EP2293891B1 - Mould for casting metal - Google Patents

Mould for casting metal Download PDF

Info

Publication number
EP2293891B1
EP2293891B1 EP09768964.0A EP09768964A EP2293891B1 EP 2293891 B1 EP2293891 B1 EP 2293891B1 EP 09768964 A EP09768964 A EP 09768964A EP 2293891 B1 EP2293891 B1 EP 2293891B1
Authority
EP
European Patent Office
Prior art keywords
module
mould
temperature measuring
recess
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09768964.0A
Other languages
German (de)
French (fr)
Other versions
EP2293891A1 (en
Inventor
Stephan Schulze
Dirk Lieftucht
Uwe Plociennik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Group GmbH
Original Assignee
SMS Siemag AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMS Siemag AG filed Critical SMS Siemag AG
Publication of EP2293891A1 publication Critical patent/EP2293891A1/en
Application granted granted Critical
Publication of EP2293891B1 publication Critical patent/EP2293891B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • B22D11/181Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level
    • B22D11/182Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level by measuring temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/20Controlling or regulating processes or operations for removing cast stock
    • B22D11/201Controlling or regulating processes or operations for removing cast stock responsive to molten metal level or slag level
    • B22D11/202Controlling or regulating processes or operations for removing cast stock responsive to molten metal level or slag level by measuring temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D2/00Arrangement of indicating or measuring devices, e.g. for temperature or viscosity of the fused mass
    • B22D2/006Arrangement of indicating or measuring devices, e.g. for temperature or viscosity of the fused mass for the temperature of the molten metal

Definitions

  • thermocouples individually in each case provided for them individual holes in the mold.
  • the individual thermocouples are pressed with a spring force against the bottom of the hole to ensure there the contact of their measuring points with the mold material.
  • the thermocouples are inserted into the mold plate at different depths. This is particularly useful for determining the heat flux density in the mold plate.
  • the invention has the object, a known mold for casting metal with a plurality of temperature measuring devices to the effect that the cost of installation of the plurality of temperature measuring devices is reduced, but at the same time a high reliability and validity of the knife is maintained.
  • the wall of the mold has a recess for receiving the structural unit. It should be noted that the best possible heat transfer between the structural unit and the material of the mold is guaranteed. On the one hand, it is important for the depth of the recess to be matched to the depth or height of the module and, in particular, for the best possible large area between the base or the wall of the recess in the mold and the surface of the module or the measuring tips of the measuring devices Contact is formed to ensure optimum heat transfer between the module and mold wall. The heat transfer can be improved, for example, by the use of a thermal grease, which, however, must withstand the high temperatures that occur in the mold during casting in the mold.
  • the structural unit is e.g. from the cold side into a wall of the mold or mounted on this: So that the structural unit does not affect the flow of coolant in the cooling channels of the mold wall, the structural unit is mounted in this case between two adjacent cooling channels.
  • the recess for the structural unit as a lateral, preferably horizontal, hole in the wall of the mold between the hot side and the bottom of the cooling channels is formed.
  • the recess after installation of the structural unit is closed by a plate-shaped cover, preferably flush with the outer surface of the wall of the mold again. Then a heat flow through the cover is possible.
  • the module or the structural unit and the recess in the cold side of the mold are preferably in the thickness direction of the mold wall, i. transverse to the casting direction or from the cold to the hot side, stepped.
  • the grading advantageously ensures a stabilization of the module or the structural unit in the mold against tilting.
  • Temperaturmess Rosaceas
  • the temperature measuring device is arranged in the temperature measuring device recess such that its measuring tip or its measuring tips makes contact with the base or the wall of the recess.
  • the temperature measuring device may e.g. as a thermocouple or as a fiber optic. Temperature sensor may be formed, the latter allows a temperature measurement by means of the optical time domain reflectometry OTDR method or the Fiber Bragg Grating FBG method.
  • the fiber optic temperature sensors are very thin; This has the advantage that many temperature measuring points can be arranged close to each other without their signals or measurement results mutually influencing and falsifying.
  • the temperature measuring devices are arranged in pairs in the module, wherein the two temperature measuring devices, in particular thermocouples of a pair preferably protrude at different depths into the module or in the mold.
  • the temperature gauge recesses in the module are accordingly formed differently deep.
  • the temperature measuring devices are fixed in the temperature gauge recesses in the module.
  • the fixation can be done by gluing or clamping the temperature measuring devices in the corresponding recesses.
  • gluing is advantageously high heat-resistant resin, eg. B. Strain gauge DMS resin used.
  • the temperature measuring device can also be clamped in the temperature measuring device recess, in the case of thermocouples for example by means of an annular cone screw.
  • a thread with a conical spout is provided on the Temperaturmess issueds recess.
  • the thermocouple is passed through the annular cone, preferably made of copper, with external thread. This cone or cone screw clamps the thermocouple then when screwing and pressed it by the screw at the same time to the bottom of the hole.
  • the module and its thermocouple recesses or holes is produced by erosion.
  • the said quarter-shaped or stepped quartz-shaped form of the module is particularly suitable for this purpose.
  • the manufacturing process "eroding offers the advantage that bore burrs and Bore cone can be avoided, while maintaining very precise compliance or realization of the desired hole depth.
  • the one-time clamping of a component during erosion to produce a larger number of holes, the cost of erosion can be kept within limits.
  • the module is preferably made of the same material as the mold itself.
  • a central plug for the connection cables of the thermocouples on the module.
  • a central plug can be designed as a pure multi-pin connector or as a multiplexer.
  • the central plug can also be designed as a bus interface or bus module, for example a fieldbus module. Then the central plug would be able to convert the signals of the thermocouples into a bus format.
  • the bus interface or bus module should also be able to convert the conversion in the reverse direction, that is, from the bus format to a format for an actuator signal.
  • thermocouples can be connected to a suitable evaluation or a control device.
  • FIG. 1 a shows the cold side of a mold, more precisely a (side) wall 100 of the mold in a plan view.
  • the recesses 120 and thus also the structural units 500 or 500 ', if installed therein, are each arranged between two adjacent cooling channels.
  • FIG. 1 b) shows a section through the wall 100 of the mold according to Figure a) in the casting direction. It can be seen the recess 120 'for the structural unit and the cooling channel 200. The bottom of the recess 120 reaches very close to the hot side H of the mold wall 100 zoom. In this way, it is ensured that the thermocouples actually detect the temperature distribution in the vicinity of the hot side H of the mold in the most realistic manner possible.
  • FIG. 1c) shows a cross section through the wall 100 of the mold according to FIG. 1 a) transverse to the casting direction.
  • This figure clearly shows the different cross-sections for the recesses 120 in the depth of the mold wall 100: strictly quarry-shaped, not stepped, according to a first embodiment 120 or stepped according to a second embodiment.
  • the width of the recess 120 'or the structural unit 500' tapers in the region of greater depths. Due to this grading a greater rigidity of the structural unit is achieved when installed in the recess.
  • FIG. 2 illustrates the first embodiment for the structural unit 500.
  • the temperature gauge recesses 420 for the thermocouples 300 in the module 400 are exemplified in the form of grooves on the sidewalls of the module.
  • the formation of the grooves on the side edges has the advantage that the thermocouples are accessible after insertion into the grooves;
  • the measuring tip 310 of the thermocouples 300 may be soldered to the bottom of the groove.
  • the thermocouples are arranged in pairs opposite one another. The thermocouples involved in such a pair protrude at different depths into the module; Compare the distances A and B respectively between the measuring tips 310 of the thermocouples and the hot-side boundaries H 'of the modules. These different distances A and B are required for a reliable calculation of the heat flux density in the mold wall.
  • FIG. 3 shows the first embodiment of the module or the structural unit according to FIG. 2 supplemented with a central plug 600 on the module 400.
  • a central plug 600 To the central plug 600 all connection cables 330 of the thermocouples 300 can be connected to the module and bundled. It allows the transmission of the signals of all thermocouples via preferably only a single, but possibly multi-core output cable 700.
  • the central connector may be formed, for example in the form of a multi-pin connector.
  • the plug can also be designed as a multiplexer.
  • the central plug can also be designed as a bus interface and the cable 700 as a bus line.
  • the bus interface also called bus module, is then designed to convert the signals of the thermocouples into the format or protocol of the particular bus used.
  • FIG. 4 shows a second embodiment of the module according to the invention, here in the form of a stepped version.
  • the stage is in FIG. 4 each partially traversed in the form of vertical lines, partially indicated by dashed lines in each case with the reference symbol S. Especially vivid is the level in FIG. 1 a) to recognize.
  • FIG. 5 shows a measuring arrangement of a mold for round, rectangle and square.
  • FIG. 6 shows a measuring arrangement of a mold for Beam Blank.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

Die Erfindung betrifft eine Kokille zum Gießen von Metall mit einer Mehrzahl von Temperaturmesseinrichtungen, die in einer Wand in der Kokille angeordnet sind zum Erfassen der Temperaturverteilung in der Wand während des Gießbetriebs.The invention relates to a mold for casting metal with a plurality of temperature measuring devices, which are arranged in a wall in the mold for detecting the temperature distribution in the wall during the casting operation.

Eine derartige Kokille mit einer Mehrzahl von Temperaturmesseinrichtungen ist im Stand der Technik bekannt und zum Beispiel in der internationalen Patentanmeldung WO 2004/082869 A1 offenbart. Gemäß der dort beschriebenen technischen Lehre sind die Temperaturmesseinrichtungen in Form von Thermoelementen einzeln in für sie jeweils vorgesehene individuelle Bohrungen in der Kokille eingebracht. Die einzelnen Thermoelemente werden mit einer Federkraft gegen den Grund der Bohrung gedrückt, um dort den Kontakt ihrer Messstellen mit dem Kokillenmaterial zu gewährleisten. Die Thermoelemente sind in unterschiedlicher Tiefe in die Kokillenplatte eingebracht. Dies ist insbesondere sinnvoll zur Bestimmung der Wärmestromdichte in der Kokillenplatte.Such a mold having a plurality of temperature measuring devices is known in the art and, for example, in the international patent application WO 2004/082869 A1 disclosed. According to the technical teaching described therein, the temperature measuring devices are introduced in the form of thermocouples individually in each case provided for them individual holes in the mold. The individual thermocouples are pressed with a spring force against the bottom of the hole to ensure there the contact of their measuring points with the mold material. The thermocouples are inserted into the mold plate at different depths. This is particularly useful for determining the heat flux density in the mold plate.

Die erwähnte Art der individuellen Montage jedes einzelnen Thermoelementes in der Kokillenplatte erfordert einen hohen Installationsaufinrand. Der Anschluß der Thermoelemente erfolgt typischerweise über eine separate Harting-Kupplung. Bei der Installation wird die Kupplung oft versehentlich beschädigt, woraufhin eine aufwendige Rekonstruktion der korrekten Anschlussweise vorzunehmen ist. Problematisch ist die Positionierung der Thermoelemente zueinander. Bei einem Abstand von zum Beispiel nur 10 mm führt eine Abweichung der Bohrungstiefe und damit der Position der Messspitzen der Thermoelemente in Tiefenrichtung von nur 1 mm bereits zu einer zehnprozentigen Abweichung im Messergebnis.The mentioned type of individual mounting of each individual thermocouple in the chill plate requires a high installation height. The connection of the thermocouples typically takes place via a separate Harting coupling. During installation, the coupling is often accidentally damaged, whereupon a complex reconstruction of the correct connection is made. The problem is the positioning of the thermocouples to each other. At a distance of, for example, only 10 mm, a deviation of the bore depth and thus the position of the measuring tips of the thermocouples in the depth direction of only 1 mm already leads to a ten percent deviation in the measurement result.

Ausgehend von diesem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, eine bekannte Kokille zum Gießen von Metall mit einer Mehrzahl von Temperaturmesseinrichtungen dahingehend weiterzubilden, dass der Aufwand für die Installation der Mehrzahl von Temperaturmesseinrichtungen verringert wird, aber gleichzeitig eine hohe Zuverlässigkeit und Aussagekraft des Messer gebnisses gewahrt bleibt.Based on this prior art, the invention has the object, a known mold for casting metal with a plurality of temperature measuring devices to the effect that the cost of installation of the plurality of temperature measuring devices is reduced, but at the same time a high reliability and validity of the knife is maintained.

Diese Aufgabe wird durch den Gegenstand des Patentanspruchs 1 gelöst. Dieser ist dadurch gekennzeichnet, dass die Temperaturmesseinrichtungen in einem Modul fest zueinander positioniert angeordnet sind und zusammen mit dem Modul eine bauliche Einheit bilden und dass die bauliche Einheit zum Erfassen der Temperaturverteilung in oder an der Wand der Kokille befestigt ist.This object is solved by the subject matter of patent claim 1. This is characterized in that the temperature measuring devices are arranged in a module fixed to each other positioned and together with the module form a structural unit and that the structural unit for detecting the temperature distribution is fixed in or on the wall of the mold.

Der große Vorteil bei der erfindungsgemäßen Lösung besteht darin, dass die bauliche Einheit, dass heißt das Modul mit den darin angeordneten Temperaturmesseinrichtungen, bereits vor der Montage der gesamten Kokille in einer Anlage in der Werkstatt beim Hersteller vormontiert werden kann.The great advantage of the solution according to the invention is that the structural unit, that is, the module with the temperature measuring devices arranged therein, can be pre-assembled in a workshop in the workshop before the assembly of the entire mold in the workshop.

Die Vormontage der Temperaturmesseinrichtungen in dem Modul ermöglicht vorteilhafterweise eine freie und genaue Positionierung der Temperaturmesseinrichtungen zueinander, d.h. in einem gewünschten richtigen Abstand zueinander und in der richtigen Tiefe; insbesondere sind die Abstände nicht mehr zwingend durch die Abstände von Befestigungsbolzen, mit denen der Wasserkasten an die Kokille angeschraubt wird und in denen die Temperaturmesseinrichtungen, insbesondere in Form von Thermoelementen, traditionell geführt wurden, definiert. Stattdessen ermöglicht die Vormontage in dem Modul auch eine so kurze Beabstandung der Temperaturmesseinrichtungen bzw. von deren Messspitzen zueinander, z.B. 10 mm, dass eine lückenlose Überwachung des erkaltenden und erstarrenden Strangs in der Kokille im Hinblick auf Längsrissbildung und Durchbruchfrüherkennung über der gesamten Breite des Strangs durch Auswerten der gemessenen Temperaturverteilung möglich ist. Allgemein können durch die freie Positionierung der Temperaturmesseinrichtungen die Abweichungen der Messergebnisse auf ein Minimum reduziert und so die Aussagekraft der Messung erheblich gesteigert werden.The pre-assembly of the temperature measuring devices in the module advantageously allows a free and accurate positioning of the temperature measuring devices to one another, ie at a desired correct distance from each other and at the correct depth; In particular, the distances are no longer necessarily by the distances of fastening bolts, with which the water tank is screwed to the mold and in which the temperature measuring devices, in particular in the form of thermocouples, were traditionally defined. Instead, the pre-assembly in the module allows such a short spacing of the temperature measuring devices or their measuring tips to each other, for example 10 mm, that a complete monitoring of the cooling and solidifying strand in the mold with respect to longitudinal cracking and breakthrough early detection over the entire width of the strand through Evaluation of the measured temperature distribution is possible. In general, the free positioning of the temperature measuring devices can Deviations of the measurement results are reduced to a minimum and thus the significance of the measurement can be significantly increased.

Bei der Endmontage der Kokille ist dann die bauliche Einheit inklusive der Temperaturmesseinrichtungen nur noch als Ganzes in oder an der Wand zu befestigen. Der Installationsaufwand für die Temperaturmesseinrichtungen insbesondere bei der Endmontage der Kokille wird deshalb auf ein Minimum beschränkt.During the final assembly of the mold, the structural unit including the temperature measuring devices is then only to be fastened as a whole in or on the wall. The installation effort for the temperature measuring devices, especially in the final assembly of the mold is therefore limited to a minimum.

Gemäß einem ersten Ausführungsbeispiel der Erfindung weist die Wand der Kokille eine Ausnehmung auf, zur Aufnahme der baulichen Einheit. Dabei gilt es zu beachten, dass ein möglichst optimaler Wärmeübergang zwischen der baulichen Einheit und dem Material der Kokille gewährleistet wird. Dafür ist es zum einen wichtig, dass die Tiefe der Ausnehmung auf die Tiefe bzw. Höhe des Moduls abgestimmt ist und insbesondere zwischen dem Grund oder der Wandung der Ausnehmung in der Kokille und der Oberfläche des Moduls bzw. den Messspitzen der Messeinrichtungen ein möglichst guter großflächiger Kontakt ausgebildet wird, um eine optimale Wärmeübertragung zwischen Modul und Kokillenwand zu gewährleisten. Die Wärmeübertragung kann zum Beispiel durch die Verwendung einer Wärmeleitpaste, die allerdings den hohen Temperaturen, wie sie beim Gießbetrieb in der Kokille auftreten, standhalten muss, verbessert werden.According to a first embodiment of the invention, the wall of the mold has a recess for receiving the structural unit. It should be noted that the best possible heat transfer between the structural unit and the material of the mold is guaranteed. On the one hand, it is important for the depth of the recess to be matched to the depth or height of the module and, in particular, for the best possible large area between the base or the wall of the recess in the mold and the surface of the module or the measuring tips of the measuring devices Contact is formed to ensure optimum heat transfer between the module and mold wall. The heat transfer can be improved, for example, by the use of a thermal grease, which, however, must withstand the high temperatures that occur in the mold during casting in the mold.

Die bauliche Einheit ist z.B. von der Kaltseite her in eine Wand der Kokille eingelassen bzw. auf diese montiert: Damit die bauliche Einheit den Kühlmittelfluss in den Kühlkanälen der Kokillenwand nicht beeinträchtigt, wird die bauliche Einheit in diesem Fall zwischen zwei benachbarten Kühlkanälen montiert.The structural unit is e.g. from the cold side into a wall of the mold or mounted on this: So that the structural unit does not affect the flow of coolant in the cooling channels of the mold wall, the structural unit is mounted in this case between two adjacent cooling channels.

Alternativ ist die Ausnehmung für die bauliche Einheit als seitliche, vorzugsweise horizontale, Bohrung in der Wand der Kokille zwischen deren Heißseite und dem Grund der Kühlkanäle ausgebildet.Alternatively, the recess for the structural unit as a lateral, preferably horizontal, hole in the wall of the mold between the hot side and the bottom of the cooling channels is formed.

Um den Wärmefluß in der Wand der Kokille möglichst wenig zu stören, wird die Ausnehmung nach dem Einbau der baulichen Einheit durch eine plattenförmige Abdeckung vorzugsweise bündig mit der äußeren Oberfläche der Wand der Kokille wieder verschlossen. Dann ist ein Wärmefluss auch durch die Abdeckung möglich.In order to disturb the heat flow in the wall of the mold as little as possible, the recess after installation of the structural unit is closed by a plate-shaped cover, preferably flush with the outer surface of the wall of the mold again. Then a heat flow through the cover is possible.

Das Modul bzw. die bauliche Einheit und die Ausnehmung in der bzw. auf der Kaltseite der Kokille sind vorzugsweise in Dickenrichtung der Kokillenwand, d.h. quer zur Gießrichtung bzw. von der Kalt- zur Heißseite, gestuft ausgebildet. Die Stufung gewährleistet vorteilhafterweise eine Stabilisierung des Moduls bzw. der baulichen Einheit in der Kokille gegen ein Verkippen.The module or the structural unit and the recess in the cold side of the mold are preferably in the thickness direction of the mold wall, i. transverse to the casting direction or from the cold to the hot side, stepped. The grading advantageously ensures a stabilization of the module or the structural unit in the mold against tilting.

Nicht nur die Kaltseite der Kokille weist, wie oben beschrieben, eine Ausnehmung auf, sondern auch das Modul weist seinerseits eine Ausnehmung, nachfolgend Temperaturmesseinrichtungs-Ausnehmung genannt, auf zur Aufnahme von jeweils einer Temperaturmesseinrichtung. Dabei ist die Temperaturmesseinrichtung in der Temperaturmesseinrichtungs-Ausnehmung so angeordnet, dass deren Messspitze bzw. dessen Messspitzen den Grund oder die Wandung der Ausnehmung kontaktiert.Not only the cold side of the mold has, as described above, a recess, but also the module has in turn a recess, hereinafter called Temperaturmesseinrichtungs-recess, for receiving in each case a temperature measuring device. In this case, the temperature measuring device is arranged in the temperature measuring device recess such that its measuring tip or its measuring tips makes contact with the base or the wall of the recess.

Die Temperaturmesseinrichtung kann z.B. als Thermoelement oder als faseroptischer. Temperatursensor ausgebildet sein, wobei letzterer eine Temperaturmessung mittels des optical time domain reflectometry OTDR-Verfahrens oder des Fibre-Bragg-Grating FBG-Verfahrens ermöglicht. Die phaseroptischen Temperatursensoren sind sehr dünn; dies hat den Vorteil, dass viele Temperaturmessstellen nahe beieinander angeordnet werden können, ohne dass sich deren Signale bzw. Messergebnisse gegenseitig beeinflussen und verfälschen.The temperature measuring device may e.g. as a thermocouple or as a fiber optic. Temperature sensor may be formed, the latter allows a temperature measurement by means of the optical time domain reflectometry OTDR method or the Fiber Bragg Grating FBG method. The fiber optic temperature sensors are very thin; This has the advantage that many temperature measuring points can be arranged close to each other without their signals or measurement results mutually influencing and falsifying.

Zum Zwecke einer zuverlässigen Wärmestromdichtemessung sind die Temperaturmesseinrichtungen in dem Modul paarweise angeordnet, wobei die beiden Temperaturmesseinrichtungen, insbesondere Thermoelemente eines Paares vorzugsweise jeweils unterschiedlich tief in das Modul bzw. in die Kokille hineinragen. Die Temperaturmesseinrichtungs-Ausnehmungen in dem Modul sind dementsprechend unterschiedlich tief ausgebildet.For the purpose of a reliable heat flow density measurement, the temperature measuring devices are arranged in pairs in the module, wherein the two temperature measuring devices, in particular thermocouples of a pair preferably protrude at different depths into the module or in the mold. The temperature gauge recesses in the module are accordingly formed differently deep.

Die Temperaturmesseinrichtungs-Ausnehmungen in dem Modul können beispielsweise als Bohrung (gestuft oder nicht gestuft) oder als Nut am Rand des Moduls ausgebildet sein. Die Ausbildung als Nut hat den Vorteil, dass insbesondere auch die Messspitze der Temperaturmesseinrichtung beim Einsetzen in das Modul bzw. in die Nut zugänglich sind und eine Kontaktierung der Messspitze mit dem Grund bzw. dem Boden der Temperaturmesseinrichtungs-Ausnehmung sichergestellt werden kann. Bei Verwendung von Thermoelementen sind deren Messspitzen vorteilhafterweise mit dem Grund der Nuten verlötet, um einen optimalen Kontakt und Wärmeübergang sowie eine exakte Positionierung zu garantieren.The Temperaturmesseinrichtungs recesses in the module can be formed for example as a hole (stepped or not stepped) or as a groove on the edge of the module. The design as a groove has the advantage that in particular the measuring tip of the temperature measuring device are accessible when inserted into the module or in the groove and a contact of the measuring tip with the bottom of the Temperaturmesseinrichtungs-recess can be ensured. When using thermocouples whose measuring tips are advantageously soldered to the bottom of the grooves to guarantee optimum contact and heat transfer and precise positioning.

Die Temperaturmesseinrichtungen sind in den Temperaturmesseinrichtungs-Ausnehmungen in dem Modul fixiert. Die Fixierung kann erfolgen durch Einkleben oder Einklemmen der Temperaturmesseinrichtungen in die entsprechenden Ausnehmungen. Zum Einkleben wird vorteilhafterweise hoch wärmefestes Harz, z. B. Dehnmessstreifen DMS Harz, verwendet. Alternativ kann die Temperaturmesseinrichtung auch in die Temperaturmesseinrichtungs-Ausnehmung eingeklemmt werden, im Falle von Thermoelementen zum Beispiel mit Hilfe einer ringförmigen Kegelschraube. Hierbei ist an der Temperaturmesseinrichtungs-Ausnehmung ein Gewinde mit einem kegelförmigen Auslauf vorzusehen. Das Thermoelement wird durch den ringförmigen Kegel, vorzugsweise aus Kupfer, mit Außengewinde geführt. Dieser Kegel bzw. diese Kegelschraube klemmt das Thermoelement dann beim Einschrauben fest und presst es durch die Schraubrichtung gleichzeitig an den Bohrungsgrund.The temperature measuring devices are fixed in the temperature gauge recesses in the module. The fixation can be done by gluing or clamping the temperature measuring devices in the corresponding recesses. For gluing is advantageously high heat-resistant resin, eg. B. Strain gauge DMS resin used. Alternatively, the temperature measuring device can also be clamped in the temperature measuring device recess, in the case of thermocouples for example by means of an annular cone screw. Here, a thread with a conical spout is provided on the Temperaturmesseinrichtungs recess. The thermocouple is passed through the annular cone, preferably made of copper, with external thread. This cone or cone screw clamps the thermocouple then when screwing and pressed it by the screw at the same time to the bottom of the hole.

Vorteilhafterweise ist das Modul und dessen Thermoelement-Ausnehmungen bzw. Bohrungen durch Erodieren hergestellt. Die besagte quarderförmige bzw. gestuft quarderförmige Form des Moduls ist dafür besonders geeignet. Das Herstellungsverfahren "Erodieren bietet den Vorteil, dass Bohrungsgrate und Bohrungskegel vermieden werden, bei gleichzeitig sehr präziser Einhaltung bzw. Realisierung der gewünschten Bohrungstiefe. Durch das einmalige Spannen eines Bauteils beim Erodieren zur Herstellung einer größeren Anzahl von Bohrungen können die Kosten für das Erodieren in Grenzen gehalten werden.Advantageously, the module and its thermocouple recesses or holes is produced by erosion. The said quarter-shaped or stepped quartz-shaped form of the module is particularly suitable for this purpose. The manufacturing process "eroding offers the advantage that bore burrs and Bore cone can be avoided, while maintaining very precise compliance or realization of the desired hole depth. The one-time clamping of a component during erosion to produce a larger number of holes, the cost of erosion can be kept within limits.

Zur Gewährleistung eines optimalen Wärmeüberganges ist das Modul vorzugsweise aus dem gleichen Material gefertigt wie die Kokille selbst.To ensure optimal heat transfer, the module is preferably made of the same material as the mold itself.

Zur Verbesserung der Übersichtlichkeit der Kabelführung, insbesondere bezüglich der Anschlusskabel der Thermoelemente auf dem Modul, empfiehlt sich die Verwendung eines Zentralsteckers für die Anschlusskabel der Thermoelemente auf dem Modul. Ein derartiger Zentralstecker kann als reine vielfachpolige Steckverbindung oder als Multiplexer ausgebildet sein. Alternativ kann der Zentralstecker auch als Busschnittstelle bzw. Busmodul, zum Beispiel Feldbus-Modul, ausgebildet sein. Dann wäre der Zentralstecker in der Lage, die Signale der Thermoelemente umzuwandeln in ein Bus-Format. Gleichzeitig sollte die Bus-Schnittstelle bzw. das Bus-Modul auch in der Lage sein, die Umwandlung in umgekehrter Richtung, dass heißt vom Bus-Format in ein Format für ein Aktorsignal umzuwandeln. Bei Verwendung einer Mehrzahl von baulichen Einheiten kann es sinnvoll sein, die Zentralstecker auf den einzelnen baulichen Einheiten mit einem übergeordneten Zentralstecker zu verbinden. Bei dieser Schaltungskonfiguration können sowohl die Zentralstecker wie auch der übergeordnete Zentralstecker als Bus-Schnittstellen ausgebildet sein.To improve the clarity of the cable management, in particular with regard to the connection cables of the thermocouples on the module, we recommend the use of a central plug for the connection cables of the thermocouples on the module. Such a central plug can be designed as a pure multi-pin connector or as a multiplexer. Alternatively, the central plug can also be designed as a bus interface or bus module, for example a fieldbus module. Then the central plug would be able to convert the signals of the thermocouples into a bus format. At the same time, the bus interface or bus module should also be able to convert the conversion in the reverse direction, that is, from the bus format to a format for an actuator signal. When using a plurality of structural units, it may be useful to connect the central plug on the individual structural units with a parent central plug. In this circuit configuration, both the central plug and the parent central plug can be designed as bus interfaces.

Über die Zentralstecker - gegebenenfalls unter Zwischenschaltung des übergeordneten Zentralsteckers - können die Thermoelemente an eine geeignete Auswerteeinrichtung oder eine Regeleinrichtung angeschlossen werden.About the central plug - possibly with the interposition of the parent central plug - the thermocouples can be connected to a suitable evaluation or a control device.

Der Beschreibung sind insgesamt 6 Figuren beigefügt, wobei

Figur 1
die Kaltseite einer Kokille mit der Ausnehmung bzw. mit der baulichen Einheit in a) einer Draufsicht, b) einer ersten Queransicht und c) einer zweiten Queransicht;
Figur 2
ein erstes Ausführungsbeispiel für die erfindungsgemäße bauliche Einheit in drei verschiedenen Perspektiven;
Figur 3
das erste Ausführungsbeispiel der erfindungsgemäßen baulichen Einheit in einer Variante mit Zentralstecker;
Figur 4
ein zweites Ausführungsbeispiel (gestuft) für die erfindungsgemäße bauliche Einheit;
Figur 5
eine Kokille für Rund, Rechteck und Quadrat; und
Figur 6
eine Kokille für Beam Blank
zeigt.The description is a total of 6 figures attached, wherein
FIG. 1
the cold side of a mold with the recess or with the structural unit in a) a top view, b) a first transverse view and c) a second transverse view;
FIG. 2
a first embodiment of the structural unit according to the invention in three different perspectives;
FIG. 3
the first embodiment of the structural unit according to the invention in a variant with central plug;
FIG. 4
a second embodiment (stepped) for the structural unit according to the invention;
FIG. 5
a mold for round, rectangle and square; and
FIG. 6
a mold for Beam Blank
shows.

Die Erfindung wird nachfolgend unter Bezugnahme auf die genannten Figuren in Form von Ausführungsbeispielen detailliert beschrieben. In allen Figuren sind gleiche Elemente mit gleichen Bezugzeichen bezeichnet.The invention will be described in detail below with reference to the said figures in the form of embodiments. In all figures, the same elements are designated by the same reference numerals.

Figur 1 a) zeigt die Kaltseite einer Kokille, genauer gesagt einer (Seiten-)Wand 100 der Kokille in einer Draufsicht. Es sind vertikal geführte Kühlkanäle 200 sowie zwischen den Kühlkanälen Ausnehmungen 120, 120' für die baulichen Einheiten 500 und 500' zu erkennen. Die Ausnehmungen 120 und damit auch die gegebenenfalls darin eingebauten baulichen Einheiten 500 bzw. 500' sind jeweils zwischen zwei benachbarten Kühlkanälen angeordnet. Die Module 500 und 500' sind in Figur 1 a) unterschiedlich lang eingezeichnet. Dies zeigt, dass die baulichen Einheiten mit einer unterschiedlichen Anzahl von Thermoelementen.in ein und derselben Wand 100 einer Kokille vorgesehen sein können. FIG. 1 a) shows the cold side of a mold, more precisely a (side) wall 100 of the mold in a plan view. There are vertically guided cooling channels 200 and between the cooling channels recesses 120, 120 'for the structural units 500 and 500' can be seen. The recesses 120 and thus also the structural units 500 or 500 ', if installed therein, are each arranged between two adjacent cooling channels. The modules 500 and 500 'are in FIG. 1 a) drawn differently long. This shows that the structural units with a different number of thermocouples can be provided in one and the same wall 100 of a mold.

Figur 1 b) zeigt einen Schnitt durch die Wand 100 der Kokille gemäß Figur a) in Gießrichtung. Es ist die Ausnehmung 120' für die bauliche Einheit und der Kühlkanal 200 zu erkennen. Der Boden der Ausnehmung 120 reicht sehr nahe an die Heißseite H der Kokillenwand 100 heran. Auf diese Weise wird sichergestellt, dass die Thermoelemente auch tatsächlich die Temperaturverteilung in der Nähe der Heißseite H der Kokille auf möglichst realistische Weise erfassen. FIG. 1 b) shows a section through the wall 100 of the mold according to Figure a) in the casting direction. It can be seen the recess 120 'for the structural unit and the cooling channel 200. The bottom of the recess 120 reaches very close to the hot side H of the mold wall 100 zoom. In this way, it is ensured that the thermocouples actually detect the temperature distribution in the vicinity of the hot side H of the mold in the most realistic manner possible.

Figur 1 c) zeigt einen Querschnitt durch die Wand 100 der Kokille gemäß Figur 1 a) quer zur Gießrichtung. Diese Figur zeigt anschaulich die unterschiedlichen Querschnitte für die Ausnehmungen 120 in der Tiefe der Kokillenwand 100: streng quarderförmig, nicht gestuft, gemäß einem ersten Ausführungsbeispiel 120 oder gestuft gemäß einem zweiten Ausführungsbeispiel. Bei der Stufung S verjüngt sich die Breite der Ausnehmung 120' bzw. der baulichen Einheit 500' im Bereich größerer Tiefen. Aufgrund dieser Stufung wird eine größere Steifigkeit der baulichen Einheit bei Einbau in die Ausnehmung erreicht. FIG. 1c) shows a cross section through the wall 100 of the mold according to FIG. 1 a) transverse to the casting direction. This figure clearly shows the different cross-sections for the recesses 120 in the depth of the mold wall 100: strictly quarry-shaped, not stepped, according to a first embodiment 120 or stepped according to a second embodiment. In the gradation S, the width of the recess 120 'or the structural unit 500' tapers in the region of greater depths. Due to this grading a greater rigidity of the structural unit is achieved when installed in the recess.

Figur 2 veranschaulicht das erste Ausführungsbeispiel für die bauliche Einheit 500. Es ist zu erkennen, dass die Temperaturmesseinrichtungs-Ausnehmungen 420 für die Thermoelemente 300 in dem Modul 400 beispielhaft in Form von Nuten an den Seitenwänden des Moduls ausgebildet sind. Die Ausbildung der Nuten an den Seitenrändern bietet den Vorteil, dass die Thermoelemente nach dem Einsetzen in die Nuten zugänglich sind; insbesondere kann bei dieser Ausführung die Messspitze 310 der Thermoelemente 300 mit dem Grund der Nut verlötet sein. In Figur 2 ist weiterhin zu erkennen, dass die Thermoelemente paarweise gegenüberliegend angeordnet sind. Die an einem solchen Paar beteiligten Thermoelemente ragen jeweils unterschiedlich tief in das Modul hinein; vergleiche die Abstände A und B jeweils zwischen den Messspitzen 310 der Thermoelemente und den heißseitigen Begrenzungen H' der Module. Diese unterschiedlichen Abstände A und B sind für eine zuverlässige Berechnung der Wärmestromdichte in der Kokillenwand erforderlich. FIG. 2 illustrates the first embodiment for the structural unit 500. It will be appreciated that the temperature gauge recesses 420 for the thermocouples 300 in the module 400 are exemplified in the form of grooves on the sidewalls of the module. The formation of the grooves on the side edges has the advantage that the thermocouples are accessible after insertion into the grooves; In particular, in this embodiment, the measuring tip 310 of the thermocouples 300 may be soldered to the bottom of the groove. In FIG. 2 It can also be seen that the thermocouples are arranged in pairs opposite one another. The thermocouples involved in such a pair protrude at different depths into the module; Compare the distances A and B respectively between the measuring tips 310 of the thermocouples and the hot-side boundaries H 'of the modules. These different distances A and B are required for a reliable calculation of the heat flux density in the mold wall.

Die Figur 3 zeigt das erste Ausführungsbeispiel des Moduls bzw. der baulichen Einheit gemäß Figur 2 ergänzt mit einem Zentralstecker 600 auf dem Modul 400. An den Zentralstecker 600 sind alle Anschlusskabel 330 der Thermoelemente 300 auf dem Modul anschließbar und bündelbar. Er ermöglicht die Weiterleitung der Signale aller Thermoelemente über vorzugsweise nur ein einzelnes, eventuell aber mehradriges Ausgangskabel 700. Zu diesem Zweck kann der Zentralstecker zum Beispiel in Form eines vielpoligen Steckers ausgebildet sein. Alternativ kann der Stecker auch als Multiplexer ausgebildet sein. In einer weiteren Alternative kann der zentrale Stecker auch als Busschnittstelle und das Kabel 700 als Busleitung ausgebildet sein. Die Busschnittstelle, auch Busmodul genannt, ist dann ausgebildet, die Signale der Thermoelemente in das Format bzw. Protokoll des jeweils verwendeten Busses umzusetzen.The FIG. 3 shows the first embodiment of the module or the structural unit according to FIG. 2 supplemented with a central plug 600 on the module 400. To the central plug 600 all connection cables 330 of the thermocouples 300 can be connected to the module and bundled. It allows the transmission of the signals of all thermocouples via preferably only a single, but possibly multi-core output cable 700. For this purpose, the central connector may be formed, for example in the form of a multi-pin connector. Alternatively, the plug can also be designed as a multiplexer. In a further alternative, the central plug can also be designed as a bus interface and the cable 700 as a bus line. The bus interface, also called bus module, is then designed to convert the signals of the thermocouples into the format or protocol of the particular bus used.

Figur 4 zeigt ein zweites Ausführungsbeispiel für das erfindungsgemäße Modul, hier in Form einer gestuften Ausführung. Die Stufe ist in Figur 4 jeweils in Form von vertikalen Linien teilweise durchgezogen, teilweise strichpunktiert jeweils mit den Bezugzeichen S angedeutet. Besonders anschaulich ist die Stufe in Figur 1 a) zu erkennen. FIG. 4 shows a second embodiment of the module according to the invention, here in the form of a stepped version. The stage is in FIG. 4 each partially traversed in the form of vertical lines, partially indicated by dashed lines in each case with the reference symbol S. Especially vivid is the level in FIG. 1 a) to recognize.

Figur 5 zeigt eine Messanordnung einer Kokille für Rund, Rechteck und Quadrat. FIG. 5 shows a measuring arrangement of a mold for round, rectangle and square.

Figur 6 zeigt eine Messanordnung einer Kokille für Beam Blank. FIG. 6 shows a measuring arrangement of a mold for Beam Blank.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

100100
Wand der KokilleWall of the mold
120120
Ausnehmung für die bauliche Einheit 500Recess for the structural unit 500
120'120 '
Ausnehmung für die bauliche Einheit 500'Recess for the structural unit 500 '
200200
Kühlkanalcooling channel
300300
Thermoelementthermocouple
330330
Anschlusskabel ThermoelementConnection cable thermocouple
400400
Modulmodule
420420
Aussparung für ThermoelementRecess for thermocouple
500500
bauliche Einheit gemäß erstem AusführungsbeispielBuilding unit according to the first embodiment
500'500 '
bauliche Einheit gemäß zweitem AusführungsbeispielBuilding unit according to the second embodiment
600600
Zentralsteckercentral plug
700700
Ausgangskabeloutput cable
A, BA, B
Abständedistances
SS
Stufestep

Claims (12)

  1. Mould for the casting of metal, with a plurality of temperature measuring devices (300), which are arranged in a wall (100) of the mould, for detecting the temperature distribution in the wall during casting operation;
    wherein the temperature measuring devices (300) are arranged in a module (400) to be fixed in position relative to one another and form together with the module a constructional unit (500, 500');
    wherein the module (400, 400') comprises at least one temperature measuring device recess (420) in the form of a bore or groove for reception of a respective one of the temperature measuring devices; and
    wherein the constructional unit (500, 500') for detection of the temperature distribution is fastened in or to the wall (100) of the mould;
    characterised in that:
    the temperature measuring devices are constructed as fibre-optical temperature sensors which enable temperature measurement by means of the Optical Time Domain Reflectometry (OTDR) method or the Fibre Bragg Grating (FBG) method; and
    the temperature measuring device recesses (420) are so arranged in the module (400) and constructed that the fibre-optical temperature sensors are arranged in pairs and
    adjacently in the module and that the individual fibre-optical temperature sensors of a pair are arranged at different depths in or on the module.
  2. Mould according to claim 1, characterised in that the wall (100) of the mould has a recess (120, 120') for reception of the constructional unit (500, 500').
  3. Mould according to claim 2, characterised in that the recess (120) for the constructional unit (500, 500') is arranged on the cold side of the wall of the mould between the cooling channels (200) thereof.
  4. Mould according to one of claims 2 and 3, characterised in that the module (400') and the recess (120') is formed to be stepped in the direction from the cold side to the hot side of the mould.
  5. Mould according to claim 2, characterised in that the recess (120, 120') for the constructional unit (500, 500') is constructed as a lateral, preferably horizontal, bore in the wall of the mould between the hot side thereof and the base of the cooling channels.
  6. Mould according to any one of claims 2 to 5, characterised in that the recess (120, 120') is closed by a plate-shaped cover, preferably flush with the outer surface of the wall of the mould, after installation of the constructional unit (500, 500').
  7. Mould according to claim 1, characterised in that the temperature measuring device recess (420) is constructed to be stepped with different diameters as seen over the depth thereof.
  8. Mould according to any one of the preceding claims, characterised in that the temperature measuring device (300) is so glued or releasably clamped in place in the temperature measuring device recess (420) that the measuring tip or measuring tips (310) of the temperature measuring device (300) contacts or respectively contact the base or the wall of the temperature measuring device recess (420).
  9. Mould according to any one of the preceding claims, characterised in that the module and the temperature measuring device recesses thereof are produced at least in part by eroding.
  10. Mould according to any one of the preceding claims, characterised in that the module and/or the cover for closing the recess (120) is or are made of the same material as the mould, for example of copper.
  11. Mould according to any one of the preceding claims, characterised in that provided in or on the module is a central plug (600) for receiving and grouping the connection lines (330) of all temperature measuring devices (300) on the module (400).
  12. Mould according to claim 11, characterised in that the central plug is constructed as a multiplexer or as a bus interface or bus module.
EP09768964.0A 2008-06-25 2009-06-23 Mould for casting metal Active EP2293891B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008029742A DE102008029742A1 (en) 2008-06-25 2008-06-25 Mold for casting metal
PCT/EP2009/004504 WO2009156115A1 (en) 2008-06-25 2009-06-23 Mould for casting metal

Publications (2)

Publication Number Publication Date
EP2293891A1 EP2293891A1 (en) 2011-03-16
EP2293891B1 true EP2293891B1 (en) 2014-12-24

Family

ID=41050447

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09768964.0A Active EP2293891B1 (en) 2008-06-25 2009-06-23 Mould for casting metal

Country Status (11)

Country Link
US (1) US8162030B2 (en)
EP (1) EP2293891B1 (en)
JP (1) JP5579174B2 (en)
KR (1) KR101257721B1 (en)
CN (1) CN102076442B (en)
CA (1) CA2728866C (en)
DE (1) DE102008029742A1 (en)
RU (1) RU2448804C1 (en)
TW (1) TWI454325B (en)
UA (1) UA95591C2 (en)
WO (1) WO2009156115A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030093416A (en) * 2002-06-03 2003-12-11 위풍곤 Anti-smoking preparation
DE102009029490B4 (en) * 2009-09-16 2023-09-28 Endress+Hauser SE+Co. KG Level measuring device
DE102010008481A1 (en) * 2009-09-30 2011-03-31 Sms Siemag Ag Metallurgical vessel
DE102010008480A1 (en) * 2009-09-30 2011-03-31 Sms Siemag Ag Mold for processing liquid metallic material
DE102010034729A1 (en) * 2010-02-09 2011-08-11 SMS Siemag AG, 40237 Metallurgical vessel and method for producing a wall of the vessel
DE102010035910A1 (en) * 2010-06-09 2011-12-15 Sms Siemag Ag Device for measuring temperature in a converter
DE102011085932A1 (en) * 2011-06-07 2012-12-13 Sms Siemag Ag Method for regulating the height of the casting mirror in a mold of a continuous casting plant
CA2849671C (en) * 2012-08-28 2015-02-03 Nippon Steel & Sumitomo Metal Corporation Method and apparatus for measuring surface temperature of cast slab
RU2593802C2 (en) * 2014-11-12 2016-08-10 Открытое акционерное общество "Магнитогорский металлургический комбинат" Method for diagnosis of longitudinal cracks in hardened shell slab in crystalliser
CN104646645A (en) * 2015-03-01 2015-05-27 吴传涛 Temperature inducting body for temperature controller of die-casting mould
JP6515329B2 (en) * 2015-04-08 2019-05-22 日本製鉄株式会社 Continuous casting mold
WO2017032392A1 (en) * 2015-08-21 2017-03-02 Abb Schweiz Ag A casting mold and a method for measuring temperature of a casting mold
EP3379217A1 (en) 2017-03-21 2018-09-26 ABB Schweiz AG Method and device for determining a temperature distribution in a mould plate for a metal-making process
BE1025314B1 (en) * 2018-03-23 2019-01-17 Ebds Engineering Sprl Continuous metal casting mold, system and method for detecting breakthrough in a continuous metal casting plant
BE1026740B1 (en) * 2019-06-21 2020-05-28 Ebds Eng Sprl Method for balancing a flow of liquid steel in an ingot mold and continuous casting system of liquid steel
BE1026975B1 (en) * 2019-06-21 2020-08-12 Ebds Eng Sprl Continuous metal casting ingot mold, temperature measuring system and breakthrough detection system and method in a continuous metal casting plant
EP4005697B1 (en) * 2020-11-27 2024-04-10 Primetals Technologies Austria GmbH Device and method for determining temperature in a side wall plate of a casting mold

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5927270B2 (en) 1976-03-31 1984-07-04 三菱重工業株式会社 Molten metal level detection device in continuous casting mold
JPS5912118Y2 (en) * 1977-12-23 1984-04-12 株式会社神戸製鋼所 Continuous casting mold
FR2498959A1 (en) * 1981-02-02 1982-08-06 Siderurgie Fse Inst Rech THERMOSENSITIVE DETECTOR OF LEVEL OF MATERIAL CONTAINED IN A CONTAINER, IN PARTICULAR IN A CONTINUOUS CASTING LINGOTIERE
JPS58148063A (en) 1982-02-26 1983-09-03 Kawasaki Steel Corp Method for predicting cracking of ingot in continuous casting
EP0101521B1 (en) 1982-02-24 1986-11-05 Kawasaki Steel Corporation Method of controlling continuous casting facility
JPS58145344A (en) 1982-02-24 1983-08-30 Kawasaki Steel Corp Method for controlling taper quantity on short side of casting mold in continuous casting
JPS6099467A (en) 1983-11-04 1985-06-03 Nippon Steel Corp Detection of shell rupture in continuous casting
JPS6112555U (en) * 1984-06-25 1986-01-24 日本鋼管株式会社 Continuous casting mold
DE3436331A1 (en) 1984-10-04 1986-04-17 Mannesmann AG, 4000 Düsseldorf Device for measuring the temperature in water-cooled metal walls of metallurgical vessels, in particular continuous casting moulds
JPS61219456A (en) 1985-03-26 1986-09-29 Sumitomo Metal Ind Ltd Casting temperature measuring instrument
JPH0790333B2 (en) * 1986-02-10 1995-10-04 株式会社野村鍍金 Continuous casting mold and manufacturing method thereof
JPH0787976B2 (en) 1988-11-30 1995-09-27 川崎製鉄株式会社 Online slab surface defect detection method
JPH04351254A (en) * 1991-05-24 1992-12-07 Sumitomo Metal Ind Ltd Instrument for measuring level in mold in continuous casting
DE4125146C2 (en) 1991-07-30 1996-12-05 Eko Stahl Gmbh Process for increasing casting reliability
DE4137588C2 (en) * 1991-11-15 1994-10-06 Thyssen Stahl Ag Process for casting metals in a continuous caster
JPH0786437B2 (en) 1992-05-15 1995-09-20 川惣電機工業株式会社 Method and apparatus for detecting heat flux of casting mold
JPH06304727A (en) 1993-04-23 1994-11-01 Nippon Steel Corp Device for controlling casting velocity
JPH06320245A (en) 1993-05-12 1994-11-22 Nippon Steel Corp Heat extraction control device in mold
KR950012631B1 (en) * 1993-12-29 1995-10-19 포항종합제철주식회사 Thermocouple for surface temperature of continous casting
JPH08276257A (en) * 1995-04-03 1996-10-22 Nippon Steel Corp Breakout detector for continuous casting and method for controlling casting
JP3408901B2 (en) * 1995-08-02 2003-05-19 新日本製鐵株式会社 Breakout prediction method in continuous casting.
JPH09210807A (en) * 1996-02-01 1997-08-15 Kobe Kotobuki Tekko Kk Device for measuring multi-point temperatures
JPH09262642A (en) * 1996-03-28 1997-10-07 Kawasaki Steel Corp Mold device for continuous casting
KR19990008569U (en) * 1997-08-07 1999-03-05 이구택 Mold copper plate temperature measuring device for billet continuous casting
JPH1183601A (en) * 1997-09-05 1999-03-26 Furukawa Electric Co Ltd:The Liquid level gauge and ground immersional wetting level measuring equipment using the same
JP3414219B2 (en) 1997-09-29 2003-06-09 住友金属工業株式会社 Continuous casting mold and continuous casting method
DE19808998B4 (en) 1998-03-03 2007-12-06 Siemens Ag Method and device for early breakthrough detection in a continuous casting plant
DE19810672B4 (en) 1998-03-12 2006-02-09 Sms Demag Ag Method and continuous casting mold for producing slab strands, in particular of steel
US6462329B1 (en) 1999-11-23 2002-10-08 Cidra Corporation Fiber bragg grating reference sensor for precise reference temperature measurement
DE19956577A1 (en) 1999-11-25 2001-05-31 Sms Demag Ag Process for the continuous casting of slabs, in particular thin slabs, and a device for carrying them out
DE10028304A1 (en) 2000-06-07 2001-12-13 Sms Demag Ag Process for locally processing casting data obtained from sensors in a continuous casting plant comprises collecting measuring and control data in cooled field bus modules
JP2002001507A (en) * 2000-06-21 2002-01-08 Sumitomo Metal Ind Ltd Mould and continuous casting method
JP2002011558A (en) 2000-06-29 2002-01-15 Nkk Corp Method for continuously casting steel
KR100544658B1 (en) * 2001-12-21 2006-01-23 재단법인 포항산업과학연구원 Control method for mold taper of short side plate in continuous casting of slab
JP2003302277A (en) * 2002-04-10 2003-10-24 Sumitomo Electric Ind Ltd Level sensor with specific gravity correction function
ATE511624T1 (en) 2002-08-06 2011-06-15 Lios Technology Gmbh OVEN AND METHOD AND SYSTEM FOR MONITORING THE OPERATIONAL CONDITIONS THEREOF
DE10312923B8 (en) 2003-03-22 2005-07-14 Sms Demag Ag Method for determining the measuring temperatures in continuous casting molds and continuous casting mold itself
JP2005125402A (en) 2003-10-27 2005-05-19 Hitachi Cable Ltd Method for continuously casting cast block, and method for judging quality of cast block
EP1591627A1 (en) 2004-04-27 2005-11-02 Siemens Aktiengesellschaft Controlling arrangement for a compressor and use of a Bragg grating sensor in a controlling arrangement
DE102004031324A1 (en) 2004-06-29 2006-01-19 Bayer Technology Services Gmbh Temperature profile measurement in reactors with fiber Bragg gratings
KR200376771Y1 (en) 2004-12-02 2005-03-08 주식회사 로템 Apparatus for measuring surface temperature of continuous-casting roller
JP4709569B2 (en) * 2005-04-04 2011-06-22 新日鉄エンジニアリング株式会社 Thermocouple mounting structure for continuous casting mold
JP4688755B2 (en) * 2006-08-17 2011-05-25 新日本製鐵株式会社 Steel continuous casting method
US7840102B2 (en) 2007-01-16 2010-11-23 Baker Hughes Incorporated Distributed optical pressure and temperature sensors

Also Published As

Publication number Publication date
CA2728866A1 (en) 2009-12-30
KR101257721B1 (en) 2013-04-24
JP2011525426A (en) 2011-09-22
CA2728866C (en) 2013-01-22
EP2293891A1 (en) 2011-03-16
DE102008029742A1 (en) 2009-12-31
CN102076442A (en) 2011-05-25
UA95591C2 (en) 2011-08-10
US20110186262A1 (en) 2011-08-04
US8162030B2 (en) 2012-04-24
CN102076442B (en) 2014-04-30
TW201016346A (en) 2010-05-01
TWI454325B (en) 2014-10-01
RU2448804C1 (en) 2012-04-27
KR20110017894A (en) 2011-02-22
WO2009156115A1 (en) 2009-12-30
JP5579174B2 (en) 2014-08-27

Similar Documents

Publication Publication Date Title
EP2293891B1 (en) Mould for casting metal
EP3060364B1 (en) Continuous casting mould with a temperature sensor and production method for the continuous casting mould with the temperature sensor
DE102007035812A1 (en) Pressure sensor, in a motor common rail fuel injection system, has a chip to measure pressure and a monitor to register the fuel temperature
DE2028111C3 (en) Process for the production of a fiber board which contains light-absorbing fiber elements and is used for image transmission
WO2010142410A2 (en) Integration of an optical waveguide of a sensor into a component
EP3929594A1 (en) Device for measuring current intensities and method for manufacturing a device for measuring current intensities
DE102008056025B3 (en) Method and device for measuring the temperature
WO2009059754A1 (en) Force-moment sensor
EP3370044A1 (en) Weighing cell for a weighing device
EP2934789B1 (en) Apparatus with temperature sensor for a continuous casting mould
DE202013103404U1 (en) Temperature sensor and thermal flow meter
DE112008002878T5 (en) bearing arrangement
EP3497410B1 (en) Sensor for a thermal flowmeter, thermal flowmeter, and method for producing a sensor of a thermal flowmeter
DE102016100835A1 (en) Construction of a sensor system
DE102015221628B3 (en) Thermosteck and temperature measuring arrangement
DE2617987C2 (en) Measuring device with strain gauges
DE102009060548B4 (en) Mold for a continuous caster and use of such a mold
EP2679963A2 (en) Measuring device for determining a process value
DE202007001719U1 (en) Temperature measuring device, has printed circuit boards that cross along their respective center lines, where printed circuit boards have several lines for producing connection between temperature sensor and connection cable
AT518569A1 (en) Instrumentation of a side wall of a continuous casting mold with optical waveguides
EP3546906B1 (en) Temperature sensor assembly, temperature sensor component for a metallurgical installation and method for manufacturing the same
EP3232173B1 (en) Differential pressure sensor
EP4005697B1 (en) Device and method for determining temperature in a side wall plate of a casting mold
DE202013103733U1 (en) Fast stage temperature sensor
DE102012224244A1 (en) Carrying body for receiving a sensor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101207

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140821

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 702879

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009010399

Country of ref document: DE

Effective date: 20150226

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20141224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150324

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150325

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SMS GROUP GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009010399

Country of ref document: DE

Representative=s name: HEMMERICH & KOLLEGEN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502009010399

Country of ref document: DE

Owner name: SMS GROUP GMBH, DE

Free format text: FORMER OWNER: SMS SIEMAG AG, 40237 DUESSELDORF, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150424

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009010399

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150623

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141224

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230620

Year of fee payment: 15

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230707

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230621

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230623

Year of fee payment: 15

Ref country code: GB

Payment date: 20230622

Year of fee payment: 15