JP6493472B2 - Manufacturing method of hot press-formed member - Google Patents

Manufacturing method of hot press-formed member Download PDF

Info

Publication number
JP6493472B2
JP6493472B2 JP2017169935A JP2017169935A JP6493472B2 JP 6493472 B2 JP6493472 B2 JP 6493472B2 JP 2017169935 A JP2017169935 A JP 2017169935A JP 2017169935 A JP2017169935 A JP 2017169935A JP 6493472 B2 JP6493472 B2 JP 6493472B2
Authority
JP
Japan
Prior art keywords
layer
hot press
plating
zinc alloy
plating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017169935A
Other languages
Japanese (ja)
Other versions
JP2018016887A (en
Inventor
敬士 二葉
敬士 二葉
浩史 竹林
浩史 竹林
高橋 克
克 高橋
和仁 今井
和仁 今井
幸司 秋岡
幸司 秋岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2017169935A priority Critical patent/JP6493472B2/en
Publication of JP2018016887A publication Critical patent/JP2018016887A/en
Application granted granted Critical
Publication of JP6493472B2 publication Critical patent/JP6493472B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、加熱された鋼材をプレス加工して製造される熱間プレス成形部材、特に、自動車の足廻り部品や車体下部補強部材といった、高強度かつ高耐食性を求められる部品に用いられる熱間プレス成形部材の製造方法に関する。 The present invention is a hot press-formed member produced by pressing a heated steel material, particularly hot parts used for parts that require high strength and high corrosion resistance, such as automobile undercarriage parts and lower body reinforcement members. The present invention relates to a method for manufacturing a press-formed member.

環境意識の高まりからCOの排出量の削減に大きく資する自動車の軽量化がより一層求められている。使用する鋼材の高強度化を図って鋼材の厚みを減らすことにより、自動車を軽量化する努力が続けられている。しかし、高強度化に伴って鋼材の成形性(以降の説明では鋼板のプレス加工性を例にとる)が低下するため、鋼板をプレス成形により所望の形状に加工する際における鋼板のカジリ,破断や、スプリングバック、さらには形状のばらつきといった様々な問題が発生する。 Due to increasing environmental awareness, there is a further demand for lighter automobiles that greatly contribute to the reduction of CO 2 emissions. Efforts are being made to reduce the weight of automobiles by increasing the strength of the steel used and reducing the thickness of the steel. However, since the formability of steel materials (in the following explanation, taking the press workability of steel sheets as an example) decreases with increasing strength, the galling and fracture of steel sheets when processing steel sheets into the desired shape by press forming In addition, various problems such as springback and variation in shape occur.

近年、熱間プレス成形技術がこれらの問題の解決策として広く用いられる。熱間プレス成形技術とは、高炭素鋼板を高温に加熱した状態でプレス成形および急冷することにより、高強度鋼板における成形時の上記問題の発生を防ぎながら、焼入れによって所望の高強度を有する熱間プレス成形部材を製造する技術である。   In recent years, hot press molding technology has been widely used as a solution to these problems. The hot press forming technology is a heat treatment with a desired high strength by quenching while preventing the occurrence of the above problems during forming in a high strength steel plate by press forming and quenching in a state where the high carbon steel plate is heated to a high temperature. This is a technique for producing an intermediate press-formed member.

しかし、裸の鋼板ままでは加熱中に密着性が乏しい酸化物が鋼板表面に生成し、この酸化物が熱間プレス成形中に脱落することにより金型や鋼板の表面を損傷させることがあり、プレス金型の手入れを頻繁に行ったり、熱間プレス成形部材にショットブラスト処理といった酸化物除去処理を行う必要が生じ、熱間プレス成形部材の生産性を低下させる一因となる。さらに、このようにして製造された熱間プレス成形部材は、亜鉛めっき等の防錆処理を施されていないため、化成処理および電着塗装を施しても、特に自動車の足廻り部品や車体下部補強部材といった、高強度かつ高耐食性を求められる部品に要求される耐食性を満足できない。   However, in the case of a bare steel plate, an oxide with poor adhesion is generated on the surface of the steel plate during heating, and this oxide may damage the surface of the mold and the steel plate by dropping during hot press forming, It is necessary to frequently care for the press mold or to perform an oxide removing process such as a shot blasting process on the hot press-formed member, which is a cause of reducing the productivity of the hot press-formed member. Furthermore, since the hot press-formed member produced in this way has not been subjected to rust prevention treatment such as galvanization, even if it has been subjected to chemical conversion treatment and electrodeposition coating, in particular, undercarriage parts of automobiles and lower parts of the vehicle body It cannot satisfy the corrosion resistance required for parts such as reinforcing members that require high strength and high corrosion resistance.

特許文献1には、熱間プレス成形用鋼板にアルミニウムめっきを施す技術が、このような密着性が乏しい酸化物の生成を抑制して熱間プレス成形部材の塗装後耐食性を確保する技術として、開示される。アルミニウムめっき皮膜は、優れた耐酸化性を示すために一部で実用化が進んでいるものの、犠牲防食性を有さないために上記の部品に適用することは難しく、亜鉛系めっきされた熱間プレス成形用鋼板に対する要望が強い。   In Patent Document 1, as a technology for ensuring the corrosion resistance after coating of a hot press-formed member by suppressing the formation of such an oxide having poor adhesion, the technology of applying aluminum plating to a hot press-formed steel plate, Disclosed. Aluminum plating film has been put into practical use in order to show excellent oxidation resistance, but it is difficult to apply to the above parts because it does not have sacrificial corrosion resistance. There is a strong demand for steel plates for hot press forming.

このような要望に応えるために亜鉛系めっきによる熱間プレス成形用鋼板の開発が進められている。しかし、亜鉛は融点419℃,沸点907℃であり、実際に熱間プレス成形が行われる温度域では液相または気相となるため、亜鉛めっき層の蒸散や酸化が発生し、残亜鉛量が低下して耐食性が著しく劣化したり、液相状態の亜鉛によりプレス成形時にめっき層の割れが誘発されるという問題がある。この問題を回避する方法が、特許文献2〜6に開示される。   In order to meet such a demand, development of a hot-press forming steel sheet by zinc-based plating is underway. However, since zinc has a melting point of 419 ° C. and a boiling point of 907 ° C. and is in the liquid phase or gas phase in the temperature range where hot press molding is actually performed, the galvanized layer is evaporated and oxidized, and the amount of residual zinc is There is a problem that the corrosion resistance is remarkably deteriorated due to lowering, or cracking of the plating layer is induced at the time of press molding by zinc in a liquid phase. Methods for avoiding this problem are disclosed in Patent Documents 2-6.

特許文献2には、C:0.08〜0.45%(本明細書では化学組成に関する「%」は特に断りがない限り「質量%」を意味する)、MnおよびCrの一方または双方:0.5〜3.0%を含有する鋼板に、Fe含有量が5〜80%であるFe−Zn合金からなるとともにZn付着量が10〜90g/mであるZnめっき層を有し、800〜1000℃に加熱されてZnO層を形成した後にプレスされる熱間プレス用鋼板が開示される。 In Patent Document 2, C: 0.08 to 0.45% (in this specification, “%” relating to chemical composition means “% by mass” unless otherwise specified), one or both of Mn and Cr: a steel sheet containing 0.5 to 3.0%, has a Zn plating layer Zn deposition amount is 10~90g / m 2 with Fe content is from Fe-Zn alloy is 5% to 80%, A steel sheet for hot pressing that is pressed after being heated to 800 to 1000 ° C. to form a ZnO layer is disclosed.

特許文献3には、C:0.1〜0.5%、Si:0.05〜0.5%、Mn:0.5〜3%を含有する鋼板に、めっき層断面が、素地鋼板界面近傍が層状でFeを50〜80%含有するZn−Fe合金層からなり、それ以外の部分が、Feを10〜30%含有するZn−Fe合金相マトリックス中にFeを50〜80%含有する球状の形態を有するZn−Fe合金相が島状に分布するZn−Fe合金めっき層があり、さらに、めっき層の表層に厚さが10〜100nmでF元素を含有するZr,Ti,Siの一種または二種以上の金属酸化物または金属水酸化物の一方または双方の皮膜がある熱間プレス鋼材が開示される。   Patent Document 3 discloses that a steel sheet containing C: 0.1 to 0.5%, Si: 0.05 to 0.5%, and Mn: 0.5 to 3% has a plating layer cross section of the base steel sheet interface. The vicinity is composed of a layered Zn-Fe alloy layer containing 50 to 80% Fe, and the other part contains 50 to 80% Fe in a Zn-Fe alloy phase matrix containing 10 to 30% Fe. There is a Zn-Fe alloy plating layer in which a Zn-Fe alloy phase having a spherical shape is distributed in an island shape, and the surface layer of the plating layer is made of Zr, Ti, Si having a thickness of 10 to 100 nm and containing F element Disclosed is a hot pressed steel having one or both coatings of one or more metal oxides or metal hydroxides.

特許文献4には、表面に亜鉛または亜鉛を含むめっき層を設けた鋼板において、めっき層の上層として設けられた、Fe,NiおよびCoからなる群から選んだ一種または二種以上の金属を主成分として含む金属あるいは合金からなるめっき層を有し、700〜1000℃に加熱されてプレスされる熱間プレス成形用鋼材が開示される。   Patent Document 4 mainly uses one or more metals selected from the group consisting of Fe, Ni, and Co provided as an upper layer of a plating layer in a steel sheet having a zinc or zinc-containing plating layer on the surface. A hot press-forming steel material having a plating layer made of a metal or alloy contained as a component and heated and pressed at 700 to 1000 ° C. is disclosed.

特許文献5には、C:0.1〜0.8%、Mn:0.5〜3%を含有する鋼板表面に、Zn60%以上を含有するZn系めっきを有し、望ましくは、さらにその表面に、Ni,Cu,Cr,Snの1種または2種以上の元素を合計で80%以上含有する層を有する熱間プレス用Zn系めっき鋼板が開示される。   Patent Document 5 has a Zn-based plating containing Zn of 60% or more on a steel plate surface containing C: 0.1 to 0.8% and Mn: 0.5 to 3%. Disclosed is a Zn-plated steel sheet for hot pressing having a layer containing a total of 80% or more of one or more elements of Ni, Cu, Cr, and Sn on the surface.

さらに、特許文献6には、鋼板表面に、順に、60%以上のNiを含み、残部がZnおよび不可避的不純物からなり、付着量が0.01〜5g/mのめっき層Iと、10〜25%のNiを含み、残部がZnおよび不可避的不純物からなり、付着量が10〜90g/mのめっき層IIとを有する熱間プレス用鋼板が開示される。 Further, Patent Document 6 discloses that the steel plate surface contains 60% or more of Ni in order, the balance being Zn and inevitable impurities, and a plating layer I having an adhesion amount of 0.01 to 5 g / m 2 and 10 A steel sheet for hot pressing is disclosed, which includes ˜25% Ni, the balance being Zn and inevitable impurities, and a plating layer II having an adhesion amount of 10 to 90 g / m 2 .

特開2000−38640号公報JP 2000-38640 A 特許第3582512号明細書Japanese Patent No. 3582512 特許第4695459号明細書Japanese Patent No. 4695459 特許第3591501号明細書Japanese Patent No. 3591501 特開2004−124207号公報JP 2004-124207 A 特許第4883240号明細書Japanese Patent No. 4883240

特許文献2により開示される熱間プレス用鋼板によれば、Zn蒸散は抑制され、耐食性も良好であるとともに液相状態のZnによる割れを生じないZnめっき皮膜が得られるものの、適用する部品が高い耐食性を要求されるものである場合には耐食性が不足することがあり、さらなる耐食性の改善が求められる。   According to the hot-press steel sheet disclosed in Patent Document 2, Zn transpiration is suppressed, corrosion resistance is good, and a Zn plating film that does not cause cracking due to Zn in a liquid state is obtained, but the parts to be applied are When high corrosion resistance is required, the corrosion resistance may be insufficient, and further improvement in corrosion resistance is required.

特許文献3により開示される熱間プレス鋼材では、プレス成形時には熱間プレス成形用鋼板を780℃未満まで冷却する必要があるために生産性の低下が避けられず、プレス成形開始温度の高温化が求められる。   In the hot-pressed steel material disclosed in Patent Document 3, it is necessary to cool the hot-press-forming steel sheet to less than 780 ° C. during press forming, so a decrease in productivity is inevitable, and the press-forming start temperature is increased. Is required.

特許文献4により開示される熱間プレス成形用鋼材や、特許文献5により開示される熱間プレス用Zn系めっき鋼板は、上層Niめっきによる改善効果が著しく、Znの蒸散を抑えることができ、耐食性が高く、高温での成形でも割れが生じないめっき皮膜を確かに得られるものの、特許文献2により開示される熱間プレス用鋼板と同様に、耐食性の要求が厳しい部品に適用すると、耐食性が不足したり、犠牲防食能を発揮せずに孔食となることがあり、性能の安定性に欠ける。   The steel material for hot press forming disclosed in Patent Document 4 and the Zn-based plated steel sheet for hot pressing disclosed in Patent Document 5 are markedly improved by the upper Ni plating, and can suppress the transpiration of Zn. Although it is possible to obtain a plating film that has high corrosion resistance and does not crack even when molded at a high temperature, as with the hot-press steel sheet disclosed in Patent Document 2, when applied to parts that require strict corrosion resistance, the corrosion resistance is reduced. Insufficient or may exhibit pitting corrosion without exhibiting sacrificial anticorrosive ability, and lack performance stability.

さらに、特許文献6では、特許文献6により開示される熱間プレス用鋼板の穴あき耐食性は優れるとされるが、本発明者らが実際に確認試験を行なったところ、素地まで達する傷を与えた場合には孔食が誘発され、むしろ耐穴あき腐食性が劣る結果となった。   Furthermore, in Patent Document 6, it is said that the steel sheet for hot press disclosed in Patent Document 6 has excellent perforation corrosion resistance. However, when the present inventors actually conducted a confirmation test, they gave scratches that reached the substrate. In this case, pitting corrosion was induced, resulting in poor perforated corrosion resistance.

このように、特許文献2〜4ならびに特許文献6により開示された技術の課題は、高い耐食性の維持と、高温成形時の液相状態の亜鉛に起因する割れによるプロセスウィンドウの幅(加熱温度の許容範囲)の十分な確保とを両立できないことである。すなわち、高い耐食性、特に高い犠牲防食性を確保するためには亜鉛の蒸散を抑え、亜鉛主体のFe−Zn合金相を残存させることが望ましいが、亜鉛主体のFe−Zn合金相の融点は最高でも780℃であり、加熱温度の許容範囲が狭くなる(プロセスウィンドウの狭幅化)。一方、耐食性とプロセスウィンドウの確保の両立が可能な技術である上層Niめっき技術(特許文献5)は、性能の安定性に課題がある。   As described above, the problems of the techniques disclosed in Patent Documents 2 to 4 and Patent Document 6 are the maintenance of high corrosion resistance and the width of the process window due to cracking due to zinc in the liquid phase during high temperature molding (heating temperature (Tolerable range) cannot be sufficiently secured. That is, in order to ensure high corrosion resistance, particularly high sacrificial corrosion resistance, it is desirable to suppress zinc transpiration and leave the zinc-based Fe—Zn alloy phase, but the zinc-based Fe—Zn alloy phase has the highest melting point. However, it is 780 ° C., and the allowable range of the heating temperature is narrowed (the process window is narrowed). On the other hand, the upper layer Ni plating technique (Patent Document 5), which is a technique capable of ensuring both corrosion resistance and a process window, has a problem in stability of performance.

本発明者らは、上記課題を解決するためには上層Niめっき技術による性能の安定化を図ることが最も有効であると考え、鋭意検討を重ねた結果、
(A)合金めっき層の残存ならびに合金めっき層中のFe,Niの濃度が、耐食性と高温成形時の割れに大きく影響すること、および
(B)固溶体層中のNi濃度の抑制が、長期間の犠牲防食能と耐穴あき腐食性に大きく影響すること
を知見した。
The present inventors considered that it is most effective to stabilize the performance by upper layer Ni plating technology in order to solve the above-mentioned problems, and as a result of repeated earnest studies,
(A) The remaining of the alloy plating layer and the concentration of Fe and Ni in the alloy plating layer greatly affect the corrosion resistance and cracking during high temperature forming, and (B) the suppression of the Ni concentration in the solid solution layer is It has been found that the sacrificial anticorrosive ability and perforated corrosion resistance of the steel are greatly affected.

すなわち、Fe−Zn合金では780℃以上ではどの合金めっき相でも液相となるが、ここにNiを加えると新しい合金めっき相としてFe−Ni−Zn合金めっき相が形成され、この合金めっき相の融点が780℃以上であることによりFe−Znの二元系合金よりも高温まで液相が生成せず、Znが蒸散せずに残存するために耐食性が向上し、かつ高温で凝固するために高温成形時の割れが発生しない。従来の技術ではこの知見に基づき、Znめっき上にNiなどの金属または合金を少量めっき(フラッシュめっき)して表層のみ高融点化することが提案されていたが、素地鋼材における上層のめっき量のみに着目しており、下層のめっき層の組成や熱間プレス成形後の皮膜構造は考慮していないため、熱間プレス成形で所望の融点を備える合金めっき相を安定して形成することができず、Zn蒸散や液相の生成を十分に制御できなかったために性能が得られなかったと考えられる。   That is, in an Fe—Zn alloy, any alloy plating phase becomes a liquid phase at 780 ° C. or higher, but when Ni is added here, an Fe—Ni—Zn alloy plating phase is formed as a new alloy plating phase. Because the melting point is 780 ° C. or higher, the liquid phase does not form up to a higher temperature than the binary alloy of Fe—Zn, the corrosion resistance is improved because Zn remains without evaporating, and it solidifies at a high temperature. No cracking during high temperature molding. Based on this knowledge, the conventional technology has proposed that a small amount of metal or alloy such as Ni is plated on Zn plating (flash plating) to increase the melting point of the surface layer only. Since the composition of the lower plating layer and the film structure after hot press forming are not taken into consideration, an alloy plating phase having a desired melting point can be stably formed by hot press forming. Therefore, it is considered that the performance could not be obtained because Zn evaporation or liquid phase generation could not be sufficiently controlled.

また、耐食性と高温成形時の割れの回避を望むあまりに上層Niめっき量を増やし過ぎた場合や、Ni濃度の高いZn−Ni合金めっきを選択した場合、高価なNiを多量に使用することによりコスト的に不利になるばかりでなく、固溶体層のNi濃度も高くなり、短期間は犠牲防食能を発揮するものの、Znの豊富な合金めっき相を消費し尽くした後にさらに腐食が進むにつれて孔食的となり、耐食性に劣る結果となると考えられる。これは、固溶体層中のNi濃度が高くなることにより素地鋼材との電位差が小さくなり過ぎるために発生すると考えられる。このような腐食が進むにつれて孔食的となる傾向は、特許文献6により開示されるようなめっき層と鋼材界面にNiを多量の含む場合に特に見られる。   In addition, if the amount of upper Ni plating is excessively increased and corrosion resistance and avoidance of cracking during high-temperature forming are desired, or if Zn-Ni alloy plating with a high Ni concentration is selected, the cost is increased by using a large amount of expensive Ni. In addition to being disadvantageous, the Ni concentration of the solid solution layer is also high and the sacrificial anticorrosive ability is exhibited for a short period of time. However, as the corrosion further progresses after consuming the Zn-rich alloy plating phase, It is considered that the result is inferior in corrosion resistance. This is considered to occur because the potential difference from the base steel material becomes too small due to the high Ni concentration in the solid solution layer. Such a tendency to become pitting corrosion as corrosion progresses is particularly seen when a large amount of Ni is contained in the plating layer and steel material interface as disclosed in Patent Document 6.

図1は、カーケンダルボイドと呼ばれる拡散性の空隙が生成した状況を示す断面SEM写真である。
他にも、上層Niめっき量を増やし過ぎた場合や、Ni濃度の高いZn−Ni合金めっきを選択した場合には、固溶体層から素地鋼材中へのZnやNiの拡散速度と、素地鋼材から固溶体層へのFeの拡散速度と、固溶体層から合金めっき相へのFeの拡散速度と、合金めっき相から固溶体層へのZnやNiの拡散速度との間の差が大きくなり、図1の断面SEM写真により示されるような、カーケンダルボイドと呼ばれる拡散性の空隙が生成し易くなる。このような空隙は、加工時に皮膜割れを起こす原因となり、空隙が多くなると合金めっき相の剥離をも引き起こし、卑な合金相を大きく失ってしまう。そのため、耐食性に劣る結果となると考えられる。
FIG. 1 is a cross-sectional SEM photograph showing a situation where diffusible voids called Kirkendall voids are generated.
In addition, when the amount of upper layer Ni plating is increased excessively or when Zn-Ni alloy plating with a high Ni concentration is selected, the diffusion rate of Zn or Ni from the solid solution layer into the base steel material, and the base steel material The difference between the diffusion rate of Fe into the solid solution layer, the diffusion rate of Fe from the solid solution layer into the alloy plating phase, and the diffusion rate of Zn and Ni from the alloy plating phase into the solid solution layer is increased, as shown in FIG. Diffusive voids called Kirkendall voids are easily generated as shown by the cross-sectional SEM photograph. Such voids cause film cracking during processing. If the voids increase, peeling of the alloy plating phase is caused and the base alloy phase is largely lost. Therefore, it is thought that it becomes a result inferior to corrosion resistance.

本発明者らは、熱間プレス成形の前後の合金めっき相中のFe濃度とNi濃度,ならびに熱間プレス成形後の固溶体層中のNi濃度を制御することにより、耐食性とプロセスウィンドウの確保を高次元で両立でき、かつ安定して性能を発揮することができることを知見して、本発明を完成した。   By controlling the Fe concentration and Ni concentration in the alloy plating phase before and after hot press forming, and the Ni concentration in the solid solution layer after hot press forming, the present inventors ensure corrosion resistance and process window. The present invention has been completed by finding out that it is possible to achieve both high dimensions and stably exhibit performance.

本発明は、鋼板上にFeを含む亜鉛合金めっき層を設け、当該亜鉛合金めっき層の上に、Niを主成分として含む金属あるいは合金からなるめっき層を設けた後に、当該鋼板に熱間プレス成形を行うことにより、
質量%で、Zn含有量が15%以上、望ましく30%以上、Ni含有量が5%未満である固溶体層上または固溶体層内に形成された、質量%でZn85〜70%含有し、NiとFeの合計で15〜30%、望ましくは17〜24%、かつNiが3〜15%、望ましくは5〜12%となる亜鉛合金層を有する皮膜を、表層に有する熱間プレス成形部材を製造する、熱間プレス成形部材の製造方法である。
本発明では、Feを含む亜鉛合金めっき層およびNiを主成分として含む金属あるいは合金からなるめっき層は、全体として、FeとNiの濃度の合計で12〜25%かつNi/Fe比が0.15以上となる、Znを含んだ皮膜であることが望ましい。
これらの本発明では、Feを含む亜鉛合金めっき層は合金化溶融亜鉛めっき層であり、Niを主成分として含む金属あるいは合金からなるめっき層は電気めっき層であることが望ましい。
これらの本発明では、熱間プレス成形は、鋼板を10℃/sec以上の昇温速度でAc 点以上の温度域に昇温してこの温度域に3分間未満保持した後、臨界冷却速度以上の速度で冷却しながらプレス成形することにより、行うことが望ましい。この場合に、プレス成形の開始温度は、780℃以上であってFeを含む亜鉛合金めっき層の融点未満であることが望ましい。
In the present invention, a zinc alloy plating layer containing Fe is provided on a steel plate, a plating layer made of a metal or alloy containing Ni as a main component is provided on the zinc alloy plating layer, and then hot pressing is performed on the steel plate. By performing molding,
The Zn content is 15% or more, desirably 30% or more, and the Ni content is less than 5%. The Ni content is formed on or in the solid solution layer , and the Zn content is 85 to 70% by mass. Manufacture a hot press-molded member having a coating layer with a zinc alloy layer of 15 to 30%, preferably 17 to 24%, and Ni of 3 to 15%, preferably 5 to 12% in total on the surface layer of Fe This is a method for producing a hot press-formed member.
In the present invention, the zinc alloy plating layer containing Fe and the plating layer made of a metal or alloy containing Ni as a main component as a whole have a total concentration of Fe and Ni of 12 to 25% and a Ni / Fe ratio of 0.1. It is desirable that the film contains Zn and is 15 or more.
In these inventions, the zinc alloy plating layer containing Fe is preferably an alloyed hot dip galvanizing layer, and the plating layer made of a metal or alloy containing Ni as a main component is preferably an electroplating layer.
In these present inventions, the hot press forming is performed by heating the steel sheet to a temperature range of Ac 3 point or higher at a temperature increase rate of 10 ° C./sec or more and holding it in this temperature range for less than 3 minutes, and then the critical cooling rate. It is desirable to perform by pressing while cooling at the above speed. In this case, it is desirable that the press molding start temperature is 780 ° C. or higher and lower than the melting point of the zinc alloy plating layer containing Fe.

本発明では、固溶体層中のNi濃度は4.0%未満であることが望ましく、より望ましくは3.0%未満である。
なお、NiとFeの合計で15〜30%となる亜鉛合金層は、Fe−Zn合金のΓ相とNi−Zn合金のγ相の中間的な、両相とは異なる別の相であるが、格子間隔などが近いためにX線回折法などではこれら3相の区別は難しいため、断面からのSEM−EDX分析などの組成分析可能な機器を使用することにより判別される。
In the present invention, the Ni concentration in the solid solution layer is desirably less than 4.0%, and more desirably less than 3.0%.
Note that the zinc alloy layer, which is 15 to 30% in total of Ni and Fe, is an intermediate phase between the Γ phase of the Fe—Zn alloy and the γ phase of the Ni—Zn alloy, but different from both phases. Since the lattice spacing and the like are close, it is difficult to distinguish these three phases by the X-ray diffraction method or the like. Therefore, the determination is made by using an instrument capable of composition analysis such as SEM-EDX analysis from a cross section.

本発明では、亜鉛合金層の一部または全部が、金属状態で存在するAlを0.01%以上含有することがより望ましい。Alは、Ni,Znと親和性が高く、高融点の合金を形成するためにZnの蒸散抑制に効果がある。このようなAlは、合金層に金属状態で存在することが必要であるが、このことは断面からのEPMA分析などによりO,Al,Fe,NiやZnの存在位置を特定し、比較することにより判別される。   In the present invention, it is more desirable that a part or all of the zinc alloy layer contains 0.01% or more of Al present in a metallic state. Al has a high affinity with Ni and Zn, and is effective in suppressing the transpiration of Zn in order to form a high melting point alloy. Such Al needs to exist in a metal state in the alloy layer. This means that the location of O, Al, Fe, Ni and Zn is identified and compared by EPMA analysis from a cross section. Is determined.

本発明では、亜鉛合金層が、皮膜の厚み方向に分散して形成されることが望ましい。
このような皮膜を形成するための熱間プレス成形用鋼材としては、例えば鋼板上にめっき層全体としてFeとNiの合計で12〜25%、望ましくは15〜23%、かつNi/Fe比が0.15以上、望ましくは0.2〜1.5、より望ましくは0.25〜1.0となる、Znを含むめっき層を設けたものが例示される。
In the present invention, it is desirable that the zinc alloy layer is formed dispersed in the thickness direction of the coating.
As a hot press forming steel material for forming such a film, for example, a total of 12 to 25%, preferably 15 to 23%, and a Ni / Fe ratio of Fe and Ni as a whole plating layer on a steel plate. Examples are provided with a plating layer containing Zn that is 0.15 or more, preferably 0.2 to 1.5, more preferably 0.25 to 1.0.

特に、鋼板上に設けた皮膜がFeを含む亜鉛合金めっき層を下層とし、当該めっき層の上層として、Niを主成分として含む金属あるいは合金からなるめっき層を設けたものが、より望ましい。このような鋼材を使用し、通常の方法により熱間プレス成形を行えば上述の皮膜を有する熱間プレス成形部材を得ることができる。   In particular, it is more desirable that the coating provided on the steel sheet has a zinc alloy plating layer containing Fe as a lower layer and a plating layer made of a metal or alloy containing Ni as a main component as the upper layer of the plating layer. If such a steel material is used and hot press molding is performed by an ordinary method, a hot press molded member having the above-described film can be obtained.

以上のような鋼材を用い、前記皮膜を有する熱間プレス成形部材とすることにより、780℃以上の高温で熱間プレス成形を行っても割れが発生せず、腐食の厳しい部位に適用可能な高い耐食性を有する熱間プレス成形部材を安定して製造することができるようになる。   By using the steel material as described above and forming a hot press-molded member having the film, cracks do not occur even when hot press-molding is performed at a high temperature of 780 ° C. or higher, and can be applied to severely corroded parts. A hot press-formed member having high corrosion resistance can be stably produced.

図1は、カーケンダルボイドと呼ばれる拡散性の空隙が生成した状況を示す断面SEM写真である。FIG. 1 is a cross-sectional SEM photograph showing a situation where diffusible voids called Kirkendall voids are generated. 図2は、断面SEM写真である。FIG. 2 is a cross-sectional SEM photograph. 図3は、断面SEM写真である。FIG. 3 is a cross-sectional SEM photograph.

以下、本発明における各限定範囲について詳細に説明する。
1.熱間プレス成形部材の固溶体層
固溶体層は、FeにZnが固溶した相であり、Znを主体とする後述の亜鉛合金相と全く同等ではないものの犠牲防食性を有する。この固溶体層にNiが含まれると、急激に貴化が進み、僅か数%の含有で素地のFeよりも貴な電位となり、孔食を誘発する。固溶体層中のZnの減少に伴ってより少量のNiでも貴化程度が大きくなるため、固溶体層中のNi濃度は5.0%未満とし、4.0%未満であることがより望ましく、3.0%未満であることはさらに望ましい。
Hereinafter, each limited range in the present invention will be described in detail.
1. Solid solution layer of hot press-molded member The solid solution layer is a phase in which Zn is solid-solved in Fe, and has a sacrificial anticorrosive property although it is not completely equivalent to a zinc alloy phase described below mainly composed of Zn. When Ni is contained in this solid solution layer, nobleness rapidly progresses, and if it contains only a few%, it becomes a noble potential compared with Fe of the base, and induces pitting corrosion. As the Zn content in the solid solution layer decreases, the degree of preciousness increases even with a smaller amount of Ni. Therefore, the Ni concentration in the solid solution layer is preferably less than 5.0% and more preferably less than 4.0%. More preferably, it is less than 0.0%.

固溶体層中のZn含有量が15%未満では例えNiが含まれなくても素地のFeとの電位差がほぼ無くなるため、防食層としての固溶体層のZn濃度は下限を15%とする。本発明では固溶体層中にNiが不可避的に含まれるため、固溶体層のZn濃度は20%以上が好ましく、30%以上がより望ましい。   If the Zn content in the solid solution layer is less than 15%, even if Ni is not included, the potential difference from the base Fe is almost eliminated. Therefore, the lower limit of the Zn concentration of the solid solution layer as the anticorrosion layer is 15%. In the present invention, since Ni is inevitably contained in the solid solution layer, the Zn concentration in the solid solution layer is preferably 20% or more, and more preferably 30% or more.

ここで、防食層としての固溶体層のさらに下層にZn濃度が15%以下でNiを含まない固溶体層が形成されても本発明の効果を損なわれることはない。   Here, even if a solid solution layer containing 15% or less of Zn and containing no Ni is formed in a lower layer of the solid solution layer as the anticorrosion layer, the effect of the present invention is not impaired.

2.熱間プレス成形部材の亜鉛合金相
亜鉛合金相は、上述の固溶体層上または固溶体層内に存在する。亜鉛合金層は、皮膜の厚み方向に分散して形成されることが望ましい。卑な合金相が貴化した固溶体層を分断するように存在することによって腐食の経路を分散でき、より孔食を抑制することができる。亜鉛合金相中のFe,Ni,Znの濃度比は、高温での成形性と耐食性に大きく影響する要素である。
2. Zinc Alloy Phase of Hot Press-Molded Member The zinc alloy phase exists on or in the solid solution layer described above. The zinc alloy layer is desirably formed in a dispersed manner in the thickness direction of the coating. The presence of the base alloy phase so as to divide the noble solid solution layer can disperse the corrosion path, and can further suppress pitting corrosion. The concentration ratio of Fe, Ni, and Zn in the zinc alloy phase is a factor that greatly affects the formability and corrosion resistance at high temperatures.

亜鉛合金相中のNiとFeの濃度の合計が15%未満またはNiが3%未満では、亜鉛合金相の融点が780℃超に上昇せず、780℃以上では液体のままであるために熱間プレス成形時に割れを誘発する。一方、Ni濃度が高ければ高いほど融点は高くなるが、実際にプレス成形される際の温度で固相であればよく、また、亜鉛合金相中のNiとFeの濃度の合計が30%を超えるか、あるいはNi濃度が15%を超えると効果が飽和し、コストの増加を招くだけとなる。さらに、Ni濃度が高いと上述のカーケンダルボイドと呼ばれる拡散性の空隙が発生し易くなるため、Ni濃度は所望の融点を備える中で可能な限り少ないほうが望ましい。   If the total concentration of Ni and Fe in the zinc alloy phase is less than 15% or Ni is less than 3%, the melting point of the zinc alloy phase does not rise above 780 ° C., and it remains liquid at 780 ° C. or higher. Induces cracks during press forming. On the other hand, the higher the Ni concentration is, the higher the melting point is. However, the solid phase may be used at the temperature at which the actual press forming is performed, and the total concentration of Ni and Fe in the zinc alloy phase is 30%. If the Ni concentration exceeds 15% or the Ni concentration exceeds 15%, the effect is saturated and only the cost is increased. Further, when the Ni concentration is high, the above-mentioned diffusive voids called Kirkendall voids are likely to be generated. Therefore, it is desirable that the Ni concentration is as low as possible while having a desired melting point.

そこで、亜鉛合金相におけるNiとFeの濃度の合計:15〜30%,Zn:85〜70%とする。
実際のプレス成形温度と耐食性の観点から、NiとFeの濃度の合計:17〜24%,Niの濃度:5〜12%,Zn:83〜76%となる亜鉛合金層であることがより望ましい。
Therefore, the total concentration of Ni and Fe in the zinc alloy phase is 15 to 30%, and Zn is 85 to 70%.
From the viewpoint of actual press molding temperature and corrosion resistance, it is more preferable that the zinc alloy layer has a total concentration of Ni and Fe: 17 to 24%, a concentration of Ni: 5 to 12%, and Zn: 83 to 76%. .

このような範囲で融点が所望の温度となるように、Fe,Niの濃度を調整すればよい。
間プレス成形部材は、前記固溶体層上または固溶体層内に形成されたこの亜鉛合金層を有する皮膜を、表層に有するものである。
What is necessary is just to adjust the density | concentration of Fe and Ni so that melting | fusing point may become desired temperature in such a range.
The hot press-molded member has a film having the zinc alloy layer formed on or in the solid solution layer on the surface layer.

3.亜鉛合金層のAl
Alは、Ni,Znと親和性が高く、高融点の合金を形成するために少量でもZnの蒸散抑制に効果がある。このようなAlは、亜鉛合金層に金属状態で存在することが必要であり、亜鉛合金相の一部または全部が、金属状態で存在するAlを0.01%以上含有することが望ましい。一方、同じAl化合物でも酸化物は化成処理性などに悪影響を与え、塗膜の密着性を劣化させるため、可能な限り存在しないことが望ましい。
3. Al of zinc alloy layer
Al has a high affinity with Ni and Zn, and is effective in suppressing transpiration of Zn even in a small amount in order to form a high melting point alloy. Such Al needs to exist in a metallic state in the zinc alloy layer, and it is desirable that a part or all of the zinc alloy phase contains 0.01% or more of Al existing in the metallic state. On the other hand, even if the same Al compound is used, it is desirable that the oxide does not exist as much as possible because it adversely affects chemical conversion properties and degrades the adhesion of the coating.

以上説明した亜鉛合金相や固溶体層の組成は、断面からのSEM−EDX測定によるBSE測定と点分析との組み合わせや、断面からのEPMA分析によるZn,Ni,Al,Oの分布を比較すること等により確認される。   The composition of the zinc alloy phase and the solid solution layer described above is to compare the combination of BSE measurement by SEM-EDX measurement from the cross section and point analysis, and the distribution of Zn, Ni, Al, O by EPMA analysis from the cross section. Etc.

4.熱間プレス用鋼材
(1)素地鋼材
間プレス成形部材を得るための、熱間プレス用鋼材について説明する。
4). Hot press steel (1) Base steel
A steel material for hot press for obtaining a hot press-formed member will be described.

熱間プレス用鋼材の素地鋼材は、溶融亜鉛系めっきを施す場合にはめっき時のめっき濡れ性,めっき後のめっき密着性が良好であれば特に限定を要さず、また、電気亜鉛系めっきを施す場合にはめっき後のめっき密着性が良好であれば特に限定を要さないが、熱間プレス成形の特性として、熱間でのプレス成形後に急冷して高強度,高硬度とする焼入れを行うため、焼入れ鋼、例えば高張力鋼板が実用上は特に望ましい。   The base steel for hot pressing steel is not particularly limited when hot dip galvanizing is applied, as long as the plating wettability during plating and the plating adhesion after plating are good. If the plating adhesion after plating is good, there is no particular limitation. However, as a characteristic of hot press forming, quenching is performed by rapidly cooling after hot press forming to high strength and high hardness. Therefore, hardened steel, for example, high-tensile steel sheet is particularly desirable in practice.

このような高張力鋼板ではSiを多量に含有する場合があり、ステンレス鋼などとともにめっき濡れ性やめっき密着性に問題がある鋼種であるが、そのようなめっき濡れ性やめっき密着性に問題がある鋼種であっても、プレめっき処理等の公知のめっき密着性向上手法を用いてめっき密着性を改善することにより、間プレス成形部材の素地鋼材として用いることができる。また、このような密着性向上手法を用いた場合でも、固溶体層のNi濃度が5.0%未満であれば本発明の範囲内である。 Such high-tensile steel sheet may contain a large amount of Si, and it is a steel type that has a problem in plating wettability and plating adhesion with stainless steel etc., but there is a problem in such plating wettability and plating adhesion. Even a certain steel type can be used as a base steel material for a hot press-formed member by improving the plating adhesion using a known plating adhesion improving method such as pre-plating treatment. Further, even when such an adhesion improving method is used, it is within the scope of the present invention if the Ni concentration of the solid solution layer is less than 5.0%.

鋼板の焼入れ後の強度は、主として含有炭素(C)量によって決定されるため、高強度が必要な場合には、C含有量を0.1%以上とすることが望ましい。一方、C含有量が高くなり過ぎると熱間プレス成形部材の靭性が低下するおそれがあるため、C含有量は3.0%以下とすることが望ましい。   Since the strength after quenching of the steel sheet is mainly determined by the amount of carbon (C) contained, it is desirable that the C content be 0.1% or more when high strength is required. On the other hand, if the C content becomes too high, the toughness of the hot press-formed member may be lowered. Therefore, the C content is preferably 3.0% or less.

その他、鋼板の焼入れ性を高め、かつ熱間プレス成形後の強度を安定して確保するために、Si,Mn,Cr,P,S,Ni,Cu,Mo,V,Ti,Nb,Al,N等を必要に応じて含有してもよく、さらに脱酸剤としてBを必要に応じて含有してもよい。   In addition, Si, Mn, Cr, P, S, Ni, Cu, Mo, V, Ti, Nb, Al, in order to improve the hardenability of the steel sheet and ensure the strength after hot press forming stably. N or the like may be contained as necessary, and B may be contained as a deoxidizer as needed.

素材としての一般的なプレス成形用鋼材の形態は板材が主流であるが、本発明の対象としては鋼材の形状は特に問わず、棒材、線材、管材などを素材として用いてもよい。   A plate material is a main form of a general steel material for press forming as a material. However, the shape of the steel material is not particularly limited as an object of the present invention, and a bar material, a wire material, a pipe material, or the like may be used as a material.

(2)めっき皮膜
間プレス成形部材を得るための素地鋼材の上に設けるめっき皮膜としては、熱間プレス成形後に前記組成を有する、亜鉛合金相および固溶体層を有する皮膜を形成できれば、特に限定しないが、熱間プレス成形工程における生産性を考慮すれば、めっき層全体としてFeとNiの濃度の合計で12〜25%かつNi/Fe比が0.15以上となる、Znを含んだ皮膜であることが望ましい。Ni/Fe比が0.15未満では加熱中にFeの拡散が進んでも間プレス成形部材の組成とならず、FeとNiの濃度の合計が12%未満では長時間加熱しない限り間プレス成形部材の組成とならず、780℃以上の融点を備えないために780℃以上でのプレス成形時に割れが誘発される。一方、FeとNiの濃度の合計が25%を越えると高温での保持時間を長くしても熱間プレス成形後の固溶体層中のNi濃度が高くなり過ぎるため、上限とした。より望ましい範囲はFeとNiの濃度の合計で15〜23%かつNi/Fe比が0.20〜1.5であり、さらに望ましくはNi/Fe比が0.25〜1.0である。
(2) Plating film
The plating film provided on the base steel material for obtaining the hot press-formed member is not particularly limited as long as a film having the above composition after hot press forming and having a zinc alloy phase and a solid solution layer can be formed. Considering the productivity in the press molding process, it is desirable that the coating layer containing Zn has a total concentration of Fe and Ni of 12 to 25% and a Ni / Fe ratio of 0.15 or more as a whole plating layer. . The Ni / Fe ratio is less than 0.15 also progressed diffusion Fe during the heating not the composition of the hot press forming member, hot pressing as long as the sum of the concentrations of Fe and Ni is not prolonged heating is less than 12% Since it does not have the composition of the molded member and does not have a melting point of 780 ° C. or higher, cracks are induced during press molding at 780 ° C. or higher. On the other hand, if the total concentration of Fe and Ni exceeds 25%, the Ni concentration in the solid solution layer after hot press forming becomes too high even if the holding time at a high temperature is increased, so the upper limit was set. A more desirable range is 15 to 23% in total of the concentration of Fe and Ni, and a Ni / Fe ratio is 0.20 to 1.5, and a Ni / Fe ratio is more preferably 0.25 to 1.0.

このような皮膜を設ける手法は特に限定しないが、例えば電気めっき法や溶融めっき法、ならびに両手法の組み合わせなどによって得ることができる。また、電気めっき法,溶融亜鉛めっき法ともに前記皮膜を単一の組成のめっき浴から形成してもよいが、製造のコストや浴の安定性や品質の安定性の観点からFeを含む亜鉛合金めっき層を下層とし、当該めっき層の上層として、Niを主成分として含む金属あるいは合金からなるめっき層を設けることが望ましい。特に下層のめっき層を合金化溶融亜鉛めっきとし、上層を電気めっき法で形成することはより望ましい。   Although the method of providing such a film is not particularly limited, it can be obtained by, for example, an electroplating method, a hot dipping method, a combination of both methods, or the like. In addition, both the electroplating method and the hot dip galvanizing method may form the coating from a plating bath having a single composition. However, a zinc alloy containing Fe from the viewpoint of manufacturing cost, bath stability, and quality stability. It is desirable to provide a plating layer made of a metal or an alloy containing Ni as a main component as a lower layer and a plating layer as an upper layer. In particular, it is more desirable that the lower plating layer is alloyed hot dip galvanizing and the upper layer is formed by electroplating.

他方、下層にNi濃度の高いめっきを施すことは、固溶体層のNi濃度を高めることになるため、長時間の加熱保持などによって固溶体層のNi濃度が本発明で規定している範囲内に入る場合を除き、望ましくない。   On the other hand, plating with a high Ni concentration on the lower layer increases the Ni concentration of the solid solution layer, so that the Ni concentration of the solid solution layer falls within the range defined by the present invention by holding for a long time. Except when not desirable.

ここで、合金化溶融亜鉛めっき皮膜の中にはAl,Mg,Si,Mn,Cr,V,Ti,Mo,Wなどが一種または二種以上を必要に応じて適宜添加しても本発明の効果はなんら損なわれることはなく、Niも上層めっきのNiと合わせて本発明で規定している範囲内であれば合金化溶融亜鉛めっき皮膜中に含まれていてもよい。   Here, in the alloyed hot-dip galvanized film, one or more of Al, Mg, Si, Mn, Cr, V, Ti, Mo, W, etc. may be appropriately added as required. The effect is not impaired at all, and Ni may be included in the alloyed hot-dip galvanized film as long as it is within the range specified in the present invention together with Ni of the upper plating.

上層のNiを主成分として含む金属または合金めっきとしてはNi単体の他にNi−Fe,Ni−Zn,Ni−Co,Ni−Crなどがあり、Ni量が本発明の範囲内であれば同様の効果を発揮するが、コストと製造安定性の観点からNi単体めっきであることが望ましい。   The metal or alloy plating containing Ni as a main component of the upper layer includes Ni—Fe, Ni—Zn, Ni—Co, Ni—Cr, etc. in addition to Ni alone, and the same if the amount of Ni is within the scope of the present invention. From the viewpoint of cost and manufacturing stability, Ni simple plating is desirable.

なお、下層,上層のめっきともに、上記の意図した添加元素の他に原料に含まれる不純物や製造工程において不可避的に混入する不純物が含まれることがあるが、本発明の効果は何ら損なわれることはない。   Note that both the lower layer and upper layer plating may contain impurities contained in the raw material and impurities inevitably mixed in the manufacturing process in addition to the intended additive elements described above, but the effects of the present invention are impaired. There is no.

電気めっき浴としては塩化物浴,硫酸浴,スルファミン酸浴の他に、Niを効率よくめっきできる浴であれば特に制限はないが、工業的に扱い易い硫酸浴や、塩化物浴と硫酸浴の混合浴の使用が望ましい。また、電流密度,浴温,pH,流速などのその他のめっき条件についてはコゲが発生しない範囲で均一な皮膜が得られる条件を選べばよい。   The electroplating bath is not particularly limited as long as it is a bath capable of efficiently plating Ni in addition to a chloride bath, a sulfuric acid bath, and a sulfamic acid bath, but it is industrially easy to handle a sulfuric acid bath, a chloride bath and a sulfuric acid bath. It is desirable to use a mixed bath. In addition, as for other plating conditions such as current density, bath temperature, pH, and flow rate, conditions that can obtain a uniform film within a range in which kogation does not occur may be selected.

これらめっき層の形成後、必要に応じて後処理を行ってもよい。本発明の範囲内であれば通常は塗膜の密着性にはなんら問題はないが、よりいっそうの密着性を求める場合や、熱間プレス成形前に予め部材に近い形状に成形するために潤滑性が要求される場合、さらには溶接性の改善が要求される場合、その他の場合に、それぞれの目的に応じた処理を行ったものであっても、めっき層が本発明の範囲内であれば効果が損なわれることはなく、本発明の範囲内である。   After the formation of these plating layers, post treatment may be performed as necessary. Usually, there is no problem with the adhesion of the coating film within the scope of the present invention, but it is lubricated when further adhesion is required, or in order to form a shape close to the member in advance before hot press molding. If the weldability is required, further improvement of weldability is required, and other cases, the plating layer is within the scope of the present invention even if the treatment is performed according to each purpose. The effect is not impaired and is within the scope of the present invention.

5.熱間プレス成形方法
間プレス成形部材の熱間プレス成形法は、特に制限はなく、通常行われているプレス成形を熱間で行えばよい。すなわち、鋼材を加熱し、Ac点以上の温度域から臨界冷却速度以上の速度でプレス成形する。
5. Hot press forming method
The hot press forming method of the hot press formed member is not particularly limited, and the press forming that is usually performed may be performed hot. That is, the steel material is heated and press-molded at a speed equal to or higher than the critical cooling rate from a temperature range of Ac 3 points or higher.

ここで、耐食性をより発揮するためには、亜鉛合金相が多く残存することが有効であるため、大気中または微酸化雰囲気中で加熱を行ない、昇温速度は速く、かつ熱間プレス部材に形成されるめっき層の融点以上の温度での保持時間は素地鋼材中のCが完全に溶解するために必要な時間以上で短いことが望ましい。具体的には、昇温速度は10℃/sec以上であることが望ましく、保持時間は3分間未満であることが望ましく、1分間未満であることがさらに望ましい。さらに、亜鉛合金相を皮膜の厚み方向に分散させるためには保持時間は10秒間未満であることが望ましく、5秒間未満であることがさらに望ましい。   Here, in order to further exhibit corrosion resistance, it is effective that a large amount of the zinc alloy phase remains, so heating is performed in the air or in a slightly oxidized atmosphere, the heating rate is high, and the hot press member is used. The holding time at a temperature equal to or higher than the melting point of the plating layer to be formed is preferably shorter than the time necessary for completely dissolving C in the base steel material. Specifically, the temperature rising rate is desirably 10 ° C./sec or more, the holding time is desirably less than 3 minutes, and more desirably less than 1 minute. Furthermore, in order to disperse the zinc alloy phase in the thickness direction of the film, the holding time is preferably less than 10 seconds, and more preferably less than 5 seconds.

プレス成形開始温度は、間プレス成形部材が備える亜鉛合金層の融点未満であれば如何なる温度でもよいが、本発明の効果をより享受するためには780℃以上でのプレス成形であることが望ましい。 The press molding start temperature may be any temperature as long as it is lower than the melting point of the zinc alloy layer included in the hot press molded member, but in order to further enjoy the effects of the present invention, the press molding must be performed at 780 ° C. or higher. desirable.

次に、実施例によって本発明の作用効果をさらに具体的に説明する。
素地鋼材として通常の熱延工程および冷延工程により製造された、鋼成分としてC:0.21%,Si:0.2%,Mn:1.3%,P:0.005%,S:0.001%,Cr:0.2%,B:0.002%を含む冷延鋼板(板厚1.6mm)を用いた。
Next, the effects of the present invention will be described more specifically with reference to examples.
C: 0.21%, Si: 0.2%, Mn: 1.3%, P: 0.005%, S: Steel components manufactured by a normal hot rolling process and a cold rolling process as a base steel material A cold-rolled steel plate (plate thickness 1.6 mm) containing 0.001%, Cr: 0.2%, and B: 0.002% was used.

実施例1〜21についてはこの冷延鋼板上に下層として表1に示す付着量,組成となるように溶融亜鉛めっき又は合金化溶融亜鉛めっきを施し、そのうち、実施例1〜14,16〜17については上層としてNiSO・6HO=240g/L,NiCl・6HO=45g/L,HBO=35g/Lを含む電気Niめっき浴を用いて攪拌を十分に行いながら浴温45℃,電流密度20A/dmで表1に示す付着量となるように電気Niめっきを施した。 About Examples 1-21, hot-dip galvanization or alloying hot-dip galvanization was given so that it might become the adhesion amount and composition which are shown in Table 1 as this lower layer on this cold-rolled steel plate, Among them, Examples 1-14, 16-17 As for the upper layer, an electric Ni plating bath containing NiSO 4 .6H 2 O = 240 g / L, NiCl 2 .6H 2 O = 45 g / L, H 3 BO 3 = 35 g / L is used as the upper layer while sufficiently stirring. Electric Ni plating was applied so that the adhesion amount shown in Table 1 was obtained at a temperature of 45 ° C. and a current density of 20 A / dm 2 .

実施例15と実施例22では、上層めっきとしてZn−Ni合金めっきを施した。Zn−Ni合金めっきは、ZnSO・7HO=86g/L,NiSO・6HO=315g/L、Na(SO=75g/Lを含むめっき浴を用いて相対流速1m/sで流動を与えつつ、浴温50℃,電流密度40A/dmにて表1に示す付着量となるように施した。実施例22の下層Niめっきは実施例1〜14などと同条件で施した。 In Example 15 and Example 22, Zn—Ni alloy plating was applied as the upper layer plating. The Zn—Ni alloy plating uses a plating bath containing ZnSO 4 .7H 2 O = 86 g / L, NiSO 4 .6H 2 O = 315 g / L, Na (SO 4 ) 2 = 75 g / L, and a relative flow rate of 1 m / L. The sample was applied at a bath temperature of 50 ° C. and a current density of 40 A / dm 2 so as to achieve the adhesion amount shown in Table 1, while applying flow at s. The lower layer Ni plating of Example 22 was performed under the same conditions as in Examples 1-14.

得られためっき鋼板を空燃比1:1のガス炉または通電加熱により880℃に所定の平均昇温速度で加熱し、所定時間保持した後に取り出して780℃以上の所定の温度でプレス加工を行った。   The obtained plated steel sheet is heated to 880 ° C. at a predetermined average temperature increase rate by a gas furnace having an air-fuel ratio of 1: 1 or energization heating, held for a predetermined time, taken out, and pressed at a predetermined temperature of 780 ° C. or higher. It was.

このように作製した熱間プレス成形部材の一部を切り出してエポキシ系樹脂に埋め込んだ後に研磨し、断面観察用の試料を作製した。この断面観察用の試料について、合金相の有無,合金相中のFe濃度およびNi濃度,合金相中のAlの有無,固溶体層のNi濃度についてはSEM−EDX分析により、合金相中のAlについては断面からのEPMA分析も併用して、確認を行った。結果を表1にまとめて示す。   A part of the hot press-formed member thus produced was cut out, embedded in an epoxy resin, and then polished to prepare a sample for cross-sectional observation. About this cross-section observation sample, the presence or absence of the alloy phase, the Fe concentration and Ni concentration in the alloy phase, the presence or absence of Al in the alloy phase, and the Ni concentration in the solid solution layer were analyzed with respect to Al in the alloy phase by SEM-EDX analysis. Confirmed by using EPMA analysis from the cross section. The results are summarized in Table 1.

熱間プレス成形部材の割れ,電着塗装後の耐食性,腐食形態について評価を行った。評価方法を以下に列記するとともに、評価結果を表1にまとめて示す。   We evaluated cracks in hot pressed parts, corrosion resistance after electrodeposition coating, and corrosion forms. The evaluation methods are listed below, and the evaluation results are summarized in Table 1.

(1)耐プレス割れ性試験(割れ)
熱間プレス成形部材の割れは、プレス加工の金型に90度のV曲げ型のものを用い、プレス成形後の割れの有無を目視により評価した。成形開始温度は予め熱電対を付けた試料の、炉から取り出した後の時間による温度変化を測定しておき、所定の温度となる時間放冷することにより制御した。評価基準は、成形開始時の鋼板温度が820℃での成形で割れの観察されなかったものを◎とし、同じく800℃の成形で割れの観察されなかったものを○とし、同じく800℃の成形で割れが観察されたものを×とし、◎と○を合格とした。
(1) Press crack resistance test (crack)
The hot press-molded member was cracked by using a 90-degree V-bending die as a press working die, and visually evaluating the presence or absence of the crack after press molding. The molding start temperature was controlled by measuring the temperature change of the sample previously attached with a thermocouple over time after removal from the furnace and allowing to cool for a predetermined temperature. The evaluation criteria are ◎ when no crack was observed when the steel sheet temperature was 820 ° C at the start of forming, ○ when no crack was observed when forming at 800 ° C, and 800 ° C when forming. In the case where cracking was observed in the sample, x was given, and ◎ and ○ were accepted.

(2)塗装後耐食性試験(耐食性)
塗装後の耐食性は、平板状のプレス金型を用い、炉から取り出した後に鋼板温度が800℃に達したときにプレス金型で挟み込んで急冷して得られた部材に日本パーカラインジング(株)製PBL−3080で通常の化成処理条件によりリン酸亜鉛処理した後、関西ペイント製電着塗料GT−1Oを電圧200Vのスロープ通電で電着塗装し、焼付け温度150℃で20分間の焼付けを行い、20μmの塗膜を得た。
(2) Corrosion resistance test after coating (corrosion resistance)
Corrosion resistance after painting is determined by using Nihon Parker Rising Co., Ltd. to a member obtained by using a flat plate press mold and quickly cooling it after sandwiching it with a press mold when the steel plate temperature reaches 800 ° C. ) After zinc phosphate treatment with PBL-3080 made under normal chemical conversion conditions, electrodeposition paint GT-1O made by Kansai Paint was applied by slope energization with a voltage of 200 V and baked at a baking temperature of 150 ° C. for 20 minutes. And a 20 μm coating film was obtained.

得られた試験片の塗膜にカッターナイフで素地まで達するスクラッチ傷を入れ、JIS H 8502に規定された中性塩水噴霧サイクル試験を360サイクル行った。傷部からの塗膜膨れ幅もしくは錆幅を測定し、塗装後耐食性の評価とした。評価基準は塗膜膨れ幅または錆幅のいずれか大きいほうの値が5mm未満を○とし、5mm以上を×とし、○を合格とした。   Scratch scratches reaching the substrate with a cutter knife were put into the coating film of the obtained test piece, and a neutral salt spray cycle test specified in JIS H8502 was conducted 360 cycles. The film swelling width or rust width from the scratch was measured to evaluate the corrosion resistance after painting. As the evaluation criteria, the larger of the swollen width of the coating film or the rust width was less than 5 mm, the x was 5 mm or more, and the mark was o.

(3)腐食形態観察(腐食形態)
腐食形態の評価は、前記の塗装後耐食性試験を行った後の試験片からスクラッチ部をスクラッチ傷に対して垂直に切り出し、エポキシ系樹脂に埋め込んだ後に研磨し、塗膜膨れ部もしくは錆部の先端を観察して行なった。
(3) Corrosion morphology observation (corrosion morphology)
Corrosion form is evaluated by cutting the scratch part perpendicular to the scratches from the test piece after performing the above-mentioned post-coating corrosion resistance test, embedding it in an epoxy-based resin, polishing it, This was done by observing the tip.

評価基準は、図2の断面SEM写真に示すような錆中に貴な固溶体層が見られない物を全面とし、図3の断面SEM写真に示すような錆中に貴な固溶体層が腐食していない金属部と繋がって残存して貴な固溶体層の下部が腐食している物を孔食状とし、さらに、錆中に貴な固溶体層は存在するが腐食していない金属部と繋がっていない物をやや孔食状とし、全面ならびにやや孔食状の腐食形態を合格とした。   The evaluation criteria are such that no noble solid solution layer is seen in the rust as shown in the cross-sectional SEM photograph of FIG. 2, and the noble solid solution layer is corroded in the rust as shown in the cross-sectional SEM picture of FIG. The pitting corrosion is caused by the corrosion of the lower part of the noble solid solution layer that remains connected to the metal part that is not, and is connected to the metal part that is not corroded even though the noble solid solution layer exists in the rust. The thing which did not have it was made into a slightly pitting corrosion type, and the whole surface and the slightly pitting corrosion type were set as the pass.

固溶体層中のNi濃度が高くなり過ぎると素地鋼材の電位よりも貴となるため、固溶体層よりも先に素地鋼材が腐食され、孔食へと繋がることになる。そのため、金属部と繋がって残存して存在し、その下部が腐食している腐食形態は孔食発生有無の指針となる。   If the Ni concentration in the solid solution layer becomes too high, it becomes noble than the potential of the base steel material, so that the base steel material is corroded before the solid solution layer, leading to pitting corrosion. Therefore, the corrosion form that remains in connection with the metal part and corrodes the lower part serves as a guide for the presence or absence of pitting corrosion.

本発明例である代符3〜6,15〜20,17は耐プレス割れ性,塗装後耐食性,腐食形態がいずれも良好であった。
一方、熱間プレス成形後に合金相が存在しない代符1〜2,15,21は、塗装後耐食性が不合格である。合金相の組成が本発明の範囲から外れている代符16,18〜20は、耐プレス割れ性が不合格である。熱間プレス成形後の固溶体層中Ni濃度が高過ぎる代符7〜8,22は、腐食形態が孔食状である。このように、比較例には、耐プレス割れ性,塗装後耐食性,腐食形態の全てが合格レベルを満足するものは存在しなかった。
Samples 3-6, 15-20, and 17 as examples of the present invention were all good in press crack resistance, post-coating corrosion resistance, and corrosion form.
On the other hand, the symbols 1-2, 15, and 21 in which the alloy phase does not exist after hot press forming fail in the corrosion resistance after coating. The surrogate marks 16, 18 to 20 whose composition of the alloy phase is out of the scope of the present invention are unacceptable in the press crack resistance. In the solid marks 7 to 8 and 22 in which the Ni concentration in the solid solution layer after hot press forming is too high, the corrosion form is pitting corrosion. Thus, in the comparative examples, none of the press crack resistance, the post-coating corrosion resistance, and the corrosion form satisfied the acceptable level.

Figure 0006493472
Figure 0006493472

Claims (6)

鋼板上にFeを含む亜鉛合金めっき層を設け、当該亜鉛合金めっき層の上に、Niを主成分として含む金属あるいは合金からなるめっき層を設けた後に、当該鋼板に、10℃/sec以上の昇温速度でAc 点以上の温度域に昇温して該温度域に1秒以上3分間未満保持した後、臨界冷却速度以上の速度で冷却しながらプレス成形する、熱間プレス成形を行うことにより、
質量%で、Zn含有量が15%以上、Ni含有量が5.0%未満である固溶体層上または固溶体層内に形成された、質量%でZn85〜70%含有し、NiとFeの合計で15〜30%かつNiが3〜15%となる亜鉛合金層を有する皮膜を、表層に有する熱間プレス成形部材を製造する、熱間プレス成形部材の製造方法。
A zinc alloy plating layer containing Fe is provided on a steel plate, and after providing a plating layer made of a metal or alloy containing Ni as a main component on the zinc alloy plating layer, the steel plate is subjected to 10 ° C./sec or more. The temperature is raised to a temperature range of Ac 3 points or higher at a rate of temperature rise, held in the temperature range for 1 second or more and less than 3 minutes, and then press-formed while being cooled at a rate higher than the critical cooling rate. By
The Zn content is 15% or more and the Ni content is less than 5.0% by mass, formed on or in the solid solution layer, containing 85 to 70% Zn by mass, and the total of Ni and Fe. The manufacturing method of the hot press-molding member which manufactures the hot press-molding member which has a film | membrane which has a zinc alloy layer which becomes 15 to 30% and Ni becomes 3 to 15% in surface layer.
前記Feを含む亜鉛合金めっき層および前記Niを主成分として含む金属あるいは合金からなるめっき層は、全体として、FeとNiの濃度の合計で12〜25%かつNi/Fe比が0.15以上となる、Znを含んだ皮膜である、請求項1に記載の熱間プレス成形部材の製造方法。   The zinc alloy plating layer containing Fe and the plating layer made of a metal or alloy containing Ni as a main component as a whole have a total concentration of Fe and Ni of 12 to 25% and a Ni / Fe ratio of 0.15 or more. The manufacturing method of the hot press-molded member according to claim 1, which is a coating film containing Zn. 前記Feを含む亜鉛合金めっき層は合金化溶融亜鉛めっき層であり、前記Niを主成分として含む金属あるいは合金からなるめっき層は電気めっき層である、請求項1または2に記載の熱間プレス成形部材の製造方法。   The hot press according to claim 1 or 2, wherein the zinc alloy plating layer containing Fe is an alloyed hot dip galvanizing layer, and the plating layer made of a metal or alloy containing Ni as a main component is an electroplating layer. Manufacturing method of molded member. 前記プレス成形の開始温度は、780℃以上前記Feを含む亜鉛合金めっき層の融点未満である、請求項1〜3のいずれかに記載の熱間プレス成形部材の製造方法。 The method for producing a hot press-formed member according to any one of claims 1 to 3 , wherein a start temperature of the press forming is 780 ° C or higher and lower than a melting point of the zinc alloy plating layer containing Fe. 前記Feを含む亜鉛合金層の一部または全部は、金属状態で存在するAlを0.01質量%以上含有する、請求項1〜のいずれかに記載の熱間プレス成形部材の製造方法。 The method for producing a hot press-formed member according to any one of claims 1 to 4 , wherein a part or all of the zinc alloy layer containing Fe contains 0.01% by mass or more of Al present in a metal state. 前記Feを含む亜鉛合金層は、前記皮膜の厚み方向に分散して形成される、請求項1〜のいずれかに記載の熱間プレス成形部材の製造方法。 The method for producing a hot press-formed member according to any one of claims 1 to 5 , wherein the zinc alloy layer containing Fe is formed dispersed in the thickness direction of the coating.
JP2017169935A 2017-09-05 2017-09-05 Manufacturing method of hot press-formed member Active JP6493472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017169935A JP6493472B2 (en) 2017-09-05 2017-09-05 Manufacturing method of hot press-formed member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017169935A JP6493472B2 (en) 2017-09-05 2017-09-05 Manufacturing method of hot press-formed member

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012124811A Division JP6529710B2 (en) 2012-05-31 2012-05-31 Hot press-formed member having high strength and high corrosion resistance

Publications (2)

Publication Number Publication Date
JP2018016887A JP2018016887A (en) 2018-02-01
JP6493472B2 true JP6493472B2 (en) 2019-04-03

Family

ID=61081395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017169935A Active JP6493472B2 (en) 2017-09-05 2017-09-05 Manufacturing method of hot press-formed member

Country Status (1)

Country Link
JP (1) JP6493472B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020241859A1 (en) * 2019-05-31 2020-12-03 日本製鉄株式会社 Hot stamp formed article

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3879266B2 (en) * 1998-08-04 2007-02-07 住友金属工業株式会社 Alloyed hot-dip galvanized steel sheet excellent in formability and manufacturing method thereof
JP3591501B2 (en) * 2001-10-23 2004-11-24 住友金属工業株式会社 Steel for hot press forming
JP4506128B2 (en) * 2003-08-29 2010-07-21 住友金属工業株式会社 Hot press-formed product and method for producing the same
ATE554190T1 (en) * 2009-08-25 2012-05-15 Thyssenkrupp Steel Europe Ag METHOD FOR PRODUCING A STEEL COMPONENT AND STEEL COMPONENT PROVIDED WITH A METALLIC COATING TO PROTECT AGAINST CORROSION
JP2011046993A (en) * 2009-08-26 2011-03-10 Sumitomo Metal Ind Ltd Coated and heat-treated steel and method for manufacturing the same
JP4883240B1 (en) * 2010-08-04 2012-02-22 Jfeスチール株式会社 Steel sheet for hot press and method for producing hot press member using the same
PL2631308T3 (en) * 2010-10-22 2019-05-31 Nippon Steel & Sumitomo Metal Corp Method for manufacturing hot stamped body having vertical wall, and hot stamped body having vertical wall

Also Published As

Publication number Publication date
JP2018016887A (en) 2018-02-01

Similar Documents

Publication Publication Date Title
JP6836600B2 (en) Hot stamping material
EP2808417B1 (en) Steel sheet for hot press-forming, method for manufacturing the same and method for producing hot press-formed parts using the same
JP4644314B2 (en) Hot-dip Zn-Al-Mg-Si-Cr alloy-plated steel with excellent corrosion resistance
JP6813133B2 (en) Manufacturing method of aluminum-plated steel sheet, hot stamping member and hot stamping member
US10030290B2 (en) Steel sheet for hot press-forming, hot press-formed part, and method of producing hot press-formed part
JP6529710B2 (en) Hot press-formed member having high strength and high corrosion resistance
KR101668638B1 (en) Hot-dip galvannealed steel sheet
JP2017186663A (en) Alloyed hot-dip galvanized steel sheet for hot stamp
JP4555738B2 (en) Alloy hot-dip galvanized steel sheet
JP6406475B1 (en) Al-plated welded pipe for quenching, Al-plated hollow member and method for producing the same
JP4023710B2 (en) Aluminum-plated steel sheet for hot press with excellent corrosion resistance and heat resistance, and automotive parts using the same
JP6493472B2 (en) Manufacturing method of hot press-formed member
JP3631710B2 (en) Si-containing high-strength hot-dip galvanized steel sheet with excellent corrosion resistance and ductility and method for producing the same
JP2004124208A (en) Surface-treated steel sheet with high strength superior in corrosion resistance after being painted, and car components with high strength
JP4036347B2 (en) Rust-proof steel plate for fuel tanks with excellent corrosion resistance after molding
JP2003183802A (en) High-strength aluminum-plated steel sheet excellent in heat resistance and after-coating corrosion resistance, and high-strength automotive part
JP2020041175A (en) Steel plate for hot pressing
JP7453583B2 (en) Al-plated hot stamping steel material
JP4022063B2 (en) High-strength aluminum-plated steel sheet and high-strength automotive parts with excellent workability and corrosion resistance
JP4452126B2 (en) Steel plate for galvannealed alloy
JP4377784B2 (en) Alloy hot-dip galvanized steel sheet
JP2004277839A (en) Zinc based metal-coated steel
JP5245376B2 (en) Alloyed hot dip galvanized steel sheet using steel sheet for galvannealed alloy with excellent bake hardenability
TWI592501B (en) High-strength hot-dip galvanized steel sheet with excellent impact-resistant peelability and machined part corrosion resistance
JP2020041174A (en) Steel plate for hot pressing

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190218

R151 Written notification of patent or utility model registration

Ref document number: 6493472

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350