JP2003302277A - Level sensor with specific gravity correction function - Google Patents

Level sensor with specific gravity correction function

Info

Publication number
JP2003302277A
JP2003302277A JP2002107554A JP2002107554A JP2003302277A JP 2003302277 A JP2003302277 A JP 2003302277A JP 2002107554 A JP2002107554 A JP 2002107554A JP 2002107554 A JP2002107554 A JP 2002107554A JP 2003302277 A JP2003302277 A JP 2003302277A
Authority
JP
Japan
Prior art keywords
specific gravity
pressure
optical fiber
liquid
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002107554A
Other languages
Japanese (ja)
Inventor
Takeshi Kawamura
武司 川村
Takashi Fujieda
敬史 藤枝
Hidehiko Kikutani
英彦 菊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIKKEN CONSULTANTS Inc
Sumitomo Electric Industries Ltd
Original Assignee
NIKKEN CONSULTANTS Inc
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIKKEN CONSULTANTS Inc, Sumitomo Electric Industries Ltd filed Critical NIKKEN CONSULTANTS Inc
Priority to JP2002107554A priority Critical patent/JP2003302277A/en
Publication of JP2003302277A publication Critical patent/JP2003302277A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate influence of fluctuation in a liquid temperature and specific gravity resulting in an error of a level measurement value for improving measurement precision in a sensor measuring a level by converting a fluid pressure into deflection of an optical fiber. <P>SOLUTION: This level sensor is provided with a pressure detection part 1 transmitting displacement by a fluid pressure in bellows 11 to a movable shaft 12 so that deflection matching the fluid pressure is generated in the optical fiber 5a having an FBG element between rollers 13 and 14, a specific gravity detection part 2 generating deflection in the optical fiber 5b having the FBG element between rollers 24 and 25 in accordance to a difference of pressures working on bellows 21 and 22 arranged face to face, and a temperature detection part 3 generating deflection matching a temperature in the optical fiber 5b between the rollers 24 and 31. By this level sensor, temperature correction and specific gravity correction of a fluid level measurement value can be carried out. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、液圧を光ファイ
バの歪に置換してその歪から液位を求める液位センサ
と、それを用いた液位監視システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid level sensor which replaces a liquid pressure with a strain of an optical fiber and obtains a liquid level from the strain, and a liquid level monitoring system using the same.

【0002】[0002]

【従来の技術及びその課題】本出願人は、光ファイバ水
位センサを用いて河川等の水位の遠隔監視、管理をリア
ルタイムで行うシステムを開発して実用に供している。
そのシステムでは、水位変動に伴う水圧変化を利用して
光ファイバに水圧に応じた歪を生じさせ、その歪を測定
して水位に換算するが、かかるシステムによって、例え
ば河口近くの河川水の水位を計測する場合、河川水(汽
水)の塩分濃度が潮の干満により変化して測定値に塩分
濃度の影響が出ることが考えられる。
2. Description of the Related Art The applicant has developed and put into practical use a system that uses an optical fiber water level sensor to remotely monitor and manage the water level of a river or the like in real time.
In that system, a strain corresponding to the water pressure is generated in the optical fiber by using the water pressure change accompanying the water level change, and the strain is measured and converted into a water level. When measuring, the salt concentration of river water (brackish water) may change due to the ebb and flow of the tide, and the salt concentration may affect the measured value.

【0003】このとき、水位センサ設置点の塩分濃度が
わかれば、補正を行って水位の測定精度を高めることが
できる。
At this time, if the salt concentration at the point where the water level sensor is installed is known, correction can be performed to improve the accuracy of water level measurement.

【0004】なお、ここでは、海水の影響について説明
したが、水位測定値をばらつかせる水の比重変動は海水
混入以外の他の原因によっても起こり得る。
Although the effect of seawater has been described here, fluctuations in the specific gravity of water that cause variations in water level measurement values may occur due to other causes than seawater contamination.

【0005】従って、前掲の光ファイバ水位センサを使
用する監視システムの場合、補正を行うために監視点
(水位センサ設置点)における液体の比重を知る必要が
ある。
Therefore, in the case of the monitoring system using the above-mentioned optical fiber water level sensor, it is necessary to know the specific gravity of the liquid at the monitoring point (water level sensor installation point) for correction.

【0006】また、塩分濃度も含めた液体の比重測定
は、上記システムの利点を生かすためにオンラインで行
う必要があり、このために、河川水等の比重をオンライ
ン計測できる新規な比重測定方法と比重センサが要求さ
れるようになった。
Further, the specific gravity of a liquid including the salinity must be measured online in order to take advantage of the above-mentioned system. Therefore, a new specific gravity measuring method capable of measuring the specific gravity of river water online is required. Specific gravity sensors are now required.

【0007】上記の監視システムは、元々液体の比重変
動を前提にしたものではなかったが、比重変動の影響を
取り除けるようにすれば、その用途や機能を広げること
が可能になる。
Originally, the above-mentioned monitoring system was not premised on the fluctuation of the specific gravity of the liquid, but if the influence of the fluctuation of the specific gravity can be eliminated, the application and function thereof can be expanded.

【0008】ここで、液体の比重は、その体積と重量が
わかれば計測できる。
The specific gravity of the liquid can be measured by knowing its volume and weight.

【0009】現在リアルタイムに比重を計測する計器と
しては、配管内の液体に放射線(γ線)を透過させ、液
体の密度に応じた放射線強度の変化を測定して比重を求
めるものがある。それ以外は、基本的に対象物の一部を
取り出して計測器にかける方法や、対象液に浮きを浮か
べて浮きに設けた目盛を読んだり、液体の中にウエイト
を沈め、気中重量と液中重量の差(浮力)を測定して液
体の比重を求めると云った方法が採用されているが、河
川水などの比重計測をオンラインで行え、しかも、液体
の比重変動に対応できるものは無かった。
As a measuring instrument for measuring the specific gravity in real time, there is a measuring instrument for transmitting the radiation (γ ray) to the liquid in the pipe and measuring the change in the radiation intensity according to the density of the liquid to obtain the specific gravity. Other than that, basically take out a part of the target object and put it on the measuring instrument, or read the scale on the target liquid by floating it on the target liquid, sink the weight in the liquid, and measure the weight in the air. The method of measuring the difference in weight in liquid (buoyancy) to obtain the specific gravity of the liquid is used, but the specific gravity of river water etc. can be measured online and the one that can cope with the fluctuation of the specific gravity of the liquid is used. There was no

【0010】このため、比重変動が考えられる場合の水
位計測には、比重に左右されない超音波式センサなどが
利用されていたが、これよりは、光ファイバ水位(液
位)センサを用いたシステムの方が、信号伝送路を兼
ねる1本の光ファイバに多数のセンサをシリアルに接続
して多点の遠隔監視が可能。現場に電源や信号伝送用
の機器を必要としない。低コスト。などの利点があ
り、はるかに有利である。
For this reason, an ultrasonic sensor which is not influenced by the specific gravity has been used for measuring the water level when the fluctuation of the specific gravity is considered. Instead of this, a system using an optical fiber water level (liquid level) sensor is used. In this case, multiple sensors can be connected serially to a single optical fiber that also serves as a signal transmission line, enabling multipoint remote monitoring. There is no need for power supply or signal transmission equipment in the field. low cost. There are advantages such as, and much more advantageous.

【0011】そこで、この発明の課題は、光ファイバ液
位センサによる液位計測値の中に、液体の比重変動や温
度変化による成分が混入した場合にそれを排除して測定
精度を高められるようにすることを課題としている。
Therefore, an object of the present invention is to improve the measurement accuracy by removing the component due to the fluctuation of the specific gravity of the liquid or the temperature change, in the liquid level measured value by the optical fiber liquid level sensor. The task is to

【0012】[0012]

【課題を解決するための手段】上記の課題を解決するた
め、この発明においては、液圧による第1受圧体の変位
を利用して液圧に応じた歪を光ファイバに生じさせる圧
力検知部と、高低差を生じさせて対向配置する第2、第
3受圧体の液圧による変位を利用して両受圧体に加わる
圧力の差に応じた歪を光ファイバに生じさせる比重検知
部と、熱伸縮による歪を光ファイバに生じさせる温度検
知部とを併設し、前記比重検知部の光ファイバの歪から
求める液体比重と、温度検知部の光ファイバの歪から求
める温度を用いて圧力検知部の光ファイバの歪から求め
るセンサ設置点の計測液圧を補正し、その計測液圧から
求める液位測定値の中から液体の比重変動と温度変化に
よる誤差成分を取り除くようにした比重補正機能付き液
位センサを提供する。
In order to solve the above-mentioned problems, in the present invention, a pressure detecting portion for generating a strain in an optical fiber according to the liquid pressure by utilizing the displacement of the first pressure receiving body by the liquid pressure. And a specific gravity detection unit that causes the optical fiber to generate strain in accordance with the difference in pressure applied to both pressure receiving bodies by utilizing the displacement of the second and third pressure receiving bodies that are arranged facing each other with a height difference, A pressure detection unit is provided with a temperature detection unit that causes strain due to thermal expansion and contraction in the optical fiber, and the liquid specific gravity obtained from the strain of the optical fiber of the specific gravity detection unit and the temperature obtained from the strain of the optical fiber of the temperature detection unit are used. With a specific gravity correction function that corrects the measured hydraulic pressure at the sensor installation point determined from the strain of the optical fiber and removes the error component due to the specific gravity fluctuation of the liquid and the temperature change from the liquid level measured value obtained from the measured hydraulic pressure Provide a liquid level sensor .

【0013】このセンサは、圧力検知部、比重検知部、
温度検知部の各光ファイバとしてFBG素子を有するも
のを用いると好ましい。
This sensor comprises a pressure detector, a specific gravity detector,
It is preferable to use an optical fiber having an FBG element as each optical fiber of the temperature detection unit.

【0014】また、第1、第2、第3受圧体としてベロ
ーズを用い、さらに、圧力検知部、比重検知部、温度検
知部を一体化するのも好ましい。
It is also preferable to use bellows as the first, second and third pressure receiving bodies, and further to integrate the pressure detecting section, the specific gravity detecting section and the temperature detecting section.

【0015】このほか、この発明の液位センサを利用す
る液位監視システムに、比重検知部で検知した液体の比
重と、温度検知部で検知した温度下での理論上の液体比
重の差を求めて監視液体に混入している物質の重量%を
求める機能をもたせておくのも好ましい。
In addition, in the liquid level monitoring system using the liquid level sensor of the present invention, the difference between the specific gravity of the liquid detected by the specific gravity detection part and the theoretical liquid specific gravity at the temperature detected by the temperature detection part is calculated. It is also preferable to have a function of obtaining the weight% of the substance mixed in the monitoring liquid.

【0016】[0016]

【作用】この発明のセンサは、第1受圧体に作用するセ
ンサ設置点の液圧を光ファイバの歪に変換して測定し、
予め調べた光ファイバの歪量と液位の関係式を用いて液
位を計測する。
The sensor of the present invention converts the hydraulic pressure at the sensor installation point acting on the first pressure receiving body into the strain of the optical fiber for measurement,
The liquid level is measured by using the relational expression between the amount of strain of the optical fiber and the liquid level that has been examined in advance.

【0017】また、第2、第3受圧体に作用する圧力の
差(深度差による圧力差)を光ファイバの歪に変換して
測定し(その測定のために、第2、第3受圧体間の圧力
差と光ファイバの歪量の関係を予め調べておく)、その
圧力差と比重の関係式を用いて液体の比重を求める。圧
力差をΔP、第2、第3受圧体の受圧面積をS、両受圧
体設置点の高低差をHとすると、ΔP=ρ・S・Hの式
が成り立ち、この式から液体の比重ρを求めることがで
きる。
Further, the difference in pressure acting on the second and third pressure receivers (pressure difference due to the depth difference) is converted into strain of the optical fiber and measured (for the measurement, the second and third pressure receivers are measured). The relationship between the pressure difference between the two and the strain amount of the optical fiber is investigated in advance), and the specific gravity of the liquid is obtained using the relational expression between the pressure difference and the specific gravity. When the pressure difference is ΔP, the pressure receiving areas of the second and third pressure receiving bodies are S, and the height difference between both pressure receiving body installation points is H, the equation ΔP = ρ · S · H holds, and from this equation, the specific gravity ρ of the liquid Can be asked.

【0018】さらに、温度検知部の光ファイバの歪か
ら、センサ設置点の温度を求める。
Further, the temperature at the sensor installation point is obtained from the strain of the optical fiber of the temperature detecting section.

【0019】これにより、検知時の温度条件下での液体
比重を求め、圧力検知部で測定した液圧を補正して極力
真値に近い液体の液面レベル、即ち、液体の比重変動と
温度変化の影響(それ等による誤差成分)が排除された
液位を計測することが可能になる。
Thus, the liquid specific gravity under the temperature condition at the time of detection is obtained, the liquid pressure measured by the pressure detection unit is corrected, and the liquid surface level of the liquid as close to the true value as possible, that is, the variation in the specific gravity of the liquid and the temperature. It becomes possible to measure the liquid level from which the influence of the change (error component due to them) is eliminated.

【0020】また、高低差による液体の圧力差から液体
の比重を求めるので、従来の比重計や比重測定装置では
計測不可能であった液体、例えば、比重変動が起こる河
川水などについてもリアルタイムでの比重計測が行え
る。
Further, since the specific gravity of the liquid is obtained from the pressure difference of the liquid due to the difference in height, it is possible to measure in real time the liquid which cannot be measured by the conventional specific gravity meter or specific gravity measuring device, for example, river water in which specific gravity changes. The specific gravity can be measured.

【0021】FBG素子を用いたセンサは、FBG素子
の特性が生かされ、小型化、構造の簡素化、圧力計測の
容易化なども図れる。
The sensor using the FBG element can be downsized, the structure can be simplified, and the pressure measurement can be facilitated by taking advantage of the characteristics of the FBG element.

【0022】FBG(ファイバーブラッググレーティン
グ)素子は、光ファイバの一部に特定波長のみを反射す
るブラッグ回折格子を形成した素子であって、1本の光
ファイバに複数の素子をシリアルに接続でき、検出感度
も高いと云う特徴を有している。このFBG素子による
圧力(歪)の測定では、波長域の広い広帯域光源を用い
て光ファイバに光を投入し、FBGが反射する波長を波
長計で測定する。
An FBG (fiber Bragg grating) element is an element in which a Bragg diffraction grating that reflects only a specific wavelength is formed in a part of an optical fiber, and a plurality of elements can be serially connected to one optical fiber. It has a feature that the detection sensitivity is also high. In the measurement of the pressure (strain) by this FBG element, a wide band light source with a wide wavelength range is used to inject light into an optical fiber, and the wavelength reflected by the FBG is measured with a wavelength meter.

【0023】FBGによる反射波長は、歪付加によるグ
レーティングのピッチ変化によって変化し、従って、反
射波長の測定値から光ファイバに生じた歪(即ち圧力)
を求めることができる。
The wavelength reflected by the FBG changes due to the change in the pitch of the grating due to the addition of strain, and therefore the strain (that is, pressure) generated in the optical fiber from the measured value of the reflected wavelength.
Can be asked.

【0024】なお、第1、第2、第3受圧体としてベロ
ーズを用いたものは、構造の更なる簡素化が図れる。比
重検知部については2個のベローズが連動して圧力差が
抽出されるようにしておくのがよく、こうするとFBG
素子に圧力差による伸縮歪を確実に与えて比重の測定誤
差を小さくし得る。
The structure using the bellows as the first, second and third pressure receiving members can further simplify the structure. Regarding the specific gravity detection unit, it is preferable that two bellows are interlocked to extract the pressure difference.
Expansion / contraction strain due to a pressure difference can be reliably applied to the element to reduce the measurement error of the specific gravity.

【0025】圧力検知部、比重検知部及び温度検知部を
一体化したものは更なる小型化と構造の簡素化が図れ、
液位計測もより正確に行える。
The integrated pressure detecting section, specific gravity detecting section and temperature detecting section can be further downsized and the structure can be simplified.
The liquid level can be measured more accurately.

【0026】[0026]

【発明の実施の形態】以下、この発明の液位センサの実
施形態を図1に基づいて説明する。
DETAILED DESCRIPTION OF THE INVENTION An embodiment of a liquid level sensor of the present invention will be described below with reference to FIG.

【0027】図の1は圧力検知部、2は比重検知部、3
は温度検知部であり、これ等が図に示すように一体化さ
れて併設されている。
In FIG. 1, 1 is a pressure detecting section, 2 is a specific gravity detecting section, and 3 is a specific gravity detecting section.
Is a temperature detection unit, which are integrated and co-located as shown in the figure.

【0028】圧力検知部1は、ケース4aを被せて内部
の気密性を確保したセンサ本体4の主室の下部に第1受
圧体としてのベローズ11を取付け、そのベローズ11
の受圧部11aの変位をセンサの本体フレーム4bで支
えた可動シャフト12に伝えるようにしている。また、
本体フレーム4bに取り付けた固定ローラ13と、可動
シャフト12に取り付けた可動ローラ14間にFBG素
子を有する光ファイバ5aを滑りを生じないようにロー
ラに固定して張設し、その光ファイバ5aに、シャフト
変位量(即ち液圧)に応じた伸び歪を与える構造にして
ある。
In the pressure detecting section 1, a bellows 11 as a first pressure receiving body is attached to the lower portion of the main chamber of the sensor main body 4 which covers the case 4a to ensure the airtightness inside, and the bellows 11 is attached.
The displacement of the pressure receiving portion 11a is transmitted to the movable shaft 12 supported by the body frame 4b of the sensor. Also,
An optical fiber 5a having an FBG element is fixed and stretched between the fixed roller 13 attached to the main body frame 4b and the movable roller 14 attached to the movable shaft 12 so as not to cause slippage. The structure is such that elongation strain is given according to the amount of shaft displacement (that is, hydraulic pressure).

【0029】また、比重検知部2は、センサ本体4にケ
ース4cを被せて内部の気密性を確保する副室を主室と
隣り合わせにして設け、その副室の上下に第2、第3受
圧体として、受圧面積Sが等しい2つのベローズ21と
22を対向させて取付け、両ベローズの受圧部21a、
21bを可動シャフト23で連結している。また、本体
フレーム4bに取り付けた固定ローラ24と可動シャフ
ト23に取り付けた可動ローラ25間にFBG素子を有
する光ファイバ5bを滑りを生じないようにローラに固
定して張設している。このように構成した図示の比重検
知部2は高低差Hによる圧力差でベローズ21が縮み、
ベローズ22が伸びる。そしてこれに伴う可動シャフト
23の変位で光ファイバ5bに圧力差に応じた伸び歪が
生じる。
Further, in the specific gravity detecting portion 2, a sub-chamber for covering the sensor body 4 with a case 4c to ensure airtightness inside is provided adjacent to the main chamber, and second and third pressure receiving chambers are provided above and below the sub-chamber. As a body, two bellows 21 and 22 having the same pressure-receiving area S are attached so as to face each other, and pressure-receiving portions 21a of both bellows,
21b are connected by a movable shaft 23. Further, an optical fiber 5b having an FBG element is stretched between the fixed roller 24 attached to the main body frame 4b and the movable roller 25 attached to the movable shaft 23 so as not to slip. In the illustrated specific gravity detection unit 2 thus configured, the bellows 21 contracts due to the pressure difference due to the height difference H,
The bellows 22 grows. Then, due to the displacement of the movable shaft 23 due to this, extension strain is generated in the optical fiber 5b according to the pressure difference.

【0030】この比重検知部2には、力のバランスをと
るダミー光ファイバ5cを含めてもよいが、圧力差によ
る変位量が小さければ、光ファイバの素線におけるクラ
ッドと緩衝層間での滑りはほとんど発生しないため、ダ
ミー光ファイバが無くても問題はない。
The specific gravity detecting section 2 may include a dummy optical fiber 5c for balancing the forces, but if the displacement amount due to the pressure difference is small, the slip between the cladding and the buffer layer in the optical fiber strand will not occur. Since it hardly occurs, there is no problem even without the dummy optical fiber.

【0031】26はベローズ22の受圧部上に取り付け
た土砂の堆積防止用の円錐体であり、好ましい要素とし
て設けられる。この円錐体26を設けるときには、下側
のベローズ21にもダミー円錐体27を取り付けて荷重
のバランスをとるようにしておくのがよい。
Reference numeral 26 is a cone for preventing sedimentation of earth and sand mounted on the pressure receiving portion of the bellows 22, and is provided as a preferable element. When the conical body 26 is provided, it is preferable to attach a dummy conical body 27 to the lower bellows 21 to balance the load.

【0032】温度検知部3は、前述の固定ローラ24と
本体フレーム4bに別途取り付けた固定ローラ31との
間にFBG素子を有する光ファイバ5dを滑りを生じな
いように張設して構成しており、光ファイバ5dが温度
変化によって伸縮する。その伸縮量は自身の熱伸縮量に
ケース4aの熱伸縮量が加算されたものになり、従っ
て、これを、光ファイバ5aの歪に含まれる温度変化に
起因した成分と考えて光ファイバ5aの歪から差し引く
ことで、光ファイバ5aの歪から求める液位の温度補正
が可能になる。
The temperature detecting section 3 is constructed by arranging an optical fiber 5d having an FBG element between the fixed roller 24 and the fixed roller 31 separately attached to the main body frame 4b so as not to slip. The optical fiber 5d expands and contracts due to temperature changes. The amount of expansion / contraction is the amount of thermal expansion / contraction of itself added to the amount of thermal expansion / contraction of the case 4a. Therefore, this is considered to be a component due to the temperature change included in the strain of the optical fiber 5a. By subtracting from the strain, it becomes possible to correct the temperature of the liquid level obtained from the strain of the optical fiber 5a.

【0033】この温度補正を行うと、液位計測値に含ま
れる誤差成分は液体の比重変動によるもののみとなる。
その残された誤差成分の除去(比重補正)を比重検知部
2によって検知されるデータを用いて行う。
When this temperature correction is performed, the error component contained in the liquid level measurement value is only due to the change in the specific gravity of the liquid.
The remaining error component is removed (specific gravity correction) using the data detected by the specific gravity detection unit 2.

【0034】比重検知部2は、ベローズ21、22の各
々の受圧面積をScm2 、ベローズ21、22間の高低
差をH、液体の比重をρとすると、ベローズ21、22
間の圧力差がρ・S・H(g)の式で与えられる。今仮
に、S=10cm2 、H=40cm、ρ=1.0とする
と、ベローズ21、22間に生じる圧力差は400gf
(≒3.923N)となる。100gfのバネ定数のベ
ローズを用いる場合、光ファイバの歪は1%/kgfで
あるから光ファイバ5b中のFBG素子の長さを10c
mとすると、変位量と力の関係は0.1mm/100g
fとなり、100gfの荷重の大部分をFBG素子が負
担して受けることになる。
The specific gravity detecting section 2 has bellows 21, 22 where Scm 2 is the pressure receiving area of each of the bellows 21, 22, H is the height difference between the bellows 21, 22 and ρ is the specific gravity of the liquid.
The pressure difference between them is given by the formula ρ · S · H (g). If S = 10 cm 2 , H = 40 cm, and ρ = 1.0, the pressure difference between the bellows 21 and 22 is 400 gf.
(≈3.923N). When a bellows with a spring constant of 100 gf is used, the strain of the optical fiber is 1% / kgf, so the length of the FBG element in the optical fiber 5b is 10 c.
If m, the relationship between displacement and force is 0.1mm / 100g
Therefore, the FBG element bears and receives most of the load of 100 gf.

【0035】一方、FBG素子は、0.0004%の歪
測定精度があるため、ベローズのバネ力を無視して考え
ると、10cm長さのFBG素子は0.4gの精度で荷
重を測定できることになる。そこで、仮に海水の比重を
計測することを考えた場合、塩分濃度が3%ならその比
重は1.03となるから、その濃度%を1桁下の位まで
計測するとして、(1.03×400)−400=12
gを0.4gで分解することが可能であるので、3%を
1/30、つまり0.1%にまで分解できることにな
る。
On the other hand, since the FBG element has a strain measurement accuracy of 0.0004%, the FBG element having a length of 10 cm can measure the load with an accuracy of 0.4 g when the spring force of the bellows is ignored. Become. Therefore, if we consider measuring the specific gravity of seawater, if the salt concentration is 3%, the specific gravity will be 1.03, so we will measure the concentration% to one digit below (1.03 × 400) -400 = 12
Since g can be decomposed with 0.4 g, 3% can be decomposed to 1/30, that is, 0.1%.

【0036】%濃度で0.1%までの計測が可能と云う
ことは、比重を1/1000の精度で測定できることを
意味する。
The fact that it is possible to measure up to 0.1% in terms of% concentration means that the specific gravity can be measured with an accuracy of 1/1000.

【0037】既に述べたように、光ファイバを水圧で歪
ませて河口近くの水位を計測する監視システムの場合、
塩分濃度がわかれば塩分に起因する測定誤差を補正して
海水の影響を小さくすることができる。影響を小さくす
ると云う表現にしたのは、計測点での河川水に海水が十
分に混じり合っていれば正確な補正が行えるが、実際に
は川底と水面近傍では濃度差があると考えられるので、
厳密な意味での補正はセンサひとつでは難しいからであ
る。
As described above, in the case of the monitoring system in which the optical fiber is distorted by water pressure to measure the water level near the river mouth,
If the salt concentration is known, the measurement error due to salt can be corrected to reduce the influence of seawater. The expression to reduce the effect is that accurate correction can be performed if the river water at the measurement point is sufficiently mixed with seawater, but in reality there is a difference in concentration between the river bottom and near the water surface. ,
This is because correction in a strict sense is difficult with just one sensor.

【0038】なお、ここでは1/1000の精度で比重
を計測することを例に挙げたが、受圧面積Sと高低差H
の寸法を適宜変更することでFBG素子に与える歪量を
変化させて分解能を更に高めることができる。
Although the specific gravity is measured here with an accuracy of 1/1000, the pressure receiving area S and the height difference H
By appropriately changing the dimension of, the amount of strain applied to the FBG element can be changed and the resolution can be further enhanced.

【0039】また、高低差Hを小さく、受圧面積Sを大
きくして精度を維持しながら水深が浅いところでの比重
計測を可能とすることもできる。
Further, the height difference H can be made small and the pressure receiving area S can be made large so that the specific gravity can be measured at a shallow water depth while maintaining accuracy.

【0040】光ファイバ5a、5b、5d及び必要に応
じて設ける5cは一連のファイバであり、光ケーブル5
内の光ファイバに接続されている。光ケーブル5の片隅
には、図示しない監視制御装置と、光ファイバ5a、5
b、5d中の各FBG素子からの反射波長を測定し、温
度補正、比重補正を行って液位を計測する測定装置がつ
ながれる。
The optical fibers 5a, 5b, 5d and 5c provided as necessary are a series of fibers.
Is connected to the optical fiber inside. At one corner of the optical cable 5, a supervisory controller (not shown) and optical fibers 5a, 5
A measuring device for measuring the liquid level by measuring the reflection wavelength from each FBG element in b and 5d and performing temperature correction and specific gravity correction is connected.

【0041】図のように、圧力検知部1と比重検知部2
を一体化すると、温度補正用のFBG素子(光ファイバ
5d)を共用でき、1芯の光ファイバに接続する液位セ
ンサの数を増加させて監視能力を大きくしたシステムを
構築できる。
As shown in the figure, the pressure detector 1 and the specific gravity detector 2
By integrating the above, the FBG element (optical fiber 5d) for temperature correction can be shared, and the number of liquid level sensors connected to the one-core optical fiber can be increased to construct a system with a large monitoring capability.

【0042】以下に、温度による液体の比重変化につい
て簡単に記す。今、水を例に採ると、水の密度(比重)
は温度によって以下のように変わる。例えば、4℃にお
ける最大密度は0.99997である。これに対し、4
0℃における密度は0.99221であり、その変化分
は0.776%である。
The change in the specific gravity of the liquid depending on the temperature will be briefly described below. Taking water as an example, the density of water (specific gravity)
Changes with temperature as follows. For example, the maximum density at 4 ° C is 0.99997. On the other hand, 4
The density at 0 ° C. is 0.99221, and the change is 0.776%.

【0043】従って、水深約10mの場合で考えると4
℃で999.97cmであるとき、40℃では992.
21cmとなり、7.7cm強の誤差が発生することに
なる。
Therefore, considering the case where the water depth is about 10 m, 4
C. is 999.97 cm, 40.degree. C. is 992.97 cm.
It becomes 21 cm, and an error of slightly more than 7.7 cm occurs.

【0044】つまり、測定精度が0.1%の測定器であ
れば10mの水深を計測すると±1cmの誤差をもつこ
とになるが、温度変化だけで7.7cmの誤差があるこ
とになるから、水温の影響を除く温度補正も重要なこと
がわかる。
In other words, if a measuring instrument with a measurement accuracy of 0.1% has an error of ± 1 cm when measuring a water depth of 10 m, there will be an error of 7.7 cm only due to the temperature change. It can be seen that temperature correction that excludes the influence of water temperature is also important.

【0045】ここでは、極端な話をしたが、10mを±
1cmの精度で計測できる水位センサを使用して実際に
水深を測定するケースでは、水温が4℃〜24℃程度の
範囲で変化することは可能性としてあり得ることであ
り、水深3mとした場合、1−0.99729/0.9
997=0.0268であり、これは10mで2.7c
mの誤差となり、3mでは0.9cm(約1cm)の誤
差を伴うことになる。
Here, I talked about the extreme, but if 10m is ±
In the case of actually measuring the water depth using a water level sensor that can measure with an accuracy of 1 cm, it is possible that the water temperature may change in the range of 4 ° C to 24 ° C. , 1-0.99729 / 0.9
997 = 0.0268, which is 2.7c at 10m.
An error of 3 m is accompanied by an error of 0.9 cm (about 1 cm).

【0046】この発明の液位センサは、液体の液温や比
重が変化しても、そのときの温度と、温度による影響も
含まれた比重を求めることで、圧力検知部1で測定した
圧力を補正して誤差の少ない液位を計測することが可能
であり、従って、海水と真水が混ざり合うなどして比重
が変わる場所での水位計測や、日中と夜間、さらには夏
場と冬場で水温が変わる場所での水位計測に利用する
と、計測精度を高めることができる。
In the liquid level sensor of the present invention, even if the liquid temperature or the specific gravity of the liquid changes, the pressure measured by the pressure detecting unit 1 is obtained by obtaining the temperature at that time and the specific gravity including the influence of the temperature. It is possible to correct the liquid level and measure the liquid level with a small error.Therefore, it is possible to measure the water level at a place where the specific gravity changes due to the mixture of seawater and fresh water, and during the daytime and nighttime, as well as in the summer and winter. When used for water level measurement in places where the water temperature changes, the measurement accuracy can be improved.

【0047】また、大雨などで土砂が混ざり込んだ水の
水位計測でも、土砂による影響を小さくすることができ
る。土砂混じりの水は見かけ上の比重が大きくなるので
水位を過大評価する可能性があるが、比重を検知して補
正を行えば計測精度が大きくばらつくことはなくなる。
Further, even when the water level of water mixed with earth and sand due to heavy rain is measured, the influence of earth and sand can be reduced. Since the apparent specific gravity of water mixed with soil and sand increases, there is a possibility that the water level will be overestimated, but if the specific gravity is detected and corrected, the measurement accuracy will not vary greatly.

【0048】なお、この発明の液位センサを用いれば、
比重検知部2で検知した液体比重から、温度検知部3で
検知した温度下での理論上の液体比重(密度)を差し引
くことで、監視液の中に混入している物質の重量%を求
めることも可能になる。
If the liquid level sensor of the present invention is used,
By subtracting the theoretical liquid specific gravity (density) under the temperature detected by the temperature detecting unit 3 from the liquid specific gravity detected by the specific gravity detecting unit 2, the weight% of the substance mixed in the monitoring liquid is obtained. It also becomes possible.

【0049】従って、温度による密度変化を越える比重
の常時からの変化分が大きいような場合には、大雨によ
る土砂の混入を想定可能であり、水位の上昇に加えてそ
の情報を知ることで、河川の水位を計測するような場所
に適用すると、計測場所によっては土砂崩れの発生等を
検知できる可能性がある。
Therefore, when the change in specific gravity over the change in density due to temperature is large, it is possible to assume that the soil is mixed due to heavy rain, and by knowing that information in addition to the rise in water level, If applied to a place where the water level of a river is measured, the occurrence of a landslide may be detected depending on the measurement place.

【0050】川の長さ方向に沿っての複数地点での水位
計測で、上流側で土砂の混入が無く、下流側で土砂混入
の可能性が想定されるとき、その間で土砂崩れが発生し
た可能性を検知できる。
When water levels are measured at multiple points along the length of the river, when there is no possibility of soil contamination on the upstream side and sediment contamination on the downstream side is assumed, a landslide may occur between them. Sex can be detected.

【0051】また、オイルタンク等の液面レベル検出に
この発明のセンサをタンク底部に設置して用いると、水
等の混入を検知できる。オイルよりも比重の大きい液体
が混入すると層分離して比重検知部2による検知データ
に変化が生じるので異比重液体の混入がわかる。
If the sensor of the present invention is installed and used at the bottom of the tank for detecting the liquid level of an oil tank or the like, it is possible to detect the mixture of water and the like. When a liquid having a specific gravity larger than that of oil is mixed, the layers are separated and the detection data of the specific gravity detecting unit 2 is changed.

【0052】このほか、ダム貯水池に流入する河川の浮
遊砂観測(ダム堆砂の基礎資料への利用)や、湖面に拡
散する浮遊砂の観測(どのあたりで沈降するか)などに
も適用可能である。
In addition, it can be applied to observation of suspended sediment in rivers that flow into dam reservoirs (use as basic data for dam sediment) and observation of suspended sediment diffused on the lake surface (where to settle) Is.

【0053】貯水池の湖の底にこの発明のセンサを適当
な間隔を保って配置しておくと浮遊砂が沈降、堆積する
位置のセンサの比重計測値が次第に上昇するので、堆積
点の検知が行える。
If the sensor of the present invention is arranged at the bottom of the lake of the reservoir with an appropriate interval, the specific gravity measurement value of the sensor at the position where the suspended sediment settles and accumulates gradually increases. You can do it.

【0054】[0054]

【発明の効果】以上述べたように、この発明の液位セン
サは、温度補正機能と比重補正機能を併せ持つので、液
温変動と液体の比重変動が考えられる場所で使用しても
液位計測値が大きくばらつかず、信頼性の向上、設置場
所による設置規制の緩和などが図れる。
As described above, since the liquid level sensor of the present invention has both the temperature correction function and the specific gravity correction function, the liquid level can be measured even when it is used in a place where liquid temperature fluctuation and liquid specific gravity fluctuation are considered. The value does not vary greatly, which improves reliability and eases installation restrictions depending on the installation location.

【0055】また、液圧、液体比重、温度の検知をいず
れも光ファイバで行うので、オンラインによるリアルタ
イムでの多点遠隔監視が行え、簡素かつ経済的な液位監
視システムを構築できる。
Further, since the liquid pressure, the liquid specific gravity, and the temperature are all detected by the optical fiber, real-time multipoint remote monitoring can be performed, and a simple and economical liquid level monitoring system can be constructed.

【0056】このほか、FBG素子を用いたもの、受圧
体としてベローズを用いたもの、圧力検知部、比重検知
部、温度検知部を一体化したものは、センサの簡素化、
小型化なども実現できる。
In addition, the one using the FBG element, the one using the bellows as the pressure receiving body, the one integrating the pressure detecting portion, the specific gravity detecting portion, and the temperature detecting portion, simplifies the sensor,
It can also be downsized.

【0057】また、この発明のセンサを使用する液位監
視システムは、液位監視だけでなく、土砂等の混入、土
砂崩れ発生点の推測、浮遊砂堆積などの監視にも利用で
き、多機能化が図れる。
Further, the liquid level monitoring system using the sensor of the present invention can be used not only for liquid level monitoring but also for monitoring the mixing of soil and the like, the estimation of the point of landslide, the accumulation of suspended sand, etc. Can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の液位センサの実施形態を示す断面図FIG. 1 is a sectional view showing an embodiment of a liquid level sensor of the present invention.

【符号の説明】[Explanation of symbols]

1 圧力検知部 2 比重検知部 3 温度検知部 4 センサ本体 4a、4c ケース 4b 本体フレーム 5 光ケーブル 5a、5b、5d FBG素子を有する光ファイバ 11、21、22 ベローズ 12、23 可動シャフト 13、24、31 固定ローラ 14、25 可動ローラ 26 円錐体 27 ダミー円錐体 1 Pressure detector 2 Specific gravity detector 3 Temperature detector 4 sensor body 4a, 4c case 4b body frame 5 optical cable 5a, 5b, 5d Optical fiber having FBG element 11, 21, 22 Bellows 12, 23 Movable shaft 13, 24, 31 Fixed roller 14, 25 movable rollers 26 cone 27 Dummy cone

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤枝 敬史 東京都港区新橋6−17−19 株式会社イン フラ・インフォ・システムズ内 (72)発明者 菊谷 英彦 東京都港区新橋6−17−19 日本建設コン サルタント株式会社内 Fターム(参考) 2F014 AA04 BA10 2F075 AA02 AA03 EE02    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Takashi Fujieda             6-17-19 Shimbashi, Minato-ku, Tokyo Inn Co., Ltd.             Inside Hula Info Systems (72) Inventor Hidehiko Kikutani             6-17-19 Shimbashi, Minato-ku, Tokyo Japan Construction Con             Sultant Co., Ltd. F term (reference) 2F014 AA04 BA10                 2F075 AA02 AA03 EE02

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 液圧による第1受圧体の変位を利用して
液圧に応じた歪を光ファイバに生じさせる圧力検知部
と、高低差を生じさせて対向配置する第2、第3受圧体
の液圧による変位を利用して両受圧体に加わる圧力の差
に応じた歪を光ファイバに生じさせる比重検知部と、熱
伸縮による歪を光ファイバに生じさせる温度検知部とを
併設し、 前記比重検知部の光ファイバの歪から求める液体比重
と、温度検知部の光ファイバの歪から求める温度を用い
て圧力検知部の光ファイバの歪から求めるセンサ設置点
の計測液圧を補正し、その計測液圧から求める液位測定
値の中から液体の比重変動と温度変化による誤差成分を
取り除くようにした比重補正機能付き液位センサ。
1. A pressure detecting portion for generating a strain corresponding to a hydraulic pressure in an optical fiber by utilizing a displacement of a first pressure receiving body due to a hydraulic pressure, and second and third pressure receiving portions which are arranged to face each other with a height difference. A specific gravity detection unit that generates strain in the optical fiber according to the difference in pressure applied to both pressure receiving bodies by utilizing the displacement of the body due to hydraulic pressure, and a temperature detection unit that generates strain in the optical fiber due to thermal expansion and contraction are installed together. , The liquid specific gravity obtained from the strain of the optical fiber of the specific gravity detection unit and the temperature obtained from the strain of the optical fiber of the temperature detection unit are used to correct the measured hydraulic pressure at the sensor installation point obtained from the strain of the optical fiber of the pressure detection unit. , A liquid level sensor with a specific gravity correction function that removes error components due to fluctuations in the specific gravity of the liquid and temperature changes from the liquid level measured value obtained from the measured liquid pressure.
【請求項2】 圧力検知部、比重検知部、温度検知部の
各光ファイバとしてFBG素子を有するものを用いた請
求項1記載の比重補正機能付き液位センサ。
2. The liquid level sensor with a specific gravity correction function according to claim 1, wherein each of the optical fibers of the pressure detecting section, the specific gravity detecting section and the temperature detecting section has an FBG element.
【請求項3】 第1、第2、第3受圧体としてベローズ
を用い、さらに、圧力検知部、比重検知部、温度検知部
を一体化した請求項1又は2記載の比重補正機能付き液
位センサ。
3. A liquid level with a specific gravity correction function according to claim 1, wherein bellows are used as the first, second and third pressure receiving bodies, and the pressure detecting section, the specific gravity detecting section and the temperature detecting section are integrated. Sensor.
【請求項4】 請求項1乃至3のいずれかに記載の液位
センサを採用し、液位計測機能のほかに、比重検知部で
検知した液体の比重と、温度検知部で検知した温度下で
の理論上の液体比重の差を求めて監視液体に混入してい
る物質の重量%を求める機能をもたせた液位監視システ
ム。
4. The liquid level sensor according to any one of claims 1 to 3 is adopted, and in addition to the liquid level measuring function, the specific gravity of the liquid detected by the specific gravity detection unit and the temperature detected by the temperature detection unit are controlled. A liquid level monitoring system that has the function of obtaining the weight difference of the substances mixed in the monitoring liquid by obtaining the theoretical difference in the liquid specific gravity.
JP2002107554A 2002-04-10 2002-04-10 Level sensor with specific gravity correction function Pending JP2003302277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002107554A JP2003302277A (en) 2002-04-10 2002-04-10 Level sensor with specific gravity correction function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002107554A JP2003302277A (en) 2002-04-10 2002-04-10 Level sensor with specific gravity correction function

Publications (1)

Publication Number Publication Date
JP2003302277A true JP2003302277A (en) 2003-10-24

Family

ID=29391550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002107554A Pending JP2003302277A (en) 2002-04-10 2002-04-10 Level sensor with specific gravity correction function

Country Status (1)

Country Link
JP (1) JP2003302277A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006046457A1 (en) * 2004-10-25 2006-05-04 Mitsui Mining & Smelting Co., Ltd. Liquid level detecting method and liquid level detecting device
WO2010012468A1 (en) * 2008-07-31 2010-02-04 Sms Siemag Ag Casting level measurement in a mold by means of a fiber optic measuring method
TWI454325B (en) * 2008-06-25 2014-10-01 Sms Siemag Ag Kokille zum giessen von metall
JP2019028017A (en) * 2017-08-03 2019-02-21 長野計器株式会社 Optical fiber sensor, physical quantity measurement device, and method of manufacturing optical fiber sensor
RU2687868C1 (en) * 2018-10-31 2019-05-16 Федеральное государственное бюджетное образовательное учреждение высшего образования ФГБОУ ВО "Пензенский государственный университет" (ФГБОУ ВО "ПГУ") Fiber-optic level gauge-pressure indicator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006046457A1 (en) * 2004-10-25 2006-05-04 Mitsui Mining & Smelting Co., Ltd. Liquid level detecting method and liquid level detecting device
TWI454325B (en) * 2008-06-25 2014-10-01 Sms Siemag Ag Kokille zum giessen von metall
WO2010012468A1 (en) * 2008-07-31 2010-02-04 Sms Siemag Ag Casting level measurement in a mold by means of a fiber optic measuring method
CN102112253A (en) * 2008-07-31 2011-06-29 Sms西马格股份公司 Casting liquid level measurement in crystallizer by using fiber optic measuring method
JP2019028017A (en) * 2017-08-03 2019-02-21 長野計器株式会社 Optical fiber sensor, physical quantity measurement device, and method of manufacturing optical fiber sensor
RU2687868C1 (en) * 2018-10-31 2019-05-16 Федеральное государственное бюджетное образовательное учреждение высшего образования ФГБОУ ВО "Пензенский государственный университет" (ФГБОУ ВО "ПГУ") Fiber-optic level gauge-pressure indicator

Similar Documents

Publication Publication Date Title
Prandke et al. Test measurements with an operational microstructure-turbulence profiler: Detection limit of dissipation rates
CN101718544B (en) static level monitoring system
CN102607523A (en) Laser beat frequency sensing technology-based high-precision inclinator and measurement method
Meier et al. Hydrostatic levelling systems: Measuring at the system limits
CN103808406B (en) A kind of oil-gas pipeline vibration monitoring method and apparatus based on vibrating string type sensor
US11473260B2 (en) Effective stress cell for direct measurement of effective stress in saturated soil
GB2145232A (en) Mounting transducers in an open channel flow path
CN103345004B (en) Adopt rainfall monitoring network and the method for fiber grating siphon rainfall recorder
Ackerman et al. Measurement of local bed shear stress in streams using a Preston‐static tube
JP2003302277A (en) Level sensor with specific gravity correction function
Troch et al. Instrumentation and prototype measurements at the Zeebrugge rubble mound breakwater
Dunlap et al. Pore pressure measurements in underconsolidated sediments
Pugh The physics of pneumatic tide gauges
CN104457901A (en) Water depth determining method and system
US4751841A (en) Liquid impoundment leak rate detector
De Roo et al. Field monitoring of ship wave action on environmentally friendly bank protection in a confined waterway
Zopf et al. The wavemeter: A land-based system for measuring nearshore ocean waves
Azhari et al. Dissolved oxygen sensors for scour monitoring
CN112697059B (en) Optical fiber ground deformation sensor for underwater soft medium
JP2003302326A (en) Measuring method and sensor for specific gravity of liquid
KR20100077929A (en) Method for measuring bridge scour using optical fiber sensor
CN111578900B (en) Fiber bragg grating hydraulic settlement meter, system and method based on compensation pressure difference method
CN214843763U (en) Osmometer and osmometer monitoring system
Glover et al. Measuring hydrodynamics and exploring nearshore processes using distributed sensing of fiber-optic cable strain
CN112729433B (en) River flow and sand transportation field real-time synchronous monitoring method integrated with pressure sensing