JP2003302326A - Measuring method and sensor for specific gravity of liquid - Google Patents

Measuring method and sensor for specific gravity of liquid

Info

Publication number
JP2003302326A
JP2003302326A JP2002107551A JP2002107551A JP2003302326A JP 2003302326 A JP2003302326 A JP 2003302326A JP 2002107551 A JP2002107551 A JP 2002107551A JP 2002107551 A JP2002107551 A JP 2002107551A JP 2003302326 A JP2003302326 A JP 2003302326A
Authority
JP
Japan
Prior art keywords
specific gravity
liquid
bellows
pressure
pressure receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002107551A
Other languages
Japanese (ja)
Inventor
Takeshi Kawamura
武司 川村
Takashi Fujieda
敬史 藤枝
Hidehiko Kikutani
英彦 菊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIKKEN CONSULTANTS Inc
Sumitomo Electric Industries Ltd
Original Assignee
NIKKEN CONSULTANTS Inc
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIKKEN CONSULTANTS Inc, Sumitomo Electric Industries Ltd filed Critical NIKKEN CONSULTANTS Inc
Priority to JP2002107551A priority Critical patent/JP2003302326A/en
Publication of JP2003302326A publication Critical patent/JP2003302326A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To online measure the specific gravity of river water or the like mixed with seawater. <P>SOLUTION: Two bellows 2, 3 used to receive pressures in positions of different depths are arranged so as to be faced, the pressure receiving parts of the bellows 2, 3 are connected by a movable shaft 4, a strain according to a displacement is generated in an optical fiber having an FBG element by using the displacements of the bellows due to a pressure difference, and a reflected wavelength of the FBG element is measured. Thereby, a difference between pressures applied to the bellows 2, 3 is found, and the specific gravity of a liquid is measured by using a relational expression of the pressure difference and the specific gravity. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、光ファイバを用
いて液体の比重を計測する液体比重計測方法と液体比重
センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid specific gravity measuring method and a liquid specific gravity sensor for measuring the specific gravity of liquid using an optical fiber.

【0002】[0002]

【従来の技術】液体の比重は、その体積と重量がわかれ
ば計測できる。
2. Description of the Related Art The specific gravity of a liquid can be measured by knowing its volume and weight.

【0003】現在リアルタイムに比重を計測する計器と
しては、配管内の液体に放射線(γ線)を透過させ、液
体の密度に応じた放射線強度の変化を測定して比重を求
めるものがある。それ以外は、基本的に対象物の一部を
取り出して計測器にかける方法や、対象液に浮きを浮か
べて浮きに設けた目盛を読んだり、液体の中にウエイト
を沈め、気中重量と液中重量の差(浮力)を測定して液
体の比重を求めると云った方法が採用されている。
As a measuring instrument for measuring the specific gravity in real time, there is one that transmits radiation (γ-rays) through the liquid in the pipe and measures the change in the radiation intensity according to the density of the liquid to obtain the specific gravity. Other than that, basically take out a part of the target object and put it on the measuring instrument, or read the scale on the target liquid by floating it on the target liquid, sink the weight in the liquid, and measure the weight in the air. A method of measuring the difference in weight in liquid (buoyancy) to determine the specific gravity of the liquid is used.

【0004】[0004]

【発明が解決しようとする課題】放射線を利用する方法
は、計測対象が管路内の液体に限定される。
In the method using radiation, the measurement target is limited to the liquid in the conduit.

【0005】また、重心を安定させた浮きを予め比重の
わかっている液体中に浮かべ、そのときの浮きの液面位
置に目盛をつけた浮き方式の液体比重計は、比重の異な
る液体が混じり合って分離している場合、上層の液体の
比重は計測できるが、下層の液体の比重を計測できな
い。
Further, a float type liquid hydrometer, in which a float whose center of gravity is stabilized is floated in a liquid whose specific gravity is known in advance, and a liquid level position of the float is graduated, is mixed with liquids having different specific gravities. When they are separated from each other, the specific gravity of the liquid in the upper layer can be measured, but the specific gravity of the liquid in the lower layer cannot be measured.

【0006】さらに、測定対象の気中重量と水中重量を
比較して比重を演算する方法はサンプルの抽出が必要で
あり、オンライン計測が行えない。
Furthermore, the method of calculating the specific gravity by comparing the weight in air and the weight in water of the object to be measured requires the extraction of a sample, and cannot perform online measurement.

【0007】定容積容器に液体を入れてその重量から比
重を計算する方法もオンライン計測が簡単にできない。
On-line measurement cannot be easily performed by the method of putting a liquid in a constant volume container and calculating the specific gravity from the weight.

【0008】本出願人は、光ファイバ水位センサを用い
て河川等の水位の遠隔監視、管理をリアルタイムで行う
システムを開発して実用に供している。そのシステムで
は、水位変動に伴う水圧変化を利用して光ファイバに水
圧に応じた歪を生じさせ、その歪を測定して水位に換算
するが、かかるシステムによって、例えば河口近くの河
川水の水位を計測する場合、河川水(汽水)の塩分濃度
が潮の干満により変化して測定値に塩分濃度の影響が出
ることが考えられる。
The present applicant has developed and put into practical use a system for remote monitoring and management of the water level of a river or the like in real time by using an optical fiber water level sensor. In that system, a strain corresponding to the water pressure is generated in the optical fiber by using the water pressure change accompanying the water level change, and the strain is measured and converted into a water level. When measuring, the salt concentration of river water (brackish water) may change due to the ebb and flow of the tide, and the salt concentration may affect the measured value.

【0009】このとき、水位センサ設置点の塩分濃度が
わかれば、補正を行って水位の測定精度を高めることが
できる。
At this time, if the salt concentration at the point where the water level sensor is installed is known, correction can be performed to improve the accuracy of water level measurement.

【0010】その塩分濃度の測定は、上記システムの利
点を生かすためにオンラインで行う必要があり、このた
めに、河川水等の比重をオンライン計測できる新規な比
重測定方法と比重センサが要求されるようになった。
The salt concentration must be measured online in order to take advantage of the above-mentioned system. Therefore, a new specific gravity measuring method and a specific gravity sensor capable of measuring the specific gravity of river water etc. online are required. It became so.

【0011】この発明は、かかる要求に応えることを課
題としている。
An object of the present invention is to meet such a demand.

【0012】[0012]

【課題を解決するための手段】上記の課題を解決するた
め、この発明においては、液体中に2個の受圧体を設置
深さ位置を異ならせて配置し、各受圧体に加わる圧力の
差ΔPをその圧力差による光ファイバの歪を測定して計
測し、各受圧体の受圧面積をS、受圧体設置点の高低差
をHとしてΔP=ρ・S・Hの式から液体の比重ρを求
める液体比重計測方法を提供する。
In order to solve the above problems, in the present invention, two pressure receiving bodies are arranged in the liquid at different installation depth positions, and the pressure difference applied to each pressure receiving body is different. ΔP is measured by measuring the strain of the optical fiber due to the pressure difference, and the pressure-receiving area of each pressure-receiving body is S, and the height difference of the pressure-receiving body installation point is H, and the specific gravity of the liquid ρ from the formula of ΔP = ρ · S · H A method for measuring the specific gravity of a liquid is provided.

【0013】また、その方法の実施に用いるセンサとし
て、受圧部面積が等しく、それぞれが液体の異なる深さ
位置の圧力を直接又は間接的に受けて伸縮する対向配置
の2個のベローズと、各ベローズの伸縮量又は伸縮量差
に応じた歪を生じるFBG素子とを備えて成る液体比重
センサを提供する。
Further, as sensors used for carrying out the method, two bellows, which have the same pressure receiving area and are arranged to face each other, which directly or indirectly receive and expand the pressure at different depth positions of the liquid, respectively. Provided is a liquid specific gravity sensor including an FBG element that produces strain according to the amount of expansion or contraction of a bellows or a difference in expansion or contraction amount.

【0014】かかるセンサの好ましい形態を下に列挙す
る。 2個のベローズの受圧部を可動シャフトで連結する。 2組のFBG素子を設けて一方のFBG素子に2個の
ベローズの伸縮量差に応じた歪を、他方のFBG素子に
センサの熱伸縮量に応じた歪を各々与える。 同一長さの2組のFBG素子を設けて一方のFBG素
子に2個のベローズの伸縮量差に応じた伸び歪を、他方
のFBG素子に縮みを与える。 上記の2組のFBG素子の反射波長を異ならせ、両
FBG素子からの反射波長ピーク値の差分値から2個の
ベローズに加わる圧力の差を測定し、所定の演算式に基
づいて液体の比重を算出する測定装置を伴わせる。 FBG素子の伸び歪が設定値になった位置で素子の伸
びを停止させるストッパを含める。 可動シャフトの変位を機械的に増大させる増幅機構を
含め、増幅した変位でFBG素子を歪ませる。 液中に上向きに配置するベローズの受圧面に円錐体を
取付ける。
Preferred forms of such sensors are listed below. The pressure receiving parts of the two bellows are connected by a movable shaft. Two sets of FBG elements are provided, and one FBG element is given a strain according to the difference in expansion / contraction amount of the two bellows, and the other FBG element is given a strain according to the thermal expansion / contraction amount of the sensor. Two sets of FBG elements having the same length are provided, and one FBG element is given an extension strain according to the difference in expansion / contraction amount of two bellows, and the other FBG element is given a contraction. The reflection wavelengths of the above two sets of FBG elements are made different, the difference in pressure applied to the two bellows is measured from the difference value of the reflection wavelength peak values from both FBG elements, and the specific gravity of the liquid is calculated based on a predetermined arithmetic expression. A measurement device for calculating A stopper that stops the expansion of the FBG element at the position where the elongation strain reaches a set value is included. The FBG element is distorted by the amplified displacement, including the amplification mechanism that mechanically increases the displacement of the movable shaft. Mount the cone on the pressure receiving surface of the bellows that is to be placed upward in the liquid.

【0015】なお、液体の圧力は2個のベローズに直接
作用させてもよいし、2個のベローズ構造の受圧体を付
加してその受圧体を液体の異なる深さ位置に配置し、各
受圧体が受けた圧力を導圧管に封入された圧力媒体を介
して前記2個のベローズに加えてもよい。
The pressure of the liquid may be directly applied to the two bellows, or two pressure receiving members having a bellows structure may be added and the pressure receiving members may be arranged at different depth positions of the liquid to receive the pressures. The pressure received by the body may be applied to the two bellows via a pressure medium enclosed in a pressure guiding tube.

【0016】[0016]

【作用】この発明では、受圧体設置点の圧力差(深度差
による圧力差)を光ファイバの歪に変換して測定し(そ
の測定のために、圧力差と光ファイバの歪量の関係を予
め調べておく)、その圧力差と比重の関係式を用いて液
体の比重を求める。この方法によれば、放射線を利用す
る装置では計測できない河川水や液槽内液体なども比重
計測が行える。また、受圧体を任意位置に配置できるた
め、浮き方式の比重計では計測できない下層部の液体比
重も計測でき、1本の光ファイバを使用したオンライン
での多点計測も行える。
According to the present invention, the pressure difference (pressure difference due to the depth difference) at the pressure receiving body installation point is converted into the strain of the optical fiber for measurement (for the measurement, the relationship between the pressure difference and the strain amount of the optical fiber is measured). The specific gravity of the liquid is calculated using the relational expression between the pressure difference and the specific gravity. According to this method, specific gravity can be measured even for river water or liquid in a liquid tank that cannot be measured by a device that uses radiation. Further, since the pressure receiving body can be arranged at any position, the liquid specific gravity of the lower layer portion, which cannot be measured by the float type hydrometer, can be measured, and online multi-point measurement using one optical fiber can be performed.

【0017】また、この発明の比重センサは、対向配置
の2個のベローズに受圧点の圧力を直接又は間接的に加
え、各ベローズの伸縮量又は伸縮量差に応じた歪をFB
G素子に与えるので、圧力差計測の容易化、構造の簡素
化、低コスト化を実現できる。
Further, in the specific gravity sensor of the present invention, the pressure at the pressure receiving point is directly or indirectly applied to the two bellows arranged opposite to each other, and the strain corresponding to the expansion or contraction amount or the difference in expansion or contraction amount of each bellows is FB.
Since it is applied to the G element, the pressure difference measurement can be facilitated, the structure can be simplified, and the cost can be reduced.

【0018】このセンサに使用したFBG(ファイバー
ブラッググレーティング)素子は、光ファイバの一部に
特定波長のみを反射するブラッグ回折格子を形成した素
子であって、1本の光ファイバに複数の素子をシリアル
に接続でき、検出感度も高いと云う特徴を有している。
このFBG素子による圧力(歪)の測定では、波長域の
広い広帯域光源を用いて光ファイバに光を投入し、FB
Gが反射する波長を波長計で測定する。
The FBG (fiber Bragg grating) element used in this sensor is an element in which a Bragg diffraction grating that reflects only a specific wavelength is formed in a part of an optical fiber, and a plurality of elements are provided in one optical fiber. It has the characteristics that it can be connected serially and the detection sensitivity is high.
In the measurement of pressure (strain) by this FBG element, light is injected into an optical fiber by using a broadband light source with a wide wavelength range,
The wavelength reflected by G is measured with a wavemeter.

【0019】FBGによる反射波長は、歪付加によるグ
レーティングのピッチ変化によって変化し、従って、反
射波長の測定値から光ファイバに生じた歪(即ち圧力)
を求めることができる。
The wavelength reflected by the FBG changes due to the change in the pitch of the grating due to the addition of strain, and therefore the strain (that is, pressure) generated in the optical fiber from the measured value of the reflected wavelength.
Can be asked.

【0020】なお、上記の構成を採用したものは、2
個のベローズが連動して圧力差が抽出されるので、FB
G素子に圧力差による伸縮歪を確実に与えて測定誤差を
小さくし得る。
It should be noted that the one adopting the above-mentioned structure is
Since the bellows work together to extract the pressure difference, FB
Expansion and contraction strain due to the pressure difference can be reliably applied to the G element to reduce the measurement error.

【0021】また、の構成を採用したものは、他方の
FBG素子の温度による歪を補正値にして圧力差の測定
値に含まれる温度に起因した誤差成分を除去することが
できる。
Further, in the case of adopting the configuration of (2), the error component due to the temperature contained in the measured value of the pressure difference can be removed by using the distortion due to the temperature of the other FBG element as a correction value.

【0022】の構成を採用したものは、の測定装置
を使用して2つのFBG素子からの反射波長ピーク値の
差分値から2個のベローズに加わる圧力の差を測定す
る。この方法を採ると、温度補正(温度に起因した誤差
成分の除去)が自動的に行われ、温度自体(温度による
歪)を計測する必要がない。
With the configuration of (2), the difference between the pressures applied to the two bellows is measured from the difference value of the reflection wavelength peak values from the two FBG elements using the measuring device of (2). When this method is adopted, temperature correction (removal of an error component caused by temperature) is automatically performed, and it is not necessary to measure the temperature itself (strain due to temperature).

【0023】のストッパを有するものは、FBG素子
に対する過大応力の印加が阻止され、センサが、乱流な
どで振動するような環境下におかれてもFBG素子の破
壊を防止できる。
With the stopper of (1), application of excessive stress to the FBG element is blocked, and the FBG element can be prevented from being destroyed even in an environment where the sensor vibrates due to turbulence or the like.

【0024】さらに、の増幅機構を有するものは、F
BG素子をベローズ間から外れた位置に置いてその素子
のレイアウトの自由度や取付けの自由度を高め、センサ
の製造を容易化することができる。また、圧力差が増幅
されるので、2箇所の測定点の圧力差が小さくてよく、
センサの長さ(ベローズ間間隔)を短縮でき、かつ浅い
場所でも比重を計れる。
Further, the one having the amplification mechanism of is F
It is possible to place the BG element at a position apart from the space between the bellows to increase the degree of freedom in the layout of the element and the degree of attachment, and to facilitate the manufacture of the sensor. Further, since the pressure difference is amplified, the pressure difference between the two measurement points may be small,
The sensor length (interval between bellows) can be shortened and the specific gravity can be measured even in a shallow place.

【0025】ベローズにの円錐体を取付けたものは、
ベローズ上への土砂の堆積が防止され、堆積物による測
定精度の変動が起こらない。
The bellows with the cone attached is
Sediment is prevented from depositing on the bellows, and fluctuations in measurement accuracy due to deposits do not occur.

【0026】このほか、測定点の圧力を導圧管経由でベ
ローズに間接的に加えるものは、センサの本体部を液中
に浸漬する必要がない。また、受圧体とベローズの受圧
面積を異ならせて圧力を増幅させて伝えることもでき
る。
In addition, in the case of indirectly applying the pressure at the measuring point to the bellows via the pressure guiding tube, it is not necessary to immerse the main body of the sensor in the liquid. Further, the pressure receiving areas of the pressure receiving body and the bellows may be different to amplify and transmit the pressure.

【0027】[0027]

【発明の実施の形態】以下、この発明の実施形態を図1
乃至図4に基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to FIG.
It will be described with reference to FIG.

【0028】図1は、この発明の液体比重センサの基本
構造を表している。図に示すように、センサ本体1の上
下端に、各々が液圧を受けて伸縮するベローズ2、3を
対向して設けている。各ベローズの受圧部2a、3a
(両者の受圧面積は等しい)は可動シャフト4を介して
連結されており、圧力を受けると連動し、ベローズ2、
3に加わる圧力差に対応した位置に変位する。
FIG. 1 shows the basic structure of the liquid specific gravity sensor of the present invention. As shown in the drawing, bellows 2 and 3, which are expanded and contracted by receiving hydraulic pressure, are provided at the upper and lower ends of the sensor body 1 so as to face each other. Pressure receiving parts 2a, 3a of each bellows
(The pressure receiving areas of both are equal) are connected via a movable shaft 4, and when pressure is applied, the bellows 2,
It is displaced to a position corresponding to the pressure difference applied to 3.

【0029】センサ本体1のフレーム1aには固定ロー
ラ5Bが取付けられ、その固定ローラ5Bと可動シャフ
ト4に取付けた可動ローラ5Aとの間にFBG素子を有
する光ファイバ6aが所定の張力を加え、両ローラに巻
付け固定して架線されている。また、固定ローラ5Bと
可動シャフト4に取付けたもうひとつの可動ローラ5C
との間に力のバランスをとるためのダミー光ファイバ6
bがローラに巻付け固定して架線されている。光ファイ
バ6a、6bは一連のファイバであり、光ケーブル6内
の光ファイバに連なっている。
A fixed roller 5B is attached to the frame 1a of the sensor body 1, and an optical fiber 6a having an FBG element applies a predetermined tension between the fixed roller 5B and the movable roller 5A attached to the movable shaft 4, It is wound around and fixed on both rollers. In addition, the fixed roller 5B and another movable roller 5C attached to the movable shaft 4
Dummy optical fiber 6 for balancing forces between and
b is wound around the roller and fixed, and is connected to the roller. The optical fibers 6a and 6b are a series of fibers and are connected to the optical fibers in the optical cable 6.

【0030】ダミー光ファイバ6bは、光ファイバ6a
と平行にしてローラ5A、5B間に設ける場合がある。
また、圧力差による変位量が小さければ、光ファイバの
素線におけるクラッドと緩衝層間での滑りはほとんど発
生しないため、ダミー光ファイバ6bを省くことがあ
る。
The dummy optical fiber 6b is the optical fiber 6a.
May be provided in parallel between the rollers 5A and 5B.
Also, if the displacement amount due to the pressure difference is small, the slippage between the cladding and the buffer layer in the strand of the optical fiber hardly occurs, so the dummy optical fiber 6b may be omitted.

【0031】なお、ベローズ2、3は、片端が本体1の
フレーム1aに固定されており、両ベローズ間はケース
1bを被せて内部の気密性を確保している。
One end of each of the bellows 2 and 3 is fixed to the frame 1a of the main body 1, and a case 1b is covered between the two bellows to ensure airtightness inside.

【0032】このように構成した図1の液体比重センサ
は、ベローズ2、3の各々の受圧面積をScm2 、ベロ
ーズ2、3間の高低差をH、液体の比重をρとすると、
ベローズ2、3間の圧力差がρ・S・H(g)の式で与
えられる。今仮に、S=10cm2 、H=40cm、ρ
=1.0とすると、ベローズ2、3間に生じる圧力差は
400gf(≒3.923N)となる。100gfのバ
ネ定数のベローズを用いる場合、光ファイバの歪は1%
/kgfであるから光ファイバ6a中のFBG素子の長
さを10cmとすると、変位量と力の関係は0.1mm
/100gfとなり、100gfの荷重の大部分をFB
G素子が負担して受けることになる。
In the liquid specific gravity sensor of FIG. 1 configured as above, when the pressure receiving area of each of the bellows 2 and 3 is Scm 2 , the height difference between the bellows 2 and 3 is H, and the specific gravity of the liquid is ρ,
The pressure difference between the bellows 2 and 3 is given by the formula ρ · S · H (g). Suppose now that S = 10 cm 2 , H = 40 cm, ρ
= 1.0, the pressure difference generated between the bellows 2 and 3 is 400 gf (≈3.923 N). When using a bellows with a spring constant of 100 gf, the strain of the optical fiber is 1%.
Therefore, if the length of the FBG element in the optical fiber 6a is 10 cm, the relationship between the displacement and the force is 0.1 mm.
/ 100gf, and most of the 100gf load is FB
The G element bears the burden.

【0033】一方、FBG素子は、0.0004%の歪
測定精度があるため、ベローズのバネ力を無視して考え
ると、10cm長さのFBG素子は0.4gの精度で荷
重を測定できることになる。そこで、仮に海水の比重を
計測することを考えた場合、塩分濃度が3%ならその比
重は1.03となるから、その濃度%を1桁下の位まで
計測するとして、(1.03×400)−400=12
gを0.4gで分解することが可能であるので、3%を
1/30、つまり0.1%にまで分解できることにな
る。
On the other hand, since the FBG element has a strain measurement accuracy of 0.0004%, the FBG element with a length of 10 cm can measure the load with an accuracy of 0.4 g, considering the spring force of the bellows. Become. Therefore, if we consider measuring the specific gravity of seawater, if the salt concentration is 3%, the specific gravity will be 1.03, so we will measure the concentration% to one digit below (1.03 × 400) -400 = 12
Since g can be decomposed with 0.4 g, 3% can be decomposed to 1/30, that is, 0.1%.

【0034】%濃度で0.1%までの計測が可能と云う
ことは、比重を1/1000の精度で測定できることを
意味する。
The fact that it is possible to measure up to 0.1% in terms of% concentration means that the specific gravity can be measured with an accuracy of 1/1000.

【0035】既に述べたように、光ファイバを水圧で歪
ませて河口近くの水位を計測する監視システムの場合、
塩分濃度がわかれば塩分に起因する測定誤差を補正して
海水の影響を小さくすることができる。影響を小さくす
ると云う表現にしたのは、計測点での河川水に海水が十
分に混じり合っていれば正確な補正が行えるが、実際に
は川底と水面近傍では濃度差があると考えられるので、
厳密な意味での補正はセンサひとつでは難しいからであ
る。
As described above, in the case of the monitoring system in which the optical fiber is distorted by water pressure to measure the water level near the river mouth,
If the salt concentration is known, the measurement error due to salt can be corrected to reduce the influence of seawater. The expression to reduce the effect is that accurate correction can be performed if the river water at the measurement point is sufficiently mixed with seawater, but in reality there is a difference in concentration between the river bottom and near the water surface. ,
This is because correction in a strict sense is difficult with just one sensor.

【0036】なお、ここでは1/1000の精度で比重
を計測することを例に挙げたが、受圧面積Sと高低差H
の寸法を適宜変更することでFBG素子に与える歪量を
変化させて分解能を更に高めることができる。
Here, the specific gravity is measured with an accuracy of 1/1000 as an example, but the pressure receiving area S and the height difference H
By appropriately changing the dimension of, the amount of strain applied to the FBG element can be changed and the resolution can be further enhanced.

【0037】また、高低差Hを小さく、受圧面積Sを大
きくして精度を維持しながら水深が浅いところでの比重
計測を可能とすることもできる。
Further, the height difference H can be made small and the pressure receiving area S can be made large so that the specific gravity can be measured at a shallow water depth while maintaining accuracy.

【0038】図2は、図1のセンサの上向き配置にされ
るベローズ2の受圧部上に土砂の堆積を防止する円錐体
7を装着したものである。荷重のバランスをとるため、
図に示すように、下側のベローズ3の受圧部にもダミー
円錐体8を取付けておくのが好ましい。
FIG. 2 is a view in which a cone 7 for preventing the accumulation of earth and sand is mounted on the pressure receiving portion of the bellows 2 arranged in the upward direction of the sensor of FIG. To balance the load,
As shown in the figure, it is preferable to attach the dummy cone 8 to the pressure receiving portion of the lower bellows 3 as well.

【0039】図3は、センサ本体1の側部に副室1cを
設けてその副室の上下にベローズ2、3を取付け、可動
シャフト4で両ベローズの受圧部を連結し、シャフト4
の圧力差による変位を梃9で増幅して本体1内のFBG
素子を有する光ファイバ6aに伝え、その光ファイバ6
aにベローズ2、3間の圧力差に応じた歪を与えるよう
にした液体比重センサを示している。
In FIG. 3, a sub-chamber 1c is provided on the side of the sensor body 1, bellows 2 and 3 are attached to the upper and lower sides of the sub-chamber, and the pressure receiving portions of both bellows are connected by a movable shaft 4 to form a shaft 4
The displacement due to the pressure difference between the
The optical fiber 6a having the element is transmitted to the optical fiber 6a.
A liquid specific gravity sensor adapted to give a strain corresponding to a pressure difference between the bellows 2 and 3 is shown in a.

【0040】フレーム1aの上下端に固定ローラ5B、
5Dを設け、梃9に取付けた可動ローラ5Aと固定ロー
ラ5B間に光ファイバ6aをローラとの間で滑りが生じ
ないようにして張架し、さらに、可動ローラ5Aと固定
ローラ5D間にもFBG素子を有する光ファイバ6cを
6aと同様にして張架している。一連の光ファイバ6
a、6cとそれぞれの光ファイバに設けたFBG素子は
同一長さにしている。また、それ等の素子は反射波長を
異ならせ、圧力変化による波長シフト量が最大となった
ときにも両者の波長が重ならないものにしている。
Fixed rollers 5B are provided on the upper and lower ends of the frame 1a,
5D is provided, and the optical fiber 6a is stretched between the movable roller 5A and the fixed roller 5B attached to the lever 9 so as not to slip between the roller and the movable roller 5A and the fixed roller 5D. An optical fiber 6c having an FBG element is stretched in the same manner as 6a. A series of optical fibers 6
The a and 6c and the FBG element provided in each optical fiber have the same length. Further, these elements have different reflection wavelengths so that the wavelengths of the two do not overlap even when the wavelength shift amount due to the pressure change becomes maximum.

【0041】このようにしておくと、圧力差で例えばベ
ローズ3が縮み、ベローズ2が伸びたときに光ファイバ
6aに伸び歪が与えられ、光ファイバ6cは縮む。この
ときの2つのFBG素子からの反射波長のピーク値の差
からベローズ2、3に加わる圧力差を求めて液体の比重
を計測すると、温度変化によって光ファイバ6a側のF
BG素子が例えば0.1mm伸びたとすると光ファイバ
6c側のFBG素子も0.1mm伸び、温度変化による
伸び(歪)がキャンセルされて自動的に温度補正がなさ
れる。
In this way, for example, the bellows 3 contracts due to the pressure difference, and when the bellows 2 expands, expansion strain is given to the optical fiber 6a and the optical fiber 6c contracts. When the specific gravity of the liquid is measured by obtaining the pressure difference applied to the bellows 2 and 3 from the difference between the peak values of the reflection wavelengths from the two FBG elements at this time, the F of the optical fiber 6a side is measured by the temperature change.
If the BG element is extended by 0.1 mm, for example, the FBG element on the optical fiber 6c side is also extended by 0.1 mm, the extension (strain) due to the temperature change is canceled, and the temperature is automatically corrected.

【0042】FBG素子は、温度に敏感であるため、温
度補正が不可欠である。その温度補正は、図3のローラ
5A、5Dと並列位置に固定ローラ5E、5Fを本体フ
レームで支持して設け(そのローラ5E、5Fは5A、
5Dと位置が重なるので、図はケース1bから出した状
態にして示した)、そのローラ5E、5F間に光ファイ
バ6aと同一仕様のFBG素子を有する光ファイバ6d
(これは光ファイバ6aに連ならせる)を張架してその
光ファイバ6dで温度変化によるセンサの歪(ローラ5
A、5B間の歪)を検出し、光ファイバ6aによる圧力
差の測定値から温度による成分を差し引くことでも行え
るが、先の自動補正がなされる構造にすれば温度補正用
の光ファイバ6dを設ける必要がなく、センサの簡素化
と1本の光ファイバラインに接続するセンサ数の増加が
図れる。
Since the FBG element is sensitive to temperature, temperature correction is indispensable. For the temperature correction, the fixed rollers 5E and 5F are provided in parallel with the rollers 5A and 5D of FIG. 3 while being supported by the body frame (the rollers 5E and 5F are 5A,
Since the position overlaps with 5D, the drawing is shown as being taken out from the case 1b), and an optical fiber 6d having an FBG element having the same specifications as the optical fiber 6a between the rollers 5E and 5F.
(This is connected to the optical fiber 6a) is stretched and the optical fiber 6d is used to distort the sensor due to temperature change (roller 5
It is also possible to detect (strain between A and 5B) and subtract the component due to temperature from the measured value of the pressure difference by the optical fiber 6a, but if the structure for automatic correction is used, the optical fiber 6d for temperature correction can be used. Since it is not necessary to provide the sensor, it is possible to simplify the sensor and increase the number of sensors connected to one optical fiber line.

【0043】図4は、更に液体比重センサの他の実施形
態とそれを補正用に用いた水位監視システムを示してい
る。同図の液体比重センサは、ベローズ2、3を本体1
のケース1b内に配置している。両ベローズの受圧部2
a、3aを可動シャフト4で連結し、ベローズ2の受圧
部の裏面に取付けた可動ローラ5Aと本体のフレーム
(図示せず)に取付けた固定ローラ5Bとの間にFBG
素子を有する光ファイバ6aとダミー光ファイバ6b
を、また、ベローズ3の受圧部の裏面に取付けた可動ロ
ーラ5Cと本体のフレームに取付けた固定ローラ5Dと
の間にFBG素子を有する光ファイバ6cとダミー光フ
ァイバ6bを各々張設している。
FIG. 4 shows another embodiment of the liquid gravity sensor and a water level monitoring system using the same for correction. The liquid specific gravity sensor shown in FIG.
It is arranged in the case 1b. Pressure receiving part 2 of both bellows
a and 3a are connected by a movable shaft 4, and an FBG is provided between a movable roller 5A attached to the back surface of the pressure receiving portion of the bellows 2 and a fixed roller 5B attached to a frame (not shown) of the main body.
Optical fiber 6a having elements and dummy optical fiber 6b
Further, an optical fiber 6c having an FBG element and a dummy optical fiber 6b are respectively stretched between a movable roller 5C attached to the back surface of the pressure receiving portion of the bellows 3 and a fixed roller 5D attached to the frame of the main body. .

【0044】さらに、本体のフレームに、各ベローズの
伸縮量を規制してFBG素子を保護するストッパ10を
設けている。
Further, the frame of the main body is provided with a stopper 10 for restricting the expansion and contraction amount of each bellows to protect the FBG element.

【0045】また、水中に深さ位置を異ならせて配置す
るベローズ構造の2つの受圧体11、12を設け、両受
圧体11、12の受圧部に加わる圧力を、導圧管13、
14に封入した水等の圧力媒体15を介してベローズ
2、3の受圧部に各々伝えるようにしている。
Further, two pressure receiving bodies 11 and 12 having a bellows structure arranged at different depth positions in water are provided, and the pressure applied to the pressure receiving portions of both pressure receiving bodies 11 and 12 is controlled by the pressure guiding tube 13,
The pressure medium 15 such as water sealed in 14 is transmitted to the pressure receiving portions of the bellows 2 and 3, respectively.

【0046】図4の水位監視システムは、水圧を光ファ
イバの歪に置換して水位を計測する光ファイバ水位セン
サ16を備えており、その水位センサ16と液体比重セ
ンサが光ケーブル6、接続箱17を介して監視制御装置
18と測定装置19につながれている。
The water level monitoring system of FIG. 4 is equipped with an optical fiber water level sensor 16 for measuring water level by replacing water pressure with strain of the optical fiber. The water level sensor 16 and the liquid gravity sensor are the optical cable 6 and the connection box 17. It is connected to the monitoring control device 18 and the measuring device 19 via.

【0047】図4の液体比重センサは、受圧体11、1
2に加わる圧力の差で光ファイバ6aが伸びるとき6c
が縮む。従って、光ファイバ6a、6cのFBG素子か
らの反射波長ピーク値の差分値から受圧体を設置した地
点の水の比重を求めることができる。また、この比重セ
ンサも、図3のセンサと同様、温度による誤差が自動補
正される。
The liquid specific gravity sensor shown in FIG.
When the optical fiber 6a is stretched due to the difference in pressure applied to 2, 6c
Shrinks. Therefore, the specific gravity of water at the point where the pressure receiving body is installed can be obtained from the difference value of the reflection wavelength peak values of the optical fibers 6a and 6c from the FBG elements. Further, also in this specific gravity sensor, an error due to temperature is automatically corrected as in the sensor of FIG.

【0048】図4の水位監視システムは、センサ16を
用いて水位を測定し、水の比重変動による誤差の補正を
比重センサを用いて行うことができる。
The water level monitoring system of FIG. 4 can measure the water level using the sensor 16 and correct the error due to the fluctuation of the specific gravity of water using the specific gravity sensor.

【0049】以下に、温度による液体の比重変化につい
て簡単に記す。今、水を例に採ると、水の密度(比重)
は温度によって以下のように変わる。例えば、4℃にお
ける最大密度は0.99997である。これに対し、4
0℃における密度は0.99221であり、その変化分
は0.776%である。
The change in the specific gravity of the liquid depending on the temperature will be briefly described below. Taking water as an example, the density of water (specific gravity)
Changes with temperature as follows. For example, the maximum density at 4 ° C is 0.99997. On the other hand, 4
The density at 0 ° C. is 0.99221, and the change is 0.776%.

【0050】従って、水深約10mの場合で考えると4
℃で999.97cmであるとき、40℃では992.
21cmとなり、7.7cm強の誤差が発生することに
なる。
Therefore, considering the case where the water depth is about 10 m, 4
C. is 999.97 cm, 40.degree. C. is 992.97 cm.
It becomes 21 cm, and an error of slightly more than 7.7 cm occurs.

【0051】つまり、測定精度が0.1%の測定器であ
れば10mの水深を計測すると±1cmの誤差をもつこ
とになるが、温度変化だけで7.7cmの誤差があるこ
とになるから、水温の影響を除く温度補正も重要なこと
がわかる。
That is, if a measuring instrument with a measurement accuracy of 0.1% has an error of ± 1 cm when measuring a water depth of 10 m, there will be an error of 7.7 cm only due to the temperature change. It can be seen that temperature correction that excludes the influence of water temperature is also important.

【0052】ここでは、極端な話をしたが、10mを±
1cmの精度で計測できる水位センサを使用して実際に
水深を測定するケースでは、水温が4℃〜24℃程度の
範囲で変化することは可能性としてあり得ることであ
り、水深3mとした場合、1−0.99729/0.9
997=0.0268であり、これは10mで2.7c
mの誤差となり、3mでは0.9cm(約1cm)の誤
差を伴うことになる。
Here, I talked about the extreme, but ± 10m
In the case of actually measuring the water depth using a water level sensor that can measure with an accuracy of 1 cm, it is possible that the water temperature may change in the range of 4 ° C to 24 ° C. , 1-0.99729 / 0.9
997 = 0.0268, which is 2.7c at 10m.
An error of 3 m is accompanied by an error of 0.9 cm (about 1 cm).

【0053】図4の水位監視システムは、温度補正機能
を有する水位センサと温度補正がなされる液体比重セン
サを併用しており、河口近くの水位計測等での測定精度
を高めることができる。
The water level monitoring system shown in FIG. 4 uses both a water level sensor having a temperature correction function and a liquid specific gravity sensor for temperature correction, so that the measurement accuracy in water level measurement near the river mouth can be improved.

【0054】なお、この発明の比重センサは、上述した
用途のほかに、石油に対する水の混入検出にも利用でき
る。石油(燈油)の常温における密度は0.80〜0.
83であり、水(密度約1)が混入して水と油が層分離
した場合には明らかに比重変化が生じるため、水が混入
したことがわかる。
The specific gravity sensor of the present invention can be used for detecting the mixing of water with petroleum in addition to the above-mentioned applications. The density of petroleum (kerosene) at room temperature is 0.80-0.
Since the specific gravity is 83 when water (density about 1) is mixed and water and oil are separated into layers, it can be seen that water is mixed.

【0055】このほか、水溶液の濃度管理にもこの発明
の液体比重センサを使用することができる。
In addition, the liquid specific gravity sensor of the present invention can be used for controlling the concentration of the aqueous solution.

【0056】[0056]

【発明の効果】以上述べたように、この発明の方法及び
センサは、2つの受圧体設置点の圧力差を光ファイバの
歪に変換して液体の比重を求めるので、従来の計測器や
比重計ではできなかった河川水や水槽内水溶液などのリ
アルタイムでのオンライン計測が行え、液体の比重変動
による誤差成分が含まれる液位測定値などの補正用途、
層分離する異比重液体の混入検出、水溶液の濃度管理な
どに利用できる。
As described above, according to the method and sensor of the present invention, the pressure difference between two pressure receiving body installation points is converted into the strain of the optical fiber to determine the specific gravity of the liquid. Real-time online measurement of river water and aqueous solution in aquarium that could not be done with a meter can be performed, and correction applications such as liquid level measurement values that include error components due to fluctuations in the specific gravity of liquids,
It can be used to detect the mixture of different-gravity liquids that are separated into layers and to control the concentration of aqueous solutions.

【0057】なお、圧力差の検出をFBG素子で行うセ
ンサは、高感度が得られ、河口近くの河川水の塩分濃度
等も計測できる。
The sensor that detects the pressure difference by the FBG element has high sensitivity and can measure the salt concentration of river water near the river mouth.

【0058】また、FBG素子を2組設けて温度補正を
行うものは、温度変化による誤差成分を除去でき、測定
精度が高まる。
Further, in the case where two sets of FBG elements are provided for temperature correction, an error component due to a temperature change can be removed and the measurement accuracy is improved.

【0059】圧力差で一方が伸び他方が縮む2つのFB
G素子の反射波長ピーク値の差分値を求めて比重に換算
するものは、温度補正のための温度計測を必要とせず、
センサや計測器の簡素化、計測の簡素化が図れる。
Two FBs, one of which expands and the other contracts due to a pressure difference
The one that calculates the difference value of the reflection wavelength peak value of the G element and converts it into the specific gravity does not require temperature measurement for temperature correction,
Simplification of sensors and measuring instruments and simplification of measurement can be achieved.

【0060】また、光ファイバの伸びを規制するストッ
パを備えたものは、FBG素子を過大応力や衝撃から保
護できる。
Further, the one provided with the stopper for restricting the extension of the optical fiber can protect the FBG element from excessive stress and impact.

【0061】さらに、圧力差による変位の増幅機構を有
するものは、測定点間の圧力差が小さくても比重計測が
行え、センサの製造等の容易化も図れる。
Further, the one having the mechanism for amplifying the displacement due to the pressure difference can measure the specific gravity even if the pressure difference between the measurement points is small, and the manufacture of the sensor can be facilitated.

【0062】このほか、ベローズに円錐体を取付けたも
のは、受圧部に対する土砂の堆積を防止でき、土砂の堆
積による測定精度の悪化が起こらない。
In addition, in the case where the bellows is provided with the cone, the sediment can be prevented from being deposited on the pressure receiving portion, and the measurement accuracy is not deteriorated due to the sediment.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の液体比重センサの一例を示す断面図FIG. 1 is a sectional view showing an example of a liquid specific gravity sensor of the present invention.

【図2】他の実施形態の断面図FIG. 2 is a cross-sectional view of another embodiment.

【図3】変位増幅機構を有するセンサの断面図FIG. 3 is a sectional view of a sensor having a displacement amplification mechanism.

【図4】センサの更に他の実施形態とそれを使用した水
位監視システムの概要を示す図
FIG. 4 is a diagram showing an outline of still another embodiment of a sensor and a water level monitoring system using the same.

【符号の説明】[Explanation of symbols]

1 センサ本体 1a フレーム 1b ケース 2、3 ベローズ 2a、3a 受圧部 4 可動シャフト 5A、5C 可動ローラ 5B、5D、5E、5F 固定ローラ 6 光ケーブル 6a、6c、6d FBG素子を有する光ファイバ 6b ダミー光ファイバ 7 円錐体 8 ダミー円錐体 9 梃 10 ストッパ 11、12 受圧体 13、14 導圧管 15 圧力媒体 16 光ファイバ水位センサ 18 監視制御装置 19 測定装置 1 sensor body 1a frame 1b case A few bellows 2a, 3a Pressure receiving part 4 Movable shaft 5A, 5C movable roller 5B, 5D, 5E, 5F Fixed roller 6 optical cable Optical fiber having 6a, 6c and 6d FBG elements 6b Dummy optical fiber 7 cone 8 dummy cone 9 leverage 10 stopper 11, 12 Pressure receiver 13, 14 impulse pipe 15 Pressure medium 16 Optical fiber water level sensor 18 Monitoring and control equipment 19 Measuring device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤枝 敬史 東京都港区新橋6−17−19 株式会社イン フラ・インフォ・システムズ内 (72)発明者 菊谷 英彦 東京都港区新橋6−17−19 日本建設コン サルタント株式会社内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Takashi Fujieda             6-17-19 Shimbashi, Minato-ku, Tokyo Inn Co., Ltd.             Inside Hula Info Systems (72) Inventor Hidehiko Kikutani             6-17-19 Shimbashi, Minato-ku, Tokyo Japan Construction Con             Sultant Co., Ltd.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 液体中に2個の受圧体を設置深さ位置を
異ならせて配置し、各受圧体に加わる圧力の差ΔPをそ
の圧力差による光ファイバの歪を測定して計測し、各受
圧体の受圧面積をS、受圧体設置点の高低差をHとして
ΔP=ρ・S・Hの式から液体の比重ρを求める液体比
重計測方法。
1. Two pressure receiving bodies are arranged in the liquid at different installation depth positions, and the pressure difference ΔP applied to each pressure receiving body is measured by measuring the strain of the optical fiber due to the pressure difference. A liquid specific gravity measuring method for obtaining the specific gravity ρ of the liquid from the equation ΔP = ρ · S · H, where S is the pressure receiving area of each pressure receiving body and H is the height difference of the pressure receiving body installation points.
【請求項2】 受圧部面積が等しく、それぞれが液体の
異なる深さ位置の圧力を直接又は間接的に受けて伸縮す
る対向配置の2個のベローズと、各ベローズの伸縮量又
は伸縮量差に応じた歪を生じるFBG素子とを備えて成
る液体比重センサ。
2. The two bellows, which have the same pressure receiving area and are arranged to face each other to directly or indirectly receive and expand the pressure at different depth positions of the liquid, and the expansion or contraction amount or the expansion or contraction amount difference between the bellows. A liquid gravity sensor comprising an FBG element that produces a corresponding strain.
【請求項3】 2個のベローズの受圧部を可動シャフト
で連結した請求項1記載の液体比重センサ。
3. The liquid specific gravity sensor according to claim 1, wherein the pressure receiving portions of the two bellows are connected by a movable shaft.
【請求項4】 2組のFBG素子を設けて一方のFBG
素子に2個のベローズの伸縮量差に応じた歪を、他方の
FBG素子にセンサの熱伸縮量に応じた歪を各々与える
ようにした請求項3記載の液体比重センサ。
4. Two sets of FBG elements are provided and one FBG element is provided.
The liquid specific gravity sensor according to claim 3, wherein the element is given a strain corresponding to a difference in expansion / contraction amount of the two bellows, and the other FBG element is given a strain corresponding to a thermal expansion / contraction amount of the sensor.
【請求項5】 同一長さの2組のFBG素子を設けて一
方のFBG素子に2個のベローズの伸縮量差に応じた伸
び歪を、他方のFBG素子に縮みを与えるようにした請
求項3記載の液体比重センサ。
5. A pair of FBG elements having the same length are provided, and one FBG element is provided with elongation strain corresponding to a difference in expansion and contraction amount of two bellows, and the other FBG element is contracted. 3. The liquid specific gravity sensor described in 3.
【請求項6】 2組のFBG素子の反射波長を異なら
せ、両FBG素子からの反射波長ピーク値の差分値から
2個のベローズに加わる圧力の差を測定し、所定の演算
式に基づいて液体の比重を算出する測定装置を伴わせた
請求項4記載の液体比重センサ。
6. The difference between the reflection wavelengths of the two sets of FBG elements is measured, the difference in pressure applied to the two bellows is measured from the difference value of the reflection wavelength peak values from both FBG elements, and based on a predetermined arithmetic expression. The liquid specific gravity sensor according to claim 4, further comprising a measuring device for calculating the specific gravity of the liquid.
【請求項7】 FBG素子の伸び歪が設定値になった位
置で素子の伸びを停止させるストッパを含めた請求項3
乃至6のいずれかに記載の液体比重センサ。
7. The FBG element including a stopper for stopping the extension of the element at a position where the extension strain reaches a set value.
7. The liquid specific gravity sensor according to any one of 1 to 6.
【請求項8】 可動シャフトの変位を機械的に増大させ
る増幅機構を含め、増幅した変位でFBG素子を歪ませ
るようにした請求項3乃至7のいずれかに記載の液体比
重センサ。
8. The liquid specific gravity sensor according to claim 3, wherein the FBG element is distorted by the amplified displacement, including an amplifying mechanism that mechanically increases the displacement of the movable shaft.
【請求項9】 液中に上向きに配置するベローズの受圧
面に円錐体を取付けた請求項2乃至8のいずれかに記載
の液体比重センサ。
9. The liquid specific gravity sensor according to claim 2, wherein a conical body is attached to a pressure receiving surface of a bellows arranged upward in the liquid.
【請求項10】 2個のベローズ構造の受圧体を付加し
てその受圧体を液体の異なる深さ位置に配置し、各受圧
体が受けた圧力を導圧管に封入された圧力媒体を介して
前記2個のベローズに加えるようにした請求項2乃至9
のいずれかに記載の液体比重センサ。
10. A pressure receiving body having two bellows structures is added, the pressure receiving bodies are arranged at different depth positions of a liquid, and the pressure received by each pressure receiving body is passed through a pressure medium enclosed in a pressure guiding tube. 10. The method according to claim 2, wherein the bellows are added to the two bellows.
The liquid specific gravity sensor according to any one of 1.
JP2002107551A 2002-04-10 2002-04-10 Measuring method and sensor for specific gravity of liquid Pending JP2003302326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002107551A JP2003302326A (en) 2002-04-10 2002-04-10 Measuring method and sensor for specific gravity of liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002107551A JP2003302326A (en) 2002-04-10 2002-04-10 Measuring method and sensor for specific gravity of liquid

Publications (1)

Publication Number Publication Date
JP2003302326A true JP2003302326A (en) 2003-10-24

Family

ID=29391547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002107551A Pending JP2003302326A (en) 2002-04-10 2002-04-10 Measuring method and sensor for specific gravity of liquid

Country Status (1)

Country Link
JP (1) JP2003302326A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106093464A (en) * 2016-07-27 2016-11-09 山东省科学院激光研究所 A kind of optical fiber differential pressure air velocity transducer and application
JP2019028017A (en) * 2017-08-03 2019-02-21 長野計器株式会社 Optical fiber sensor, physical quantity measurement device, and method of manufacturing optical fiber sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106093464A (en) * 2016-07-27 2016-11-09 山东省科学院激光研究所 A kind of optical fiber differential pressure air velocity transducer and application
JP2019028017A (en) * 2017-08-03 2019-02-21 長野計器株式会社 Optical fiber sensor, physical quantity measurement device, and method of manufacturing optical fiber sensor

Similar Documents

Publication Publication Date Title
US7940389B2 (en) Method and apparatus for detecting pressure distribution in fluids
US11473260B2 (en) Effective stress cell for direct measurement of effective stress in saturated soil
CN102607523B (en) Laser beat frequency sensing technology-based high-precision inclinator and measurement method
US9897497B2 (en) Temperature-compensated strain-based transducer operating on differential measurements
CN102494670A (en) Method for monitoring foundation settlement by using static water level gauge and static water level gauges used in method
JP2016528502A (en) Sensor for detecting pressure waves in liquid
Qin et al. Fabrication and performance evaluation of a novel FBG-based effective stress cell for directly measuring effective stress in saturated soils
US11598685B2 (en) Apparatus and method for measuring ground subsidence using pressure gauge
CN103345004B (en) Adopt rainfall monitoring network and the method for fiber grating siphon rainfall recorder
Schenato et al. A rugged FBG-based pressure sensor for water level monitoring in dikes
Ding et al. A new method for scour monitoring based on fiber Bragg grating
CN105865573B (en) Liquid level measuring device and measuring method thereof
Pugh The physics of pneumatic tide gauges
JP2003302326A (en) Measuring method and sensor for specific gravity of liquid
de Almeida et al. A fiber Bragg grating water level sensor based on the force of buoyancy
CN205483167U (en) Liquid level measuring apparatus
KR100991867B1 (en) Method for measuring bridge scour using optical fiber sensor
JP2003302277A (en) Level sensor with specific gravity correction function
Liu et al. Submarine optical fiber sensing system for the real-time monitoring of depth, vibration, and temperature
JP2013092450A (en) Water level measurement device and water level measurement method
CN112697059B (en) Optical fiber ground deformation sensor for underwater soft medium
CN112729399A (en) Liquid-gas pressure and liquid-gas vibration sensor and preparation method thereof
RU160309U1 (en) SENSITIVE ELEMENT OF PRESSURE DIFFERENTIAL CONVERTER
JPS58117418A (en) Testing method for pressure type liquid level gage
JP2008232633A (en) Fbg water pressure fluctuation measuring sensor