20060228284A1 (en) * 2005-04-11 2006-10-12 Schmidt Craig A Integration of gasification and ammonia production
EP1775430A1 (de) * 2005-10-17 2007-04-18 Siemens Aktiengesellschaft Dampfkraftwerk sowie Verfahren zum Nachrüsten eines Dampfkraftwerks
US20070256361A1 (en) * 2006-05-08 2007-11-08 Alchemix Corporation Method for the gasification of hydrocarbon feedstocks
EP1998014A3 (de) * 2007-02-26 2008-12-31 Siemens Aktiengesellschaft Verfahren zum Betreiben einer mehrstufigen Dampfturbine
US8118895B1 (en) * 2007-03-30 2012-02-21 Bechtel Power Corporation Method and apparatus for refueling existing natural gas combined cycle plant as a non-integrated gasification combined cycle plant
US8186161B2 (en) * 2007-12-14 2012-05-29 General Electric Company System and method for controlling an expansion system
US8182771B2 (en) * 2009-04-22 2012-05-22 General Electric Company Method and apparatus for substitute natural gas generation
EP2301886A1 (de) * 2009-09-03 2011-03-30 Ammonia Casale S.A. Abwärmerückgewinnung in einem chemischen Prozess und Anlage, insbesondere zur Synthese von Ammoniak

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010009802A1 *

Also Published As

Publication number Publication date
CN102099283A (zh) 2011-06-15
WO2010009802A1 (en) 2010-01-28
EG26693A (en) 2014-06-11
BRPI0916369A2 (pt) 2018-05-29
CN102099283B (zh) 2013-03-20
MX2011000820A (es) 2011-04-14
US20110120127A1 (en) 2011-05-26
MY158120A (en) 2016-08-30
EP2147896A1 (de) 2010-01-27
CA2731306A1 (en) 2010-12-08
CA2731306C (en) 2016-04-26
RU2461516C1 (ru) 2012-09-20

Similar Documents

Publication Publication Date Title
CA2731306C (en) Low energy process for the production of ammonia or methanol
CA2472326C (en) Process for the production of hydrocarbons
EP2110425B1 (de) Verfahren und Anlage zur Erdgassubstitution
EP2473439B1 (de) Abwärmerückgewinnung in einem chemischen prozess und anlage, insbesondere zur synthese von ammoniak
US20070033949A1 (en) Electricity and synthesis gas generation method
AU2002367448A1 (en) Process for the production of hydrocarbons
EP2957544A1 (de) Verfahren zur Herstellung von Ammoniak und Derivaten, insbesondere von Harnstoff
WO2010102981A1 (en) A process for synthesis of methanol
US20230339747A1 (en) Syngas stage for chemical synthesis plant
US20090241551A1 (en) Cogeneration of Hydrogen and Power
KR102593782B1 (ko) 석유코크스 합성가스화 공정 중 수성가스전환반응을 통한 고순도 수소생산 시스템
RU2663167C2 (ru) Способ совместного производства аммиака и метанола
WO2022248406A1 (en) Process and plant for the production of synthesis gas and generation of process condensate
CA3165966A1 (en) Reforming process integrated with gas turbine generator
CN105377750A (zh) 在基于氧气输送膜的转化系统内生产合成气的方法和系统
JP2006022687A (ja) 合成ガス製造兼発電装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101215

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THYSSENKRUPP UHDE GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THYSSENKRUPP INDUSTRIAL SOLUTIONS AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C01B 3/02 20060101ALI20160315BHEP

Ipc: C01B 3/34 20060101ALI20160315BHEP

Ipc: F22B 35/00 20060101ALI20160315BHEP

Ipc: F22B 1/18 20060101ALI20160315BHEP

Ipc: F01K 7/22 20060101AFI20160315BHEP

INTG Intention to grant announced

Effective date: 20160401

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160812