JP2002001507A - Mould and continuous casting method - Google Patents

Mould and continuous casting method

Info

Publication number
JP2002001507A
JP2002001507A JP2000186879A JP2000186879A JP2002001507A JP 2002001507 A JP2002001507 A JP 2002001507A JP 2000186879 A JP2000186879 A JP 2000186879A JP 2000186879 A JP2000186879 A JP 2000186879A JP 2002001507 A JP2002001507 A JP 2002001507A
Authority
JP
Japan
Prior art keywords
mold
cooling plate
cooling
molten steel
cooling gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000186879A
Other languages
Japanese (ja)
Inventor
Hideo Mizukami
英夫 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000186879A priority Critical patent/JP2002001507A/en
Publication of JP2002001507A publication Critical patent/JP2002001507A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a mold which may effect high speed casting and prevent a longitudinal crack, and a method of continuous casting using the mold. SOLUTION: A mold which consists of at least either of multiple apertures 16 for cooling gas ventilation or an opening 17 for cooling gas ventilation provided under the bottom end of a cooling plate and a continuous casting method, wherein an opening is provided between the surface of a molten steel side of a cooling plate 12 and flowing passage of cooling water and at the top end of the cooling plate, multiple pores 13 arranged in parallel in the casting direction are provided, the bottom end being disposed between 50-200 mm lower the corresponding position of meniscus, an opening is provided between the surface of the opposite molten steel side of the cooling plate and multiple pores and on the surface of a opposite molten steel side of the cooling plate, multiple number of apertures 7, 8 are provided for insertion of a thermal sensor to measure the temperature of the cooling plate being disposed in the width direction of mold at two different points of distance from the surface of the molten steel side of the cooling plate, and an opening is provided within an area of 250-500 mm lower the corresponding position of meniscus on the surface of the molten steel side of the cooling plate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、中炭素鋼などを鋳
造する際に、鋳片表面に発生する縦割れなどの表面欠陥
を防止する鋳型、およびその鋳型を用いる連続鋳造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mold for preventing surface defects such as vertical cracks generated on the surface of a slab when casting medium carbon steel or the like, and a continuous casting method using the mold.

【0002】[0002]

【従来の技術】縦割れなどの欠陥のない良好な表面品質
の鋳片を得るためには、鋳型内のメニスカス近傍の凝固
殻の厚さを鋳型の幅方向で均一にすることが重要であ
る。鋳型の幅方向で凝固殻の厚さに差が生じると、凝固
殻表面に応力が働いた際に、縦割れが発生しやすいから
である。とくに、中炭素鋼では、その凝固特性も加わっ
て、さらに縦割れが発生しやすい。
2. Description of the Related Art In order to obtain a slab of good surface quality without defects such as vertical cracks, it is important to make the thickness of a solidified shell in the vicinity of a meniscus in a mold uniform in the width direction of the mold. . This is because, if a difference occurs in the thickness of the solidified shell in the width direction of the mold, when a stress acts on the surface of the solidified shell, vertical cracks are likely to occur. In particular, medium-carbon steel is more likely to cause longitudinal cracks due to its solidification characteristics.

【0003】鋳型の幅方向で凝固殻の厚さに差が生じる
原因は、鋳型の長辺側の冷却板内を反溶鋼側に向かう熱
流束が鋳型の幅方向で均一でなく、差が生じるからであ
る。また、この熱流束の鋳型の幅方向での均一性には、
鋳型内の溶鋼の流動が大きな影響を与えている。
The cause of the difference in the thickness of the solidified shell in the width direction of the mold is that the heat flux flowing in the cooling plate on the long side of the mold toward the anti-molten steel side is not uniform in the width direction of the mold and the difference occurs. Because. In addition, the uniformity of the heat flux in the width direction of the mold
The flow of molten steel in the mold has a great effect.

【0004】図1は、鋳型内の溶鋼の流動を示す模式図
である。鋳片に残存する非金属介在物を少なくしたり、
ブレークアウトなどの操業事故を防止するために、吐出
孔からの吐出流4が鋳型1の両側の短辺1aに向いた2
つの吐出孔を有する浸漬ノズル2が通常用いられる。鋳
型の短辺に衝突した吐出流4は、メニスカス5に向かう
上昇流4aと鋳型の下部に向かう下降流4bとに分かれ
る。上昇流は、短辺近傍のメニスカスを盛り上げるとと
もに、浸漬ノズル近傍に向かう溶鋼の流れ4cを形成す
る。
FIG. 1 is a schematic diagram showing the flow of molten steel in a mold. Reduce non-metallic inclusions remaining in the slab,
In order to prevent an operation accident such as breakout, the discharge flow 4 from the discharge hole faces the short side 1a on both sides of the mold 1.
An immersion nozzle 2 having two discharge holes is usually used. The discharge flow 4 colliding with the short side of the mold is divided into an upward flow 4a toward the meniscus 5 and a downward flow 4b toward the lower part of the mold. The rising flow raises the meniscus near the short side and forms a flow 4c of the molten steel toward the vicinity of the immersion nozzle.

【0005】このように鋳型内の溶鋼3の流動には、メ
ニスカス5を盛り上げる作用があるが、メニスカスが盛
り上がった位置の溶融パウダ6aの厚さは薄くなり、逆
にメニスカスが下がった位置の溶融パウダ6aの厚さは
厚くなる。図中の符号6は、鋳型内に添加されたままの
モールドパウダを示す。このように溶融パウダ6aの厚
さが鋳型の幅方向で不均一になると、鋳型の長辺側の冷
却板と凝固殻10との隙間に流れ込む溶融パウダの厚さ
が鋳型の幅方向で不均一になりやすい。一方、溶鋼や凝
固殻の熱は、溶融パウダやその溶融パウダが固化したも
のなどを介して鋳型の長辺側の冷却板内などに伝達され
るが、その熱の伝わり方は、溶融パウダの厚さなどによ
って変化する。したがって、溶融パウダの厚さが鋳型の
幅方向で不均一になると、冷却板内を反溶鋼側に向かう
熱流束が鋳型の幅方向で不均一になる。
As described above, the flow of the molten steel 3 in the mold has the function of raising the meniscus 5, but the thickness of the molten powder 6a at the position where the meniscus is raised becomes thinner, and conversely, the molten powder 6a at the position where the meniscus is lowered. The thickness of the powder 6a increases. Reference numeral 6 in the figure indicates mold powder that has been added to the mold. When the thickness of the molten powder 6a becomes uneven in the width direction of the mold as described above, the thickness of the molten powder flowing into the gap between the cooling plate on the long side of the mold and the solidified shell 10 becomes uneven in the width direction of the mold. Easy to be. On the other hand, the heat of the molten steel or solidified shell is transmitted to the inside of the cooling plate on the long side of the mold through the molten powder and the solidified molten powder, etc. It changes depending on the thickness and the like. Therefore, when the thickness of the molten powder becomes uneven in the width direction of the mold, the heat flux flowing in the cooling plate toward the anti-molten steel side becomes uneven in the width direction of the mold.

【0006】鋳型の長辺側の冷却板内を反溶鋼側に向か
う熱流束が鋳型の幅方向で不均一になると、鋳型内の凝
固殻の厚さが鋳型の幅方向で不均一になる。その際、鋳
造速度が速くなればなるほど、鋳型内の溶鋼メニスカス
の盛り上がりが大きくなり、溶融パウダ層の厚さが鋳型
の幅方向でさらに不均一になるので、鋳型内の凝固殻の
厚さが鋳型の幅方向でさらに不均一になる。
[0006] If the heat flux in the cooling plate on the long side of the mold toward the anti-molten steel side becomes uneven in the width direction of the mold, the thickness of the solidified shell in the mold becomes uneven in the width direction of the mold. At that time, the higher the casting speed, the larger the rise of the molten steel meniscus in the mold and the more uneven the thickness of the molten powder layer in the width direction of the mold. Further unevenness in the width direction of the mold.

【0007】そこで、中炭素鋼の鋳片表面の縦割れの発
生防止方法として、鋳型の構造などを改善することによ
り、鋳型の長辺側の冷却板内を反溶鋼側に向かう熱流束
を鋳型の幅方向で均一化することが試みられている。
Therefore, as a method of preventing the occurrence of vertical cracks on the surface of a slab of medium carbon steel, the structure of the mold is improved so that the heat flux in the cooling plate on the long side of the mold toward the anti-melted steel side is reduced. Attempts have been made to make them uniform in the width direction.

【0008】特開平1−278944号公報には、鋳型
の構造を加熱装置を備える上部と凝固殻を冷却する下部
とに分割した構造とし、鋳型の上部に備えた誘導加熱装
置によって上部の冷却板を加熱し、鋳型内の凝固殻の厚
さを鋳型の幅方向で均一にする方法が提案されている。
また、特開平10−296399号公報には、鋳型の長
辺側の冷却板のメニスカス近傍の領域に縦溝を備え、鋳
型内の凝固殻を緩冷却することにより、鋳型の長辺側の
冷却板内を反溶鋼側に向かう熱流束を鋳型の幅方向で均
一にする方法が提案されている。
Japanese Patent Application Laid-Open No. 1-278944 discloses that the structure of a mold is divided into an upper portion having a heating device and a lower portion for cooling a solidified shell, and an upper cooling plate is provided by an induction heating device provided on the upper portion of the mold. Has been proposed to make the thickness of the solidified shell in the mold uniform in the width direction of the mold.
Japanese Patent Application Laid-Open No. 10-296399 discloses that a cooling plate on the long side of a mold is provided with a vertical groove in a region near the meniscus of a cooling plate on the long side of the mold to slowly cool a solidified shell in the mold. A method has been proposed in which the heat flux flowing in the plate toward the anti-molten steel side is made uniform in the width direction of the mold.

【0009】しかし、これらの方法では、鋳型内の凝固
殻の成長が抑制されるため、鋳造速度を通常の鋳型を用
いる場合よりも、遅くする必要がある。鋳造速度を遅く
しないと、ブレークアウトなどの事故が発生しやすいか
らである。鋳造速度を遅くすることは、連続鋳造の際の
生産性が悪くなることを意味する。
However, in these methods, since the growth of the solidified shell in the mold is suppressed, it is necessary to make the casting speed slower than in the case of using a normal mold. If the casting speed is not reduced, an accident such as breakout is likely to occur. Reducing the casting speed means that the productivity during continuous casting is reduced.

【0010】[0010]

【発明が解決しようとする課題】本発明は、中炭素鋼な
どの鋳片表面に縦割れなどが発生しやすい鋼を鋳造する
際に、鋳造速度を下げることなく鋳造ができ、かつ、鋳
片表面に発生する縦割れなどの表面欠陥の発生を防止す
る鋳型、およびその鋳型を用いる連続鋳造方法を提供す
ることを目的とする。
SUMMARY OF THE INVENTION The present invention relates to a method for casting a steel such as a medium carbon steel, which is likely to have vertical cracks on the surface thereof, without lowering the casting speed. An object of the present invention is to provide a mold for preventing the occurrence of surface defects such as vertical cracks generated on the surface, and a continuous casting method using the mold.

【0011】[0011]

【課題を解決するための手段】(1)本発明の鋳型は、
後述する図2に示すように、下記の〜を備えること
を特徴とする。 鋳型1の長辺側の冷却板12の中に鋳造方向に平行に
設けられた複数の空孔13。この空孔13は冷却板12
の溶鋼側表面と冷却水通流路(図3に符号14で示す)
との間にあって、冷却板12の上端に開口している。ま
た、その下端はメニスカス相当位置の下方へ50〜20
0mmの間にある。すなわち、図2中に示すdが50〜
200mmである。
Means for Solving the Problems (1) The mold of the present invention comprises:
As shown in FIG. 2, which will be described later, the following features are provided. A plurality of holes 13 provided in the cooling plate 12 on the long side of the mold 1 in parallel with the casting direction. The holes 13 are provided in the cooling plate 12
Surface of molten steel and cooling water passage (indicated by reference numeral 14 in FIG. 3)
And an opening at the upper end of the cooling plate 12. In addition, the lower end is located 50 to 20 below the meniscus equivalent position.
Between 0 mm. That is, d shown in FIG.
200 mm.

【0012】冷却板12の中に鋳型1の幅方向に複数
個設けられた温度センサ挿入用孔7。この温度センサ挿
入用孔7は、冷却板12の反溶鋼側表面と上記複数の空
孔13との間にあって、冷却板12の反溶鋼側表面に開
口している。また、この温度センサ挿入用孔7は、後述
するように、その内部に温度センサを挿入するための孔
であって、冷却板12の溶鋼側表面からの距離の異なる
2点における冷却板12の温度を測定するためのもので
ある。
A plurality of temperature sensor insertion holes 7 provided in the cooling plate 12 in the width direction of the mold 1. The hole 7 for inserting a temperature sensor is located between the surface of the cooling plate 12 on the side opposite to the molten steel and the plurality of holes 13, and opens to the surface of the cooling plate 12 on the side of the molten steel. Further, as will be described later, the temperature sensor insertion hole 7 is a hole for inserting a temperature sensor therein, and is provided at two points at different distances from the molten steel side surface of the cooling plate 12. It is for measuring temperature.

【0013】冷却板12の中に複数設けられた冷却用
ガス送風用孔16。この冷却用ガス送風用孔16は冷却
板12の溶鋼側表面のメニスカス相当位置の下方250
〜500mmの領域内に開口している。すなわち、図2
中に示すDが250〜500mmである。
A plurality of cooling gas blowing holes 16 provided in the cooling plate 12. The cooling gas blowing holes 16 are located below the position corresponding to the meniscus on the surface of the cooling plate 12 on the molten steel side.
It is open in the region of ~ 500 mm. That is, FIG.
D shown therein is 250 to 500 mm.

【0014】冷却板下端の下方に設けられた冷却用ガ
ス送風口17。 (2)上記(1)に記載の鋳型を用い、下記を特徴とす
る連続鋳造方法。すなわち、鋳型の幅方向に複数個配置
した温度センサ挿入用孔に備える複数の温度センサによ
り測定した冷却板の温度から求められる冷却板内を反溶
鋼側に向かう熱流束の値により、冷却用ガス送風用孔ま
たは冷却用ガス送風口の少なくとも一方から、凝固殻表
面に吹き付ける冷却用ガス量を調整すること。 (3)下記(A)式で表される包晶反応当量Cpが0.
09〜0.16質量%である鋼を鋳造する上記(2)に
記載の連続鋳造方法。
A cooling gas blowing port 17 provided below the lower end of the cooling plate. (2) A continuous casting method using the mold according to the above (1), characterized by the following. That is, the cooling gas is determined by the value of the heat flux flowing in the cooling plate toward the anti-fused steel side determined from the temperature of the cooling plate measured by the plurality of temperature sensors provided in the plurality of temperature sensor insertion holes arranged in the width direction of the mold. Adjusting the amount of cooling gas blown to the surface of the solidified shell from at least one of the blowing hole or the cooling gas blowing port. (3) The peritectic reaction equivalent Cp represented by the following formula (A) is 0.1.
The continuous casting method according to the above (2), wherein the steel having a content of 09 to 0.16% by mass is cast.

【0015】 ここで、C、Mn、N、Si、P、SおよびAl:鋼中
の含有率(質量%) 本発明者は、中炭素鋼などの鋳片表面に縦割れなどが発
生しやすい鋼を鋳造する際の課題を、次のようにして解
決した。本発明の方法では、開口部が長辺側の冷却板の
上端に配置され、下端部がその冷却板内のメニスカス相
当位置の下方の50〜200mmの間の位置に配置され
る複数の空孔を備えた鋳型を用いる。これにより、鋳型
内のメニスカス近傍に位置する凝固殻はほぼ全幅にわた
って均一に緩冷却される。
[0015] Here, C, Mn, N, Si, P, S and Al: content in steel (% by mass) The present inventor cast a steel such as a medium carbon steel, which is likely to have vertical cracks on the surface of a slab. The problem at the time of doing was solved as follows. In the method of the present invention, the opening is disposed at the upper end of the cooling plate on the long side, and the lower end is disposed at a position between 50 and 200 mm below the position corresponding to the meniscus in the cooling plate. Is used. As a result, the solidified shell located near the meniscus in the mold is uniformly and slowly cooled over substantially the entire width.

【0016】また、鋳型の冷却板内に鋳型の幅方向に複
数個設けられた温度センサ挿入用孔に備える複数の温度
センサにより測定した冷却板の温度から求められる冷却
板内を反溶鋼側に向かう鋳型幅方向の熱流束の値によ
り、少なくとも、冷却用ガス送風用孔から凝固殻表面に
吹き付ける冷却用ガス量を調整するか、または冷却用ガ
ス送風口から凝固殻表面に吹き付ける冷却用ガス量を調
整する。具体的には、たとえば鋳型の幅中央部における
熱流束の値をベースとして、その両側の複数の部分の熱
流束がベースに比べて小さい場合には、その部分に相当
する位置の、少なくとも冷却用ガス送風用孔、または冷
却用ガス送風口から凝固殻表面に吹き付ける冷却用ガス
量を多くする。これにより、この部分の凝固殻の冷却を
強くできるので、全幅の凝固殻の冷却を均一化できる。
Further, the inside of the cooling plate, which is determined from the temperature of the cooling plate measured by a plurality of temperature sensors provided in a plurality of temperature sensor insertion holes provided in a width direction of the mold in the cooling plate of the mold, is placed on the side opposite to the molten steel. Depending on the value of the heat flux in the width direction of the casting mold, at least the amount of cooling gas blown from the cooling gas blow hole to the solidified shell surface or the amount of cooling gas blown from the cooling gas blow hole to the solidified shell surface To adjust. Specifically, for example, based on the value of the heat flux at the center of the width of the mold, if the heat flux of a plurality of portions on both sides thereof is smaller than that of the base, at least the position corresponding to that portion is used for cooling. The amount of cooling gas blown from the gas blowing hole or the cooling gas blowing port onto the solidified shell surface is increased. As a result, the cooling of the solidified shell in this portion can be increased, so that the cooling of the solidified shell over the entire width can be made uniform.

【0017】逆に、幅中央部の両側の複数の部分の熱流
束がベースの幅中央部の熱流束に比べて大きい場合に
は、その部分に相当する位置の、少なくとも冷却用ガス
送風用孔、または冷却用ガス送風口から凝固殻表面に吹
き付ける冷却用ガス量を少なくすることにより、この部
分の凝固殻を緩冷却し、全幅の凝固殻の冷却を均一化す
ることができる。
On the other hand, when the heat flux of the plurality of portions on both sides of the central portion of the width is larger than the heat flux of the central portion of the width of the base, at least a cooling gas blowing hole at a position corresponding to the portion. Alternatively, by reducing the amount of the cooling gas blown from the cooling gas blowing port to the surface of the solidified shell, the solidified shell in this portion can be slowly cooled, and the cooling of the solidified shell over the entire width can be made uniform.

【0018】上述する複数の空孔を備えた鋳型を用いて
メニスカス近傍の凝固殻を緩冷却し、幅中央部に相当す
る位置の冷却用ガス送風用孔および冷却用ガス送風口の
うち、少なくともいずれかから凝固殻表面に吹き付ける
冷却用ガス量を適正な量とする。さらに、上述する鋳片
幅方向の冷却用ガス量を調整する。これにより、ベース
となる鋳片幅中央部の熱流束が適正な値となり、かつ鋳
片幅方向の熱流束が均一になるので、鋳造速度を低下さ
せることなく、鋳型幅方向の凝固殻の冷却を均一化でき
る。
The solidified shell in the vicinity of the meniscus is slowly cooled by using the above-described mold having a plurality of holes, and at least one of the cooling gas blow hole and the cooling gas blow hole at a position corresponding to the center of the width is provided. The cooling gas amount blown to the solidified shell surface from any of them is set to an appropriate amount. Further, the cooling gas amount in the slab width direction described above is adjusted. As a result, the heat flux in the central portion of the slab width serving as the base becomes an appropriate value, and the heat flux in the slab width direction becomes uniform, so that the solidification shell in the mold width direction is cooled without lowering the casting speed. Can be made uniform.

【0019】熱流束を鋳型の幅方向で均一にすることに
より、鋳型内の凝固殻の厚さは鋳型の幅方向で均一にな
る。したがって、中炭素鋼などの鋳片の縦割れ発生を防
止できる。
By making the heat flux uniform in the width direction of the mold, the thickness of the solidified shell in the mold becomes uniform in the width direction of the mold. Therefore, it is possible to prevent the occurrence of vertical cracks in the cast slab such as medium carbon steel.

【0020】なお、本発明の鋳型を用いて本発明の方法
を実施する場合に、鋳型内の溶鋼の流動の制御や結晶を
多く析出するパウダの化学組成の選択などの従来の技術
を用いれば、さらに効果的に中炭素鋼の鋳片の縦割れの
発生を防止できる。
When the method of the present invention is carried out using the mold of the present invention, conventional techniques such as controlling the flow of molten steel in the mold and selecting the chemical composition of the powder that precipitates a large amount of crystals can be used. Further, it is possible to more effectively prevent the occurrence of vertical cracks in the slab of medium carbon steel.

【0021】[0021]

【発明の実施の形態】本発明の鋳型および連続鋳造方法
を、以下に説明する。図2、図3および図4は、本発明
の鋳型の長辺側の冷却板の構造例および連続鋳造方法の
例を説明するための模式図である。図2は鋳型の片方の
長辺側の冷却板の縦断面図(短辺側から見た長辺側の冷
却板の断面を示す)で、図3は図2のA1−A2線の断
面図で、図4は図2のB1−B2線の断面図である。図
中の符号2は浸漬ノズル、符号3は溶鋼、符号6はモー
ルドパウダ、符号6aは溶融パウダをそれぞれ示す。図
2、図3および図4を用いて以下に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The mold and the continuous casting method of the present invention will be described below. FIGS. 2, 3 and 4 are schematic diagrams for explaining an example of the structure of the cooling plate on the long side of the mold and an example of the continuous casting method of the present invention. 2 is a longitudinal sectional view of a cooling plate on one long side of the mold (showing a cross section of the cooling plate on the long side viewed from the short side), and FIG. 3 is a sectional view taken along line A1-A2 in FIG. FIG. 4 is a sectional view taken along line B1-B2 in FIG. In the drawing, reference numeral 2 denotes an immersion nozzle, reference numeral 3 denotes molten steel, reference numeral 6 denotes mold powder, and reference numeral 6a denotes molten powder. This will be described below with reference to FIGS. 2, 3, and 4.

【0022】まず、本発明の鋳型について説明する。本
発明の鋳型1には、鋳型の長辺側の冷却板12の溶鋼側
表面と冷却板内の冷却水通流路14との間で鋳造方向に
平行に存在し、冷却板の上端に開口部を有し、下端が冷
却板内のメニスカス相当位置の下方の50〜200mm
の間の位置にある複数の空孔13を備える。冷却板の反
溶鋼側には、通常の冷却水通流路14を備え、また、冷
却板12は鋳型のバックフレーム15に取り付けて配置
される。
First, the mold of the present invention will be described. In the casting mold 1 of the present invention, an opening is formed at an upper end of the cooling plate between the molten steel side surface of the cooling plate 12 on the long side of the casting mold and the cooling water passage 14 in the cooling plate. Part, the lower end of which is 50 to 200 mm below the meniscus equivalent position in the cooling plate
And a plurality of holes 13 at positions between them. The cooling plate is provided with a normal cooling water passage 14 on the side opposite to the molten steel, and the cooling plate 12 is mounted on a back frame 15 of a mold.

【0023】空孔13の水平断面形状は、とくにこだわ
らないが、取り扱いやすいので円形がよい。また、個々
の空孔の直径は3〜15mmが望ましい。3mm未満の
場合には、凝固殻10を緩冷却する効果が小さくなり、
また15mmを超えて大きい場合には、冷却板12の寿
命が短くなって経済的でない。なぜならば、冷却板の溶
鋼側の表面は、通常、規定する溶鋼量を鋳造した後に切
削加工された後、再使用されるためである。
The horizontal cross-sectional shape of the hole 13 is not particularly limited, but is preferably circular because it is easy to handle. The diameter of each hole is desirably 3 to 15 mm. In the case of less than 3 mm, the effect of slowly cooling the solidified shell 10 becomes small,
If it is larger than 15 mm, the life of the cooling plate 12 is shortened, which is not economical. This is because the surface of the cooling plate on the molten steel side is usually reused after being cut after casting a specified amount of molten steel.

【0024】また、冷却板12の溶鋼側の表面から空孔
13の鋳造方向の中心軸までの距離は5〜20mmが望
ましい。この距離が5mm未満では、上述のように冷却
板の寿命が短くなり、20mmを超えて離れる場合に
は、空孔が冷却水通流路14に近すぎて、お互いが構造
上干渉しやすい。
The distance from the surface of the cooling plate 12 on the molten steel side to the center axis of the hole 13 in the casting direction is preferably 5 to 20 mm. If the distance is less than 5 mm, the life of the cooling plate is shortened as described above, and if the distance is more than 20 mm, the holes are too close to the cooling water passage 14 and structurally easily interfere with each other.

【0025】さらに、これら複数の空孔13の鋳型の幅
方向での各空孔の鋳造方向の中心軸の間隔は、3〜20
mmが望ましい。この範囲の間隔とすることにより、冷
却板の鋳型幅方向の長さに対する各空孔の直径の合計長
さの比が75%以上となり、鋳型幅方向のほぼ全幅の凝
固殻を均一に緩冷却することができる。
Further, the interval between the center axes of the holes 13 in the casting direction in the width direction of the mold is 3 to 20.
mm is desirable. By setting the interval in this range, the ratio of the total length of the diameter of each hole to the length of the cooling plate in the mold width direction becomes 75% or more, and the solidified shell having almost the entire width in the mold width direction is uniformly cooled slowly. can do.

【0026】空孔13の上端は、冷却板12の上端と一
致させて、空孔を大気中に開口させ、また、空孔の下端
はメニスカス5相当位置の下方の50〜200mmの間
の位置とする。メニスカス相当位置の下方50mm未満
までの領域では、鋳型の冷却板が凝固殻を冷却する作用
は小さい。また、メニスカス相当位置の下方200mm
を超えた下方の領域では、鋳型の冷却板と凝固殻との間
の距離が大きくなるため、鋳型の熱流束が小さくなって
いる。そのため、鋳型の冷却板が凝固殻を冷却する作用
は小さい。
The upper end of the hole 13 coincides with the upper end of the cooling plate 12 to open the hole into the atmosphere. The lower end of the hole is located at a position 50 to 200 mm below the position corresponding to the meniscus 5. And In a region of less than 50 mm below the meniscus equivalent position, the cooling plate of the mold has a small effect of cooling the solidified shell. Also, 200mm below the meniscus equivalent position
In the region below the temperature, the distance between the cooling plate of the mold and the solidified shell increases, so that the heat flux of the mold decreases. Therefore, the function of the cooling plate of the mold to cool the solidified shell is small.

【0027】鋳型の長辺側の冷却板12の反溶鋼側表面
と複数の空孔13との間に、冷却板12の反溶鋼側表面
に開口部を有し、冷却板12の溶鋼側表面からの距離の
異なる2点における冷却板12の温度を測定するための
温度センサ挿入用孔7、8を鋳型の幅方向に複数個備え
る。これら挿入用孔7、8はほぼ水平に設けるのが望ま
しい。
The cooling plate 12 has an opening between the surface of the cooling plate 12 on the side of the molten steel and the plurality of holes 13 on the long side of the mold, and the surface of the cooling plate 12 on the side of the molten steel. A plurality of holes 7 and 8 for inserting temperature sensors for measuring the temperature of the cooling plate 12 at two points at different distances from the mold are provided in the width direction of the mold. These insertion holes 7 and 8 are desirably provided substantially horizontally.

【0028】図2および図3では、2つの温度センサ挿
入用孔7、8を1セットとして、冷却板内に鋳型の幅方
向に複数セットを備える例を示す。1セットの2つの温
度センサ挿入用孔を、同一垂直断面に備える例で示して
いるが、同一水平断面に備えても良い。また、2つの温
度センサ挿入用孔でなく、1つの温度センサ挿入用孔と
してもよい。1つの温度センサ挿入用孔の場合には、後
述する熱電対などを互いに電気的に絶縁し、かつ互いの
熱電対の先端の距離を一定になるようにすればよい。
FIGS. 2 and 3 show an example in which two sets of two temperature sensor insertion holes 7 and 8 are provided in the cooling plate in the width direction of the mold. Although one set of two temperature sensor insertion holes is provided in the same vertical section, it may be provided in the same horizontal section. Also, one temperature sensor insertion hole may be used instead of two temperature sensor insertion holes. In the case of one temperature sensor insertion hole, a thermocouple, which will be described later, may be electrically insulated from each other, and the distance between the tips of the thermocouples may be constant.

【0029】これら温度センサ挿入用孔7、8の取り付
ける冷却板12内での高さは、メニスカス5に相当する
高さ近傍で、かつ接近する位置がよい。また、温度セン
サ挿入用孔7、8の先端の位置は、空孔13よりも反溶
鋼側の位置とし、互いの先端の位置が5〜10mm程度
の距離差となるように配置するのがよい。冷却板内に配
置する温度センサのセットの数は、鋳型の幅などで決め
ればよいが、2〜10セットが望ましい。
The height of the temperature sensor insertion holes 7 and 8 in the cooling plate 12 to be attached is preferably near the height corresponding to the meniscus 5 and close to the meniscus 5. Further, the positions of the tips of the temperature sensor insertion holes 7 and 8 are set to positions closer to the molten steel than the holes 13, and are preferably arranged such that the positions of the tips are mutually different by a distance of about 5 to 10 mm. . The number of sets of temperature sensors arranged in the cooling plate may be determined by the width of the mold or the like, but is preferably 2 to 10 sets.

【0030】2つの温度センサ9を用いるのは、互いの
先端の位置が判明している2つの温度センサで測定した
温度から、熱流束を求めるためである。鋳型の幅方向に
は、上述するセットを複数セット配置するのがよい。こ
れら温度センサ挿入用孔7、8の先端に温度センサを挿
入するが、温度センサは通常の熱電対でよい。
The two temperature sensors 9 are used to determine the heat flux from the temperatures measured by the two temperature sensors whose tip positions are known. It is preferable to arrange a plurality of the above sets in the width direction of the mold. A temperature sensor is inserted into the tip of each of the temperature sensor insertion holes 7 and 8, and the temperature sensor may be a normal thermocouple.

【0031】1セットの2つの温度センサ挿入用孔を同
一垂直断面に備え、鋳型の幅方向に複数セット備える場
合に、各セットの温度センサ挿入用孔7、8の冷却板内
での高さはほぼ同じとするのがよい。
When one set of two temperature sensor insertion holes is provided in the same vertical section and a plurality of sets are provided in the width direction of the mold, the height of the temperature sensor insertion holes 7 and 8 of each set in the cooling plate is set. Should be approximately the same.

【0032】鋳型には、少なくとも鋳型の長辺側の冷却
板12のメニスカス5相当位置の下方250〜500m
mの領域に溶鋼側表面に開口する複数の冷却用ガス送風
用孔16、または、鋳型の長辺側の冷却板下端の下方に
冷却用ガス送風口17を備える。
The mold is at least 250 to 500 m below the position corresponding to the meniscus 5 of the cooling plate 12 on the long side of the mold.
A plurality of cooling gas blowing holes 16 opened on the molten steel side surface in the area of m, or a cooling gas blowing port 17 below the lower end of the cooling plate on the long side of the mold.

【0033】冷却用ガス送風用孔16の断面形状は、と
くにこだわらないが、取り扱いやすいので円形がよい。
この孔の直径は2〜5mmが望ましい。2mm未満の場
合には、溶融パウダなどが詰まりやすい。5mmを超え
て大きい場合には、冷却板内の冷却水通流路14などと
の鋳型の構造徐上の取り合いが困難になる。
The cross-sectional shape of the cooling gas blowing hole 16 is not particularly limited, but is preferably circular because it is easy to handle.
The diameter of this hole is desirably 2 to 5 mm. If it is less than 2 mm, the molten powder or the like is likely to be clogged. If it is larger than 5 mm, it will be difficult to assemble the mold with the cooling water passages 14 in the cooling plate.

【0034】これら冷却用ガス送風用孔16に通じ冷却
板12の反溶鋼側表面に開口部を有する貫通孔11を配
置し、冷却板の反溶鋼側表面に開口した部分から、鋼製
の管などを鋳型外部まで配置することにより、鋳片表面
に吹き付ける冷却用ガスを導入することができる。
A through-hole 11 having an opening at the surface of the cooling plate 12 on the side of the molten steel is formed so as to communicate with the hole 16 for blowing gas for cooling. By arranging such as to the outside of the mold, a cooling gas sprayed on the slab surface can be introduced.

【0035】複数の冷却用ガス送風用孔16を配置する
位置は、鋳型の長辺側の冷却板12のメニスカス5相当
位置の下方250〜500mmの間の領域とし、複数の
冷却用ガス送風用孔は同じ高さの位置に配置するのがよ
い。また、配置する数は鋳型の大きさなどで決めればよ
いが、前述の温度センサ9のセット数と同じ程度にする
のが望ましい。
The position where the plurality of cooling gas blowing holes 16 are arranged is a region between 250 and 500 mm below the position corresponding to the meniscus 5 of the cooling plate 12 on the long side of the mold. The holes are preferably located at the same height. The number of the temperature sensors 9 may be determined according to the size of the mold or the like.

【0036】鋳型の長辺側の冷却板下端の下方に備える
冷却用ガス送風口17は鋼製の管などを用いることがで
きる。その際、管内径および配置する数は、上述の冷却
用ガス送風用孔16と同じとすればよい。冷却板下端の
下方とは、冷却板下端から30mm以内程度の距離が望
ましい。30mmを超えるとロールなどと設備構造上干
渉する場合がある。また、冷却用ガス送風口として、ス
リット状の装置を用いることもできる。その際、スリッ
トの隙間は2〜5mmがよい。また、前述の温度センサ
のセット数と同じ程度に、スリット内部を鋳型幅方向に
分割するのがよい。それぞれの分割されたスリットの部
分から送風する冷却用ガス量を調整できるからである。
As the cooling gas blow port 17 provided below the lower end of the cooling plate on the long side of the mold, a steel pipe or the like can be used. At this time, the inner diameter of the pipe and the number of the pipes may be the same as those of the cooling gas blowing holes 16 described above. The lower part of the lower end of the cooling plate is preferably a distance of about 30 mm or less from the lower end of the cooling plate. If it exceeds 30 mm, it may interfere with a roll or the like in the facility structure. In addition, a slit-shaped device can be used as the cooling gas blowing port. At this time, the gap between the slits is preferably 2 to 5 mm. Further, it is preferable to divide the inside of the slit in the width direction of the mold to the same extent as the number of sets of the temperature sensors described above. This is because the amount of the cooling gas blown from each of the divided slit portions can be adjusted.

【0037】これら冷却用ガス送風用孔および冷却用ガ
ス送風口から送風する冷却用ガスは、N2 ガス、または
Arガスでもよいし、酸素混合ガスを用いることもでき
る。酸素混合ガスを用いる場合、たとえば、10%程度
酸素を混合したArガスを凝固殻表面に吹き付けること
により、凝固殻の冷却だけでなく、凝固殻表層部を酸化
させて除去するので、凝固殻表層部のピンホールやパウ
ダ性欠陥などを除去できる。また、これら冷却用ガス送
風用孔および冷却用ガス送風口の後段には、個々に流量
調整装置(図示していない)を備えることにより、冷却
用ガス量を調整することができる。
The cooling gas blown from the cooling gas blowing hole and the cooling gas blowing port may be N 2 gas, Ar gas, or an oxygen mixed gas. When an oxygen mixed gas is used, for example, by spraying Ar gas containing about 10% oxygen on the surface of the solidified shell, not only the solidified shell is cooled but also the surface layer of the solidified shell is oxidized and removed. Pinholes, powder defects, and the like can be removed. Further, by providing a flow rate adjusting device (not shown) at a stage subsequent to the cooling gas blowing hole and the cooling gas blowing port, the cooling gas amount can be adjusted.

【0038】次に、本発明の連続鋳造方法を説明する。
鋳型の幅方向に複数配置された温度センサの測定情報か
ら、鋳型内の冷却板の溶鋼側の表面から冷却板の内部に
向かう熱流束を制御装置を用いて演算する。その際、熱
流束は次のようにして求めることができる。溶鋼および
凝固殻の熱は、この冷却板内を反溶鋼側に向かって流
れ、その後、冷却板内に備えた冷却水通流路内を流れる
冷却水によって抜熱される。したがって、冷却板内の溶
鋼メニスカス近傍に、5〜10mm程度離れた位置に配
置された2つの熱電対によって、冷却板の2カ所の温度
が測定される場合に、測定された2カ所の温度には差が
生じる。溶鋼側に近い方の位置の温度が高い。熱流束
(W/m2 )は、この2カ所の温度差(K)を、測温し
た2カ所の距離(m)で除した値に、金属に固有の熱伝
導率(W/(m・K))を掛けて得られる。
Next, the continuous casting method of the present invention will be described.
From the measurement information of a plurality of temperature sensors arranged in the width direction of the mold, a heat flux from the surface of the cooling plate in the mold on the molten steel side to the inside of the cooling plate is calculated using a control device. At that time, the heat flux can be obtained as follows. The heat of the molten steel and the solidified shell flows through the cooling plate toward the anti-molten steel side, and is then removed by the cooling water flowing through the cooling water passage provided in the cooling plate. Therefore, when two thermocouples arranged at positions about 5 to 10 mm apart from each other in the vicinity of the molten steel meniscus in the cooling plate measure the temperature of the cooling plate at two locations, the temperature of the two measured locations is reduced. Makes a difference. The temperature near the molten steel side is high. The heat flux (W / m 2 ) is calculated by dividing the temperature difference (K) at the two locations by the distance (m) between the two measured locations, and calculating the heat conductivity (W / (m · m) specific to the metal. K)).

【0039】さらに説明すれば、溶鋼および凝固殻の熱
を奪う冷却板の熱伝達の大きさは、冷却板の材質に固有
の熱伝導率と容積、冷却水の熱伝導率と水量、溶融パウ
ダを介しての鋳型の冷却板と凝固殻との接触状況などに
比例する。冷却板の熱伝導率と容積、および冷却水の熱
伝導率と水量を一定とすれば、冷却板の熱伝達の大きさ
は、主として鋳型の冷却板と凝固殻との接触状況に比例
することになる。
More specifically, the magnitude of heat transfer of the cooling plate that takes away the heat of the molten steel and the solidified shell is determined by the heat conductivity and volume specific to the material of the cooling plate, the heat conductivity and amount of the cooling water, the molten powder. Is proportional to the state of contact between the cooling plate of the mold and the solidified shell. Assuming that the heat conductivity and volume of the cooling plate and the heat conductivity and water volume of the cooling water are constant, the magnitude of heat transfer of the cooling plate is mainly proportional to the state of contact between the cooling plate of the mold and the solidified shell. become.

【0040】複数の温度センサで測定した温度から求め
られる冷却板内を反溶鋼側に向かう熱流束の値により、
少なくとも冷却用ガス送風用孔から凝固殻表面に吹き付
ける冷却用ガス量を調整するか、または、冷却用ガス送
風口から凝固殻表面に吹き付ける冷却用ガス量を調整す
る。具体的には、たとえば鋳型の幅中央部における熱流
束の値をベースとして、その両側の複数の部分の熱流束
がベースに比べて小さい場合には、その部分に相当する
位置の、少なくとも冷却用ガス送風用孔、または冷却用
ガス送風口から凝固殻表面に吹き付ける冷却用ガス量を
多くする。これにより、この部分の凝固殻の冷却を強く
して、鋳型の幅方向の全幅で凝固殻の冷却を均一化でき
る。
The value of the heat flux flowing in the cooling plate toward the anti-molten steel side obtained from the temperatures measured by the plurality of temperature sensors is given by
At least the amount of the cooling gas blown from the cooling gas blowing hole to the surface of the solidified shell is adjusted, or the amount of the cooling gas blown from the cooling gas blowing port to the surface of the solidified shell is adjusted. Specifically, for example, based on the value of the heat flux at the center of the width of the mold, if the heat flux of a plurality of portions on both sides thereof is smaller than that of the base, at least the position corresponding to that portion is used for cooling. The amount of cooling gas blown from the gas blowing hole or the cooling gas blowing port onto the solidified shell surface is increased. Thereby, the cooling of the solidified shell in this portion is strengthened, and the cooling of the solidified shell can be made uniform over the entire width in the width direction of the mold.

【0041】冷却用ガス送風用孔、または冷却用ガス送
風口だけからの冷却用ガスの吹きつけでは、鋳型の幅方
向での熱流束の均一化が十分でない場合には、両方から
吹き付ければよい。その際、鋳型の幅方向での熱流束の
差が±10%以内になるように冷却用ガスの吹き付け量
を調整することが望ましい。
In the case of blowing the cooling gas only from the cooling gas blowing hole or the cooling gas blowing port, if the heat flux in the width direction of the mold is not sufficiently uniform, the cooling gas is blown from both. Good. At this time, it is desirable to adjust the blowing amount of the cooling gas so that the difference in heat flux in the width direction of the mold is within ± 10%.

【0042】吹き付ける冷却用ガス量は、1つの冷却用
ガス送風用孔、または冷却用ガス送風口から、1〜30
リットル/分とするのがよい。1リットル/分未満で
は、凝固殻を冷却する効果が小さい。また、30リット
ル/分を超えると、冷却用ガスが鋳型上方にまで吹き上
がる場合がある。
The amount of the cooling gas to be blown is 1 to 30 from one cooling gas blowing hole or cooling gas blowing port.
It is good to be liter / min. At less than 1 liter / minute, the effect of cooling the solidified shell is small. If it exceeds 30 liters / minute, the cooling gas may blow up to above the mold.

【0043】前述の(A)式で示される包晶反応当量C
pが0.09〜0.16質量%である鋼を鋳造する際
に、本発明の鋳型およびその鋳型を用いた本発明の連続
鋳造方法を適用するのが好適である。
The peritectic reaction equivalent C represented by the above formula (A)
It is preferable to apply the mold of the present invention and the continuous casting method of the present invention using the mold when casting steel having a p of 0.09 to 0.16% by mass.

【0044】前述の(A)式は、一般的な熱力学的平衡
計算ソフトを用いて、包晶反応の開始点および終了点に
相当する各元素の含有率を単回帰分析して求めた。つま
り、包晶反応当量Cpが0.09〜0.16質量%の範
囲内にある場合に、凝固過程において包晶反応が生じ
る。また、包晶反応が生じる場合には、その凝固特性か
ら、鋳片表面に縦割れが発生しやすい。したがって、本
発明の鋳型および本発明の連続鋳造方法を上述の鋼に適
用すると、縦割れの発生防止に効果的である。
The formula (A) was determined by simple regression analysis of the content of each element corresponding to the start and end points of the peritectic reaction using general thermodynamic equilibrium calculation software. That is, when the peritectic reaction equivalent Cp is in the range of 0.09 to 0.16% by mass, the peritectic reaction occurs in the solidification process. When a peritectic reaction occurs, vertical cracks are likely to occur on the slab surface due to its solidification characteristics. Therefore, when the mold of the present invention and the continuous casting method of the present invention are applied to the above-described steel, it is effective in preventing the occurrence of vertical cracks.

【0045】[0045]

【実施例】垂直曲げ型連続鋳造機に従来の鋳型または図
2に示す装置構成の本発明の鋳型を搭載し、表1に示す
化学組成の中炭素鋼を、厚さ100mm、幅800mm
のスラブ鋳片に、速度1〜2m/分で鋳造した。これら
鋳造する鋼の包晶反応当量Cpは0.16質量%であ
り、本発明の方法で規定する範囲内の値である。
EXAMPLE A conventional mold or a mold of the present invention having an apparatus configuration shown in FIG. 2 was mounted on a vertical bending type continuous casting machine, and a medium-carbon steel having a chemical composition shown in Table 1 was deposited to a thickness of 100 mm and a width of 800 mm.
Was cast at a speed of 1 to 2 m / min. The peritectic reaction equivalent Cp of these cast steels is 0.16% by mass, which is within the range specified by the method of the present invention.

【0046】[0046]

【表1】 吐出孔の角度が下向き20度の2孔を有する浸漬ノズル
を用い、その先端が溶鋼メニスカスの下方200mmに
なるように溶鋼中に浸漬ノズルを浸漬して鋳造した。鋳
型の高さは900mmで、メニスカスの位置は、鋳型の
上端から100mm下の位置に設定して操業した。鋳型
内の溶鋼表面に添加するモールドパウダは、通常のモー
ルドパウダを用いた。タンディッシュ内の溶鋼の過熱度
は5〜40℃とした。
[Table 1] The immersion nozzle was immersed in the molten steel such that the tip of the immersion nozzle had two holes with a downward angle of 20 degrees and was 200 mm below the molten steel meniscus. The mold was operated at a height of 900 mm, and the position of the meniscus was set at a position 100 mm below the upper end of the mold. Normal mold powder was used as the mold powder added to the surface of the molten steel in the mold. The degree of superheating of the molten steel in the tundish was 5 to 40 ° C.

【0047】本発明の鋳型には、内径5mmの空孔を、
鋳型幅方向に10mm間隔で、鋳造方向に鋳型の上端か
ら300mm下方まで、すなわち、メニスカスから20
0mm下方までの領域に、片側の長辺面の冷却板当たり
79個配置した。これら空孔を両側の長辺面に配置し
た。
The mold of the present invention has a hole having an inner diameter of 5 mm,
At a distance of 10 mm in the width direction of the mold, 300 mm below the upper end of the mold in the casting direction, that is, 20 mm from the meniscus.
In a region down to 0 mm, 79 cooling plates were arranged on one long side surface per cooling plate. These holes were arranged on the long sides of both sides.

【0048】本発明の鋳型および従来の鋳型のそれぞれ
の片側の長辺側の冷却板に、図2に示すように、1セッ
トの2つの温度センサ挿入用孔を、同一垂直断面に配置
した。上方の温度センサ挿入用孔の鋳型の高さ方向の位
置を、メニスカスに相当する高さとした。また、2つの
温度センサ挿入用孔の先端の水平方向の距離が10mm
となるように配置した。それぞれの熱電対の先端をそれ
ぞれの温度センサ挿入用孔の先端にまで差し込んで配置
した。また、溶鋼側に近い方の温度センサ挿入用孔の先
端と冷却板の溶鋼側の表面との距離を20mmとした。
鋳型の幅方向には、幅中央部を含めて、幅を6等分する
位置に、合計5セット配置した。
As shown in FIG. 2, one set of two temperature sensor insertion holes were arranged on the same vertical cross section of the cooling plate on one long side of each of the mold of the present invention and the conventional mold. The position of the upper temperature sensor insertion hole in the height direction of the mold was set to a height corresponding to the meniscus. Also, the distance in the horizontal direction between the tips of the two temperature sensor insertion holes is 10 mm.
It was arranged so that it might become. The tip of each thermocouple was inserted and arranged to the tip of each temperature sensor insertion hole. The distance between the tip of the temperature sensor insertion hole closer to the molten steel side and the surface of the cooling plate on the molten steel side was 20 mm.
In the width direction of the mold, a total of five sets were arranged at positions dividing the width into six equal parts including the central part of the width.

【0049】本発明の鋳型には、冷却用ガス送風用孔お
よび冷却用ガス送風口を配置した。冷却用ガス送風用孔
は、内径3mmとし、両側の長辺側の冷却板内のメニス
カス相当位置の下方400mmの位置に配置した。片側
の長辺側の冷却板当たり、鋳型の幅方向に5個、上述の
各温度センサ挿入用孔に相当する位置に配置した。これ
ら冷却用ガス送風用孔に通じ、冷却板の反溶鋼側表面に
開口部を有する貫通孔をそれぞれ配置し、それら開口部
に鋼製の管を取り付け、それら管を鋳型外部まで取り出
した。それらの管を経由して、凝固殻表面に吹き付ける
冷却用ガスを導入した。
In the mold of the present invention, a cooling gas blowing hole and a cooling gas blowing port were arranged. The cooling gas blow hole had an inner diameter of 3 mm, and was arranged at a position 400 mm below the meniscus equivalent position in the cooling plate on the long side of both sides. Five cooling plates per one long side were arranged in the width direction of the mold at positions corresponding to the above-mentioned holes for inserting the temperature sensors. Through-holes having openings were arranged on the surface of the cooling plate on the side opposite to the molten steel and passed through these holes for blowing gas for cooling, and steel tubes were attached to the openings, and the tubes were taken out of the mold. A cooling gas sprayed on the surface of the solidified shell was introduced via the tubes.

【0050】また、冷却用ガス送風口は、内径3mmの
鋼製の管とし、鋳型の長辺側の冷却板下端の下方に配置
した。配置する個数と鋳型の幅方向での位置は、上述の
冷却用ガス送風用孔と同じとした。これら鋼製の管を鋳
型外部まで取り出し、凝固殻表面に吹き付ける冷却用ガ
スを導入した。
The cooling gas blowing port was a steel pipe having an inner diameter of 3 mm, and was disposed below the lower end of the cooling plate on the long side of the mold. The number to be arranged and the position in the width direction of the mold were the same as the above-mentioned cooling gas blowing holes. These steel tubes were taken out of the mold, and a cooling gas sprayed on the surface of the solidified shell was introduced.

【0051】それぞれの冷却用ガス送風用孔および冷却
用ガス送風口から、凝固殻表面に10%酸素を混合した
Arガスを吹き付けた。その際、1つの冷却用ガス送風
用孔、または冷却用ガス送風口からの冷却用ガス量は、
鋳型幅中央部における熱流束をベースとして、鋳型の幅
方向での熱流束の差が±10%以内になるように、1〜
30リットル/分の範囲内で調整した量とした。
Ar gas mixed with 10% oxygen was blown onto the surface of the solidified shell from the cooling gas blowing holes and the cooling gas blowing holes. At that time, the amount of cooling gas from one cooling gas blowing hole or cooling gas blowing port is:
On the basis of the heat flux at the center of the mold width, the heat flux difference in the width direction of the mold is within ± 10%,
The volume was adjusted within a range of 30 liters / minute.

【0052】得られたスラブ鋳片の表面を目視で観察
し、中炭素鋼に発生しやすい縦割れの発生の有無を調査
した。後述する表2に示す評価○は縦割れの発生のない
場合、評価△は縦割れが発生し、鋳片表面の手入れが必
要な場合、評価×は縦割れの発生が著しく、鋳片表面を
手入れしても、その後の熱間圧延が困難な場合である。
The surface of the obtained slab slab was visually observed, and the presence or absence of longitudinal cracks that easily occur in the medium carbon steel was examined. Evaluation ○ shown in Table 2 described below indicates that no vertical cracks were generated, and evaluation Δ indicates that vertical cracks were generated. In some cases, subsequent hot rolling is difficult even if it is maintained.

【0053】また、鋳造後の鋳片を鋼製の冷却床で放冷
し、24時間経過後、鋳片表面から剥がれたスケールを
採取し、マイクロメータでスケールの厚さを測定した。
各試験で得られた1つの鋳片から、10個程度のスケー
ルの厚さを測定し、その平均値を求めた。本発明の鋳型
を用い10%酸素を混合したArガスを鋳片表面に吹き
付けたときの各試験でのスケールの平均厚さを従来の鋳
型を用いたときの3回の試験でのスケールの平均厚さで
除した比を、「スケールオフ比率」として求めた。表2
に、試験条件および試験結果を示す。
The cast slab was allowed to cool on a steel cooling floor, and after 24 hours, the scale peeled off the slab surface was sampled and the thickness of the scale was measured with a micrometer.
The thickness of about 10 scales was measured from one cast piece obtained in each test, and the average value was obtained. The average thickness of the scale in each test when Ar gas mixed with 10% oxygen was blown onto the slab surface using the mold of the present invention was calculated as the average of the scale in three tests using the conventional mold. The ratio divided by the thickness was determined as “scale-off ratio”. Table 2
Shows test conditions and test results.

【0054】[0054]

【表2】 本発明例の試験No.1〜No.3では、鋳造速度1〜
2m/分で鋳造し、それぞれの温度センサによって測定
した温度から求めた熱流束の値の大きさから、少なくと
も冷却用ガス送風用孔または冷却用ガス送風口から、凝
固殻表面に10%酸素を混合したArガスを吹き付け
た。その際、それぞれの冷却用ガス送風用孔または冷却
用ガス送風口から凝固殻表面に吹き付ける冷却用ガス量
は、鋳型幅中央部における熱流束をベースとして、鋳型
の幅方向での熱流束の差の最大値が±10%以内になる
ように調整したガス量とした。冷却用ガス量の合計は5
0〜200リットル/分の範囲であった。なお、鋳型の
幅中央部の熱流束に対して、熱流束の差の−は熱流束が
小さいことを意味し、+はその逆を意味する。熱流束が
安定した時期以降の鋳造時期に相当するスラブ鋳片の表
面状況を観察した。
[Table 2] Test No. of the present invention example. 1 to No. In 3, the casting speed 1 ~
Casting at 2 m / min. From the magnitude of the value of the heat flux obtained from the temperature measured by each temperature sensor, at least 10% oxygen was supplied to the solidified shell surface from at least the cooling gas blowing hole or the cooling gas blowing port. The mixed Ar gas was blown. At this time, the amount of cooling gas blown from each cooling gas blowing hole or cooling gas blowing port to the solidified shell surface is based on the heat flux at the center of the mold width and the difference in heat flux in the width direction of the mold. The amount of gas was adjusted so that the maximum value was within ± 10%. The total amount of cooling gas is 5
It ranged from 0 to 200 liters / minute. In addition,-of the difference of the heat flux with respect to the heat flux in the center part of the width of the mold means that the heat flux is small, and + means the reverse. The surface condition of the slab slab corresponding to the casting time after the time when the heat flux was stabilized was observed.

【0055】試験No.1では、鋳造速度が1m/分で
あり、冷却用ガス送風用孔からのみ、合計の冷却用ガス
量を50リットル/分吹き付けることにより、鋳型の幅
方向での熱流束の差の最大値が−3%以内になった。ス
ラブ鋳片表面の評価は評価○であり、縦割れが発生せず
表面品質の良好な鋳片が得られた。さらに、スケールオ
フ比率は1.3と高く、鋳片表層部にパウダ性欠陥は認
められなかった。
Test No. In No. 1, the casting speed is 1 m / min, and the maximum value of the difference in heat flux in the width direction of the mold is obtained by blowing the total amount of cooling gas at 50 L / min only from the cooling gas blowing hole. Within -3%. The evaluation of the slab slab surface was evaluated as ○, and a slab having good surface quality without vertical cracks was obtained. Further, the scale-off ratio was as high as 1.3, and no powder defect was recognized in the surface layer portion of the slab.

【0056】試験No.2では、鋳造速度が1.7m/
分とやや高速であるが、冷却用ガス送風用孔からのみ、
合計の冷却用ガス量を100リットル/分吹き付けた。
そのため、鋳型の幅方向での熱流束の差の最大値は+2
2%以内までしか調整できなかった。ただし、スラブ鋳
片表面の評価は評価○であり、縦割れが発生せず表面品
質の良好な鋳片が得られた。さらに、スケールオフ比率
は1.8と高く、鋳片表層部にパウダ性欠陥は認められ
なかった。
Test No. In No. 2, the casting speed was 1.7 m /
Although it is a little faster than the minute, only from the cooling gas blow hole,
A total cooling gas amount of 100 liter / min was sprayed.
Therefore, the maximum value of the difference in heat flux in the width direction of the mold is +2.
It could only be adjusted to within 2%. However, the evaluation of the slab slab surface was evaluated as ○, and a slab having good surface quality without vertical cracks was obtained. Further, the scale-off ratio was as high as 1.8, and no powder defect was recognized in the surface layer portion of the slab.

【0057】試験No.3では、鋳造速度を2m/分と
高速にした。そこで、冷却用ガス送風用孔および冷却用
ガス送風口の両方から、合計の冷却用ガス量を200リ
ットル/分吹き付けることにより、鋳型の幅方向での熱
流束の差の最大値が+3%以内になった。スラブ鋳片表
面の評価は評価○であり、縦割れが発生せず表面品質の
良好な鋳片が得られた。さらに、スケールオフ比率は
2.2と高く、鋳片表層部にパウダ性欠陥は認められな
かった。
Test No. In No. 3, the casting speed was increased to 2 m / min. Therefore, the maximum value of the difference in heat flux in the width direction of the mold is within + 3% by spraying the total amount of cooling gas at 200 L / min from both the cooling gas blowing hole and the cooling gas blowing port. Became. The evaluation of the slab slab surface was evaluated as ○, and a slab having good surface quality without vertical cracks was obtained. Further, the scale-off ratio was as high as 2.2, and no powder defect was recognized in the surface layer portion of the slab.

【0058】従来の鋳型を用いた比較例の試験No.4
では鋳造速度を1m/分とし、また、比較例の試験N
o.5では鋳造速度を2m/分とした。冷却用ガス送風
用孔または冷却用ガス送風口から凝固殻表面に冷却用ガ
スを吹き付けなかったので、鋳型幅中央部における熱流
束をベースとした鋳型の幅方向での熱流束の差の最大値
は、最大−28%または+36%と大きくなった。試験
No.4で得られたスラブ鋳片表面には、評価△の縦割
れが若干発生した。また、2m/分の高速で鋳造した試
験No.5では、得られたスラブ表面には、評価×の著
しい縦割れが観察された。さらに、これらの試験で得ら
れた鋳片表層部には、パウダ性欠陥が少し発生している
のが認められた。
Test No. of the comparative example using the conventional mold. 4
In the test, the casting speed was set to 1 m / min.
o. In No. 5, the casting speed was 2 m / min. The maximum value of the difference in the heat flux in the width direction of the mold based on the heat flux at the center of the mold width because the cooling gas was not blown from the cooling gas blow hole or the cooling gas blow hole onto the solidified shell surface Increased up to -28% or + 36%. Test No. On the surface of the slab slab obtained in No. 4, some vertical cracks of evaluation (1) were generated. Test No. 2 was cast at a high speed of 2 m / min. In No. 5, a marked vertical crack of evaluation X was observed on the obtained slab surface. Further, it was recognized that powdery defects were slightly generated in the surface layer portion of the slab obtained in these tests.

【0059】[0059]

【発明の効果】本発明の鋳型および連続鋳造方法を適用
することにより、とくに鋳片表面に縦割れの発生しやす
い中炭素鋼の高速鋳造において、縦割れなどの表面欠陥
の発生を防止することが可能である。さらに、鋳型内の
凝固殻表層部を酸化させることにより、表層部にピンホ
ールおよびパウダ性欠陥の発生のない表面品質の良好な
鋳片が得られる。
By applying the mold and the continuous casting method of the present invention, it is possible to prevent the occurrence of surface defects such as vertical cracks, particularly in high-speed casting of medium carbon steel in which vertical cracks are liable to occur on the slab surface. Is possible. Further, by oxidizing the surface layer of the solidified shell in the mold, a slab having good surface quality without pinholes and powdery defects on the surface layer can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】鋳型内の溶鋼の流動を示す模式図である。FIG. 1 is a schematic diagram showing the flow of molten steel in a mold.

【図2】本発明の鋳型の長辺側の冷却板の構造例および
連続鋳造方法の例を説明するための模式図である。
FIG. 2 is a schematic diagram for explaining an example of a structure of a cooling plate on a long side of a mold and an example of a continuous casting method according to the present invention.

【図3】本発明の鋳型の長辺側の冷却板の構造例および
連続鋳造方法の例を説明するための模式図である。
FIG. 3 is a schematic diagram for explaining an example of a structure of a cooling plate on a long side of a mold and an example of a continuous casting method according to the present invention.

【図4】本発明の鋳型の長辺側の冷却板の構造例および
連続鋳造方法の例を説明するための模式図である。
FIG. 4 is a schematic diagram for explaining an example of a structure of a cooling plate on a long side of a mold and an example of a continuous casting method according to the present invention.

【符号の説明】[Explanation of symbols]

1:鋳型 1a:短辺 2:浸漬ノズル 3:溶鋼 4:吐出流 4a:上昇流 4b:下降流 4c:溶鋼の流れ 5:メニスカス 6:モールドパウダ 6a:溶融パウダ 7:温度センサ挿入用
孔 8:温度センサ挿入用孔 9:温度センサ 10:凝固殻 11:貫通孔 12:冷却板 13:空孔 14:冷却水通流路 15:バックフレーム 16:冷却用ガス送風用孔 17:冷却用ガス送風口
1: Mold 1a: Short side 2: Immersion nozzle 3: Molten steel 4: Discharge flow 4a: Upflow 4b: Downflow 4c: Flow of molten steel 5: Meniscus 6: Mold powder 6a: Molten powder 7: Hole for temperature sensor insertion 8 : Hole for inserting a temperature sensor 9: Temperature sensor 10: Solidified shell 11: Through hole 12: Cooling plate 13: Void hole 14: Cooling water passage 15: Back frame 16: Cooling gas blowing hole 17: Cooling gas Air outlet

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B22D 11/16 104 B22D 11/16 104B ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B22D 11/16 104 B22D 11/16 104B

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】鋳型の長辺側の冷却板の溶鋼側表面と冷却
板内の冷却水通流路との間に、上記冷却板の上端に開口
部を有し、メニスカス相当位置の下方の50〜200m
mの間の位置に下端部が配置される鋳造方向に平行な複
数の空孔を備え、鋳型の長辺側の上記冷却板の反溶鋼側
表面と上記複数の空孔との間に、上記冷却板の反溶鋼側
表面に開口部を有し、上記冷却板の溶鋼側表面からの距
離の異なる2点における上記冷却板の温度を測定するた
めの温度センサ挿入用孔を鋳型の幅方向に複数個備え、
鋳型の長辺側の上記冷却板の溶鋼側表面のメニスカス相
当位置の下方250〜500mmの領域内に開口部を有
する複数の冷却用ガス送風用孔および鋳型の長辺側の上
記冷却板下端の下方に設けられた冷却用ガス送風口のう
ち、少なくとも一方を備えることを特徴とする連続鋳造
方法に用いる鋳型。
An opening is provided at an upper end of a cooling plate between a surface of a cooling plate on a long side of a mold on a molten steel side and a cooling water passage in the cooling plate. 50-200m
m comprises a plurality of holes parallel to the casting direction in which the lower end is disposed at a position between m, between the anti-fluted steel side surface of the cooling plate on the long side of the mold and the plurality of holes, The cooling plate has an opening in the surface opposite to the molten steel, and a temperature sensor insertion hole for measuring the temperature of the cooling plate at two points at different distances from the molten steel side surface of the cooling plate is formed in the width direction of the mold. Have multiple,
A plurality of cooling gas blowing holes having openings in a region of 250 to 500 mm below a position corresponding to the meniscus on the molten steel side surface of the cooling plate on the long side of the mold and a lower end of the cooling plate on the long side of the mold. A mold for use in a continuous casting method, comprising at least one of a cooling gas blowing port provided below.
【請求項2】請求項1に記載の鋳型を用いる連続鋳造方
法であって、上記鋳型の幅方向に複数個配置した温度セ
ンサ挿入用孔に備える複数の温度センサにより測定した
冷却板の温度から求められる冷却板内を反溶鋼側に向か
う熱流束の値により、上記冷却用ガス送風用孔または上
記冷却用ガス送風口の少なくとも一方から、凝固殻表面
に吹き付ける冷却用ガス量を調整することを特徴とする
連続鋳造方法。
2. A continuous casting method using a mold according to claim 1, wherein a temperature of the cooling plate measured by a plurality of temperature sensors provided in a plurality of temperature sensor insertion holes arranged in a width direction of the mold is provided. By the value of the heat flux flowing toward the anti-molten steel side in the cooling plate, the amount of the cooling gas blown to the solidified shell surface is adjusted from at least one of the cooling gas blowing hole or the cooling gas blowing port. Characteristic continuous casting method.
【請求項3】下記(A)式で表される包晶反応当量Cp
が0.09〜0.16質量%である鋼を鋳造することを
特徴とする請求項2に記載の連続鋳造方法。 ここで、C、Mn、N、Si、P、SおよびAl:鋼中
の含有率(質量%)
3. A peritectic reaction equivalent Cp represented by the following formula (A):
3. The continuous casting method according to claim 2, wherein steel having a ratio of 0.09 to 0.16% by mass is cast. Here, C, Mn, N, Si, P, S and Al: content in steel (% by mass)
JP2000186879A 2000-06-21 2000-06-21 Mould and continuous casting method Pending JP2002001507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000186879A JP2002001507A (en) 2000-06-21 2000-06-21 Mould and continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000186879A JP2002001507A (en) 2000-06-21 2000-06-21 Mould and continuous casting method

Publications (1)

Publication Number Publication Date
JP2002001507A true JP2002001507A (en) 2002-01-08

Family

ID=18686965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000186879A Pending JP2002001507A (en) 2000-06-21 2000-06-21 Mould and continuous casting method

Country Status (1)

Country Link
JP (1) JP2002001507A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011525426A (en) * 2008-06-25 2011-09-22 エス・エム・エス・ジーマーク・アクチエンゲゼルシャフト Mold for casting metal
CN113145818A (en) * 2021-01-26 2021-07-23 燕山大学 Smelting manufacturing production process and device for prolonging service life of crystallizer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011525426A (en) * 2008-06-25 2011-09-22 エス・エム・エス・ジーマーク・アクチエンゲゼルシャフト Mold for casting metal
CN113145818A (en) * 2021-01-26 2021-07-23 燕山大学 Smelting manufacturing production process and device for prolonging service life of crystallizer

Similar Documents

Publication Publication Date Title
US7156152B2 (en) Process for the continuous production of a think steel strip
EP0679114B1 (en) Casting stainless steel strip on surface with specified roughness
GB2132925A (en) A method of continuous casting
US4715428A (en) Method and apparatus for direct casting of crystalline strip by radiant cooling
JPH01170550A (en) Mold for continuously casting steel
US5074353A (en) Method for horizontal continuous casting of metal strip and apparatus therefor
US6176295B1 (en) Plate mold for producing steel billets
JP2002001507A (en) Mould and continuous casting method
EP0174765B1 (en) Method and apparatus for continuous casting of crystalline strip
EP0174767B1 (en) Method and apparatus for direct casting of crystalline strip by radiantly cooling
JP3495278B2 (en) Belt type continuous casting apparatus and belt type continuous casting method
JP4972776B2 (en) Flow control method for molten steel in mold and surface quality judgment method for continuous cast slab
EP0174766A2 (en) Method and apparatus for direct casting of crystalline strip in non-oxidizing atmosphere
JPH0810905A (en) Continuous casting mold for slab
JP4932985B2 (en) Steel continuous casting method
JP4432263B2 (en) Steel continuous casting method
JP3362692B2 (en) Steel continuous casting method and mold
JPH06339752A (en) Twin roll continuous caster and continuous casting method
JP2000126850A (en) Continuous casting method
JP4409167B2 (en) Continuous casting method
JPH08206787A (en) Continuous casting method of slab of large section and mold for casting
AU676101B2 (en) Casting stainless steel strip on surface with specified roughness
FI69972C (en) METAL CONTAINER CONTAINER
JPH0890178A (en) Method for reducing defect just below surface skin of continuously cast slab
JP2001138015A (en) Continuous casting method