EP2290133B1 - Method for producing a steel component with an anti-corrosive metal coating and steel component - Google Patents

Method for producing a steel component with an anti-corrosive metal coating and steel component Download PDF

Info

Publication number
EP2290133B1
EP2290133B1 EP09168605A EP09168605A EP2290133B1 EP 2290133 B1 EP2290133 B1 EP 2290133B1 EP 09168605 A EP09168605 A EP 09168605A EP 09168605 A EP09168605 A EP 09168605A EP 2290133 B1 EP2290133 B1 EP 2290133B1
Authority
EP
European Patent Office
Prior art keywords
steel
coating
steel component
znni
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP09168605A
Other languages
German (de)
French (fr)
Other versions
EP2290133A1 (en
Inventor
Dr.-Ing. Patrik Kuhn
Manfred Meurer
Dipl.-Ing. Jens Kondratiuk
Dr.-Ing. Wilhelm Warnecke
Dipl.-Ing. Werner Schüler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
Original Assignee
ThyssenKrupp Steel Europe AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41566169&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2290133(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ThyssenKrupp Steel Europe AG filed Critical ThyssenKrupp Steel Europe AG
Priority to PL09168605T priority Critical patent/PL2290133T3/en
Priority to AT09168605T priority patent/ATE554190T1/en
Priority to EP09168605A priority patent/EP2290133B1/en
Priority to ES09168605T priority patent/ES2384135T3/en
Priority to PT09168605T priority patent/PT2290133E/en
Priority to AU2010288814A priority patent/AU2010288814B2/en
Priority to PCT/EP2010/052326 priority patent/WO2011023418A1/en
Priority to PL10706201T priority patent/PL2414562T3/en
Priority to ES10706201T priority patent/ES2400221T3/en
Priority to MX2011011932A priority patent/MX2011011932A/en
Priority to EP10706201A priority patent/EP2414562B1/en
Priority to BRPI1015352A priority patent/BRPI1015352A2/en
Priority to KR1020117026993A priority patent/KR101674625B1/en
Priority to CN201080037681.9A priority patent/CN102625863B/en
Priority to CA2758629A priority patent/CA2758629C/en
Priority to US13/266,941 priority patent/US9284655B2/en
Priority to RU2012111247/02A priority patent/RU2496887C1/en
Priority to PT107062010T priority patent/PT2414562E/en
Priority to JP2012525942A priority patent/JP5650222B2/en
Publication of EP2290133A1 publication Critical patent/EP2290133A1/en
Priority to ZA2011/07674A priority patent/ZA201107674B/en
Publication of EP2290133B1 publication Critical patent/EP2290133B1/en
Application granted granted Critical
Priority to US15/046,884 priority patent/US10053752B2/en
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/565Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of zinc
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12958Next to Fe-base component

Definitions

  • the invention relates to a method of producing a steel component provided with a metallic corrosion protective coating by forming a mild steel Mn steel product which is provided with a ZnNi alloy coating prior to forming the steel component.
  • a typical example of a steel suitable for hot press hardening is known as "22MnB5" and found in steel key 2004 under material number 1.5528.
  • manganese-containing steels are generally not resistant to wet corrosion and are difficult to passivate.
  • This compared to lower alloyed steels when exposed to elevated chloride ion concentrations great tendency to locally limited, but intense corrosion makes the use of the material group of high-alloy steel sheets belonging steels straight in the body construction difficult.
  • manganese-containing steels tend to surface corrosion, which also limits the spectrum of their usability.
  • a steel sheet is first provided with a zinc coating and then heated before the hot deformation such that adjusts an intermetallic compound in the heating of the flat steel product by a transformation of the coating on the steel sheet. This is to protect the steel sheet against corrosion and decarburization and take over a lubricating function during the hot forming in the pressing tool.
  • EP 1 630 244 A1 A proposal on how to produce zinc coatings on steel strips, to which an organic coating can be applied particularly well, is in EP 1 630 244 A1 described. Accordingly, an up to 20 wt .-% Fe containing Zn layer is applied, for example, electrolytically or using another known coating method on the steel sheet to be processed. Subsequently, the thus coated steel sheet from room temperature Heated to 850-950 ° C and thermoformed at 700-950 ° C. Particularly suitable for the production of the Zn layer while the electrolytic deposition is mentioned.
  • the Zn layer may also be formed as an alloy layer according to the known method.
  • alloy components of this layer are in the EP 1 630 244 A1 Mn, Ni, Cr, Co, Mg, Sn and Pb, and also mentioned Be, B, Si, P, S, Ti, V, W, Mo, Sb, Cd, Nb, Cu and Sr as additional alloying components.
  • the present on him 1-50 microns thick Zn coating comprises an iron-zinc solid solution phase and has a zinc oxide layer whose thickness is limited on average to at most 2 microns.
  • either the annealing condition when heating to the temperature required for the hot press forming is selected so that at best a controlled oxide formation occurs, or after hot forming the oxide layer present on the obtained steel component is or particle-removing process at least partially removed so far that the according to the EP 1 630 244 A1 maximum thickness of the oxide layer is maintained.
  • this known procedure also requires complex measures in order to ensure, on the one hand, the desired anticorrosive effect of the Zn coating and, on the other hand, the required good coatability and lacquer adhesion in the case of coating taking place after thermoforming.
  • the results of a systematic study of the properties of zinc alloy coatings on a steel sheet consisting of a hardenable steel are in the WO 2005/021822 A1 contain.
  • the coating consisted essentially of zinc and additionally contained one or more oxygen-affine elements in a total amount of 0.1-15 wt .-% based on the total coating.
  • the oxygen-affine elements are specifically named Mg, Al, Ti, Si, Ca, B and Mn.
  • the steel sheet coated in this way was then brought to a temperature necessary for hardening under the admission of atmospheric oxygen. In this heat treatment, a superficial oxide layer of the oxygen-affine element (s) formed.
  • the ZnNi coating thus obtained was a pure barrier protection without cathodic corrosion protection effect. Its surface showed a verdallert, green appearance with small local flaking to which the oxide layer does not adhere to the steel. These errors are in accordance with the WO 2005/021822 due to the fact that the coating itself did not contain a sufficiently oxygen-affine element.
  • the object underlying the invention was to specify a method which is easy to carry out in practice and which makes it possible to produce a steel component with comparatively little effort, which is provided with a metallic coating which adheres well and reliably protects against corrosion.
  • a corresponding procured steel component should be specified.
  • this object has been achieved according to a first variant of the invention in that in the production of a steel component, the method steps indicated in claim 1 are passed.
  • the first variant of the method according to the invention comprises the shaping of the steel component in the so-called "direct” method, while the second method variant involves the shaping of the steel component in the so-called “indirect” method.
  • the solution according to the invention of the abovementioned object is that such a component has the features specified in claim 13.
  • Advantageous variants of the steel component according to the invention are specified in the claims related back to claim 13 and explained below.
  • a flat steel product ie a steel strip or steel sheet
  • a flat steel product is first of all made of a 0.3 to 3 wt .-% manganese-containing, higher-strength and hardenable steel material is produced. This has a yield strength of 150-1100 MPa and a tensile strength of 300-1200 MPa.
  • this steel material may be a high strength MnB steel of known composition. Accordingly, in addition to iron and unavoidable impurities (in% by weight), the steel processed according to the invention may contain 0.2-0.5% C, 0.5-3.0% Mn, 0.002-0.004% B, and optionally one or more elements of Group "Si, Cr, Al, Ti" contained in the following contents: 0.1-0.3% Si, 0.1-0.5% Cr, 0.02-0.05% Al, 0.025-0.04 % Ti.
  • the inventive method is suitable for the production of steel components both from conventionally only hot rolled hot strip or sheet as well as from conventionally cold rolled steel strip or sheet.
  • this coating comprises an electrolytically applied to the steel substrate, one-phase consisting of ⁇ -ZnNi phase zinc-nickel alloy coating.
  • This ZnNi alloy coating alone can form the corrosion coating or be supplemented by further protective layers applied to it.
  • the ⁇ -zinc-nickel phase of the resting on the steel substrate ZnNi alloy coating is already realized by the electrolytic coating. That is, unlike coating processes in which an alloy layer forms only as a result of heating to the temperature required for the subsequent hot forming and curing and the resulting diffusion processes, according to the invention is an alloy layer of certain composition and prior to heating on the steel flat product Structure composed of zinc and nickel.
  • the proportions of Zn and Ni and the deposition conditions during the production of the ZnNi alloy layer are selected so that the ZnNi alloy layer is formed as a single-phase coating of Ni5Zn21 phase with a cubic lattice structure.
  • this ⁇ -ZnNi phase layer is deposited in an electrolyte deposition not in the stoichiometric composition, but at nickel contents in the range of 7-15%, with at Ni contents of up to 13 wt. %, in particular from 9 to 11% by weight, give particularly good properties of the coating.
  • a particular advantage of the electrolytic coating according to the invention of the flat steel product with a ZnNi alloy layer of exactly predetermined composition and structure is also that the coating produced therefrom has a matt, rough surface which has a lower reflectivity than those typically produced in the course of known hot-press molding processes Zn-coatings.
  • steel flat products coated in accordance with the invention have an increased heat absorption capacity, so that the subsequent heating to the respective board or component temperature can take place more quickly and with less expenditure of energy. The thus made shorter furnace lay times and energy savings make the inventive method particularly economical.
  • a steel plate is then formed. This can be divided in a conventional manner of the respective steel strip or steel sheet. It is also conceivable, however, that the flat steel product in the coating already has the shape required for the subsequent shaping of the component, that is to say corresponds to the printed circuit board.
  • the steel component is first at least preformed from the blank and only then is the heating carried out to a component temperature of at least 800 ° C.
  • the coating produced according to the invention always consists of cubic intermetallic phases both in the undeformed flat steel product and in the finished steel component: in the starting state in the flat steel product of ⁇ -ZnNi coated according to the invention and after the heating and hot working of the finished steel component made of ⁇ -ZnNi and ⁇ -ZnFe.
  • the inventively heated to a temperature of at least 800 ° C board is formed to the steel component.
  • This can be done, for example, that the board is conveyed immediately after the heating to the mold used in each case. On the way to the mold, it is inevitable that the board will cool down, such that in the case of such hot forming following heating, the temperature of the board as it enters the mold is usually lower than the board temperature at the exit of the furnace.
  • the steel plate is formed in a conventional manner to the steel component.
  • the steel component obtained can be cooled, starting from the respective temperature, at a cooling rate sufficient for the formation of tempering or hardening structure in its steel substrate. This process can be carried out particularly economically in the thermoforming tool itself.
  • the method of the invention is due to the insensitivity of coated in accordance with the invention steel flat product against cracks in the steel substrate and abrasion especially for one-stage hot press molding, in which a hot forming and cooling of the steel component by utilizing the heat of the previously carried out heating to the board temperature in one go be done in a tool.
  • the steel component is formed from this circuit board.
  • the forming of the steel component is typically carried out in a cold forming process, in which one or more cold forming operations are performed.
  • the degree of cold forming can be so high that the steel component obtained is substantially completely finished.
  • This finish forming can be combined with the hardening process by carrying out the hardening as a form hardening in a suitable molding tool.
  • the steel component is placed in a finished final shape imaging tool and cooled sufficiently quickly for the formation of the desired hardness or tempering.
  • the form hardening thus enables a particularly good dimensional stability of the steel component.
  • the shape change during mold hardening is usually low.
  • the Mn content of the inventively processed steel substrate of 0.3 to 3 wt .-%, in particular 0.5 to 3 wt .-%, comes in combination with the invention produced on the steel flat product one-phase television series ⁇ -ZnNi alloy coating of particular importance to.
  • the Mn present in the steel substrate contributes significantly to the good adhesion of the zinc-nickel alloy coating in the steel component produced according to the invention.
  • the anticorrosive coating applied according to the invention contains less than 0.1% by weight of manganese in each case. During the subsequent heating to the board or component temperature, diffusion of the manganese present in the steel substrate then begins in the direction of the free surface of the anticorrosive coating applied according to the invention.
  • the Mn atoms diffusing into the ZnNi alloy layer upon heating cause an intensive coupling of the coating to the steel substrate.
  • Mn reaches a substantial part of the surface of the corrosion protection coating produced according to the invention and is deposited there in metallic and / or oxidic form.
  • the thickness of the Mn-containing layer present in this way on the coating produced according to the invention - hereinafter referred to simply as "Mn oxide layer" for the sake of simplicity - is typically 0.1-5 ⁇ m.
  • the positive effects of the Mn oxide layer are particularly safe when their thickness is at least 0.2 .mu.m, in particular at least 0.5 ⁇ m.
  • the Mn content of the anticorrosive coating is in this near-surface, adjacent to the surface Mn-containing layer at 1-18 wt .-%, in particular 4-7 wt .-%.
  • the pronounced Mn oxide layer present on the coating produced in accordance with the invention ensures particularly good adhesion of organic coatings applied to the anticorrosive coating.
  • the procedure according to the invention is therefore particularly suitable for the production of parts for vehicle bodies, which are provided with a coating after their shaping.
  • a practice-oriented embodiment of the method variants according to the invention provides that the oxide layer obtained in the process according to the invention selectively remains on the anticorrosive coating, since this oxide layer not only a particularly good coatability, but because of their comparatively high conductivity beyond a total good weldability inventively produced and procured Steel components guaranteed.
  • Using steels with a Mn content of less than 0.3% by weight results in a yellowish-appearance coating, indicating that a coating consisting primarily of ZnO is present on the coating Oxide layer is present.
  • the coating thus obtained shows after the thermoforming, similar to that in the WO 2005/012822 reported trial, local flaking and tindering.
  • a coating produced according to the invention on a steel containing at least 0.3% by weight of Mn has a brownish surface which is free from tearing and flaking.
  • the ZnNi coating deposited on the flat steel product according to the invention is applied in practice with a thickness of 0.5-20 ⁇ m.
  • a particularly good protective effect of the ZnNi coating produced according to the invention arises in this case if it is deposited more than 2 ⁇ m thick on the flat steel product.
  • Typical thicknesses of a coating produced according to the invention are in the range from 2 to 20 ⁇ m, in particular from 5 to 10 ⁇ m.
  • a further optimized protection of the steel component according to the invention against corrosion can be achieved by the anticorrosive coating comprising, in addition to the ZnNi alloy coating applied to the flat steel product, a Zn layer which is likewise applied to the ZnNi layer before the heating step. It is then on the prepared for further processing to the component according to the invention flat steel product before heating to the respective board or component temperature before at least a two-layer anticorrosive coating whose first layer of the inventively embodied ZnNi alloy layer and its second layer of the formed thereon, consisting only of zinc Zn layer is formed.
  • the additionally applied, typically 2.5-12.5 ⁇ m thick Zn layer is present in the finished steel component according to the invention as a Zn-rich layer into which Mn and Fe of the steel substrate and Ni from the ZnNi layer can be alloyed.
  • Zn partially reacts to form Zn oxide and forms with the Mn from the base material the Mn-containing layer lying on the anticorrosive coating produced according to the invention.
  • the application of an additional Zn layer of the anti-corrosion coating before heating for the hot forming thus leads to a further improvement of the cathodic corrosion protection.
  • the additional Zn layer of the anticorrosive coating can be deposited as well as the previously applied ZnNi layer electrolytically. This can be done, for example, in a continuous pass through, multi-stage device for electrolytic Coating in the first stages of ZnNi alloy coating on the respective steel substrate and in the steps passed through the Zn layer are deposited on the ZnNi layer.
  • a steel member according to the present invention is made by hot press molding and has a steel substrate made of a 0.3-3 wt% manganese-containing steel substrate and an anticorrosive coating thereon comprising an electrodeposited ZnNi alloy plating composed of ⁇ -ZnNi and ⁇ -ZnFe, and having on its free surface a Mn-containing layer in which Mn is present in metallic or oxidic form.
  • the anticorrosive coating in the manner already described above can comprise a Zn layer resting on the ZnNi layer, the Mn-containing layer also being present on the anticorrosive coating in this case as well.
  • a hood annealed cold strip is alkaline degreased and additionally degreased electrolytically.
  • the degreasing bath at a concentration of 15 g / l contains a commercial cleaner available under the name "Ridoline C72" containing more than 25% sodium hydroxide, 1-5% of a fatty alcohol ether and 5-10% of an ethoxylated, propoxylated and methylated C12- 18 alcohol.
  • the bath temperature is 65 ° C.
  • the residence time in the spray degreasing is 5 s. This is followed by a brush cleaning.
  • the strip is electrolytically degreased at a residence time of 3 s with anodic and cathodic polarity and a current density of 15 A / dm second
  • a multi-stage sink with demineralized water at room temperature with brush insert The residence time in the sink is 3 s.
  • a hydrochloric acid (20 g / l, temperature 35-38 ° C) is passed through with a residence time of 11 s.
  • the plate is transferred after passing through a squeezing in the electrolysis cell.
  • the coating according to the invention of the steel strip or sheet is explained below with reference to the embodiments in detail.
  • the steel flat product emerging from the electrolytic coating line can be rinsed in several stages with water and demineralized water at room temperature.
  • the total residence time in the sink is 17 s. Subsequently, the flat steel product then passes through a drying section.
  • Hot strip (pickled) of grade 22MnB5 (1.5528) is alkaline degreased and degreased electrolytically.
  • the tape undergoes a brush cleaning in alkaline spray degreasing.
  • the degreasing bath contains, at a concentration of 20 g / l, a commercial cleaner available under the name "Ridoline 1893" which contains 5-10% sodium hydroxide and 10-20% potassium hydroxide.
  • the bath temperature is 75 ° C.
  • the residence time in the spray degreasing is 2 s.
  • the sheet After a five-stage cascade rinse with demineralized water, the sheet is transferred after passing through a squeezing into the electrolysis cell and there, as described in the following with reference to the embodiments, provided in accordance with the invention with a corrosion protection coating.
  • the steel flat product coated according to the invention After emerging from the plant for electrolytic coating, the steel flat product coated according to the invention is then rinsed in three stages with demineralized water at 50.degree. The sample then passes through a drying section with circulating air dryer, the air temperature being more than 100 ° C.
  • Bonnet annealed cold strip of grade 22MnB5 (1.5528) is alkaline degreased and degreased electrolytically.
  • the degreasing bath at a concentration of 20 g / l contains a cleaner containing 1-5% C12-18 fatty alcohol polyethylene glycol butyl ether and 0.5-2% potassium hydroxide.
  • the bath temperature is 75 ° C.
  • the residence time in the horizontal spray rinse is 12 s. This is followed by a double brush cleaning.
  • In the course of the strip is electrolytically degreased at a residence time of 9 s with anodic and cathodic polarity and a current density of 10 A / dm second This is followed by a multi-stage sink with demineralized water at room temperature with brush insert.
  • the residence time is 3 s. in the Subsequently, a hydrochloric acid (100 g / l, room temperature) is passed through with a residence time of 27 s. After a combined brushing and Spritzfrischementigan Fe the sheet is transferred after passing through a squeezing in the electrolytic cell. Therein, the electrolytic deposition of the anticorrosive coating according to the invention takes place as explained below with reference to the exemplary embodiments. Subsequent to the electrolytic coating, the steel flat product coated in accordance with the invention is then rinsed in two stages with water and demineralized water at 40.degree. Total residence time 18 s. Afterwards, the sample passes through a drying section with circulation fan with a recirculation air temperature of 75 ° C.
  • Optimal work results arise when the board or component temperature in a conventional manner maximum 920 ° C, in particular 830-905 ° C, is. This applies in particular if the shaping of the steel component is carried out as hot forming following the heating to the board or component temperature such that the heated board ("direct” method) or the heated steel component (“indirect” method) Acceptance of a certain temperature loss is placed in each subsequently used mold.
  • the final thermoforming can be carried out particularly reliably when the board or component temperature is 850 - 880 ° C.
  • the heating to the board or component temperature can be done in a conventional manner in a continuous flow in a continuous furnace. Typical annealing times are in the range of 3 to 15 minutes. Alternatively, however, it is also possible to carry out the heating by means of an inductively or conductively operating heating device. This allows a particularly rapid and accurate heating to the respective predetermined temperature.
  • samples A-V2 Cold rolled and recrystallized annealed as well as temper rolled strip samples A-V2 - hereafter referred to simply as "Samples A-V2" for simplicity - have been provided with a zinc nickel alloy layer in a continuous pass electrogalvanizing line.
  • a sample "Z” has been hot-dip coated for comparison.
  • Samples A-Q and Z each contained Mn contents of more than 0.3 wt%, while the Mn contents of Samples V1, V2 were below the threshold of 0.3 wt%.
  • the respective sample A - V2 was subjected in a 60 ° C warm alkaline cleaning bath at a residence time of 6 s spray cleaning with brush insert.
  • sample Z has been conventionally hot-dip galvanized.
  • Table 2 lists, in addition to the Mn contents of the respective samples A-V2, the properties of the ZnNi coatings which have been electrodeposited under these conditions. It can be seen that in variants A-H and N-P a single-phase ⁇ -ZnNi coating according to the invention has been obtained whereas in variants I - K ⁇ -Zn, i. elemental zinc, and ⁇ -ZnNi coexistent.
  • the Ni content of the sample Q was too high, so that this too was not considered to be in accordance with the invention.
  • the samples V1 and V2 have been produced on a steel with a too low Mn content. Therefore, these samples are also not according to the invention, although they had a ⁇ -ZnNi coating according to the invention.
  • the boards 1 to 41 are then heated to the specified in Table 3 board temperature "T-furnace” over a glow time “t-annealed” and hot-press-formed in a conventional hot press tool single stage to each steel component and cooled so quickly that in the steel substrate hardness structure established.
  • the steel components formed from the boards 1 to 36 and 41 were then subjected to a salt spray test according to DIN EN ISO 9227. If corrosion of the base metal has been detected after 72h or 144h, the column “Base metal corrosion 72h” and “Base metal corrosion 144h” of Table 3 is noted.
  • GDOS Low Discharge Optical Emission Spectrometry
  • Fig. 1 the typical result of the GDOS measurement of the corrosion protection coating of a steel component produced and obtained in accordance with the invention is shown.
  • the contents of Mn (short dashed line), O (dotted line), Zn (long dashed line), Fe (dash-dotted line) and Ni (solid line) are plotted over the layer thickness of the coating. It turns out that there is a high concentration of Mn on the surface of the coating, which has diffused from the steel substrate through the coating on its surface where it is oxidized with the ambient oxygen.
  • the Mn content is significantly lower and only increases again in the steel substrate. This is particularly clear on the basis of Fig. 2 ,
  • the Ni content of the coating is essentially constant over its entire thickness.
  • a recrystallized cold strip is initially electrolytically with a, as in the above-described inventive samples single-phase ⁇ -ZnNi phase ZnNi alloy coating has been coated.
  • the layer thickness of the ⁇ -ZnNi alloy coating was 7 ⁇ m at a Ni content of 10%.
  • a 5 ⁇ m thick pure zinc Zn layer was also electrolytically applied to this ZnNi alloy coating.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Laminated Bodies (AREA)
  • Heat Treatment Of Articles (AREA)
  • Coating With Molten Metal (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

The method for the production of a steel component provided with a metallic coating protected against corrosion, comprises providing a flat steel product that is produced from steel material containing 0.3-3 wt.% of manganese, where the steel material has an yield strength of 150-1100 MPa and a tensile strength of 300-1200 MPa, and coating the flat steel product with a corrosion protection coating that consists of zinc-nickel (ZnNi) alloy coating consisting of gamma -ZnNi-phase electrolytically deposited on the flat steel product. The method for the production of a steel component provided with a metallic coating protected against corrosion, comprises providing a flat steel product that is produced from steel material containing 0.3-3 wt.% of manganese, where the steel material has an yield strength of 150-1100 MPa and a tensile strength of 300-1200 MPa, coating the flat steel product with a corrosion protection coating that consists of zinc-nickel (ZnNi) alloy coating consisting of gamma -ZnNi-phase electrolytically deposited on the flat steel product, where the coating consists of nickel (7-15 wt.%) and also zinc and unavoidable impurities, heating a board formed from the flat steel product at 800[deg] C amounting to platinum temperature, forming the steel component from the platinum in a form tool and hardening the steel component through cooling at a temperature, in which the steel component exists itself in a condition suitable for forming compensation or hardening structure, with a cooling rate that suffices for forming the compensation structure or hardening structure. The formation of the steel component is carried out as pre-forming and the steel component is formed after heating. The zinc-nickel alloy coating consists of finished steel component of gamma -ZnNi and I ->zinc iron. A manganese-containing layer is present in the finished steel component on the corrosion protection coating, in which manganese is available in metallic or oxidic form. The manganese-containing layer has a thickness of 0.1-5 mu m and the manganese content of the manganese-containing layer is 0.1-18 wt.%. The corrosion protection coating comprises an additional zinc-layer before forming the steel component, where the zinc-layer is applied before forming the steel component on the zinc-nickel alloy coating. The thickness of the zinc-layer is 2.5-12.5 mu m. The corrosion protection coating of the finished steel component comprises a zinc-rich layer lying on the nickel-containing alloy coating. The formation of the steel component is carried out as hot forming and the forming and cooling of the steel component are carried out by a hot forming tool. The formation of the steel component and hardening are carried out in two separated processes. An independent claim is included for a steel component.

Description

Die Erfindung betrifft ein Verfahren zum Herstellen eines mit einem metallischen, vor Korrosion schützenden Überzug versehenen Stahlbauteils durch Formen eines aus einem Mn-Stahl bestehenden Stahlflachproduktes, das vor dem Formen des Stahlbauteils mit einem ZnNi-Legierungsüberzug versehen wird.The invention relates to a method of producing a steel component provided with a metallic corrosion protective coating by forming a mild steel Mn steel product which is provided with a ZnNi alloy coating prior to forming the steel component.

Wenn hier von "Stahlflachprodukten" die Rede ist, so sind damit Stahlbänder, Stahlbleche oder daraus gewonnene Platinen und desgleichen gemeint.If this refers to "flat steel products", it means steel strips, steel sheets or boards made of them and the like.

Um die im modernen Karosseriebau geforderte Kombination aus geringem Gewicht, maximaler Festigkeit und Schutzwirkung zu bieten, werden heutzutage in solchen Bereichen der Karosserie, die im Fall eines Crashs besonders hohen Belastungen ausgesetzt sein können, aus hochfesten Stählen warmpressgeformte Bauteile eingesetzt.In order to provide the combination of low weight, maximum strength and protective effect required in modern body construction, hot-formed components of high-strength steels are nowadays used in such areas of the body, which may be exposed to particularly high loads in the event of a crash.

Beim Warmpresshärten werden Stahlplatinen, die von kalt- oder warmgewalztem Stahlband abgeteilt sind, auf eine in der Regel oberhalb der Austenitisierungstemperatur des jeweiligen Stahls liegende Verformungstemperatur erwärmt und im erwärmten Zustand in das Werkzeug einer Umformpresse gelegt. Im Zuge der anschließend durchgeführten Umformung erfährt der Blechzuschnitt bzw. das aus ihm geformte Bauteil durch den Kontakt mit dem kühlen Werkzeug eine schnelle Abkühlung. Die Abkühlraten sind dabei so eingestellt, dass sich im Bauteil Härtegefüge ergibt.In hot press hardening, steel blanks separated from cold or hot rolled steel strip are heated to a forming temperature generally above the austenitizing temperature of the respective steel and heated to a tool in a heated state Forming press laid. In the course of the subsequent transformation, the sheet metal blank or the component formed from it undergoes rapid cooling due to the contact with the cool tool. The cooling rates are set so that results in the component hardness structure.

Ein typisches Beispiel für einen für das Warmpresshärten geeigneten Stahl ist unter der Bezeichnung "22MnB5" bekannt und im Stahlschlüssel 2004 unter der Werkstoffnummer 1.5528 zu finden.A typical example of a steel suitable for hot press hardening is known as "22MnB5" and found in steel key 2004 under material number 1.5528.

Den Vorteilen der bekannten für das Warmpresshärten besonders geeigneten MnB-Stähle steht in der Praxis der Nachteil gegenüber, dass manganhaltige Stähle im Allgemeinen unbeständig gegen Nasskorrosion und nur schwer zu passivieren sind. Diese im Vergleich zu niedriger legierten Stählen bei Einwirken erhöhter Chloridionen-Konzentrationen große Neigung zu lokal zwar begrenzter, jedoch intensiver Korrosion macht die Verwendung von zur Werkstoffgruppe der hochlegierten Stahlbleche gehörenden Stählen gerade im Karosseriebau schwierig. Zudem neigen manganhaltige Stähle zu Flächenkorrosion, wodurch das Spektrum ihrer Verwendbarkeit ebenfalls eingeschränkt wird.In practice, the advantages of the known MnB steels which are particularly suitable for hot press hardening are counteracted by the fact that manganese-containing steels are generally not resistant to wet corrosion and are difficult to passivate. This compared to lower alloyed steels when exposed to elevated chloride ion concentrations great tendency to locally limited, but intense corrosion makes the use of the material group of high-alloy steel sheets belonging steels straight in the body construction difficult. In addition, manganese-containing steels tend to surface corrosion, which also limits the spectrum of their usability.

Daher wird nach Möglichkeiten gesucht, auch manganhaltige Stähle mit einem metallischen Überzug zu versehen, der den Stahl vor korrosivem Angriff schützt.It is therefore looking for ways to provide even manganese-containing steels with a metallic coating that protects the steel from corrosive attack.

Gemäß dem in der EP 1 143 029 B1 beschriebenen Verfahren zum Herstellen von Bauteilen durch Warmpresshärten soll dazu ein Stahlblech zunächst mit einem Zink-Überzug versehen werden und dann vor der Warmverformung derart erwärmt werden, dass sich bei der Erwärmung auf dem Stahlflachprodukt durch eine Transformation der Beschichtung auf dem Stahlblech eine intermetallische Verbindung einstellt. Diese soll das Stahlblech gegen Korrosion sowie Entkohlung schützen und während der Warmformgebung im Presswerkzeug eine Schmierfunktion übernehmen.According to the in the EP 1 143 029 B1 described method for producing components by hot press hardening For this purpose, a steel sheet is first provided with a zinc coating and then heated before the hot deformation such that adjusts an intermetallic compound in the heating of the flat steel product by a transformation of the coating on the steel sheet. This is to protect the steel sheet against corrosion and decarburization and take over a lubricating function during the hot forming in the pressing tool.

Bei dem Versuch, die in der EP 1 143 029 B1 in allgemeiner Form vorgeschlagene Vorgehensweise in der Praxis zu realisieren, ergaben sich vielfältige Probleme. So erwies es sich als schwierig, den Zinküberzug so auf das Stahlsubstrat aufzubringen, dass nach der Bildung der intermetallischen Verbindung eine ausreichende Haftung des Überzugs auf dem Stahlsubstrat, eine ausreichende Beschichtbarkeit des Überzugs für eine nachfolgend aufgebrachte Lackierung und eine ausreichende Beständigkeit sowohl des Überzugs selbst als auch des Stahlsubstrats gegen die Entstehung von Rissen bei der Warmformgebung gewährleistet ist.When trying in the EP 1 143 029 B1 To realize the general approach proposed in practice, many problems arose. Thus, it proved difficult to apply the zinc coating to the steel substrate such that sufficient adhesion of the coating to the steel substrate after the formation of the intermetallic compound, sufficient coatability of the coating for subsequently applied coating and adequate resistance of both the coating itself and also the steel substrate is ensured against the formation of cracks in the hot forming.

Ein Vorschlag, wie sich Zinküberzüge auf Stahlbänder erzeugen lassen, auf die sich besonders gut eine organische Beschichtung auftragen lässt, ist in der EP 1 630 244 A1 beschrieben. Demnach wird auf dem zu verarbeitenden Stahlblech beispielsweise elektrolytisch oder unter Anwendung eines anderen bekannten Beschichtungsverfahren eine bis zu 20 Gew.-% Fe enthaltende Zn-Schicht aufgebracht. Anschließend wird das derart beschichtete Stahlblech von Raumtemperatur auf 850 - 950 °C erwärmt und bei 700 - 950 °C warmpressgeformt. Als besonders geeignet für die Erzeugung der Zn-Schicht ist dabei die elektrolytische Abscheidung erwähnt. Die Zn-Schicht kann gemäß dem bekannten Verfahren auch als Legierungsschicht ausgebildet sein. Als mögliche Legierungsbestandteile dieser Schicht werden in der EP 1 630 244 A1 Mn, Ni, Cr, Co, Mg, Sn und Pb genannt und auch Be, B, Si, P, S, Ti, V, W, Mo, Sb, Cd, Nb, Cu und Sr als zusätzliche Legierungsbestandteile erwähnt.A proposal on how to produce zinc coatings on steel strips, to which an organic coating can be applied particularly well, is in EP 1 630 244 A1 described. Accordingly, an up to 20 wt .-% Fe containing Zn layer is applied, for example, electrolytically or using another known coating method on the steel sheet to be processed. Subsequently, the thus coated steel sheet from room temperature Heated to 850-950 ° C and thermoformed at 700-950 ° C. Particularly suitable for the production of the Zn layer while the electrolytic deposition is mentioned. The Zn layer may also be formed as an alloy layer according to the known method. As possible alloy components of this layer are in the EP 1 630 244 A1 Mn, Ni, Cr, Co, Mg, Sn and Pb, and also mentioned Be, B, Si, P, S, Ti, V, W, Mo, Sb, Cd, Nb, Cu and Sr as additional alloying components.

Wesentlich für das in der EP 1 630 244 A1 beschriebene Verfahren ist, dass der auf ihm vorhandene 1 - 50 µm dicke Zn-Überzug eine Eisen-Zink-Festlösungsphase umfasst und eine Zinkoxidschicht aufweist, deren Dicke im Mittel auf höchstens 2 µm beschränkt ist. Zu diesem Zweck werden gemäß dem bekannten Verfahren entweder die Glühbedingung bei der Erwärmung auf die für das Warmpressformen benötigte Temperatur so gewählt, dass es allenfalls zu einer kontrollierten Oxidbildung kommt, oder es wird nach der Warmformgebung die auf dem erhaltenen Stahlbauteil vorhandene Oxidschicht mittels eines span- oder partikelabhebenden Verfahrens mindestens teilweise soweit abgetragen, dass die gemäß der EP 1 630 244 A1 maximale Dicke der Oxidschicht eingehalten ist. Auch diese bekannte Vorgehensweise bedingt somit aufwändige Maßnahmen, um einerseits die gewünschte Korrosionsschutzwirkung des Zn-Überzuges und andererseits die geforderte gute Beschichtbarkeit und Lackhaftung bei einer nach der Warmformgebung erfolgenden Lackierung zu gewährleisten.Essential for that in the EP 1 630 244 A1 described method is that the present on him 1-50 microns thick Zn coating comprises an iron-zinc solid solution phase and has a zinc oxide layer whose thickness is limited on average to at most 2 microns. For this purpose, according to the known method, either the annealing condition when heating to the temperature required for the hot press forming is selected so that at best a controlled oxide formation occurs, or after hot forming the oxide layer present on the obtained steel component is or particle-removing process at least partially removed so far that the according to the EP 1 630 244 A1 maximum thickness of the oxide layer is maintained. Thus, this known procedure also requires complex measures in order to ensure, on the one hand, the desired anticorrosive effect of the Zn coating and, on the other hand, the required good coatability and lacquer adhesion in the case of coating taking place after thermoforming.

Aus der DE 32 09 559 A1 ist ein weiteres Verfahren bekannt, mit dem sich ein Zink-Nickel-Legierungsüberzug elektrolytisch auf einem Bandstahl abscheiden lässt. Im Zuge dieses Verfahrens wird das zu beschichtende Band vor dem Abscheiden des ZnNi-Überzugs einer intensiven stromlosen Vorbehandlung unterzogen, um auf ihm eine dünne zink-nickelhaltige Primärschicht zu erzeugen. Anschließend wird dann die eigentliche Zink-Nickel-Beschichtung elektrolytisch aufgebracht. Damit die elektrolytische Abscheidung des Legierungsüberzuges konstant mit einer vorgegebenen Zusammensetzung erfolgt, werden getrennte, jeweils nur ein Legierungselement enthaltende Anoden eingesetzt. Diese sind an getrennte Stromkreise angeschlossen, um den sie durchfließenden Strom und damit die Abgabe des jeweiligen Metalls in den Elektrolyten gezielt einstellen zu können.From the DE 32 09 559 A1 Another method is known with which a zinc-nickel alloy coating can be deposited electrolytically on a steel strip. In the course of this process, the strip to be coated is subjected to an intensive electroless pre-treatment prior to the deposition of the ZnNi coating in order to produce a thin zinc-nickel-containing primary layer on it. Subsequently, the actual zinc-nickel coating is then applied electrolytically. In order for the electrolytic deposition of the alloy coating to be constant with a predetermined composition, separate anodes containing only one alloying element are used. These are connected to separate circuits in order to adjust the current flowing through them and thus the delivery of the respective metal in the electrolyte targeted.

Die Ergebnisse einer systematischen Untersuchung der Eigenschaften von Zinklegierungsüberzügen auf einem Stahlblech, das aus einem härtbaren Stahl bestand, sind in der WO 2005/021822 A1 enthalten. Die Beschichtung bestand dabei im Wesentlichen aus Zink und enthielt zusätzlich ein oder mehrere sauerstoffaffine Elemente in einer Gesamtmenge von 0,1 - 15 Gew.-% bezogen auf die gesamte Beschichtung. Als sauerstoffaffine Elemente sind dabei Mg, Al, Ti, Si, Ca, B und Mn konkret benannt. Das so beschichtete Stahlblech wurde anschließend unter Zutritt von Luftsauerstoff auf eine zum Härten notwendige Temperatur gebracht. Bei dieser Wärmebehandlung bildete sich eine oberflächliche Oxidschicht des oder der sauerstoffaffinen Elemente.The results of a systematic study of the properties of zinc alloy coatings on a steel sheet consisting of a hardenable steel are in the WO 2005/021822 A1 contain. The coating consisted essentially of zinc and additionally contained one or more oxygen-affine elements in a total amount of 0.1-15 wt .-% based on the total coating. The oxygen-affine elements are specifically named Mg, Al, Ti, Si, Ca, B and Mn. The steel sheet coated in this way was then brought to a temperature necessary for hardening under the admission of atmospheric oxygen. In this heat treatment, a superficial oxide layer of the oxygen-affine element (s) formed.

Gemäß einem der in der WO 2005/021822 A1 beschriebenen Versuche ist auf einem Blech nicht näher angegebener Zusammensetzung durch elektrochemische Abscheidung von Zink und Nickel ein ZnNi-Überzug erzeugt worden. Das Gewichtsverhältnis von Zink zu Nickel in der Korrosionsschutzschicht betrug bei einer Schichtdicke von 5 µm etwa 90/10. Das so beschichtete Blech ist für 270 s bei 900 °C bei Anwesenheit von Luftsauerstoff geglüht worden. Dabei entstand durch Diffusion des Stahls mit der Zinkschicht eine dünne Diffusionsschicht aus Zink, Nickel und Eisen. Gleichzeitig oxidierte der Großteil des Zinks zu Zinkoxid.According to one of the in the WO 2005/021822 A1 experiments described on a sheet unspecified composition by electrochemical deposition of zinc and nickel ZnNi coating has been produced. The weight ratio of zinc to nickel in the anticorrosion layer was about 90/10 at a layer thickness of 5 μm. The thus coated sheet has been annealed for 270 s at 900 ° C. in the presence of atmospheric oxygen. The diffusion of the steel with the zinc layer resulted in a thin diffusion layer of zinc, nickel and iron. At the same time, most of the zinc oxidized to zinc oxide.

Nach den in der WO 2005/021822 A1 dokumentierten Feststellungen stellte der so erhaltene ZnNi-Überzug einen reinen Barriereschutz ohne kathodische Korrosionsschutzwirkung dar. Seine Oberfläche zeigte ein verzundertes, grünes Aussehen mit kleinen lokalen Abplatzungen, an welchen die Oxidschicht nicht am Stahl haftet. Diese Fehler sind gemäß der WO 2005/021822 darin begründet, dass der Überzug selbst kein ausreichend sauerstoffaffines Element enthielt.After the in the WO 2005/021822 A1 According to documented findings, the ZnNi coating thus obtained was a pure barrier protection without cathodic corrosion protection effect. Its surface showed a verdallert, green appearance with small local flaking to which the oxide layer does not adhere to the steel. These errors are in accordance with the WO 2005/021822 due to the fact that the coating itself did not contain a sufficiently oxygen-affine element.

Vor diesem Hintergrund bestand die der Erfindung zu Grunde liegende Aufgabe darin, ein in der Praxis einfach durchzuführendes Verfahren anzugeben, das es erlaubt, mit vergleichbar geringem Aufwand ein Stahlbauteil herzustellen, das mit einem gut haftenden und sicher vor Korrosion schützenden metallischen Überzug versehen ist. Darüber hinaus sollte ein entsprechend beschaffenes Stahlbauteil angegeben werden.Against this background, the object underlying the invention was to specify a method which is easy to carry out in practice and which makes it possible to produce a steel component with comparatively little effort, which is provided with a metallic coating which adheres well and reliably protects against corrosion. In addition, a corresponding procured steel component should be specified.

In Bezug auf das Verfahren ist diese Aufgabe gemäß einer ersten Variante der Erfindung dadurch gelöst worden, dass bei der Herstellung eines Stahlbauteils die in Anspruch 1 angegebenen Verfahrensschritte durchlaufen werden.With regard to the method, this object has been achieved according to a first variant of the invention in that in the production of a steel component, the method steps indicated in claim 1 are passed.

Eine alternative, die oben genannte Aufgabe in entsprechender Weise lösende Variante des erfindungsgemäßen Verfahrens ist in Anspruch 2 angegeben.An alternative, the above object in a corresponding manner-solving variant of the method according to the invention is given in claim 2.

Die erste Variante des erfindungsgemäßen Verfahrens umfasst das Formen des Stahlbauteils im so genannten "direkten" Verfahren, während die zweite Verfahrensvariante das Formen des Stahlbauteils im so genannten "indirekten" Verfahren beinhaltet.The first variant of the method according to the invention comprises the shaping of the steel component in the so-called "direct" method, while the second method variant involves the shaping of the steel component in the so-called "indirect" method.

Vorteilhafte Ausgestaltungen der erfindungsgemäßen Verfahrensvarianten sind in den auf die Ansprüche 1 oder 2 rückbezogenen Ansprüchen angegeben und nachfolgend erläutert.Advantageous embodiments of the method variants according to the invention are specified in the claims back to the claims 1 or 2 and explained below.

In Bezug auf das Stahlbauteil besteht die erfindungsgemäße Lösung der oben genannten Aufgabe darin, dass ein solches Bauteil die in Anspruch 13 angegebenen Merkmale aufweist. Vorteilhafte Varianten des erfindungsgemäßen Stahlbauteils sind in den auf Anspruch 13 rückbezogenen Ansprüchen angeben und nachfolgend erläutert.With regard to the steel component, the solution according to the invention of the abovementioned object is that such a component has the features specified in claim 13. Advantageous variants of the steel component according to the invention are specified in the claims related back to claim 13 and explained below.

Bei einem erfindungsgemäßen Verfahren zum Herstellen eines mit einem metallischen, vor Korrosion schützenden Überzug versehenen Stahlbauteils, wird zunächst ein Stahlflachprodukt, d. h. ein Stahlband oder Stahlblech, zur Verfügung gestellt, das aus einem 0,3 - 3 Gew.-% Mangan enthaltenden, höherfesten und härtbaren Stahlwerkstoff erzeugt ist. Dieser weist eine Streckgrenze von 150 - 1100 MPa und eine Zugfestigkeit von 300 - 1200 MPa auf.In a method according to the invention for producing a steel component provided with a metallic coating which protects against corrosion, a flat steel product, ie a steel strip or steel sheet, is first of all made of a 0.3 to 3 wt .-% manganese-containing, higher-strength and hardenable steel material is produced. This has a yield strength of 150-1100 MPa and a tensile strength of 300-1200 MPa.

Typischerweise kann es sich bei diesem Stahlwerkstoff um einen hochfesten MnB-Stahl in an sich bekannter Zusammensetzung handeln. Dementsprechend kann der erfindungsgemäß verarbeitete Stahl neben Eisen und unvermeidbaren Verunreinigungen (in Gew.-%) 0,2 - 0,5 % C, 0,5 - 3,0 % Mn, 0,002-0,004 % B sowie optional eines oder mehrere Elemente der Gruppe "Si, Cr, Al, Ti" in folgenden Gehalten enthalten: 0,1-0,3 % Si, 0,1-0,5 % Cr, 0,02-0,05 % Al, 0,025-0,04 % Ti.Typically, this steel material may be a high strength MnB steel of known composition. Accordingly, in addition to iron and unavoidable impurities (in% by weight), the steel processed according to the invention may contain 0.2-0.5% C, 0.5-3.0% Mn, 0.002-0.004% B, and optionally one or more elements of Group "Si, Cr, Al, Ti" contained in the following contents: 0.1-0.3% Si, 0.1-0.5% Cr, 0.02-0.05% Al, 0.025-0.04 % Ti.

Das erfindungsgemäße Verfahren eignet sich zum Herstellen von Stahlbauteilen sowohl aus in konventioneller Weise nur warmgewalzten Warmband oder -blech als auch aus in konventioneller Weise kaltgewalztem Stahlband oder -blech.The inventive method is suitable for the production of steel components both from conventionally only hot rolled hot strip or sheet as well as from conventionally cold rolled steel strip or sheet.

Das entsprechend beschaffene und bereitgestellte Stahlflachprodukt wird mit einem Korrosionsschutzüberzug beschichtet, wobei dieser Überzug erfindungsgemäß einen elektrolytisch auf das Stahlsubstrat aufgebrachten, einphasig aus γ-ZnNi-Phase bestehenden Zink-Nickel-Legierungsüberzug umfasst. Dieser ZnNi-Legierungsüberzug kann bereits alleine den Korrosionsüberzug bilden oder um weitere auf ihn aufgebrachte Schutzschichten ergänzt sein.The correspondingly produced and provided flat steel product is coated with a corrosion protection coating, this coating according to the invention comprises an electrolytically applied to the steel substrate, one-phase consisting of γ-ZnNi phase zinc-nickel alloy coating. This ZnNi alloy coating alone can form the corrosion coating or be supplemented by further protective layers applied to it.

Entscheidend ist, dass die γ-Zink-Nickel-Phase des auf dem Stahlsubstrat aufliegenden ZnNi-Legierungsüberzuges bereits durch die elektrolytische Beschichtung realisiert wird. D.h., anders als bei Beschichtungsprozessen, bei denen sich erst in Folge der Erwärmung auf die für die anschließende Warmformgebung und Härtung erforderliche Temperatur und die dadurch einsetzenden Diffusionsprozesse eine Legierungsschicht bildet, liegt bei erfindungsgemäßer Vorgehensweise bereits vor der Erwärmung auf dem Stahlflachprodukt eine Legierungsschicht bestimmter Zusammensetzung und Struktur vor, die aus Zink und Nickel zusammengesetzt ist. Dabei sind die Anteile an Zn und Ni sowie die Abscheidebedingungen während der Erzeugung der ZnNi-Legierungsschicht so gewählt, dass die ZnNi-Legierungsschicht als einphasiger, aus Ni5Zn21-Phase bestehender Überzug mit einer kubischen Gitterstruktur ausgebildet ist. Zu beachten ist, dass sich diese γ-ZnNi-Phasenschicht bei einer Abscheidung über einen Elektrolyten nicht in der stöchiometrischen Zusammensetzung einstellt, sondern bei Nickelgehalten die im Bereich von 7 - 15 % liegen, wobei sich bei Ni-Gehalten von bis zu 13 Gew.-%, insbesondere von 9 - 11 Gew.-%, besonders gute Eigenschaften des Überzugs ergeben.It is crucial that the γ-zinc-nickel phase of the resting on the steel substrate ZnNi alloy coating is already realized by the electrolytic coating. That is, unlike coating processes in which an alloy layer forms only as a result of heating to the temperature required for the subsequent hot forming and curing and the resulting diffusion processes, according to the invention is an alloy layer of certain composition and prior to heating on the steel flat product Structure composed of zinc and nickel. In this case, the proportions of Zn and Ni and the deposition conditions during the production of the ZnNi alloy layer are selected so that the ZnNi alloy layer is formed as a single-phase coating of Ni5Zn21 phase with a cubic lattice structure. It should be noted that this γ-ZnNi phase layer is deposited in an electrolyte deposition not in the stoichiometric composition, but at nickel contents in the range of 7-15%, with at Ni contents of up to 13 wt. %, in particular from 9 to 11% by weight, give particularly good properties of the coating.

Unter den voranstehend erwähnten "Abscheidebedingungen" der elektrolytischen Beschichtung sind beispielsweise die Art der Strömung am zu beschichtenden Substrat, die Strömungsgeschwindigkeit des Elektrolyten, das Ni/Zn-Verhältnis des Elektrolyten, die Ausrichtung der Elektrolytströmung in Bezug auf das jeweils zu beschichtende Stahlsubstrat, die Stromdichte, die Temperatur und der pH-Wert des Elektrolyten zusammengefasst. Erfindungsgemäß sind diese Einflussgrößen so aufeinander abzustimmen, dass sich der angestrebte einphasige ZnNi-Überzug mit den erfindungsgemäß vorgegebenen Ni-Gehalten einstellt. Dazu können die genannten Parameter in Abhängigkeit von der jeweils zur Verfügung stehenden Anlagentechnik jeweils wie folgt variiert werden:

  • Die Art der Strömung am zu beschichtenden Substrat: Laminar oder turbulent; sowohl bei laminarer als auch bei turbulenter Strömung des Elektrolyten am zu beschichtenden Stahlflachprodukt stellen sich gute Beschichtungsergebnisse ein. Bei vielen in der Praxis zur Verfügung stehenden Beschichtungsanlagen wird jedoch aufgrund des intensiveren Austauschs zwischen Elektrolyt und Stahlsubstrat in der Praxis jedoch eine turbulente Strömung bevorzugt werden,
  • Strömungsgeschwindigkeit des Elektrolyten: 0,1 - 6 m/s;
  • Ni/Zn-Verhältnis des Elektrolyten: 0,4 - 4;
  • Ausrichtung der Elektrolytströmung in Bezug auf das jeweils zu beschichtende Stahlsubstrat: Die Beschichtung des Stahlsubstrats kann sowohl in vertikal als auch in horizontal ausgerichteten Zellen erfolgen;
  • Stromdichte: 10 - 140 A/dm2;
  • Temperatur des Elektrolyten: 30 - 70°C;
  • pH-Wert des Elektrolyten: 1 - 3,5.
Among the above-mentioned "deposition conditions" of the electrolytic coating are, for example, the type of flow on the substrate to be coated, the flow rate of the electrolyte, the Ni / Zn ratio of the electrolyte, the orientation of the electrolyte flow with respect to each coated steel substrate, the current density, the temperature and the pH of the electrolyte. According to the invention, these influencing variables are to be coordinated with one another in such a way that the desired single-phase ZnNi coating is established with the Ni contents predetermined according to the invention. For this purpose, the parameters mentioned can be varied as follows, depending on the respective available system technology:
  • The type of flow on the substrate to be coated: laminar or turbulent; Both with laminar and turbulent flow of the electrolyte to be coated flat steel product set up good coating results. However, in many coating systems available in practice, a turbulent flow will be preferred in practice due to the more intensive exchange between electrolyte and steel substrate.
  • Flow velocity of the electrolyte: 0.1 - 6 m / s;
  • Ni / Zn ratio of the electrolyte: 0.4 - 4;
  • Alignment of the electrolyte flow with respect to the steel substrate to be coated: The coating of the steel substrate can take place in both vertically and horizontally aligned cells;
  • Current density: 10 - 140 A / dm2;
  • Temperature of the electrolyte: 30 - 70 ° C;
  • pH of the electrolyte: 1 - 3.5.

Ein besonderer Vorteil der erfindungsgemäßen elektrolytisch erfolgenden Beschichtung des Stahlflachprodukts mit einer ZnNi-Legierungsschicht exakt vorgegebener Zusammensetzung und Struktur besteht auch darin, dass der daraus erzeugte Überzug eine matte, raue Oberfläche besitzt, die ein geringeres Reflektionsvermögen aufweist, als die im Zuge bekannter Warmpressformverfahren typischerweise erzeugten Zn-Überzüge. Infolgedessen weisen in erfindungsgemäßer Weise beschichtete Stahlflachprodukte ein erhöhtes Wärmeabsorbtionsvermögen auf, so dass die anschließende Erwärmung auf die jeweilige Platinen- bzw. Bauteiltemperatur schneller und mit geringerem Energieaufwand erfolgen kann. Die so ermöglichten kürzeren Ofenliegezeiten und Energieeinsparungen machen das erfindungsgemäße Verfahren besonders wirtschaftlich.A particular advantage of the electrolytic coating according to the invention of the flat steel product with a ZnNi alloy layer of exactly predetermined composition and structure is also that the coating produced therefrom has a matt, rough surface which has a lower reflectivity than those typically produced in the course of known hot-press molding processes Zn-coatings. As a result, steel flat products coated in accordance with the invention have an increased heat absorption capacity, so that the subsequent heating to the respective board or component temperature can take place more quickly and with less expenditure of energy. The thus made shorter furnace lay times and energy savings make the inventive method particularly economical.

Aus dem in erfindungsgemäßer Weise beschichteten Stahlflachprodukt wird dann eine Stahlplatine gebildet. Diese kann in an sich bekannter Weise von dem jeweiligen Stahlband oder Stahlblech abgeteilt werden. Denkbar ist aber auch, dass das Stahlflachprodukt bei der Beschichtung bereits die für die anschließende Formgebung zu dem Bauteil benötigte Form besitzt, also der Platine entspricht.From the steel flat product coated in accordance with the invention, a steel plate is then formed. This can be divided in a conventional manner of the respective steel strip or steel sheet. It is also conceivable, however, that the flat steel product in the coating already has the shape required for the subsequent shaping of the component, that is to say corresponds to the printed circuit board.

Die so in erfindungsgemäßer Weise mit einem einphasigen ZnNi-Legierungsüberzug versehene Stahlplatine wird gemäß der ersten Variante des erfindungsgemäßen Verfahrens anschließend auf eine nicht weniger als 800 °C betragende Platinentemperatur erwärmt und daraufhin aus der erwärmten Platine das Stahlbauteil geformt. Gemäß der zweiten Verfahrensvariante wird dagegen aus der Platine zunächst das Stahlbauteil zumindest vorgeformt und erst darauf folgend die Erwärmung auf eine mindestens 800 °C betragende Bauteiltemperatur durchgeführt.The thus provided in accordance with the invention with a single-phase ZnNi alloy coating steel plate is then heated according to the first variant of the method according to the invention to a not less than 800 ° C amounting platinum temperature and then formed from the heated board, the steel component. According to the In the second variant of the method, on the other hand, the steel component is first at least preformed from the blank and only then is the heating carried out to a component temperature of at least 800 ° C.

Im Zuge der Erwärmung auf die Platinen- bzw. Bauteiltemperatur findet im zuvor aufgebrachten, einphasigen γ-ZnNi-Überzug keine Phasentransformation statt. Stattdessen setzt bereits bei Temperaturen unterhalb von 700°C in der ZnNi-Schicht eine teilweise Substitution von Atomen ein, bei der sich die intermetallische γ-Zink-Nickel-Phase (Ni5Zn21) in eine Γ-Zink-Eisen-Phase (Fe3Zn10) umordnet.In the course of heating to the board or component temperature no phase transformation takes place in the previously applied, single-phase γ-ZnNi coating. Instead, even at temperatures below 700 ° C in the ZnNi layer, a partial substitution of atoms, in which the intermetallic γ-zinc-nickel phase (Ni5Zn21) in a Γ-zinc-iron phase (Fe3Zn10) rearranges ,

Unabhängig von der jeweiligen Verfahrensvariante besteht der erfindungsgemäß erzeugte Überzug dementsprechend sowohl beim noch unverformten Stahlflachprodukt als auch beim fertigen Stahlbauteil stets aus kubischen intermetallischen Phasen: Im Ausgangszustand beim erfindungsgemäß beschichteten Stahlflachprodukt aus γ-ZnNi und nach der Erwärmung und Warmumformung beim fertigen Stahlbauteil aus γ-ZnNi und Γ-ZnFe.Accordingly, regardless of the respective process variant, the coating produced according to the invention always consists of cubic intermetallic phases both in the undeformed flat steel product and in the finished steel component: in the starting state in the flat steel product of γ-ZnNi coated according to the invention and after the heating and hot working of the finished steel component made of γ-ZnNi and Γ-ZnFe.

Gemäß der ersten Variante des erfindungsgemäßen Verfahrens wird die erfindungsgemäß auf eine Temperatur von mindestens 800 °C erwärmte Platine zu dem Stahlbauteil geformt. Dies kann beispielsweise dadurch erfolgen, dass die Platine im unmittelbaren Anschluss an die Erwärmung zu dem jeweils verwendeten Formwerkzeug gefördert wird. Auf dem Weg zu dem Formwerkzeug kommt es in der Regel unvermeidbar zu einer Abkühlung der Platine, so dass im Fall einer solchen auf die Erwärmung folgenden Warmformgebung die Temperatur der Platine bei Eintritt in das Formwerkzeug üblicherweise niedriger liegt als die Platinentemperatur am Ausgang des Ofens. In dem Formwerkzeug wird die Stahlplatine in an sich bekannter Weise zu dem Stahlbauteil geformt.According to the first variant of the method according to the invention, the inventively heated to a temperature of at least 800 ° C board is formed to the steel component. This can be done, for example, that the board is conveyed immediately after the heating to the mold used in each case. On the way to the mold, it is inevitable that the board will cool down, such that in the case of such hot forming following heating, the temperature of the board as it enters the mold is usually lower than the board temperature at the exit of the furnace. In the mold, the steel plate is formed in a conventional manner to the steel component.

Wird die Formgebung bei für die Bildung von Härte- oder Vergütungsgefüge ausreichend hohen Temperaturen durchgeführt, so lässt sich das erhaltene Stahlbauteil ausgehend von der jeweiligen Temperatur mit einer Abkühlgeschwindigkeit abkühlen, die für die Entstehung von Vergütungs- oder Härtegefüge in seinem Stahlsubstrat ausreicht. Dieser Vorgang lässt sich besonders wirtschaftlich im Warmformwerkzeug selbst durchführen.If the shaping is carried out at temperatures which are sufficiently high for the formation of hardness or compensation structures, then the steel component obtained can be cooled, starting from the respective temperature, at a cooling rate sufficient for the formation of tempering or hardening structure in its steel substrate. This process can be carried out particularly economically in the thermoforming tool itself.

Dementsprechend eignet sich das erfindungsgemäße Verfahren aufgrund der Unempfindlichkeit des in erfindungsgemäßer Weise beschichteten Stahlflachproduktes gegen Risse des Stahlsubstrats und Abrieb insbesondere für das einstufige Warmpressformen, bei dem eine Warmformgebung und die Abkühlung des Stahlbauteils unter Ausnutzung der Wärme der zuvor durchgeführten Erwärmung auf die Platinentemperatur in einem Zuge in einem Werkzeug durchgeführt werden.Accordingly, the method of the invention is due to the insensitivity of coated in accordance with the invention steel flat product against cracks in the steel substrate and abrasion especially for one-stage hot press molding, in which a hot forming and cooling of the steel component by utilizing the heat of the previously carried out heating to the board temperature in one go be done in a tool.

Bei der zweiten Verfahrensvariante wird zunächst die Platine gebildet und dann ohne zwischengeschaltete Wärmebehandlung aus dieser Platine das Stahlbauteil geformt. Das Formen des Stahlbauteils erfolgt dabei typischerweise in einem Kaltformvorgang, bei dem eine oder mehrere Kaltumformoperationen durchgeführt werden. Der Grad der Kaltformgebung kann dabei so hoch sein, dass das erhaltene Stahlbauteil im Wesentlichen vollständig fertig ausgeformt ist. Jedoch ist es auch denkbar, die erste Formgebung als Vorformen durchzuführen und dem Stahlbauteil nach dem Erwärmen in einem Formwerkzeug fertig zu formen. Dieses Fertigformen kann mit dem Härtevorgang kombiniert werden, indem das Härten als Formhärten in einem geeigneten Formwerkzeug durchgeführt wird. Dabei wird das Stahlbauteil in eine seine fertige Endform abbildendes Werkzeug gelegt und für die Ausbildung des gewünschten Härte- oder Vergütungsgefüges ausreichend schnell abgekühlt. Das Formhärten ermöglicht so eine besonders gute Formhaltigkeit des Stahlbauteils. Die Formänderung während des Formhärtens ist dabei üblicherweise gering.In the second variant of the method, first the circuit board is formed and then, without intermediary heat treatment, the steel component is formed from this circuit board. The forming of the steel component is typically carried out in a cold forming process, in which one or more cold forming operations are performed. The degree of cold forming can be so high that the steel component obtained is substantially completely finished. However, it is also conceivable to carry out the first shaping as preforms and to finish the steel component after heating in a mold. This finish forming can be combined with the hardening process by carrying out the hardening as a form hardening in a suitable molding tool. In this case, the steel component is placed in a finished final shape imaging tool and cooled sufficiently quickly for the formation of the desired hardness or tempering. The form hardening thus enables a particularly good dimensional stability of the steel component. The shape change during mold hardening is usually low.

Unabhängig davon, welche der beiden Varianten des erfindungsgemäßen Verfahrens angewendet werden, müssen weder die Formgebung noch die zur Ausbildung des Härte- oder Vergütungsgefüges benötigte Abkühlung in besonderer, vom Stand der Technik abweichender Weise durchgeführt werden. Vielmehr können bekannte Verfahren und vorhandene Vorrichtungen für diesen Zweck eingesetzt werden. Aufgrund dessen, dass in erfindungsgemäßer Weise bereits auf der zu verformenden Platine ein Legierungsüberzug erzeugt ist, besteht im Fall einer Warmformgebung oder einem Formen bei erhöhten Temperaturen keine Gefahr, dass es zu einer Erweichung des Überzuges und dementsprechend zu Anhaftungen von Überzugsmaterial an den mit ihm in Kontakt kommenden Flächen des Werkzeugs kommt.Regardless of which of the two variants of the method according to the invention are used, neither the shaping nor the cooling necessary for the formation of the hardness or compensation structure must be carried out in a manner deviating from the prior art. Rather, known methods and existing devices can be used for this purpose. Due to the fact that an alloy coating is already produced on the board to be deformed in accordance with the invention, in the case of hot forming or molding at elevated temperatures, there is no risk of softening of the coating and, accordingly, adhesions of coating material to the coating in it Contact coming surfaces of the tool comes.

Dem Mn-Gehalt des erfindungsgemäß verarbeiteten Stahlsubstrats von 0,3 - 3 Gew.-%, insbesondere 0,5 - 3 Gew.-%, kommt in Kombination mit dem erfindungsgemäß auf dem Stahlflachprodukt erzeugten einphasigen ferngeordneten γ-ZnNi-Legierungsüberzug eine besondere Bedeutung zu. So trägt das im Stahlsubstrat vorhandene Mn beim erfindungsgemäß erzeugten Stahlbauteil wesentlich zur guten Haftung des Zink-Nickel-Legierungsüberzugs bei.The Mn content of the inventively processed steel substrate of 0.3 to 3 wt .-%, in particular 0.5 to 3 wt .-%, comes in combination with the invention produced on the steel flat product one-phase television series γ-ZnNi alloy coating of particular importance to. Thus, the Mn present in the steel substrate contributes significantly to the good adhesion of the zinc-nickel alloy coating in the steel component produced according to the invention.

Vor der Erwärmung auf die Platinen- bzw. Bauteiltemperatur enthält der erfindungsgemäß aufgebrachte Korrosionsschutzüberzug jeweils weniger als 0,1 Gew.-% Mangan. Bei der anschließenden Erwärmung auf die Platinen- bzw. Bauteiltemperatur setzt dann eine Diffusion des im Stahlsubstrat vorhandenen Mangans in Richtung der freien Oberfläche des erfindungsgemäß aufgebrachten Korrosionsschutzüberzuges ein.Before being heated to the board or component temperature, the anticorrosive coating applied according to the invention contains less than 0.1% by weight of manganese in each case. During the subsequent heating to the board or component temperature, diffusion of the manganese present in the steel substrate then begins in the direction of the free surface of the anticorrosive coating applied according to the invention.

Die bei der Erwärmung in die ZnNi-Legierungsschicht eindiffundierenden Mn-Atome bewirken zum einen eine intensive Ankopplung des Überzugs an das Stahlsubstrat.On the one hand, the Mn atoms diffusing into the ZnNi alloy layer upon heating cause an intensive coupling of the coating to the steel substrate.

Zum anderen gelangt Mn zu einem wesentlichen Teil an die Oberfläche des erfindungsgemäß erzeugten Korrosionsschutzüberzuges und lagert sich dort in metallisch und oder oxidischer Form an. Die Dicke der auf diese Weise auf dem erfindungsgemäß erzeugten Überzug vorhandenen Mn-haltigen Schicht - nachfolgend der Einfachheit halber nur "Mn-Oxidschicht" genannt - beträgt typischerweise 0,1 - 5 µm. Die positiven Effekte der Mn-Oxidschicht stellen sich dabei besonders sicher ein, wenn ihre Dicke mindestens 0,2 µm, insbesondere mindestens 0,5 µm beträgt. Der Mn-Gehalt des Korrosionsschutzüberzuges liegt in dieser oberflächennahen, an die Oberfläche angrenzenden Mn-haltigen Schicht bei 1 - 18 Gew.-%, insbesondere 4 - 7 Gew.-%.On the other hand, Mn reaches a substantial part of the surface of the corrosion protection coating produced according to the invention and is deposited there in metallic and / or oxidic form. The thickness of the Mn-containing layer present in this way on the coating produced according to the invention - hereinafter referred to simply as "Mn oxide layer" for the sake of simplicity - is typically 0.1-5 μm. The positive effects of the Mn oxide layer are particularly safe when their thickness is at least 0.2 .mu.m, in particular at least 0.5 μm. The Mn content of the anticorrosive coating is in this near-surface, adjacent to the surface Mn-containing layer at 1-18 wt .-%, in particular 4-7 wt .-%.

Neben der voranstehend beschriebenen Ankopplung an das Stahlsubstrat sichert die auf dem in erfindungsgemäßer Weise erzeugten Überzug vorhandene ausgeprägte Mn-Oxidschicht eine besonders gute Haftung von auf den Korrosionsschutzüberzug aufgebrachten organischen Beschichtungen. Die erfindungsgemäße Vorgehensweise eignet sich daher insbesondere zur Herstellung von Teilen für Fahrzeugkarosserien, die nach ihrer Formgebung mit einer Lackierung versehen werden.In addition to the coupling to the steel substrate described above, the pronounced Mn oxide layer present on the coating produced in accordance with the invention ensures particularly good adhesion of organic coatings applied to the anticorrosive coating. The procedure according to the invention is therefore particularly suitable for the production of parts for vehicle bodies, which are provided with a coating after their shaping.

Anders als beim eingangs erläuterten Stand der Technik ist ein Entfernen der erfindungsgemäß erhaltenen ausgeprägten Oxidschicht gemäß der Erfindung nicht zwingend notwendig. Vielmehr sieht eine praxisgerechte Ausgestaltung der erfindungsgemäßen Verfahrensvarianten vor, dass die bei erfindungsgemäßem Vorgehen erhaltene Oxidschicht gezielt auf dem Korrosionsschutzüberzug verbleibt, da diese Oxidschicht nicht nur eine besonders gute Beschichtbarkeit, sondern aufgrund ihrer vergleichbar hohen Leitfähigkeit darüber hinaus auch eine insgesamt gute Verschweißbarkeit erfindungsgemäß erzeugter und beschaffener Stahlbauteile gewährleistet.Unlike the prior art described at the outset, it is not absolutely necessary to remove the pronounced oxide layer obtained according to the invention in accordance with the invention. Rather, a practice-oriented embodiment of the method variants according to the invention provides that the oxide layer obtained in the process according to the invention selectively remains on the anticorrosive coating, since this oxide layer not only a particularly good coatability, but because of their comparatively high conductivity beyond a total good weldability inventively produced and procured Steel components guaranteed.

Bei der Verwendung von Stählen mit einem Mn-Gehalt von weniger als 0,3 Gew.-% ergibt sich ein Überzug mit gelblichem Erscheinungsbild, was darauf hindeutet, dass auf dem Überzug eine hauptsächlich aus ZnO bestehende Oxidschicht vorhanden ist. Der so beschaffene Überzug zeigt nach der Warmformgebung, ähnlich wie bei dem in der WO 2005/012822 berichteten Versuch, lokale Abplatzungen und Zunderstellen. Ein erfindungsgemäß auf einem mindestens 0,3 Gew.-% Mn enthaltenden Stahl erzeugter Überzug besitzt dagegen eine bräunliche Oberfläche, die frei von Zunderstellen und Abplatzungen ist.Using steels with a Mn content of less than 0.3% by weight results in a yellowish-appearance coating, indicating that a coating consisting primarily of ZnO is present on the coating Oxide layer is present. The coating thus obtained shows after the thermoforming, similar to that in the WO 2005/012822 reported trial, local flaking and tindering. On the other hand, a coating produced according to the invention on a steel containing at least 0.3% by weight of Mn has a brownish surface which is free from tearing and flaking.

Der erfindungsgemäß auf dem Stahlflachprodukt abgeschiedene ZnNi-Überzug wird in der Praxis mit einer Dicke von 0,5 - 20 µm aufgebracht. Eine besonders gute Schutzwirkung des erfindungsgemäß erzeugten ZnNi-Überzuges stellt sich dabei dann ein, wenn er mehr als 2 µm dick auf dem Stahlflachprodukt abgeschieden wird. Typische Dicken eines erfindungsgemäß erzeugten Überzugs liegen im Bereich von 2 - 20 µm, insbesondere bei 5 - 10 µm.The ZnNi coating deposited on the flat steel product according to the invention is applied in practice with a thickness of 0.5-20 μm. A particularly good protective effect of the ZnNi coating produced according to the invention arises in this case if it is deposited more than 2 μm thick on the flat steel product. Typical thicknesses of a coating produced according to the invention are in the range from 2 to 20 μm, in particular from 5 to 10 μm.

Ein weiter optimierter Schutz des erfindungsgemäß erzeugten Stahlbauteils gegen Korrosion kann dadurch erreicht werden, dass der Korrosionsschutzüberzug zusätzlich zu dem auf das Stahlflachprodukt aufgebrachten ZnNi-Legierungsüberzug eine Zn-Schicht umfasst, die ebenfalls vor dem Erwärmungsschritt auf die ZnNi-Schicht aufgebracht wird. Es liegt dann auf dem für die Weiterverarbeitung zu dem erfindungsgemäßen Bauteil vorbereiteten Stahlflachprodukt vor der Erwärmung auf die jeweilige Platinen- bzw. Bauteiltemperatur ein mindestens zweilagiger Korrosionsschutzüberzug vor, dessen erste Lage aus der in erfindungsgemäßer Weise konstituierten ZnNi-Legierungsschicht und dessen zweite Lage aus der darauf liegenden, nur aus Zink bestehenden Zn-Schicht gebildet ist.A further optimized protection of the steel component according to the invention against corrosion can be achieved by the anticorrosive coating comprising, in addition to the ZnNi alloy coating applied to the flat steel product, a Zn layer which is likewise applied to the ZnNi layer before the heating step. It is then on the prepared for further processing to the component according to the invention flat steel product before heating to the respective board or component temperature before at least a two-layer anticorrosive coating whose first layer of the inventively embodied ZnNi alloy layer and its second layer of the formed thereon, consisting only of zinc Zn layer is formed.

Die zusätzlich aufgetragene, typischerweise 2,5 - 12,5 µm dicke Zn-Schicht liegt beim fertigen erfindungsgemäßen Stahlbauteil als Zn-reiche Schicht vor, in die Mn und Fe des Stahlsubstrats sowie Ni aus der ZnNi-Schicht einlegiert sein können. Dabei reagiert Zn zu einem Teil zu Zn-Oxid und bildet mit dem Mn aus dem Grundwerkstoff die auf dem erfindungsgemäß erzeugten Korrosionsschutzüberzug liegende Mn-haltige Schicht. Der Auftrag einer zusätzlichen Zn-Schicht des Korrosionsschutzüberzugs vor der Erwärmung für die Warmformgebung führt so zu einer weiteren Verbesserung des kathodischen Korrosionsschutzes.The additionally applied, typically 2.5-12.5 μm thick Zn layer is present in the finished steel component according to the invention as a Zn-rich layer into which Mn and Fe of the steel substrate and Ni from the ZnNi layer can be alloyed. In this case, Zn partially reacts to form Zn oxide and forms with the Mn from the base material the Mn-containing layer lying on the anticorrosive coating produced according to the invention. The application of an additional Zn layer of the anti-corrosion coating before heating for the hot forming thus leads to a further improvement of the cathodic corrosion protection.

Dabei hat sich herausgestellt, dass im fertig warmverformten und gehärteten Zustand auch bei Vorhandensein der zusätzlichen Zn-Schicht auf der Oberfläche des Korrosionsschutzüberzugs die voranstehend im Einzelnen beschriebene Mn-Oxidschicht vorhanden ist. Diese stellt genauso bei einem aus einer ZnNi- und Zn-Schicht kombinierten Korrosionsschutzüberzug die gute Verschweißbarkeit und die gute Eignung eines erfindungsgemäß erzeugten und beschaffenen Stahlbauteils für eine Lackierung sicher.It has been found that in the finished thermoformed and cured state, even in the presence of the additional Zn layer on the surface of the anticorrosive coating, the Mn oxide layer described above in detail is present. This ensures the good weldability and the good suitability of a steel component produced and procured according to the invention for painting in the same way with a corrosion protection coating combined from a ZnNi and Zn layer.

Die zusätzliche Zn-Schicht des Korrosionsschutzüberzuges lässt sich ebenso wie die zuvor aufgetragene ZnNi-Schicht elektrolytisch abscheiden. Dazu kann beispielsweise in einer im kontinuierlichen Durchlauf durchlaufenen, mehrstufigen Einrichtung zur elektrolytischen Beschichtung in den ersten Stufen der ZnNi-Legierungsüberzug auf dem jeweiligen Stahlsubstrat und in den darauf durchlaufenen Stufen die Zn-Schicht auf der ZnNi-Schicht abgeschieden werden.The additional Zn layer of the anticorrosive coating can be deposited as well as the previously applied ZnNi layer electrolytically. This can be done, for example, in a continuous pass through, multi-stage device for electrolytic Coating in the first stages of ZnNi alloy coating on the respective steel substrate and in the steps passed through the Zn layer are deposited on the ZnNi layer.

Den voranstehenden Erläuterungen entsprechend ist ein erfindungsgemäßes Stahlbauteil durch Warmpressformen hergestellt und weist ein aus einem 0,3 - 3 Gew.-% Mangan enthaltenden Stahl bestehendes Stahlsubstrat und einen darauf aufgetragenen Korrosionsschutzüberzug auf, der einen elektrolytisch abgeschiedenen ZnNi-Legierungsüberzug, der aus γ-ZnNi und Γ-ZnFe besteht, umfasst und an seiner freien Oberfläche eine Mn-haltige Schicht besitzt, in der Mn in metallischer oder oxidischer Form vorliegt.As explained above, a steel member according to the present invention is made by hot press molding and has a steel substrate made of a 0.3-3 wt% manganese-containing steel substrate and an anticorrosive coating thereon comprising an electrodeposited ZnNi alloy plating composed of γ-ZnNi and Γ-ZnFe, and having on its free surface a Mn-containing layer in which Mn is present in metallic or oxidic form.

Zusätzlich kann der Korrosionsschutzüberzug in der voranstehend bereits beschriebenen Weise eine auf der ZnNi-Schicht aufliegende Zn-Schicht umfassen, wobei auch in diesem Fall die Mn-haltige Schicht auf dem Korrosionsschutzüberzug vorhanden ist.In addition, the anticorrosive coating in the manner already described above can comprise a Zn layer resting on the ZnNi layer, the Mn-containing layer also being present on the anticorrosive coating in this case as well.

Um ein optimales Ergebnis der elektrolytischen Beschichtung zu gewährleisten, kann das Stahlflachprodukt vor dem elektrolytischen Beschichten in an sich bekannter Weise einer Vorbehandlung unterzogen werden, bei der die Oberfläche des Stahlsubstrats so behandelt wird, dass sie einen für die nachfolgend durchgeführte Beschichtung mit der Korrosionsschicht optimal vorbereitete Oberflächenzustand besitzt. Dazu können ein oder mehrere der nachfolgend aufgezählten Vorbehandlungsschritte durchlaufen werden:

  • Alkalische Entfettung des Stahlflachprodukts in einem Entfettungsbad. Typischerweise enthält das Entfettungsbad 5 - 150 g/l, insbesondere 10 - 20 g/l, eines Tensid-Reinigers. Die Temperatur des Entfettungsbades beträgt dabei 20 - 85 °C, wobei sich eine besonders gute Wirksamkeit bei einer Badtemperatur von 65 - 75 °C einstellt. Dies gilt insbesondere dann, wenn die Entfettung elektrolytisch erfolgt, wobei in diesem Fall besonders gute Reinigungsergebnisse erzielt werden, wenn mindestens ein Zyklus anodischer und kathodischer Probenpolung durchlaufen wird. Dabei kann es sich als vorteilhaft erweisen, wenn bei der alkalischen Reinigung nicht nur elektrolytisch tauchentfettet wird, sondern vor der elektrolytischen Reinigung schon eine Spritz-/Bürstreinigung mit dem alkalischen Medium durchgeführt wird.
  • Spülen des Stahlflachproduktes, wobei diese Spülung mittels Klarwasser oder vollentsalztem Wasser durchgeführt wird.
  • Dekapieren des Stahlflachproduktes. Beim Dekapieren werden die Flachprodukte durch ein Säurebad geleitet, das die Oxidschicht von ihnen abspült, ohne die Oberfläche des Stahlflachprodukts selbst anzugreifen. Durch den gezielt durchgeführten Schritt der Dekapierung wird der Oxidabtrag so gesteuert, dass man eine für die elektrolytische Bandverzinkung günstig eingestellte Oberfläche erhält. Nach dem Dekapieren kann ein erneutes Spülen des Stahlflachproduktes zweckmäßig sein, um Restbestände der beim Dekapieren eingesetzten Säure von dem Stahlflachprodukt zu entfernen.
  • Sofern ein Spülen des Stahlflachprodukts durchgeführt wird, kann das Stahlflachprodukt währenddessen mechanisch gebürstet werden, um auch fest sitzende Partikel von seiner Oberfläche zu beseitigen.
  • Auf dem vorbehandelten Stahlflachprodukt noch vorhandene Flüssigkeiten werden vor dem Eintritt in das Elektrolytbad üblicherweise mittels Abquetschrollen entfernt.
In order to ensure an optimum result of the electrolytic coating, the steel flat product may be subjected to a pre-treatment prior to the electrolytic coating in a conventional manner, in which the surface of the steel substrate is treated so that it optimally prepared for the subsequently performed coating with the corrosion layer Has surface state. For this purpose, one or more of the pre-treatment steps enumerated below can be run through:
  • Alkaline degreasing of the flat steel product in a degreasing bath. Typically, the degreasing bath contains 5-150 g / l, especially 10-20 g / l, of a surfactant cleaner. The temperature of the degreasing bath is 20 - 85 ° C, with a particularly good effectiveness at a bath temperature of 65 - 75 ° C sets. This is especially true if the degreasing is carried out electrolytically, in which case particularly good cleaning results are achieved when at least one cycle of anodic and cathodic sample polarity is passed through. It may prove advantageous if in the alkaline cleaning is not only dipped electrolytically, but before the electrolytic cleaning already a spray / brush cleaning with the alkaline medium is performed.
  • Rinsing the flat steel product, wherein this rinse is carried out by means of clear water or demineralized water.
  • Picking the flat steel product. During pickling, the flat products are passed through an acid bath which rinses off the oxide layer without attacking the surface of the flat steel product itself. By the deliberately carried out step of pickling the Oxidabtrag is controlled so that you get a favorable set for the electrolytic strip galvanizing surface. After picking, rinsing the flat steel product again may be expedient to remove residues of the acid used in pickling from the flat steel product.
  • Meanwhile, if a rinse of the flat steel product is performed, the steel flat product may be mechanically brushed to also remove stuck particles from its surface.
  • On the pretreated flat steel product still existing liquids are usually removed by means of squeezing rollers before entering the electrolyte bath.

Als praxisgerechte Beispiele für zu einem besonders guten Ergebnis der elektrolytischen Beschichtung führenden Vorbehandlungen sind folgende Varianten zu nennen:As practical examples for leading to a particularly good result of the electrolytic coating pretreatments are the following variants:

Beispiel 1:Example 1:

Ein haubengeglühtes Kaltband wird alkalisch spritzentfettet und zusätzlich elektrolytisch entfettet. Das Entfettungsbad enthält in einer Konzentration von 15 g/l einen handelsüblichen, unter dem Namen "Ridoline C72" erhältlichen Reiniger, der mehr als 25 % Natriumhydroxid, 1 - 5 % eines Fettalkoholethers und 5 - 10 % eines ethoxylierten, propoxylierten und methyliert C12-18 Alkohols aufweist. Die Badtemperatur beträgt 65 °C. Die Verweildauer in der Spritzentfettung beträgt 5 s. Daran schließt sich eine Bürstreinigung an. Im weiteren Verlauf wird das Band elektrolytisch entfettet bei einer Verweildauer von 3 s mit anodischer und kathodischer Polung sowie einer Stromdichte von 15 A/dm2. Daran schließt sich eine mehrstufige Spüle mit vollentsalztem Wasser bei Raumtemperatur mit Bürsteneinsatz an. Die Verweildauer in der Spüle beträgt 3 s. Im Folgenden wird eine Salzsäuredekapierung (20 g/l; Temperatur 35 - 38 °C) bei einer Verweilzeit von 11 s durchlaufen. Nach einer 8 s dauernden Spüle mit vollentsalztem Wasser wird das Blech nach dem Durchlaufen einer Abquetschvorrichtung in die Elektrolysezelle überführt. In dieser erfolgt die erfindungsgemäße Beschichtung des Stahlbands oder -blechs wie nachfolgend anhand der Ausführungsbeispiele im Einzelnen erläutert. Das aus der elektrolytischen Beschichtungslinie austretende Stahlflachprodukt kann mehrstufig mit Wasser und vollentsalztem Wasser bei Raumtemperatur gespült werden. Die gesamte Verweilzeit in der Spüle beträgt 17 s. Im Anschluss durchläuft das Stahlflachprodukt dann noch eine Trocknungsstrecke.A hood annealed cold strip is alkaline degreased and additionally degreased electrolytically. The degreasing bath at a concentration of 15 g / l contains a commercial cleaner available under the name "Ridoline C72" containing more than 25% sodium hydroxide, 1-5% of a fatty alcohol ether and 5-10% of an ethoxylated, propoxylated and methylated C12- 18 alcohol. The bath temperature is 65 ° C. The residence time in the spray degreasing is 5 s. This is followed by a brush cleaning. In the course of the strip is electrolytically degreased at a residence time of 3 s with anodic and cathodic polarity and a current density of 15 A / dm second This is followed by a multi-stage sink with demineralized water at room temperature with brush insert. The residence time in the sink is 3 s. In the following, a hydrochloric acid (20 g / l, temperature 35-38 ° C) is passed through with a residence time of 11 s. After an 8-s sink with demineralized water, the plate is transferred after passing through a squeezing in the electrolysis cell. In this, the coating according to the invention of the steel strip or sheet is explained below with reference to the embodiments in detail. The steel flat product emerging from the electrolytic coating line can be rinsed in several stages with water and demineralized water at room temperature. The total residence time in the sink is 17 s. Subsequently, the flat steel product then passes through a drying section.

Beispiel 2:Example 2:

Warmband (gebeizt) der Güte 22MnB5 (1.5528) wird alkalisch spritzentfettet und elektrolytisch entfettet. Zusätzlich erfährt das Band in der alkalischen Spritzentfettung eine Bürstreinigung. Das Entfettungsbad enthält in einer Konzentration von 20 g/l einen handelsüblichen, unter dem Namen "Ridoline 1893" erhältlichen Reiniger, der 5 - 10 % Natriumhydroxid und 10 - 20 % Kaliumhydroxid enthält. Die Badtemperatur beträgt 75 °C. Die Verweildauer in der Spritzentfettung beträgt 2 s. Im weiteren Verlauf wird das Band elektrolytisch entfettet bei einer Verweildauer von 4 s mit anodischer und kathodischer Polung bei einer Stromdichte von 15 A/dm2. Daran schließt sich eine mehrstufige Spüle mit vollentsalztem Wasser bei Raumtemperatur mit vorgeschaltetem Bürsteneinsatz an. Die Verweildauer beträgt 3 s. Im Folgenden wird eine Salzsäuredekapierung (90 g/l; Temperatur max. 40 °C) bei einer Verweilzeit von 7 s durchlaufen. Nach einer fünfstufigen Kaskadenspülung mit vollentsalztem Wasser wird das Blech nach dem Durchlaufen einer Abquetschvorrichtung in die Elektrolysezelle überführt und dort, wie in der nachfolgend anhand der Ausführungsbeispiele beschrieben, in erfindungsgemäßer Weise mit einem Korrosionsschutzüberzug versehen. Nach dem Austritt aus der Anlage zum elektrolytischen Beschichten wird das nun erfindungsgemäß beschichtete Stahlflachprodukt dreistufig mit vollentsalztem Wasser bei 50 °C gespült. Im Anschluss durchläuft die Probe eine Trocknungsstrecke mit Umlufttrockner, wobei die Lufttemperatur mehr als 100 °C beträgt.Hot strip (pickled) of grade 22MnB5 (1.5528) is alkaline degreased and degreased electrolytically. In addition, the tape undergoes a brush cleaning in alkaline spray degreasing. The degreasing bath contains, at a concentration of 20 g / l, a commercial cleaner available under the name "Ridoline 1893" which contains 5-10% sodium hydroxide and 10-20% potassium hydroxide. The bath temperature is 75 ° C. The residence time in the spray degreasing is 2 s. In the course of the strip is electrolytically degreased at a residence time of 4 s with anodic and cathodic polarity at a current density of 15 A / dm second This is followed by a multi-stage sink with demineralized water at room temperature with upstream brush insert. The Length of stay is 3 s. In the following, a hydrochloric acid deacidification (90 g / l, temperature max 40 ° C) is carried out at a residence time of 7 s. After a five-stage cascade rinse with demineralized water, the sheet is transferred after passing through a squeezing into the electrolysis cell and there, as described in the following with reference to the embodiments, provided in accordance with the invention with a corrosion protection coating. After emerging from the plant for electrolytic coating, the steel flat product coated according to the invention is then rinsed in three stages with demineralized water at 50.degree. The sample then passes through a drying section with circulating air dryer, the air temperature being more than 100 ° C.

Beispiel 3:Example 3:

Haubengeglühtes Kaltband der Güte 22MnB5 (1.5528) wird alkalisch spritzentfettet und elektrolytisch entfettet. Das Entfettungsbad beinhaltet in einer Konzentration von 20 g/l einen Reiniger, der 1 - 5 % C12-18 Fettalkohol-Polyethylenglykol-Butylether und 0,5 - 2 % Kaliumhydroxid enthält. Die Badtemperatur beträgt 75 °C. Die Verweildauer in der horizontalen Spritzspüle beträgt 12 s. Daran schließt sich eine doppelte Bürstreinigung an. Im weiteren Verlauf wird das Band elektrolytisch entfettet bei einer Verweildauer von 9 s mit anodischer und kathodischer Polung und einer Stromdichte von 10 A/dm2. Daran schließt sich eine mehrstufige Spüle mit vollentsalztem Wasser bei Raumtemperatur mit Bürsteneinsatz an. Die Verweildauer beträgt 3 s. Im Folgenden wird eine Salzsäuredekapierung (100 g/l; Raumtemperatur) bei einer Verweilzeit von 27 s durchlaufen. Nach einer kombinierten Bürst- und Spritzfrischwasserspüle wird das Blech nach dem Durchlaufen einer Abquetschvorrichtung in die Elektrolysezelle überführt. Darin erfolgt die erfindungsgemäße elektrolytische Abscheidung des Korrosionsschutzüberzuges wie nachfolgend anhand der Ausführungsbeispiele erläutert. Im Nachgang zu der elektrolytischen Beschichtung wird das dann in erfindungsgemäßer Weise beschichtete Stahlflachprodukt zweistufig mit Wasser und vollentsalztem Wasser bei 40 °C gespült. Gesamte Verweilzeit 18 s. Im Anschluss durchläuft die Probe eine Trocknungsstrecke mit Umluftgebläse mit einer Umlufttemperatur von 75 °C.Bonnet annealed cold strip of grade 22MnB5 (1.5528) is alkaline degreased and degreased electrolytically. The degreasing bath at a concentration of 20 g / l contains a cleaner containing 1-5% C12-18 fatty alcohol polyethylene glycol butyl ether and 0.5-2% potassium hydroxide. The bath temperature is 75 ° C. The residence time in the horizontal spray rinse is 12 s. This is followed by a double brush cleaning. In the course of the strip is electrolytically degreased at a residence time of 9 s with anodic and cathodic polarity and a current density of 10 A / dm second This is followed by a multi-stage sink with demineralized water at room temperature with brush insert. The residence time is 3 s. in the Subsequently, a hydrochloric acid (100 g / l, room temperature) is passed through with a residence time of 27 s. After a combined brushing and Spritzfrischwasserspüle the sheet is transferred after passing through a squeezing in the electrolytic cell. Therein, the electrolytic deposition of the anticorrosive coating according to the invention takes place as explained below with reference to the exemplary embodiments. Subsequent to the electrolytic coating, the steel flat product coated in accordance with the invention is then rinsed in two stages with water and demineralized water at 40.degree. Total residence time 18 s. Afterwards, the sample passes through a drying section with circulation fan with a recirculation air temperature of 75 ° C.

Optimale Arbeitsergebnisse ergeben sich, wenn die Platinen- bzw. Bauteiltemperatur in an sich bekannter Weise maximal 920 °C, insbesondere 830 - 905 °C, beträgt. Dies gilt insbesondere dann, wenn das Formen des Stahlbauteils als Warmformgebung im Anschluss an die Erwärmung auf die Platinen- bzw. Bauteiltemperatur so durchgeführt wird, dass die erwärmte Platine ("direktes" Verfahren) bzw. das erwärmte Stahlbauteil ("indirektes" Verfahren) unter Inkaufnahme eines gewissen Temperaturverlustes in das jeweils anschließend genutzte Formwerkzeug gelegt wird. Besonders betriebssicher lässt sich die jeweils abschließende Warmformgebung dann durchführen, wenn die Platinen- bzw. Bauteiltemperatur 850 - 880 °C beträgt.Optimal work results arise when the board or component temperature in a conventional manner maximum 920 ° C, in particular 830-905 ° C, is. This applies in particular if the shaping of the steel component is carried out as hot forming following the heating to the board or component temperature such that the heated board ("direct" method) or the heated steel component ("indirect" method) Acceptance of a certain temperature loss is placed in each subsequently used mold. The final thermoforming can be carried out particularly reliably when the board or component temperature is 850 - 880 ° C.

Die Erwärmung auf die Platinen- bzw. Bauteiltemperatur kann in an sich bekannter Weise im Durchlauf in einem Durchlaufofen erfolgen. Typische Glühzeiten liegen dabei im Bereich von 3 - 15 min. Alternativ ist es jedoch auch möglich, die Erwärmung mittels einer induktiv oder konduktiv arbeitenden Erwärmungseinrichtung vorzunehmen. Dies erlaubt eine besonders schnelle und genaue Erwärmung auf die jeweils vorgegebene Temperatur.The heating to the board or component temperature can be done in a conventional manner in a continuous flow in a continuous furnace. Typical annealing times are in the range of 3 to 15 minutes. Alternatively, however, it is also possible to carry out the heating by means of an inductively or conductively operating heating device. This allows a particularly rapid and accurate heating to the respective predetermined temperature.

Nachfolgend wird die Erfindung von Ausführungsbeispielen näher erläutert. Es zeigen:

Fig. 1
das Ergebnis einer GDOS-Messung eines erfindungsgemäßen Überzugs nach der Warmformgebung für die Elemente O, Mn, Zn, Ni und Fe;
Fig. 2
das in Fig. 1 dargestellte Messergebnis isoliert für das Element Mn.
The invention of embodiments will be explained in more detail. Show it:
Fig. 1
the result of a GDOS measurement of a coating according to the invention after thermoforming for the elements O, Mn, Zn, Ni and Fe;
Fig. 2
this in Fig. 1 illustrated measurement result isolated for the element Mn.

Es sind kaltgewalzte und rekristallisierend geglühte sowie dressiergewalzte Bandmaterialproben A - Z - nachfolgend der Einfachheit halber nur als "Proben A - V2" bezeichnet - zur Verfügung gestellt worden, die in einer im kontinuierlichen Durchlauf passierten elektrolytischen Verzinkungslinie mit einer ZinkNickel-Legierungsschicht versehen worden sind. Zusätzlich ist zum Vergleich eine Probe "Z" schmelztauchbeschichtet worden.Cold rolled and recrystallized annealed as well as temper rolled strip samples A-Z - hereafter referred to simply as "Samples A-V2" for simplicity - have been provided with a zinc nickel alloy layer in a continuous pass electrogalvanizing line. In addition, a sample "Z" has been hot-dip coated for comparison.

Für die jeweils aus einem härtbaren Stahl bestehenden Proben A - Z sind die hier wesentlichen Mn-Gehalte in der Spalte "Mn-Gehalt" der Tabelle 2 angegeben. Demnach enthielten die Proben A - Q und Z jeweils Mn-Gehalte von mehr als 0,3 Gew.-%, während die Mn-Gehalte der Proben V1,V2 unterhalb des Grenzwertes von 0,3 Gew.-% lagen.For the samples A - Z, which each consist of a hardenable steel, the essential Mn contents in the Column "Mn content" of Table 2 indicated. Thus, Samples A-Q and Z each contained Mn contents of more than 0.3 wt%, while the Mn contents of Samples V1, V2 were below the threshold of 0.3 wt%.

Jede der bandförmigen Proben A - V2 hat zunächst eine Reinigungsbehandlung durchlaufen, bei der folgende Arbeitsschritte nacheinander absolviert wurden:Each of the band-shaped samples A - V2 first went through a cleaning treatment in which the following work steps were completed successively:

Zunächst ist die jeweilige Probe A - V2 in einem 60 °C warmen alkalischen Reinigerbad bei einer Verweilzeit von 6 s einer Spritzreinigung mit Bürsteneinsatz unterzogen worden.First, the respective sample A - V2 was subjected in a 60 ° C warm alkaline cleaning bath at a residence time of 6 s spray cleaning with brush insert.

Anschließend erfolgte über 3 s eine elektrolytische Entfettung bei einer Stromdichte von 15 A/dm2.This was followed by an electrolytic degreasing at a current density of 15 A / dm 2 for 3 s.

Daran schloss sich eine doppelte Klarwasserspüle mit Bürsteneinsatz an. Die Dauer dieser Spülbehandlung betrug jeweils 3 s.This was followed by a double clear water rinse with brush insert. The duration of this rinsing treatment was 3 s in each case.

Im Folgenden ist für 8 s eine Dekapierung mit Chlorwasserstoffsäure in einer Konzentration von 150 g/l bei Raumtemperatur durchgeführt worden.In the following, a decantation with hydrochloric acid in a concentration of 150 g / l at room temperature was carried out for 8 seconds.

Abschließend erfolgte eine dreistufige Kaskaden-Wasserspülung.Finally, a three-stage cascade flushing took place.

Die derart vorbehandelten Proben A - V2 sind einer elektrolytischen Beschichtung in einer Elektrolysezelle unterzogen worden. In Tabelle 1 sind zu jeder der Proben A - V2 die jeweils eingestellten Betriebsparameter "Zn" = Zn-Gehalt des Elektrolyten in g/l, "Ni" = Ni-Gehalt des Elektrolyten in g/l, " Na2SO4" = Na2SO4-Gehalt des Elektrolyten in g/l, "pH" = pH-Wert des Elektrolyten, "T" = Temperatur des Elektrolyten in °C, "Zellenbauart" = Ausrichtung der Bandanströmung durch den Elektrolyten, "Strömungsgeschwindigkeit" = Strömungsgeschwindigkeit des Elektrolyten in m/s und "Stromdichte" = Stromdichte in A/dm2 angegeben.The thus pretreated samples A - V2 have been subjected to an electrolytic coating in an electrolytic cell. In Table 1, for each of the samples A-V2, the respective set operating parameters "Zn" = Zn content of the electrolyte in g / l, "Ni" = Ni content of Electrolytes in g / l, "Na2SO4" = Na2SO4 content of the electrolyte in g / l, "pH" = pH value of the electrolyte, "T" = temperature of the electrolyte in ° C, "cell type" = orientation of the band flow through the electrolyte Electrolytes, "flow rate" = flow rate of the electrolyte in m / s and "current density" = current density in A / dm 2 indicated.

Zum Vergleich ist die Probe Z konventionell feuerverzinkt worden.For comparison, the sample Z has been conventionally hot-dip galvanized.

In Tabelle 2 sind neben den Mn-Gehalten der jeweiligen Proben A - V2 die Eigenschaften der ZnNi-Überzüge verzeichnet, die unter diesen Bedingungen elektrolytisch abgeschieden worden sind. Es zeigt sich, dass bei den Varianten A - H und N - P eine erfindungsgemäße einphasige γ-ZnNi-Beschichtung erhalten worden ist, wogegen bei den Varianten I - K η-Zn, d.h. elementares Zink, und γ-ZnNi nebeneinander vorlagen.Table 2 lists, in addition to the Mn contents of the respective samples A-V2, the properties of the ZnNi coatings which have been electrodeposited under these conditions. It can be seen that in variants A-H and N-P a single-phase γ-ZnNi coating according to the invention has been obtained whereas in variants I - K η-Zn, i. elemental zinc, and γ-ZnNi coexistent.

Bei den Varianten L und M ist vor dem Auftrag der ZnNi-Schicht eine dünne Schicht aus reinem Nickel auf das Stahlsubstrat aufgebracht worden (so genannter "Nickel-Flash"). Dabei handelt es sich um reine Nickelabscheidungen, die unter der einphasigen γ-ZnNi-Beschichtung liegen. Da ein solcher mehrschichtiger Aufbau keine positive Wirkung auf die zu erreichenden Eigenschaften hat, sind diese Varianten genauso als nicht erfindungsgemäß bezeichnet worden, wie die nach den Varianten I - K erhaltenen Proben.In variants L and M, a thin layer of pure nickel has been applied to the steel substrate prior to application of the ZnNi layer (so-called "nickel flash"). These are pure nickel deposits, which are under the single-phase γ-ZnNi coating. Since such a multilayer structure has no positive effect on the properties to be achieved, these variants have also been described as not according to the invention, as are the samples obtained according to variants I-K.

Der Ni-Gehalt der Probe Q war zu hoch, so dass auch diese als nicht erfindungsgemäß angesehen worden ist.The Ni content of the sample Q was too high, so that this too was not considered to be in accordance with the invention.

Die Proben V1 und V2 sind auf einem Stahl mit einem zu niedrigen Mn-Gehalt erzeugt worden. Daher sind auch diese Proben als nicht erfindungsgemäß bezeichnet, obwohl sie einen erfindungsgemäßen γ-ZnNi-Überzug aufwiesen.The samples V1 and V2 have been produced on a steel with a too low Mn content. Therefore, these samples are also not according to the invention, although they had a γ-ZnNi coating according to the invention.

Aus den hinsichtlich des einphasigen Aufbaus ihres ZnNi-Legierungsüberzuges als erfindungsgemäß anzusehenden elektrolytisch beschichteten Proben A - H und N - P sind Platinen 1 bis 23 abgeteilt worden.From the electrolytically coated samples A-H and N-P to be regarded as being in the single-phase structure of their ZnNi alloy coating, boards 1 to 23 have been partitioned.

Zusätzlich sind von den einen zweischichtigen ZnNi-Überzug mit Nickel-Flash aufweisenden Proben L und M Platinen 31 - 35, von der wegen des zu hohen Ni-Gehaltes ihres Überzuges ebenfalls als nicht erfindungsgemäß anzusehenden Probe Q eine Platine 36, aus den zum Vergleich erzeugten Proben V1 und V2 Platinen 37 - 40 und von der Vergleichsprobe Z eine Platine 41 abgeteilt worden.In addition, of the two-layer ZnNi coating with nickel-flashed samples L and M blanks 31-35, of which due to the high Ni content of their coating also as not according to the invention to be regarded sample Q a board 36, produced from the comparison Samples V1 and V2 boards 37-40 and from the comparison sample Z a board 41 has been divided.

Die Platinen 1 bis 41 sind anschließend auf die in Tabelle 3 angegebene Platinentemperatur "T-Ofen" über eine Glühzeit "t-Glüh" erwärmt und in einem konventionellen Warmpresshärtwerkzeug einstufig zu jeweils einem Stahlbauteil warmpressgeformt und so schnell abgekühlt worden, dass sich im Stahlsubstrat Härtegefüge einstellte.The boards 1 to 41 are then heated to the specified in Table 3 board temperature "T-furnace" over a glow time "t-annealed" and hot-press-formed in a conventional hot press tool single stage to each steel component and cooled so quickly that in the steel substrate hardness structure established.

Für jedes der aus den Platinen 1 bis 41 erzeugten Stahlbauteile ist das im Zuge der Warmpressverformung festgestellte Warmumformverhalten beurteilt und geprüft worden, ob es bei der Warmpressformgebung zu einer Rissbildung im jeweiligen Stahlsubstrat gekommen ist. Die Ergebnisse dieser Beurteilung und Prüfung sind ebenfalls in Tabelle 3 eingetragen.For each of the steel components produced from the boards 1 to 41, this is in the course of the hot-pressing deformation determined hot forming behavior has been assessed and tested whether it has come in the hot press forming to cracking in the respective steel substrate. The results of this assessment and testing are also listed in Table 3.

Die aus den Platinen 1 bis 36 und 41 geformten Stahlbauteile sind anschließend einem Salzsprühtest gemäß DIN EN ISO 9227 unterzogen worden. Sofern dabei nach 72h oder 144h eine Korrosion des Grundmetalls festgestellt worden ist, ist die in den Spalten "Grundmetallkorrosion 72h" und "Grundmetallkorrosion 144h" der Tabelle 3 vermerkt.The steel components formed from the boards 1 to 36 and 41 were then subjected to a salt spray test according to DIN EN ISO 9227. If corrosion of the base metal has been detected after 72h or 144h, the column "Base metal corrosion 72h" and "Base metal corrosion 144h" of Table 3 is noted.

Es zeigte sich, dass die Stahlbauteile, die aus den Platinen 9 bis 23, die Ni-Gehalte von 9 - 13 Gew.-% in ihrem ZnNi-Legierungsüberzug aufwiesen, neben einem optimalen Umformverhalten überlegene Korrosionsbeständigkeiten besaßen.It was found that the steel components which had from 9 to 23 boards, the Ni contents of 9 to 13 wt .-% in their ZnNi alloy coating, in addition to optimum forming behavior had superior corrosion resistance.

Bei dem Stahlbauteil, dass aus der konventionell beschichteten, aus der Probe Z gewonnenen Platine41 geformt worden ist, zeigte sich zwar ein gutes Warmumformverhalten. Sie erfüllte jedoch die an die Vermeidung von Rissbildung ihres Stahlsubstrats gestellten Anforderungen nicht.In the steel component formed from the conventionally coated board 41 obtained from Sample Z, good hot working performance was exhibited. However, it did not meet the requirements for preventing the cracking of its steel substrate.

Bei den Stahlbauteilen, die aus den Vergleichsproben V1 und V2 abgeteilten Platinen 37 - 40 gefertigt worden sind, zeigten sich Abplatzungen und eine unzureichende Korrosionsbeständigkeit des Überzugs. Da dies ein Ausschlusskriterium darstellte, ist an diesen Stahlbauteilen keine weitere Prüfung mehr durchgeführt worden.The steel components made from Blanks 37-40 divided from Comparative Samples V1 and V2 showed flaking and insufficient corrosion resistance of the coating. Since this was an exclusion criterion, is at these Steel components no further testing has been carried out.

Bei dem GDOS-Messverfahren ("GDOS" = Glow Discharge Optical Emission Spectrometry) handelt es sich um ein Standardverfahren zum schnellen Erfassen eines Konzentrationsprofils von Beschichtungen. Es ist beispielsweise im VDI-Lexikon Werkstofftechnik, hrsg. von Hubert Gräfen, VDI-Verlag GmbH, Düsseldorf 1993 beschrieben.GDOS (Glow Discharge Optical Emission Spectrometry) measurement is a standard technique for rapidly detecting a concentration profile of coatings. It is for example in the VDI Lexicon Materials, ed. by Hubert Gräfen, VDI-Verlag GmbH, Dusseldorf 1993.

In Fig. 1 ist das typische Ergebnis der GDOS-Messung des Korrosionsschutzüberzuges eines in erfindungsgemäßer Weise erzeugten und beschaffenen Stahlbauteils dargestellt. Dabei sind die Gehalte an Mn (kurz gestrichelte Linie), O (gepunktete Linie), Zn (lang gestrichelte Linie), Fe (strich-punktierte Linie) und Ni (durchgezogene Linie) über die Schichtdicke des Überzuges aufgetragen. Es zeigt sich, dass an der Oberfläche des Überzuges eine hohe Konzentration an Mn vorliegt, das vom Stahlsubstrat durch den Überzug an dessen Oberfläche diffundiert ist und dort mit dem Umgebungssauerstoff oxidiert ist. In der ZnNi-Legierungsschicht des Überzuges ist dagegen der Mn-Gehalt deutlich geringer und steigt erst wieder im Stahlsubstrat an. Besonders deutlich wird dies anhand der Fig. 2. Der Ni-Gehalt des Überzugs ist dagegen über seine gesamte Dicke im Wesentlichen konstant.In Fig. 1 the typical result of the GDOS measurement of the corrosion protection coating of a steel component produced and obtained in accordance with the invention is shown. The contents of Mn (short dashed line), O (dotted line), Zn (long dashed line), Fe (dash-dotted line) and Ni (solid line) are plotted over the layer thickness of the coating. It turns out that there is a high concentration of Mn on the surface of the coating, which has diffused from the steel substrate through the coating on its surface where it is oxidized with the ambient oxygen. In the ZnNi alloy layer of the coating, by contrast, the Mn content is significantly lower and only increases again in the steel substrate. This is particularly clear on the basis of Fig. 2 , By contrast, the Ni content of the coating is essentially constant over its entire thickness.

In einem weiteren Versuch ist ein rekristallisiertes Kaltband zunächst wie bei den voranstehend erläuterten erfindungsgemäßen Proben elektrolytisch mit einem einphasig aus γ-ZnNi-Phase bestehenden ZnNi-Legierungsüberzug überzogen worden. Die Schichtdicke des γ-ZnNi-Legierungsüberzugs betrug 7 µm bei einem Ni-Gehalt von 10 %. Anschließend ist auf diesen ZnNi-Legierungsüberzug ebenfalls elektrolytisch eine 5 µm dicke, aus reinem Zink bestehende Zn-Schicht aufgetragen worden.In a further experiment, a recrystallized cold strip is initially electrolytically with a, as in the above-described inventive samples single-phase γ-ZnNi phase ZnNi alloy coating has been coated. The layer thickness of the γ-ZnNi alloy coating was 7 μm at a Ni content of 10%. Subsequently, a 5 μm thick pure zinc Zn layer was also electrolytically applied to this ZnNi alloy coating.

Aus dem so erhaltenen, mit einem zweilagigen Korrosionsschutzüberzug versehenen Kaltband sind Platinen abgeteilt worden, die innerhalb von 5 Minuten auf eine Platinentemperatur von 880 °C erwärmt worden sind. Nach der Warmumformung und Härtung lag auf dem erhaltenen Stahlbauteil eine Korrosionsschutzschicht vor. An deren Oberfläche war ebenfalls eine ausgeprägte Mn-Oxidschicht vorhanden, unter der eine Zn-reiche Schicht existierte, unter der wiederum eine auf dem Stahlsubstrat aufliegende ZnNi-Schicht lag. Tabelle 1 Probe Zn [g/l] Ni [g/l] Na2SO4 [g/l] pH-Wert Temp. [°C] Zellenbauart Strömungsgeschwindigkeit [m/s] Stromdichte [A/dm2] A 42 126 28 1,6 65 horizontal 0,3 10 B 42 126 28 1,6 65 horizontal 0,3 10 C 42 126 28 1,6 65 horizontal 0,3 10 D 75 70 23 1,4 60 vertikal 4 40 E 75 79 23 1,4 60 vertikal 4 40 F 75 75 23 1,4 60 vertikal 4 40 G 75 85 23 1,4 60 vertikal 4 40 H 75 90 25 1,4 63 vertikal 4 40 I 75 79 23 1,4 60 horizontal 3,5 40 J 105 75 23 1,4 60 horizontal 4,4 40 K 75 79 23 1,4 60 horizontal 3,5 40 L 42 126 28 1,6 65 vertikal 3,5 40 M 42 126 28 1,6 65 vertikal 3,5 40 N 62 75 27 1,6 65 horizontal 0,5 20 O 62 75 27 1,6 65 horizontal 0,5 20 P 62 75 27 1,6 65 horizontal 0,5 20 Q 36 144 25 1,5 69 horizontal 0,3 10 V1 75 70 23 1,4 60 vertikal 4 40 V2 75 79 23 1,4 60 vertikal 4 40 Z Schmelztauchüberzug - Konventionell feuerverzinkt Tabelle 2 Probe Mn-Gehalt im Grundwerkstoff [mass-%] Beschichtung Erfindungsgemäß? Dicke der Ni-Flashschicht [µm] Dicke des ZnNi-Überzugs [µm] Ni-Gehalt des ZnNi-Überzugs [mass-%] kristallographischer Aufbau des ZnNi-Überzugs A 1,3 - 6 14 γ ja B 1,3 - 8 γ ja C 1,3 - 10 γ ja D 1 - 10 9 γ ja E 2 - 10 12 γ ja F 1 - 15 11 γ ja G 1,4 - 8 12 γ ja H 1,4 - 7 13 γ ja I 1,5 - 5 10 η+γ nein J 1,5 - 8 9 η+γ nein K 1,5 - 10 11 η+γ nein L 1,5 1 8 14 γ nein M 1,25 2 7 γ nein N 1,25 - 6 13 γ ja O 1,25 - 8 γ ja P 2,2 - 9 γ ja Q 1,3 - 8 16 γ nein V1 0,1 - 10 9 γ nein V2 0,2 - 10 12 γ nein Z 1,2 η nein Tabelle 3 Probe Platine Beschichtung T-Ofen [°C] t Glüh [min] Warmumformverhalten Rissbildung Grundmetallkorrosion 72h2) Grundmetallkorrosion 144h2) Erfindungsgemäß Dicke [µm] Ni-Gehalt [Gew.%] A 1 6 14 880 5 gut nein nein ja ja B 2 8 880 4 gut nein nein ja ja B 3 8 880 5 gut nein nein ja ja C 4 10 880 6 gut nein nein ja ja C 5 10 880 4 gut nein nein ja ja C 6 10 880 5 gut nein nein ja ja C 7 10 860 7 gut nein nein ja ja C 8 10 860 5 gut nein nein ja ja D 9 10 9 880 5 gut nein nein nein ja D 10 10 880 8 gut nein nein nein ja E 11 10 12 880 5 gut nein nein nein ja E 12 10 860 8 gut nein nein nein ja F 13 15 10,5 880 5 gut nein nein nein ja F 14 15 880 5 gut nein nein nein ja H 15 7 13 880 5 gut nein nein nein ja N 16 6 860 7 gut nein nein nein ja N 17 6 880 6 gut nein nein nein ja O 18 8 860 10 gut nein nein nein ja O 19 8 880 8 gut nein nein nein ja O 20 8 900 6 gut nein nein nein ja P 21 9 860 12 gut nein nein nein ja P 22 9 880 10 gut nein nein nein ja P 23 9 900 8 gut nein nein nein ja L 31 (1)81) 14 880 3 gut nein ja ja nein L 32 (1)81) 880 4 gut nein ja ja nein L 33 (1)81) 880 5 gut nein ja ja nein M 34 (2)71) 860 4 gut nein ja ja nein M 35 (2)71) 860 5 gut nein ja ja nein Q 36 8 16 880 7 gut nein ja ja nein V1 37 10 9 860 8 schlecht Keine weitere Bewertung wegen schlechten Warmumformverhaltens (lokale Abplatzungen) nein V1 38 10 880 5 schlecht nein V2 39 10 12 880 5 schlecht nein V2 40 10 860 8 schlecht nein Z 41 10 - 880 5 gut ja nein nein nein 1) Werte in () = Dicke des Ni-Flash
2) Salzsprühtest gem. DIN EN ISO 9227
From the thus obtained, provided with a two-layer anti-corrosion coating cold strip boards have been divided, which have been heated to a platinum temperature of 880 ° C within 5 minutes. After hot working and hardening, a corrosion protection layer was present on the resulting steel component. There was also a distinct Mn oxide layer on its surface under which a Zn-rich layer existed, under which was again a ZnNi layer resting on the steel substrate. Table 1 sample Zn [g / l] Ni [g / l] Na2SO4 [g / l] PH value Temp. [° C] cell type Flow velocity [m / s] Current density [A / dm 2 ] A 42 126 28 1.6 65 horizontal 0.3 10 B 42 126 28 1.6 65 horizontal 0.3 10 C 42 126 28 1.6 65 horizontal 0.3 10 D 75 70 23 1.4 60 vertical 4 40 e 75 79 23 1.4 60 vertical 4 40 F 75 75 23 1.4 60 vertical 4 40 G 75 85 23 1.4 60 vertical 4 40 H 75 90 25 1.4 63 vertical 4 40 I 75 79 23 1.4 60 horizontal 3.5 40 J 105 75 23 1.4 60 horizontal 4.4 40 K 75 79 23 1.4 60 horizontal 3.5 40 L 42 126 28 1.6 65 vertical 3.5 40 M 42 126 28 1.6 65 vertical 3.5 40 N 62 75 27 1.6 65 horizontal 0.5 20 O 62 75 27 1.6 65 horizontal 0.5 20 P 62 75 27 1.6 65 horizontal 0.5 20 Q 36 144 25 1.5 69 horizontal 0.3 10 V1 75 70 23 1.4 60 vertical 4 40 V2 75 79 23 1.4 60 vertical 4 40 Z Hot-dip coating - Conventional hot dip galvanized sample Mn content in the base material [mass%] coating According to the invention? Thickness of the Ni flash layer [μm] Thickness of ZnNi coating [μm] Ni content of ZnNi coating [mass%] crystallographic structure of the ZnNi coating A 1.3 - 6 14 γ Yes B 1.3 - 8th γ Yes C 1.3 - 10 γ Yes D 1 - 10 9 γ Yes e 2 - 10 12 γ Yes F 1 - 15 11 γ Yes G 1.4 - 8th 12 γ Yes H 1.4 - 7 13 γ Yes I 1.5 - 5 10 η + γ No J 1.5 - 8th 9 η + γ No K 1.5 - 10 11 η + γ No L 1.5 1 8th 14 γ No M 1.25 2 7 γ No N 1.25 - 6 13 γ Yes O 1.25 - 8th γ Yes P 2.2 - 9 γ Yes Q 1.3 - 8th 16 γ No V1 0.1 - 10 9 γ No V2 0.2 - 10 12 γ No Z 1.2 η No sample circuit board coating T-oven [° C] t annealing [min] Warmumformverhalten cracking Base metal corrosion 72h 2) Base metal corrosion 144h 2) According to the invention Thickness [μm] Ni content [% by weight] A 1 6 14 880 5 Good No No Yes Yes B 2 8th 880 4 Good No No Yes Yes B 3 8th 880 5 Good No No Yes Yes C 4 10 880 6 Good No No Yes Yes C 5 10 880 4 Good No No Yes Yes C 6 10 880 5 Good No No Yes Yes C 7 10 860 7 Good No No Yes Yes C 8th 10 860 5 Good No No Yes Yes D 9 10 9 880 5 Good No No No Yes D 10 10 880 8th Good No No No Yes e 11 10 12 880 5 Good No No No Yes e 12 10 860 8th Good No No No Yes F 13 15 10.5 880 5 Good No No No Yes F 14 15 880 5 Good No No No Yes H 15 7 13 880 5 Good No No No Yes N 16 6 860 7 Good No No No Yes N 17 6 880 6 Good No No No Yes O 18 8th 860 10 Good No No No Yes O 19 8th 880 8th Good No No No Yes O 20 8th 900 6 Good No No No Yes P 21 9 860 12 Good No No No Yes P 22 9 880 10 Good No No No Yes P 23 9 900 8th Good No No No Yes L 31 (1) 8 1) 14 880 3 Good No Yes Yes No L 32 (1) 8 1) 880 4 Good No Yes Yes No L 33 (1) 8 1) 880 5 Good No Yes Yes No M 34 (2) 7 1) 860 4 Good No Yes Yes No M 35 (2) 7 1) 860 5 Good No Yes Yes No Q 36 8th 16 880 7 Good No Yes Yes No V1 37 10 9 860 8th bad No further evaluation due to poor hot forming behavior (local flaking) No V1 38 10 880 5 bad No V2 39 10 12 880 5 bad No V2 40 10 860 8th bad No Z 41 10 - 880 5 Good Yes No No No 1) Values in () = thickness of Ni flash
2) salt spray test acc. DIN EN ISO 9227

Claims (19)

  1. Method of producing a steel component which is provided with a metallic coating which gives protection against corrosion, comprising the following operating steps:
    a) making available of a flat steel product which is produced from a steel material containing 0.3 - 3 wt.-% manganese, which steel material has a yield point of 150 - 1100 MPa and a tensile strength of 300 - 1200 MPa,
    b) coating of the flat steel product with an anti-corrosion coating which comprises a ZnNi alloy coating comprising a single γ-ZnNi phase which is electrolytically deposited on the flat steel product and which contains, as well as zinc and unavoidable impurities, 7 - 15 wt.-% nickel,
    c) heating of a blank formed from the flat steel product to a blank temperature of at least 800°C,
    d) forming of the steel component from the blank in a forming die, and
    e) hardening of the steel component by cooling from a temperature at which the steel component is in a state suitable for the formation of tempered or hardened microstructure, at a cooling rate which is sufficient for the formation of the tempered or hardened microstructure.
  2. Method of producing a steel component which is provided with a metallic coating which gives protection against corrosion, comprising the following operating steps:
    a) making available of a flat steel product which is produced from a steel material containing 0.3 - 3 wt.-% manganese, which steel material has a yield point of 150 - 1100 MPa and a tensile strength of 300 - 1200 MPa,
    b) coating of the flat steel product with an anti-corrosion coating which comprises a ZnNi alloy coating comprising a single γ-ZnNi phase which is electrolytically deposited on the flat steel product and which contains, as well as zinc and unavoidable impurities, 7 - 15 wt.-% nickel,
    c) forming of the steel component from a blank formed from the flat steel product in a forming die,
    d) heating of the steel component to a component temperature of at least 800°C,
    e) hardening of the steel component by cooling from a temperature at which the steel component is in a state suitable for the formation of tempered or hardened microstructure, at a cooling rate which is sufficient for the formation of the tempered or hardened microstructure.
  3. Method according to Claim 2, characterised in that the forming of the steel component (operating step c)) is performed as pre-forming and in that the steel component is formed to a finished state after the heating (operating step d)).
  4. Method according to one of the preceding claims, characterised in that coating of ZnNi alloy on the finished steel component is composed of γ-ZnNi and Γ-ZnFe.
  5. Method according to one of the preceding claims, characterised in that, in the case of the finished steel component, an Mn-containing layer in which Mn is present in metallic or oxidic form is present on the anti-corrosion coating.
  6. Method according to Claim 5, characterised in that the Mn-containing layer is 0.1 - 5 µm thick.
  7. Method according to Claim 5 or 6, characterised in that the Mn content of the Mn-containing layer is 0.1 to 18 wt.-%.
  8. Method according to one of the preceding claims, characterised in that, before the forming of the steel component, the anti-corrosion coating comprises an additional layer of Zn which is likewise applied to the coating of ZnNi alloy before the forming of the steel component.
  9. Method according to Claim 8, characterised in that the layer of Zn is 2.5 to 12.5 µm thick.
  10. Method according to either of claims 8 and 9, characterised in that the anti-corrosion coating of the finished steel component comprises a Zn-rich layer lying on the nickel-containing alloy coating.
  11. Method according to one of the preceding claims, characterised in that the forming of the steel component is performed as hot forming and the forming and cooling of the steel component are performed in a single operation in a hot-forming die.
  12. Method according to one of claims 1 to 11, characterised in that the forming of the steel component and the hardening are performed in succession to one another in two separate steps.
  13. Steel component having a steel substrate comprising a steel containing 0.3 - 3 wt.-% manganese, and having an anti-corrosion coating applied to the steel substrate which comprises an electrolytically deposited coating of ZnNi alloy which lies on the steel substrate, which is composed of γ-ZnNi and Γ-ZnFe, and which has at its free surface an Mn-containing layer in which the Mn is present in metallic or oxidic form.
  14. Steel component according to Claim 13, characterised in that the coating of ZnNi alloy is more than 2 µm thick.
  15. Steel component according to either of claims 13 and 14, characterised in that the coating of ZnNi alloy contains 1 - 15 wt.-% Ni.
  16. Steel component according to one of claims 13 to 15, characterised in that the Mn content of the Mn-containing layer is 1 - 18 wt.-%.
  17. Steel component according to one of claims 13 to 16, characterised in that the thickness of the Mn-containing layer is 0.1 - 5 µm.
  18. Steel component according to one of claims 13 to 17, characterised in that the anti-corrosion coating comprises a zinc-rich layer lying on the coating of ZnNi alloy.
  19. Steel component according to one of claims 13 to 18, characterised in that an organic coating is applied to the Mn-containing layer.
EP09168605A 2009-08-25 2009-08-25 Method for producing a steel component with an anti-corrosive metal coating and steel component Revoked EP2290133B1 (en)

Priority Applications (21)

Application Number Priority Date Filing Date Title
PL09168605T PL2290133T3 (en) 2009-08-25 2009-08-25 Method for producing a steel component with an anti-corrosive metal coating and steel component
AT09168605T ATE554190T1 (en) 2009-08-25 2009-08-25 METHOD FOR PRODUCING A STEEL COMPONENT AND STEEL COMPONENT PROVIDED WITH A METALLIC COATING TO PROTECT AGAINST CORROSION
EP09168605A EP2290133B1 (en) 2009-08-25 2009-08-25 Method for producing a steel component with an anti-corrosive metal coating and steel component
ES09168605T ES2384135T3 (en) 2009-08-25 2009-08-25 Procedure for manufacturing a steel component provided with a corrosion protection metallic coating and steel component
PT09168605T PT2290133E (en) 2009-08-25 2009-08-25 Method for producing a steel component with an anti-corrosive metal coating and steel component
KR1020117026993A KR101674625B1 (en) 2009-08-25 2010-02-24 Method for producing a steel component provided with a metal coating protecting against corrosion and steel component
RU2012111247/02A RU2496887C1 (en) 2009-08-25 2010-02-24 Method for obtaining steel component with metal coating providing corrosion protection, and steel component
PL10706201T PL2414562T3 (en) 2009-08-25 2010-02-24 Method for producing a steel component provided with a metal coating protecting against corrosion and steel component
ES10706201T ES2400221T3 (en) 2009-08-25 2010-02-24 Manufacturing process a steel component provided with a metallic coating that provides corrosion protection and a steel component
MX2011011932A MX2011011932A (en) 2009-08-25 2010-02-24 Method for producing a steel component provided with a metal coating protecting against corrosion and steel component.
EP10706201A EP2414562B1 (en) 2009-08-25 2010-02-24 Method for producing a steel component provided with a metal coating protecting against corrosion and steel component
BRPI1015352A BRPI1015352A2 (en) 2009-08-25 2010-02-24 method of producing a steel component provided with a metallic coating which gives protection against corrosion, and a steel component
AU2010288814A AU2010288814B2 (en) 2009-08-25 2010-02-24 Method for producing a steel component provided with a metal coating protecting against corrosion and steel component
CN201080037681.9A CN102625863B (en) 2009-08-25 2010-02-24 Be provided with manufacture method and the steel part of the steel part of the coating for protection against corrosion of metal
CA2758629A CA2758629C (en) 2009-08-25 2010-02-24 Method of producing a steel component provided with a metallic coating giving protection against corrosion, and a steel component
US13/266,941 US9284655B2 (en) 2009-08-25 2010-02-24 Method of producing a steel component provided with a metallic coating giving protection against corrosion
PCT/EP2010/052326 WO2011023418A1 (en) 2009-08-25 2010-02-24 Method for producing a steel component provided with a metal coating protecting against corrosion and steel component
PT107062010T PT2414562E (en) 2009-08-25 2010-02-24 Method for producing a steel component provided with a metal coating protecting against corrosion and steel component
JP2012525942A JP5650222B2 (en) 2009-08-25 2010-02-24 Method of manufacturing a steel member with a metal coating that provides protection against corrosion, and steel member
ZA2011/07674A ZA201107674B (en) 2009-08-25 2011-10-19 Method for producing a steel component provided with a metal coating protecting against corrosion and steel component
US15/046,884 US10053752B2 (en) 2009-08-25 2016-02-18 Steel component provided with a metallic coating giving protection against corrosion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP09168605A EP2290133B1 (en) 2009-08-25 2009-08-25 Method for producing a steel component with an anti-corrosive metal coating and steel component

Publications (2)

Publication Number Publication Date
EP2290133A1 EP2290133A1 (en) 2011-03-02
EP2290133B1 true EP2290133B1 (en) 2012-04-18

Family

ID=41566169

Family Applications (2)

Application Number Title Priority Date Filing Date
EP09168605A Revoked EP2290133B1 (en) 2009-08-25 2009-08-25 Method for producing a steel component with an anti-corrosive metal coating and steel component
EP10706201A Revoked EP2414562B1 (en) 2009-08-25 2010-02-24 Method for producing a steel component provided with a metal coating protecting against corrosion and steel component

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP10706201A Revoked EP2414562B1 (en) 2009-08-25 2010-02-24 Method for producing a steel component provided with a metal coating protecting against corrosion and steel component

Country Status (16)

Country Link
US (2) US9284655B2 (en)
EP (2) EP2290133B1 (en)
JP (1) JP5650222B2 (en)
KR (1) KR101674625B1 (en)
CN (1) CN102625863B (en)
AT (1) ATE554190T1 (en)
AU (1) AU2010288814B2 (en)
BR (1) BRPI1015352A2 (en)
CA (1) CA2758629C (en)
ES (2) ES2384135T3 (en)
MX (1) MX2011011932A (en)
PL (2) PL2290133T3 (en)
PT (2) PT2290133E (en)
RU (1) RU2496887C1 (en)
WO (1) WO2011023418A1 (en)
ZA (1) ZA201107674B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015118869A1 (en) 2014-11-04 2016-05-04 Voestalpine Stahl Gmbh Method for producing a corrosion protection coating for hardenable steel sheets and corrosion protection layer for hardenable steel sheets
WO2019020169A1 (en) 2017-07-25 2019-01-31 Thyssenkrupp Steel Europe Ag Sheet metal component, produced by hot working a flat steel product, and method for the production thereof
DE102020204356A1 (en) 2020-04-03 2021-10-07 Thyssenkrupp Steel Europe Ag Hardened sheet metal component, produced by hot forming a flat steel product and process for its production

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010030465B4 (en) * 2010-06-24 2023-12-07 Bayerische Motoren Werke Aktiengesellschaft Method for producing a sheet metal part from a high-strength steel sheet material with an electrolytically applied zinc-nickel coating
JP5884151B2 (en) * 2010-11-25 2016-03-15 Jfeスチール株式会社 Steel sheet for hot press and method for producing hot press member using the same
DE102011053939B4 (en) * 2011-09-26 2015-10-29 Voestalpine Stahl Gmbh Method for producing hardened components
DE102010056265C5 (en) 2010-12-24 2021-11-11 Voestalpine Stahl Gmbh Process for producing hardened components
DE102011001140A1 (en) 2011-03-08 2012-09-13 Thyssenkrupp Steel Europe Ag Flat steel product, method for producing a flat steel product and method for producing a component
WO2013132816A1 (en) 2012-03-07 2013-09-12 Jfeスチール株式会社 Steel sheet for hot pressing, manufacturing process therefor, and process for producing hot-pressed member using same
MX2014012798A (en) * 2012-04-23 2015-04-14 Kobe Steel Ltd Method for producing galvanized steel sheet for hot stamping, alloyed hot-dipped galvanized steel sheet for hot stamping and method for producing same, and hot stamped component.
JP6529710B2 (en) * 2012-05-31 2019-06-12 日本製鉄株式会社 Hot press-formed member having high strength and high corrosion resistance
JP6004521B2 (en) * 2012-07-04 2016-10-12 臼井国際産業株式会社 Piping with heat- and corrosion-resistant plating layer with excellent workability
DE102012110972B3 (en) * 2012-11-14 2014-03-06 Muhr Und Bender Kg A method of making a product from flexibly rolled strip material and product from flexibly rolled strip material
DE102012024616A1 (en) * 2012-12-17 2014-06-18 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Sheet steel and molded part thereof
DE102013100682B3 (en) * 2013-01-23 2014-06-05 Voestalpine Metal Forming Gmbh A method of producing cured components and a structural component made by the method
KR20160007648A (en) * 2013-05-17 2016-01-20 에이케이 스틸 프로퍼티즈 인코포레이티드 Zinc-coated steel for press hardening application and method of production
DE102013010025A1 (en) * 2013-06-17 2014-12-18 Muhr Und Bender Kg Method for producing a product from flexibly rolled strip material
KR20180017241A (en) * 2013-06-19 2018-02-20 제이에프이 스틸 가부시키가이샤 Hot-pressed member and method for manufacturing the same
WO2015001705A1 (en) 2013-07-02 2015-01-08 Jfeスチール株式会社 Method of manufacturing hot press member
DE102013015032A1 (en) 2013-09-02 2015-03-05 Salzgitter Flachstahl Gmbh Zinc-based corrosion protection coating for steel sheets for producing a component at elevated temperature by press hardening
EP2848715B1 (en) * 2013-09-13 2018-10-31 ThyssenKrupp Steel Europe AG Method for producing a steel component with an anti-corrosive metal coating
EP2848709B1 (en) 2013-09-13 2020-03-04 ThyssenKrupp Steel Europe AG Method for producing a steel component with an anti-corrosive metal coating and steel component
JP6191420B2 (en) * 2013-12-02 2017-09-06 新日鐵住金株式会社 Hot stamping steel manufacturing method and hot stamping steel
FI125980B (en) 2013-12-18 2016-05-13 Outotec Finland Oy Procedure for maintenance of used cathode plates
WO2015152263A1 (en) 2014-03-31 2015-10-08 新日鐵住金株式会社 Hot-stamping steel material
RU2659532C2 (en) * 2014-03-31 2018-07-02 Ниппон Стил Энд Сумитомо Метал Корпорейшн Hot-stamped steel
WO2015185956A1 (en) 2014-06-06 2015-12-10 ArcelorMittal Investigación y Desarrollo, S.L. High strength multiphase galvanized steel sheet, production method and use
JP6152836B2 (en) * 2014-09-25 2017-06-28 Jfeスチール株式会社 Manufacturing method of hot press-formed product
JP6178301B2 (en) 2014-12-12 2017-08-09 Jfeスチール株式会社 Manufacturing method of hot press-formed product
DE102015005625A1 (en) * 2015-04-30 2016-11-03 Liebherr-Aerospace Lindenberg Gmbh Multilayer coating
CN104911588A (en) * 2015-05-14 2015-09-16 宁波汇通机械联接件有限公司 Processing method for clamp for truck cab
DE102015113056B4 (en) 2015-08-07 2018-07-26 Voestalpine Metal Forming Gmbh Method for the contactless cooling of steel sheets and device therefor
JP7141828B2 (en) 2015-05-29 2022-09-26 フォエスタルピネ スタール ゲーエムベーハー Uniform non-contact temperature control method and apparatus for non-endless surface to be temperature controlled
MX2017014559A (en) 2015-06-03 2018-03-15 Salzgitter Flachstahl Gmbh Deformation-hardened component made of galvanized steel, production method therefor and method for producing a steel strip suitable for the deformation-hardening of components.
DE102015213335B4 (en) 2015-07-16 2023-05-17 Aktiebolaget Skf Process for coating roller bearing rings
MX2018001125A (en) * 2015-07-29 2018-05-23 Jfe Steel Corp Method for producing hot-pressed member.
CN105057586A (en) * 2015-08-07 2015-11-18 昆山—邦泰汽车零部件制造有限公司 Method for manufacturing automobile hardware
EP3162558A1 (en) 2015-10-30 2017-05-03 Outokumpu Oyj Component made of metallic composite material and method for the manufacture of the component by hot forming
DE102016104800A1 (en) * 2016-03-15 2017-09-21 Salzgitter Flachstahl Gmbh Method for producing a hot-formed steel component and a hot-formed steel component
EP3438316B1 (en) 2016-03-29 2022-03-09 JFE Steel Corporation Steel sheet for hot pressing and production method therefor, and hot press member and production method therefor
DE102016121902A1 (en) * 2016-11-15 2018-05-17 Salzgitter Flachstahl Gmbh Process for the production of chassis parts made of micro-alloyed steel with improved cold workability
DE102016122323A1 (en) 2016-11-21 2018-05-24 Illinois Tool Works Inc. Weldable threaded plate
DE102016225681A1 (en) * 2016-12-20 2018-06-21 Thyssenkrupp Ag Grayed surface for the purpose of shortened heating
WO2018115948A1 (en) * 2016-12-21 2018-06-28 Arcelormittal A method for the manufacture of a coated steel sheet
WO2018115947A1 (en) * 2016-12-21 2018-06-28 Arcelormittal A method for the manufacture of a coated steel sheet
EP3559318A1 (en) 2016-12-22 2019-10-30 Carl Freudenberg KG Aqueous, alkaline electrolyte for depositing zinc-containing layers onto surfaces of metal piece goods
EP3358045A1 (en) 2017-02-07 2018-08-08 Dr.Ing. Max Schlötter GmbH & Co. KG Method for the galvanic deposition of zinc and zinc alloy layers from an alkaline coating bath with reduced degradation of organic bath additives
PT3360981T (en) 2017-02-10 2020-10-08 Outokumpu Oy Steel for manufacturing a component by hot forming and use of the component
DE102017211076B4 (en) * 2017-06-29 2019-03-14 Thyssenkrupp Ag Method for producing a coated steel component and steel component
JP6493472B2 (en) * 2017-09-05 2019-04-03 新日鐵住金株式会社 Manufacturing method of hot press-formed member
US11680331B2 (en) 2017-10-24 2023-06-20 Arcelormittal Method for the manufacture of a coated steel sheet
JP6841382B2 (en) * 2019-02-21 2021-03-10 Jfeスチール株式会社 Hot-pressed members, cold-rolled steel sheets for hot-pressing, and their manufacturing methods
JP7126093B2 (en) * 2019-03-08 2022-08-26 Jfeスチール株式会社 HOT PRESS MEMBER AND MANUFACTURING METHOD THEREOF
JPWO2020213201A1 (en) * 2019-04-18 2021-04-30 Jfeスチール株式会社 Steel plate for hot press and hot press member
WO2020241864A1 (en) * 2019-05-31 2020-12-03 日本製鉄株式会社 Hot stamp formed article
CN113614285B (en) * 2019-05-31 2024-03-08 日本制铁株式会社 Hot-stamped molded article
JP2023503093A (en) * 2019-11-21 2023-01-26 カリダス プロセス ソリューションズ ピーティワイ リミテッド Double layer protective coating for metal parts
CN116507760A (en) 2020-10-28 2023-07-28 杰富意钢铁株式会社 Hot-pressed member, steel sheet for hot pressing, and method for manufacturing hot-pressed member
EP4265751A4 (en) 2021-01-22 2024-08-14 Jfe Steel Corp Hot pressing member, coating member, steel sheet for hot pressing, method for manufacturing hot pressing member, and method for manufacturing coating member
CN113002632A (en) * 2021-02-26 2021-06-22 重庆长安汽车股份有限公司 B-pillar reinforcing structure and vehicle
KR20240089216A (en) 2021-10-29 2024-06-20 제이에프이 스틸 가부시키가이샤 hot press member
EP4382630A1 (en) 2021-10-29 2024-06-12 JFE Steel Corporation Hot-pressed member
WO2023074115A1 (en) 2021-10-29 2023-05-04 Jfeスチール株式会社 Hot-pressed member
WO2023074114A1 (en) 2021-10-29 2023-05-04 Jfeスチール株式会社 Hot-pressed member

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2315740A (en) * 1941-06-16 1943-04-06 Standard Steel Spring Co Protected metal article and process of producing the same
DE3209559A1 (en) 1981-03-17 1982-09-23 Rasselstein Ag, 5450 Neuwied Process for electrodepositing an alloy coating on a metal object, in particular a zinc/nickel alloy coating on steel strip
JPS57210991A (en) * 1981-06-18 1982-12-24 Kawasaki Steel Corp Manufacture of surface-treated steel plate with high corrosion resistance
JPS589965A (en) * 1981-07-08 1983-01-20 Kawasaki Steel Corp Surface treated steel plate of high corrosion resistance
JPS5891187A (en) * 1981-11-25 1983-05-31 Kawasaki Steel Corp Highly corrosion resistant surface treated steel plate
JPS60197893A (en) * 1984-03-19 1985-10-07 Sumitomo Metal Ind Ltd Multiple layer plated steel sheet
JPS61194195A (en) 1985-02-21 1986-08-28 Sumitomo Metal Ind Ltd Highly-corrosion resistant two-layer plated steel plate
JPS61227181A (en) * 1985-03-30 1986-10-09 Sumitomo Metal Ind Ltd Highly corrosion resistant surface treated steel material
JPH075971B2 (en) * 1987-12-31 1995-01-25 株式会社神戸製鋼所 Method for producing alloy electroplated steel sheet for deep drawing with excellent impact peel resistance after painting
JPH0257697A (en) * 1988-08-22 1990-02-27 Sumitomo Metal Ind Ltd Surface-treated steel sheet having superior workability and weldability
JPH03243796A (en) * 1990-02-22 1991-10-30 Nippon Steel Corp Production of organic compositely plated steel sheet having high corrosion resistance
JPH07103476B2 (en) * 1991-02-25 1995-11-08 新日本製鐵株式会社 Method for producing Zn-Ni alloy electroplated steel sheet excellent in workability
JPH08134687A (en) * 1994-11-04 1996-05-28 Nippon Steel Corp Zinc-nickel alloy plated low carbon steel sheet excellent in press formability and powdering resistance
JPH111779A (en) * 1997-06-11 1999-01-06 Katayama Tokushu Kogyo Kk Production of battery can forming material, and battery can forming material produced by this method
FR2807447B1 (en) 2000-04-07 2002-10-11 Usinor METHOD FOR MAKING A PART WITH VERY HIGH MECHANICAL CHARACTERISTICS, SHAPED BY STAMPING, FROM A STRIP OF LAMINATED AND IN PARTICULAR HOT ROLLED AND COATED STEEL SHEET
CA2437990C (en) * 2000-12-04 2007-05-08 Jfe Steel Corporation Zinc-base plated steel sheet and method for manufacturing same
DE10128544C2 (en) * 2001-06-13 2003-06-05 Thyssenkrupp Stahl Ag High-strength, cold-workable sheet steel, process for its production and use of such a sheet
JP3582504B2 (en) * 2001-08-31 2004-10-27 住友金属工業株式会社 Hot-press plated steel sheet
JP2004270006A (en) * 2003-03-11 2004-09-30 Jfe Steel Kk Method of producing component having excellent shape-fixability
JP4085876B2 (en) * 2003-04-23 2008-05-14 住友金属工業株式会社 Hot press-formed product and method for producing the same
EP1630244B2 (en) 2003-04-23 2016-08-17 Nippon Steel & Sumitomo Metal Corporation Hot press formed product and method for production thereof
CN1829817B (en) 2003-07-29 2015-01-07 沃斯特阿尔派因钢铁有限责任公司 Method for producing a hardened steel part
FR2858385B1 (en) 2003-07-29 2006-02-17 Valeo Thermique Moteur Sa TUBE BIT FOR HYDRAULIC CIRCUIT ELEMENT, ESPECIALLY FOR HEAT EXCHANGER
JP2005113233A (en) * 2003-10-09 2005-04-28 Nippon Steel Corp Zn-BASED PLATED STEEL FOR HOT PRESS
JP2005329448A (en) * 2004-05-21 2005-12-02 Kobe Steel Ltd Method for manufacturing hot drawn article
FR2876711B1 (en) * 2004-10-20 2006-12-08 Usinor Sa HOT-TEMPERATURE COATING PROCESS IN ZINC BATH OF CARBON-MANGANESE STEEL BANDS
DE102004052482A1 (en) * 2004-10-28 2006-05-11 Thyssenkrupp Steel Ag Method for producing a corrosion-protected steel sheet
PL1857566T3 (en) * 2006-05-15 2017-10-31 Thyssenkrupp Steel Europe Ag Flat steel product provided with a corrosion protection coating and method of its manufacture
JP4725415B2 (en) * 2006-05-23 2011-07-13 住友金属工業株式会社 Hot-pressed steel sheet, hot-pressed steel sheet member, and production method thereof
CN101078096A (en) * 2006-05-25 2007-11-28 福建方明钢铁有限公司 Strip steel continuous zinc heat coating process
DE102007019196A1 (en) * 2007-04-20 2008-10-23 Muhr Und Bender Kg Rolling process to make a flexible ribbon with a cathode anti-corrosion coating on hot dipped or electro-galvanized steel
KR20100019500A (en) * 2007-06-15 2010-02-18 수미도모 메탈 인더스트리즈, 리미티드 Process for manufacturing shaped article
WO2009090443A1 (en) * 2008-01-15 2009-07-23 Arcelormittal France Process for manufacturing stamped products, and stamped products prepared from the same
CN101358366A (en) * 2008-09-02 2009-02-04 厦门大学 Method for preparing high interfacial strength nickel-zinc plating steel belt

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015118869A1 (en) 2014-11-04 2016-05-04 Voestalpine Stahl Gmbh Method for producing a corrosion protection coating for hardenable steel sheets and corrosion protection layer for hardenable steel sheets
WO2019020169A1 (en) 2017-07-25 2019-01-31 Thyssenkrupp Steel Europe Ag Sheet metal component, produced by hot working a flat steel product, and method for the production thereof
DE102020204356A1 (en) 2020-04-03 2021-10-07 Thyssenkrupp Steel Europe Ag Hardened sheet metal component, produced by hot forming a flat steel product and process for its production

Also Published As

Publication number Publication date
CN102625863B (en) 2015-11-25
CA2758629A1 (en) 2011-03-03
EP2414562A1 (en) 2012-02-08
EP2290133A1 (en) 2011-03-02
KR20120054563A (en) 2012-05-30
ZA201107674B (en) 2012-07-25
PL2290133T3 (en) 2012-09-28
JP5650222B2 (en) 2015-01-07
JP2013503254A (en) 2013-01-31
BRPI1015352A2 (en) 2016-05-10
AU2010288814B2 (en) 2014-05-29
US10053752B2 (en) 2018-08-21
CA2758629C (en) 2016-10-11
AU2010288814A1 (en) 2011-11-10
PL2414562T3 (en) 2013-06-28
ATE554190T1 (en) 2012-05-15
ES2384135T3 (en) 2012-06-29
KR101674625B1 (en) 2016-11-09
US20120164472A1 (en) 2012-06-28
US9284655B2 (en) 2016-03-15
CN102625863A (en) 2012-08-01
US20160160322A1 (en) 2016-06-09
RU2496887C1 (en) 2013-10-27
PT2290133E (en) 2012-06-19
RU2012111247A (en) 2013-10-10
MX2011011932A (en) 2011-12-08
ES2400221T3 (en) 2013-04-08
WO2011023418A1 (en) 2011-03-03
PT2414562E (en) 2013-03-04
EP2414562B1 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
EP2290133B1 (en) Method for producing a steel component with an anti-corrosive metal coating and steel component
EP2393953B1 (en) Method for producing a coated steel component by means of hot forming and steel component produced by means of hot forming
EP2683843B1 (en) Flat steel product and method for producing a flat steel product
EP2848715B1 (en) Method for producing a steel component with an anti-corrosive metal coating
EP2848709B1 (en) Method for producing a steel component with an anti-corrosive metal coating and steel component
EP2045360B1 (en) Method for manufacturing a steel part by hot forming and steel part manufactured by hot forming
EP3215656B1 (en) Method for producing an anti-corrosion coating for hardenable steel sheets and anti-corrosion layer for hardenable steel sheets
DE112019003814T5 (en) A method and an apparatus for the production of corrosion-resistant hot stamping parts
DE102016111725A1 (en) Process and flux for hot dip galvanizing
EP4110970B1 (en) Method for producing hardened steel components with a conditioned zinc alloy corrosion protection layer
WO2020094285A1 (en) Hardened component, comprising a steel substrate and an anti-corrosion coating, corresponding component for producing the hardened component, production method, and use
EP3947753B1 (en) Method for producing a steel sheet with improved adhesion of metallic hot-dip coatings
EP4110972B1 (en) Method for producing hardened steel components with a conditioned zinc alloy corrosion protection layer
WO2021148312A1 (en) Steel component comprising an anti-corrosion layer containing manganese
EP3872231A1 (en) Method for conditioning the surface of a metal strip coated with a zinc alloy corrosion protection layer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

17P Request for examination filed

Effective date: 20110309

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502009003291

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C25D0003560000

Ipc: C21D0001180000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C25D 5/48 20060101ALI20111219BHEP

Ipc: C23C 2/40 20060101ALI20111219BHEP

Ipc: C21D 1/18 20060101AFI20111219BHEP

Ipc: C25D 3/56 20060101ALI20111219BHEP

Ipc: C25D 5/50 20060101ALI20111219BHEP

Ipc: C21D 8/02 20060101ALI20111219BHEP

Ipc: C23F 17/00 20060101ALI20111219BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 554190

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009003291

Country of ref document: DE

Effective date: 20120614

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20120608

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2384135

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20120629

Ref country code: CH

Ref legal event code: NV

Representative=s name: TROESCH SCHEIDEGGER WERNER AG

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20120418

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 12201

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120818

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120719

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E014797

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: ARCELORMITTAL FRANCE

Effective date: 20130116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502009003291

Country of ref document: DE

Effective date: 20130116

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: ARCELORMITTAL FRANCE RESEARCH & DEVELOPMENT INTELL

Effective date: 20130116

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120825

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140820

Year of fee payment: 6

Ref country code: IE

Payment date: 20140820

Year of fee payment: 6

Ref country code: CH

Payment date: 20140820

Year of fee payment: 6

Ref country code: NL

Payment date: 20140820

Year of fee payment: 6

Ref country code: RO

Payment date: 20140814

Year of fee payment: 6

Ref country code: FI

Payment date: 20140821

Year of fee payment: 6

Ref country code: CZ

Payment date: 20140721

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20140807

Year of fee payment: 6

Ref country code: TR

Payment date: 20140804

Year of fee payment: 6

Ref country code: ES

Payment date: 20140821

Year of fee payment: 6

Ref country code: PL

Payment date: 20140718

Year of fee payment: 6

Ref country code: SK

Payment date: 20140721

Year of fee payment: 6

Ref country code: AT

Payment date: 20140822

Year of fee payment: 6

Ref country code: FR

Payment date: 20140820

Year of fee payment: 6

Ref country code: GB

Payment date: 20140820

Year of fee payment: 6

Ref country code: SE

Payment date: 20140820

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140826

Year of fee payment: 6

Ref country code: PT

Payment date: 20140226

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20140901

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

REG Reference to a national code

Ref country code: DE

Ref legal event code: R103

Ref document number: 502009003291

Country of ref document: DE

Ref country code: DE

Ref legal event code: R064

Ref document number: 502009003291

Country of ref document: DE

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

REG Reference to a national code

Ref country code: CH

Ref legal event code: PLX

27W Patent revoked

Effective date: 20151018

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20151018

REG Reference to a national code

Ref country code: PT

Ref legal event code: MP4A

Effective date: 20160224

REG Reference to a national code

Ref country code: SK

Ref legal event code: MC4A

Ref document number: E 12201

Country of ref document: SK

Effective date: 20151018

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 554190

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150825

Ref country code: LI

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20120418

Ref country code: CH

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20120418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150826

REG Reference to a national code

Ref country code: AT

Ref legal event code: MA03

Ref document number: 554190

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151018

REG Reference to a national code

Ref country code: SE

Ref legal event code: ECNC

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150825