EP2290043A1 - Schmierölzusammensetzung enthaltend ein Metalldialkyldithiophosphat und ein Carbodiimid - Google Patents

Schmierölzusammensetzung enthaltend ein Metalldialkyldithiophosphat und ein Carbodiimid Download PDF

Info

Publication number
EP2290043A1
EP2290043A1 EP10170109A EP10170109A EP2290043A1 EP 2290043 A1 EP2290043 A1 EP 2290043A1 EP 10170109 A EP10170109 A EP 10170109A EP 10170109 A EP10170109 A EP 10170109A EP 2290043 A1 EP2290043 A1 EP 2290043A1
Authority
EP
European Patent Office
Prior art keywords
oil
lubricating oil
engine
oil composition
lubricating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP10170109A
Other languages
English (en)
French (fr)
Other versions
EP2290043B1 (de
Inventor
Katherine Richard
David James Macarthur
Stuart James Mctavish
Keith Strickland
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineum International Ltd
Original Assignee
Infineum International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineum International Ltd filed Critical Infineum International Ltd
Priority to EP10170109A priority Critical patent/EP2290043B1/de
Publication of EP2290043A1 publication Critical patent/EP2290043A1/de
Application granted granted Critical
Publication of EP2290043B1 publication Critical patent/EP2290043B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/10Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic phosphorus-containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/1006Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • C10M2205/0285Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/021Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/281Esters of (cyclo)aliphatic monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/086Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/223Five-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/104Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/104Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
    • C10M2219/106Thiadiazoles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/12Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/14Metal deactivation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/40Low content or no content compositions
    • C10N2030/42Phosphor free or low phosphor content compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/40Low content or no content compositions
    • C10N2030/43Sulfur free or low sulfur content compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/40Low content or no content compositions
    • C10N2030/45Ash-less or low ash content
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/78Fuel contamination
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/251Alcohol-fuelled engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines
    • C10N2040/253Small diesel engines

Definitions

  • the present invention relates to automotive lubricating oil compositions, more especially to automotive lubricating oil compositions for use in piston engines, especially gasoline (spark-ignited) and diesel (compression-ignited) internal combustion engines, crankcase lubrication, such compositions being referred to as crankcase lubricants.
  • the present invention relates to automotive lubricating oil compositions for use in gasoline (spark-ignited) and diesel (compression-ignited) internal combustion engines fuelled at least in part with a biofuel, especially compression-ignited internal combustion engines fuelled at least in part with a biodiesel fuel and spark-ignited internal combustion engines fuelled at least in part with bioethanol fuel.
  • the present invention relates to automotive lubricating oil compositions, preferably having low levels of phosphorus and also low levels of sulfur and/or sulfated ash, which exhibit an improved inhibition and/or a reduction in the corrosion of the metallic engine parts; and to the use of additives in such compositions for improving the anti-corrosion properties of the lubricating oil composition.
  • a crankcase lubricant is an oil used for general lubrication in an internal combustion engine where an oil sump is situated generally below the crankshaft of the engine and to which circulated oil returns.
  • Biodiesel fuels include components of low volatility which are slow to vaporize after injection of the fuel into the engine. Typically, an unburnt portion of the biodiesel and some of the resulting partially combusted decomposition products become mixed with the lubricant on the cylinder wall and are washed down into the oil sump, thereby contaminating the crankcase lubricant.
  • the biodiesel fuel in the contaminated lubricant may form further decompositions products, due to the extreme conditions during lubrication of the engine. It has been found that the presence of biodiesel fuel and the decomposition products thereof in the crankcase lubricant promotes the corrosion of the metallic engine parts; particularly the softer metallic (i.e.
  • Exhaust gas after-treatment devices such as a diesel particulate filter (DPF)
  • DPF diesel particulate filter
  • One way to create conditions for initiating and sustaining regeneration of a DPF involves elevating the temperature of the exhaust gases entering the DPF to burn the soot. As a diesel engine runs relatively cool and lean, this may be achieved by adding fuel into the exhaust gases optionally in combination with the use of an oxidation catalyst located upstream of the DPF.
  • Heavy duty diesel (HDD) engines such as those in trucks, typically employ a late post-injection of fuel directly into the exhaust system outside of the cylinder, whilst light duty and medium duty diesel engines typically employ a late post-injection of fuel directly into the cylinder during an expansion stroke.
  • the corrosion of the softer metallic (i.e. non-ferrous) engine components increases significantly in a diesel engine fuelled at least in part with biodiesel when the engine employs a late post-injection of fuel directly into the cylinder.
  • this increased engine corrosion is due to more biodiesel being absorbed by the lubricant on the more exposed cylinder wall, thereby increasing contamination of the lubricant in the sump.
  • an alcohol based fuel e.g. bioethanol
  • lubricating oil compositions which exhibit improved anti-corrosion properties in respect of the metallic engine components, particularly the softer metallic (i.e. non-ferrous) engine components such as those containing copper and/or lead (e.g. bearing materials), must be identified.
  • the present invention is based on the discovery that a lubricating oil can be formulated which exhibits significantly improved anti-corrosion properties, particularly in respect of the softer metallic (i.e. non-ferrous) engine components, such as those containing lead and/or copper.
  • crankcase lubricating oil composition comprising:
  • the oil of lubricating viscosity comprises a Group II, Group III or Group IV base stock, especially a Group III base stock.
  • a combination of the specific additive components (B) and (C) in a lubricating oil composition provides a significant improvement in the anti-corrosion properties of the lubricating oil composition with regard to the metallic engine components, particularly the softer metallic (i.e. non-ferrous) engine components.
  • the inclusion of both of the additive components (B) and (C) in a lubricating oil composition provides a lubricant that exhibits improved inhibition and/or reduction in the corrosion of the metallic engine components, particularly the softer metallic (i.e.
  • non-ferrous engine components in use, in the lubrication of a spark-ignited or compression-ignited internal combustion engine, especially a spark-ignited or compression-ignited internal combustion engine which is fuelled at least in part with a biofuel.
  • the present invention provides a method of lubricating a compression-ignited or spark-ignited internal combustion engine which is fuelled at least in part with a biofuel, comprising operating the engine with a crankcase lubricating oil composition comprising (A) an oil of lubricating viscosity in a major amount; (B) as an additive component in a minor amount, an oil-soluble metal salt of a dithiophosphoric acid as defined in accordance with the first aspect of the invention; and, (C) as an additive component in a minor amount, an oil-soluble carbodiimide compound as defined in accordance with the first aspect of the invention.
  • the method of the second aspect reduces and/or inhibits the corrosion of the metallic, especially the non-ferrous metallic, engine components.
  • the metallic engine components comprise lead, copper or mixtures thereof, especially lead.
  • the present invention provides the use of a minor amount of an additive component (B) comprising an oil-soluble metal salt of a dithiophosphoric acid as defined in accordance with the first aspect of the invention, in combination with a minor amount of an additive component (C) comprising an oil-soluble carbodiimide compound as defined in accordance with the first aspect of the invention, as a metal corrosion inhibitor, especially a soft metal (i.e. non-ferrous metal) corrosion inhibitor, in a crankcase lubricating oil composition which is contaminated with at least 0.3 mass %, based on the total mass of the lubricating oil composition, of a biofuel or a decomposition product thereof and mixtures thereof.
  • a metal corrosion inhibitor especially a soft metal (i.e. non-ferrous metal) corrosion inhibitor
  • the present invention provides a method of reducing and/or inhibiting the corrosion of the metallic engine components, especially the softer metallic (i.e. non-ferrous) engine components, of a spark-ignited or compression-ignited internal combustion engine which is fuelled at least in part with a biofuel, the method comprising lubricating, preferably operating, the engine with a crankcase lubricating composition comprising (A) an oil of lubricating viscosity in a major amount; (B) as an additive component in a minor amount, an oil-soluble metal salt of a dithiophosphoric acid as defined in accordance with the first aspect of the invention; and, (C) as an additive component in a minor amount, an oil-soluble carbodiimide compound as defined in accordance with the first aspect of the invention.
  • the present invention provides the use, in the lubrication of a spark-ignited or compression-ignited internal combustion engine which is fuelled at least in part with a biofuel, of a crankcase lubricating oil composition
  • a crankcase lubricating oil composition comprising (A) an oil of lubricating viscosity in a major amount; (B) as an additive component in a minor amount, an oil-soluble metal salt of a dithiophosphoric acid as defined in accordance with the first aspect of the invention; and, (C) as an additive component in a minor amount, an oil-soluble carbodiimide compound as defined in accordance with the first aspect of the invention, to reduce and/or inhibit the corrosion of the metallic engine components, especially the softer metallic (i.e. non-ferrous) engine components, during operation of the engine.
  • the present invention provides the use, in the lubrication of a spark-ignited or compression-ignited internal combustion engine which is fuelled at least in part with a biofuel, of a minor amount of an additive component (B), as defined in accordance with the first aspect of the invention, in combination with a minor amount of an additive component (C), as defined in accordance with the first aspect of the invention, to reduce and/or inhibit the corrosion of the metallic engine components, especially the softer metallic (i.e. non-ferrous) engine components, during operation of the engine.
  • B additive component
  • C additive component
  • the present invention provides a method of improving the metal anti-corrosion properties, especially the soft metal (i.e. non-ferrous metal) anti-corrosion properties, in or with a crankcase lubricating oil composition comprising a major amount of oil of lubricating viscosity, which method comprises adding to and/or incorporating into the lubricating oil composition an effective amount of: (B) as an additive component in a minor amount, an oil-soluble metal salt of a dithiophosphoric acid; and, (C) as an additive component in a minor amount, an oil-soluble carbodiimide compound.
  • the present invention provides a spark-ignited or compression-ignited internal combustion engine comprising a crankcase containing a lubricating oil composition comprising (A) an oil of lubricating viscosity in a major amount; (B) as an additive component in a minor amount, an oil-soluble metal salt of a dithiophosphoric acid as defined in accordance with the first aspect of the invention; and, (C) as an additive component in a minor amount, an oil-soluble carbodiimide compound as defined in accordance with the first aspect of the invention, wherein the engine is fuelled at least in part with a biofuel.
  • the engine is operating with a fuel comprising a biofuel and the engine is being lubricated with the lubricating oil composition.
  • the engine comprises a spark-ignited internal combustion engine which is fuelled at least in part with an alcohol based fuel, preferably a bioalcohol based fuel, especially an ethanol based fuel such as bioethanol fuel.
  • the engine comprises a compression-ignited internal combustion engine which is fuelled at least in part with a biodiesel fuel.
  • the engine in accordance with the second, fourth to sixth, and eighth aspects of the present invention comprises a compression-ignited internal combustion engine.
  • the lubricating oil compositions as defined in the second and fourth to eighth aspects are each independently contaminated with at least 0.3 mass %, based on the total mass of the lubricating oil composition, of a biofuel or a decomposition product thereof and mixtures thereof.
  • the additive components (B) and (C) form part of an additive package which also includes a diluent, preferably a base stock, and one or more co-additives in a minor amount, other than additive components (B) and (C), selected from ashless dispersants, metal detergents, corrosion inhibitors, antioxidants, antiwear agents, friction modifiers, demulsifiers and antifoam agents; the additive package being added to the oil of lubricating viscosity.
  • the soft metal (i.e. non-ferrous metal) in accordance with the third and seventh aspects comprises copper or lead and mixtures thereof, especially lead.
  • the soft metallic (i.e. non-ferrous) engine components of the fourth, fifth and sixth aspects preferably comprise components which include copper or lead and mixtures thereof, especially lead, such as the lead and copper based bearing materials.
  • the oil of lubricating viscosity (sometimes referred to as “base stock” or “base oil”) is the primary liquid constituent of a lubricant, into which additives and possibly other oils are blended, for example to produce a final lubricant (or lubricant composition).
  • a base oil is useful for making concentrates as well as for making lubricating oil compositions there from, and may be selected from natural (vegetable, animal or mineral) and synthetic lubricating oils and mixtures thereof. It may range in viscosity from light distillate mineral oils to heavy lubricating oils such as gas engine oil, mineral lubricating oil, motor vehicle oil and heavy duty diesel oil. Generally, the viscosity of the base stock will have a viscosity preferably of 3-12, more preferably 4-10, most preferably 4.5-8, mm 2 /s (cSt) at 100°C.
  • Natural oils include animal and vegetable oils (e.g. castor and lard oil), liquid petroleum oils and hydrorefined, solvent-treated mineral lubricating oils of the paraffinic, naphthenic and mixed paraffinic-naphthenic types. Oils of lubricating viscosity derived from coal or shale are also useful base oils.
  • Synthetic lubricating oils include hydrocarbon oils such as polymerized and interpolymerized olefins (e.g. polybutylenes, polypropylenes, propylene-isobutylene copolymers, chlorinated polybutylenes, poly(1-hexenes), poly(1-octenes), poly(1-decenes)); alkylbenzenes (e.g. dodecylbenzenes, tetradecylbenzenes, dinonylbenzenes, di(2-ethylhexyl)benzenes); polyphenols (e.g. biphenyls, terphenyls, alkylated polyphenols); and alkylated diphenyl ethers and alkylated diphenyl sulfides and the derivatives, analogues and homologues thereof.
  • hydrocarbon oils such as polymerized and interpolymerized olefins (e.g. polybut
  • Another suitable class of synthetic lubricating oils comprises the esters of dicarboxylic acids (e.g. phthalic acid, succinic acid, alkyl succinic acids and alkenyl succinic acids, maleic acid, azelaic acid, suberic acid, sebasic acid, fumaric acid, adipic acid, linoleic acid dimer, malonic acid, alkylmalonic acids, alkenyl malonic acids) with a variety of alcohols (e.g. butyl alcohol, hexyl alcohol, dodecyl alcohol, 2-ethylhexyl alcohol, ethylene glycol, diethylene glycol monoether, propylene glycol).
  • dicarboxylic acids e.g. phthalic acid, succinic acid, alkyl succinic acids and alkenyl succinic acids, maleic acid, azelaic acid, suberic acid, sebasic acid, fumaric acid, adipic acid, linoleic acid dim
  • esters include dibutyl adipate, di(2-ethylhexyl) sebacate, di-n-hexyl fumarate, dioctyl sebacate, diisooctyl azelate, diisodecyl azelate, dioctyl phthalate, didecyl phthalate, dieicosyl sebacate, the 2-ethylhexyl diester of linoleic acid dimer, and the complex ester formed by reacting one mole of sebacic acid with two moles of tetraethylene glycol and two moles of 2-ethylhexanoic acid.
  • Esters useful as synthetic oils also include those made from C 5 to C 12 monocarboxylic acids and polyols, and polyol ethers such as neopentyl glycol, trimethylolpropane, pentaerythritol, dipentaerythritol and tripentaerythritol.
  • Unrefined, refined and re-refined oils can be used in the compositions of the present invention.
  • Unrefined oils are those obtained directly from a natural or synthetic source without further purification treatment.
  • a shale oil obtained directly from retorting operations a petroleum oil obtained directly from distillation or ester oil obtained directly from an esterification process and used without further treatment would be unrefined oil.
  • Refined oils are similar to the unrefined oils except they have been further treated in one or more purification steps to improve one or more properties. Many such purification techniques, such as distillation, solvent extraction, acid or base extraction, filtration and percolation are known to those skilled in the art.
  • Re-refined oils are obtained by processes similar to those used to obtain refined oils applied to refined oils which have been already used in service. Such re-refined oils are also known as reclaimed or reprocessed oils and often are additionally processed by techniques for approval of spent additive and oil breakdown products.
  • base oil examples include gas-to-liquid (“GTL”) base oils, i.e. the base oil may be an oil derived from Fischer-Tropsch synthesised hydrocarbons made from synthesis gas containing H 2 and CO using a Fischer-Tropsch catalyst. These hydrocarbons typically require further processing in order to be useful as a base oil. For example, they may, by methods known in the art, be hydroisomerized; hydrocracked and hydroisomerized; dewaxed; or hydroisomerized and dewaxed.
  • GTL gas-to-liquid
  • base stocks and base oils in this invention are the same as those found in the American Petroleum Institute (API) publication "Engine Oil Licensing and Certification System", Industry Services Department, Fourteenth Edition, December 1996, Addendum 1, December 1998 . Said publication categorizes base stocks as follows:
  • the oil of lubricating viscosity comprises a Group I to Group V base stock.
  • the oil of lubricating viscosity comprises a Group II, Group III, Group IV or Group V base stock and mixtures thereof, more preferably a Group II, Group III or Group IV base stock and mixtures thereof, especially a Group III or Group IV base stock and mixtures thereof.
  • the oil of lubricating viscosity consists essentially of a Group III base stock.
  • the oil of lubricating viscosity consists essentially of a mixture of a Group III and Group IV base stock.
  • the oil of lubricating viscosity when the oil of lubricating viscosity includes a Group III base stock, the oil of lubricating viscosity comprises greater than or equal to 10 mass %, more preferably greater than or equal to 20 mass %, even more preferably greater than or equal to 25 mass %, even more preferably greater than or equal to 30 mass %, even more preferably greater than or equal to 40 mass %, even more preferably greater than or equal to 45 mass % of a Group III base stock, based on the total mass of the oil of lubricating viscosity.
  • the oil of lubricating viscosity comprises greater than 50 mass %, preferably greater than or equal to 60 mass %, more preferably greater than or equal to 70 mass %, even more preferably greater than or equal to 80 mass %, even more preferably greater than or equal to 90 mass % of a Group III base stock, based on the total mass of the oil of lubricating viscosity.
  • the oil of lubricating viscosity consists essentially of a Group III base stock.
  • the Group III base stock may be the sole oil of lubricating viscosity in the lubricating oil composition.
  • the oil of lubricating viscosity is provided in a major amount, in combination with a minor amount of additive components (B) and (C) as defined herein and, if necessary, one or more co-additives, such as described hereinafter, constituting a lubricating oil composition.
  • This preparation may be accomplished by adding the additives directly to the oil or by adding them in the form of a concentrate thereof to disperse or dissolve the additive.
  • Additives may be added to the oil by any method known to those skilled in the art, either before, at the same time as, or after addition of other additives.
  • the oil of lubricating viscosity is present in an amount of greater than 55 mass %, more preferably greater than 60 mass %, even more preferably greater than 65 mass %, based on the total mass of the lubricating oil composition.
  • the oil of lubricating viscosity is present in an amount of less than 98 mass %, more preferably less than 95 mass %, even more preferably less than 90 mass %, based on the total mass of the lubricating oil composition.
  • the volatility of the oil of lubricating viscosity or oil blend is less than or equal to 16%, preferably less than or equal to 13.5%, preferably less than or equal to 12%, more preferably less than or equal to 10%, most preferably less than or equal to 8%.
  • the viscosity index (VI) of the oil of lubricating viscosity is at least 95, preferably at least 110, more preferably at least 120, even more preferably at least 125, most preferably from about 130 to 140.
  • the lubricating oil compositions of the invention comprise defined components that may or may not remain the same chemically before and after mixing with an oleaginous carrier.
  • This invention encompasses compositions which comprise the defined components before mixing, or after mixing, or both before and after mixing.
  • concentrates When concentrates are used to make the lubricating oil compositions, they may for example be diluted with 3 to 100, e.g. 5 to 40, parts by mass of oil of lubricating viscosity per part by mass of the concentrate.
  • the lubricating oil composition of the present invention contains low levels of phosphorus, namely up to 0.12 mass %, preferably up to 0.11 mass %, more preferably not greater than 0.10 mass %, even more preferably up to 0.09 mass %, even more preferably up to 0.08 mass %, even more preferably up to 0.06 mass % of phosphorus, expressed as atoms of phosphorus, based on the total mass of the composition.
  • the lubricating oil composition may contain low levels of sulfur.
  • the lubricating oil composition contains up to 0.4, more preferably up to 0.3, most preferably up to 0.2, mass % sulfur, expressed as atoms of sulfur, based on the total mass of the composition.
  • the lubricating oil composition may contain low levels of sulphated ash.
  • the lubricating oil composition contains up to and including 1.2, more preferably up to 1.1, even more preferably up to 1.0, even more preferably up to 0.8, mass % sulphated ash, based on the total mass of the composition.
  • the lubricating oil composition may have a total base number (TBN) of 4 to 15, preferably 5 to 12.
  • TBN total base number
  • HDD heavy duty diesel
  • the TBN of the lubricating composition ranges from about 4 to 12, such as 6 to 12.
  • PCDO passenger car diesel engine lubricating oil composition
  • PCMO passenger car motor oil for a spark-ignited engine
  • the TBN of the lubricating composition ranges from about 5.0 to about 12.0, such as from about 5.0 to about 11.0.
  • the lubricating oil composition is a multigrade identified by the viscometric descriptor SAE 20WX, SAE 15WX, SAE 10WX, SAE 5WX or SAE 0WX, where X represents any one of 20, 30, 40 and 50; the characteristics of the different viscometric grades can be found in the SAE J300 classification.
  • the lubricating oil composition is in the form of an SAE 10WX, SAE 5WX or SAE 0WX, preferably in the form of an SAE 5WX or SAE 0WX, wherein X represents any one of 20, 30, 40 and 50.
  • X is 20 or 30.
  • Additive component (B) comprises a dihydrocarbyl dithiophosphate metal salt wherein the metal may be an alkali or alkaline earth metal, or aluminium, lead, tin, molybdenum, manganese, nickel, copper, or preferably, zinc.
  • Dihydrocarbyl dithiophosphate metal salts are frequently used as antiwear and antioxidant agents.
  • Dihydrocarbyl dithiophosphate metal salts may be prepared in accordance with known techniques by first forming a dihydrocarbyl dithiophosphoric acid (DDPA), usually by reaction of one or more alcohols or a phenol with P 2 S 5 and then neutralizing the formed DDPA with a metal compound.
  • DDPA dihydrocarbyl dithiophosphoric acid
  • a dithiophosphoric acid may be made by reacting mixtures of primary and secondary alcohols.
  • multiple dithiophosphoric acids can be prepared where the hydrocarbyl groups on one are entirely secondary in character and the hydrocarbyl groups on the others are entirely primary in character.
  • any basic or neutral metal compound could be used but the oxides, hydroxides and carbonates are most generally employed. Commercial additives frequently contain an excess of metal due to the use of an excess of the basic metal compound in the neutralization reaction.
  • the preferred dihydrocarbyl dithiophosphate metal salts are zinc dihydrocarbyl dithiophosphates (ZDDP) which are oil-soluble salts of dihydrocarbyl dithiophosphoric acids and may be represented by the following formula: wherein R 1 and R 2 may be the same or different hydrocarbyl radicals containing from 1 to 18, preferably 2 to 12, carbon atoms and include radicals such as alkyl, alkenyl, aryl, arylalkyl, alkaryl and cycloaliphatic radicals. Particularly preferred as R 1 and R 2 groups are alkyl groups of 2 to 8 carbon atoms.
  • the radicals may, for example, be ethyl, n-propyl, i-propyl, n-butyl, iso-butyl, sec-butyl, amyl, n-hexyl, i-hexyl, n-octyl, decyl, dodecyl, octadecyl, 2-ethylhexyl, phenyl, butylphenyl, cyclohexyl, methylcyclopentyl, propenyl, butenyl.
  • the total number of carbon atoms (i.e. R 1 and R 2 ) in the dithiophosphoric acid will generally be about 5 or greater.
  • the zinc dihydrocarbyl dithiophosphate comprises a zinc dialkyl dithiophosphate.
  • the lubricating oil composition contains an amount of additive component (B) that introduces 0.02 to 0.12 mass%, 0.02 to 0.10 mass %, preferably 0.02 to 0.09 mass%, preferably 0.02 to 0.08 mass %, more preferably 0.02 to 0.06 mass % of phosphorus into the composition.
  • B additive component
  • the dihydrocarbyl dithiophosphate metal salt should preferably be added to the lubricating oil compositions in amounts no greater than from 1.1 to 1.4 mass % (a.i.), based upon the total mass of the lubricating oil composition.
  • the additive component (B) represents the sole phosphorus containing additive component in the lubricating oil composition.
  • the oil-soluble carbodiimide compound may include a mono- or poly- carbodiimide containing compound.
  • mono-carbodiimide we mean a compound that includes a single carbodiimide group.
  • a poly-carbodiimide is a compound which includes two or more carbodiimide groups.
  • the hydrocarbyl group which R 3 and R 4 may each independently represent comprises a C 1 to C 40 , preferably a C 1 to C 20 , hydrocarbyl group.
  • R 3 and R 4 each independently represent hydrogen, a C 1 to C 20 alkyl group, a C 1 to C 20 alkenyl group or a C 6 to C 18 aromatic group, each of which groups are optionally substituted or terminated with one or more substituents selected from C 1 to C 10 alkyl, a C 6 to C 18 aromatic group, halo, especially chloro, nitro or -OR 5 where R 5 represents hydrogen or C 1 to C 10 alkyl.
  • R 3 and R 4 each independently represent a C 6 to C 18 aromatic group, especially a phenyl group, each of which groups are optionally substituted with one or more substituents selected from C 1 to C 10 alkyl, a C 6 to C 18 aromatic group, halo, especially chloro, nitro or -OR 5 where R 5 represents C 1 to C 10 alkyl.
  • R 3 and R 4 in a compound of general formula I are both identical.
  • mono-carbodiimides include: di-isopropyl-carbodiimide, di-n-butyl-carbodiimide, methyl-tert-butyl-carbodiimide, dicyclohexyl-carbodiimide, diphenyl-carbodiimide, di-p-tolyl-carbodiimide and 4,4'-didodecyl-diphenyl-carbodiimide.
  • R 3 and R 4 both represent a phenyl group, each of which phenyl groups are substituted in at least the 2-position or both the 2- and 6-positions with respect to the nitrogen atom of the carbodiimide bond with one or more substituents selected from C 1 to C 10 alkyl, halo, especially chloro, nitro or -OR 5 where R 5 represents C 1 to C 10 alkyl.
  • Such highly preferred mono-carbodiimides include: 2,2'-diethyl-diphenyl-carbodiimide, 2,2'-di-isopropyl-diphenyl-carbodiimide, 2,2'-diethoxy-diphenyl-carbodiimide, 2,6,2',6'-tetra-ethyl-diphenyl-carbodiimide, 2,6,2',6'-tetra-isopropyl-diphenyl-carbodiimide, 2,6,2',6'-tetra-tert-butyl-diphenyl-carbodiimide, 2,6,2',6'-tetra-ethyl-3,3'-dichloro-diphenyl-carbodiimide, 2,2'-diethyl-6,6'-dichloro-diphenyl-carbodiimide, 2,6,2',6'-tetra-isobutyl-3,3'-dio
  • Preferred mono-carbodiimides include 2,6,2',6'-tetra-tert-butyl-diphenyl-carbodiimide and 2,6,2',6'-tetra-isopropyl-diphenyl-carbodiimide, especially 2,6,2',6'-tetra-isopropyl-diphenyl-carbodiimide which is sold under the trade mark Additin RC8500 TM by Rhein Chemie.
  • polycarbodiimides include: tetramethylene- ⁇ , ⁇ '-bis-(tert-butyl-carbodiimide), hexamethylene- ⁇ , ⁇ '-bis-(tert-butyl-carbodiimide) and tetramethylene- ⁇ , ⁇ '-bis-(phenyl-carbodiimide).
  • additive component (C) comprises a mono-carbodiimide.
  • the additive component (C) is added to the lubricant composition in an amount of 0.05 to 10, more preferably 0.1 to 5, even more preferably 0.3 to 4, especially 0.5 to 3, mass % (a.i.), based on the total mass of the lubricating oil composition.
  • the lubricating oil composition further includes an oil-soluble metal deactivator (D) as an additive in a minor amount.
  • D oil-soluble metal deactivator
  • Metal deactivators which additive component (D) may represent include: compounds containing a triazole, thiadiazole or mercaptobenzimidazole ring. Such compounds are frequently used in lubricating oil compositions and may be prepared by known techniques as disclosed in US Patent 6,410,490 B .
  • an additive component (D) in the lubricating oil composition may provide further inhibition and/or a reduction in the corrosion of the metallic engine components, particularly the softer metallic (i.e. non-ferrous) engine components.
  • the inclusion of an additive component (D) in the lubricating oil composition may provide a marked improvement in the anti-corrosion properties of the lubricating oil composition with respect to the lead and copper containing engine components, especially the copper containing components.
  • the metal deactivator comprises a compound containing a triazole ring, which ring is optionally substituted with one or more substituents.
  • exemplary triazole ring containing compounds include triazole, benzotriazole and C 1 to C 12 alkyl substituted benzotriazoles, such as tolutriazole.
  • Preferred triazole ring containing compounds are benzotriazole and C 1 to C 12 alkyl substituted benzotriazoles.
  • An especially preferred triazole ring containing compound is tolutriazole.
  • the nitrogen atom of the triazole ring in the triazole containing compound, as defined herein, is substituted with a C 1 to C 10 hydrocarbyl group, such as an alkyl group, which group is optionally substituted with one or more nitrogen atoms and/or terminated with one or more -NR 6 R 7 groups, where R 6 and R 7 each independently represent hydrogen or a C 1 to C 20 hydrocarbyl group, such as a C 1 to C 20 aliphatic hydrocarbyl group.
  • the nitrogen atom of the triazole ring in the triazole containing compound as defined herein is substituted with a -CH 2 (NR 6 R 7 ) group, where R 6 and R 7 each independently represent hydrogen or C 1 to C 20 aliphatic hydrocarbyl group.
  • the nitrogen atom of the triazole ring in the triazole containing compound as defined herein is substituted with a -CH 2 (NR 6 R 7 ) group, where R 6 and R 7 both represent a C 1 to C 10 alkyl group.
  • An especially preferred triazole ring containing compound is 1-[bis(2-ethylhexyl)aminomethyl]-4-methylbenzotriazole which is sold under the trade name of IRGAMET 39 by Ciba.
  • the additive component (D) is added to the lubricant composition in an amount of 0.01 to 0.5, more preferably 0.05 to 0.3, even more preferably 0.1 to 0.2, mass % (a.i.), based on the total mass of the lubricating oil composition.
  • crankcase lubricating oil compositions of the invention may be used to lubricate mechanical engine components, particularly in internal combustion engines, e.g. spark-ignited or compression-ignited two- or four- stroke reciprocating engines, by adding the composition thereto.
  • the lubricating oil composition is for use in the lubrication of a spark-ignited or compression ignited internal combustion engine which is fuelled at least in part with a biofuel; especially a spark-ignited internal combustion engine which is fuelled at least in part with a bioethanol fuel and a compression ignited internal combustion engine which is fuelled at least in part with a biodiesel fuel.
  • a spark-ignited internal combustion engine which is fuelled at least in part with a bioethanol fuel
  • a compression ignited internal combustion engine which is fuelled at least in part with a biodiesel fuel.
  • Such engines may be conventional gasoline or diesel engines designed to be powered by gasoline or petroleum diesel, respectively; alternatively, the engines may be specifically modified to be powered by an alcohol based fuel or biodiesel fuel.
  • the lubricating oil composition is for use in the lubrication of a compression-ignited internal combustion engine (diesel engine), especially a compression-ignited internal combustion engine which is fuelled at least in part with a biodiesel fuel.
  • a compression-ignited internal combustion engine diesel engine
  • Such engines include passenger car diesel engines and heavy duty diesel engines, for example engines found in road trucks.
  • the lubricating oil composition is for use in the lubrication of a passenger car compression-ignited internal combustion engine (i.e. a light duty diesel engine), which is fuelled at least in part with a biodiesel fuel, especially such an engine which employs a late post-injection of fuel into the cylinder.
  • the lubricating oil composition is for use in the lubrication of the crankcase of the aforementioned engines.
  • the crankcase lubricating oil composition of the present invention comprises at least 0.3, preferably at least 0.5, more preferably at least 1, even more preferably at least 5, even more preferably at least 10, even more preferably at least 15, even more preferably at least 20, mass % of biofuel and/or a decomposition product thereof.
  • the lubricating oil composition may comprise up to 50 mass % of biofuel and/or a decomposition product thereof, preferably it includes less than 35, more preferably less than 30, mass % of biofuel and/or a decomposition product thereof.
  • the biofuel comprises an alcohol based fuel in the case of spark-ignited internal combustion engines, preferably a bioalcohol fuel, especially bioethanol fuel.
  • the biofuel comprises biodiesel in the case of compression ignited internal combustion engines.
  • Biofuels include fuels that are produced from renewable biological resources and include biodiesel fuel as defined herein and bioethanol fuel which may be derived from fermented sugar.
  • biofuel also embraces an "alcohol based fuel”, such as “ethanol based fuel”.
  • Alcohol based fuels are employed in spark-ignited internal combustion engines.
  • the alcohol based fuel may include one or more alcohols selected from methanol, ethanol, propanol and butanol.
  • the alcohol may be derived from a renewable biological source or a non-renewable source, such as petroleum.
  • the alcohol based fuel may comprise 100 % by volume of one or more alcohols (i.e. pure alcohol).
  • the alcohol based fuel may comprise a blend of an alcohol and petroleum gasoline; suitable blends include 5, 10, 15, 20, 25, 30, 35, 40, 50, 60, 70, 80, 85, and 90, vol.% of the alcohol, based on the total volume of the alcohol and gasoline blend.
  • the alcohol based fuel comprises an ethanol based fuel. More preferably, the alcohol based fuel comprises a bioalcohol fuel, especially a bioethanol fuel.
  • the bioethanol fuel comprises ethanol derived from a renewable biological source (i.e. bioethanol), preferably ethanol derived solely from a renewable biological source.
  • the bioethanol may be derived from the sugar fermentation of crops such as corn, maize, wheat, cord grass and sorghum plants.
  • the bioethanol fuel may comprise 100% by volume bioethanol (designated as E100); alternatively, the bioethanol fuel may comprise a blend of bioethanol and petroleum gasoline.
  • the bioethanol fuel blend may have the designation "Exx" wherein xx refers to the amount of E100 bioethanol in vol.%, based on the total volume of the bioethanol fuel blend.
  • E10 refers to a bioethanol fuel blend which comprises 10 volume % E100 bioethanol fuel and 90 volume % of petroleum gasoline.
  • bioethanol fuel includes pure bioethanol fuel (i.e. E100) and bioethanol fuel blends comprising a mixture of bioethanol fuel and petroleum gasoline fuel.
  • the bioethanol fuel comprises E100, E95, E90, E85, E80, E75, E70, E65, E60, E55, E50, E45, E40, E35, E30, E25, E20, E15, E10, E8, E6 or E5.
  • Highly preferred blends include E85 (ASTM D5798 (USA)), E10 (ASTM D4806 (USA)) and E5 (EN 228:2004 (Europe)).
  • the biodiesel fuel comprises at least one alkyl ester, typically a mono-alkyl ester, of a long chain fatty acid derivable from vegetable oils or animal fats.
  • the biodiesel fuel comprises one or more methyl or ethyl esters of such long chain fatty acids, especially one or more methyl esters.
  • the long chain fatty acids typically comprise long chains which include carbon, hydrogen and oxygen atoms.
  • the long chain fatty acids include from 10 to 30, more preferably 14 to 26, most preferably 16 to 22, carbon atoms.
  • Highly preferred fatty acids include palmitic acid, stearic acid, oleic acid and linoleic acid.
  • the biodiesel fuel may be derived from the esterification or transesterification of one or more vegetable oils and animal fats, such as corn oil, cashew oil, oat oil, lupine oil, kenaf oil, calendula oil, cotton oil, hemp oil, soybean oil, linseed oil, hazelnut oil, euphorbia oil, pumpkin seed oil, palm oil, rapeseed oil, olive oil, tallow oil, sunflower oil, rice oil, sesame oil or algae oil.
  • Preferred vegetable oils include palm oil, rapeseed oil and soybean oil.
  • a pure biodiesel fuel that meets the ASTM D6751-08 standard (USA) or EN 14214 standard (European) specifications is designated as B100.
  • a pure biodiesel fuel may be mixed with a petroleum diesel fuel to form a biodiesel blend which may reduce emissions and improve engine performance.
  • Such biodiesel blends are given a designation "Bxx" where xx refers to the amount of the B100 biodiesel in volume %, based on the total volume of the biodiesel blend.
  • B10 refers to a biodiesel blend which comprises 10 volume % B100 biodiesel fuel and 90 volume % of petroleum diesel fuel.
  • biodiesel fuel includes pure biodiesel fuel (i.e. B100) and biodiesel fuel blends comprising a mixture of biodiesel fuel and petroleum diesel fuel.
  • the biodiesel fuel comprises a B100, B95, B90, B85, B80, B75, B70, B65, B60, B55, B50, B45, B40, B35, B30, B25, B20, B15, B10, B8, B6, B5, B4, B3, B2 or B1.
  • the biodiesel fuel comprises a B50 designation or lower, more preferably a B5 to B40, even more preferably B5 to B40, most preferably B5 to B20.
  • Co-additives with representative effective amounts, that may also be present, different from additive components (B) and (C), and (D) if present, are listed below. All the values listed are stated as mass percent active ingredient.
  • the final lubricating oil composition typically made by blending the or each additive into the base oil, may contain from 5 to 25, preferably 5 to 18, typically 7 to 15, mass % of the co-additives, the remainder being oil of lubricating viscosity.
  • additives can provide a multiplicity of effects, for example, a single additive may act as a dispersant and as an oxidation inhibitor.
  • a dispersant is an additive whose primary function is to hold solid and liquid contaminations in suspension, thereby passivating them and reducing engine deposits at the same time as reducing sludge depositions.
  • a dispersant maintains in suspension oil-insoluble substances that result from oxidation during use of the lubricant, thus preventing sludge flocculation and precipitation or deposition on metal parts of the engine.
  • Dispersants are usually "ashless", as mentioned above, being non-metallic organic materials that form substantially no ash on combustion, in contrast to metal-containing, and hence ash-forming materials. They comprise a long hydrocarbon chain with a polar head, the polarity being derived from inclusion of e.g. an O, P, or N atom.
  • the hydrocarbon is an oleophilic group that confers oil-solubility, having, for example 40 to 500 carbon atoms.
  • ashless dispersants may comprise an oil-soluble polymeric backbone.
  • a preferred class of olefin polymers is constituted by polybutenes, specifically polyisobutenes (PIB) or poly-n-butenes, such as may be prepared by polymerization of a C 4 refinery stream.
  • PIB polyisobutenes
  • poly-n-butenes such as may be prepared by polymerization of a C 4 refinery stream.
  • Dispersants include, for example, derivatives of long chain hydrocarbon-substituted carboxylic acids, examples being derivatives of high molecular weight hydrocarbyl-substituted succinic acid.
  • a noteworthy group of dispersants is constituted by hydrocarbon-substituted succinimides, made, for example, by reacting the above acids (or derivatives) with a nitrogen-containing compound, advantageously a polyalkylene polyamine, such as a polyethylene polyamine.
  • reaction products of polyalkylene polyamines with alkenyl succinic anhydrides such as described in US-A-3,202,678 ; - 3,154,560 ; - 3,172,892 ; - 3,024,195 ; - 3,024,237 , - 3,219,666 ; and - 3,216,936 , that may be post-treated to improve their properties, such as borated (as described in US-A-3,087,936 and - 3,254,025 ) fluorinated and oxylated.
  • boration may be accomplished by treating an acyl nitrogen-containing dispersant with a boron compound selected from boron oxide, boron halides, boron acids and esters of boron acids.
  • a detergent is an additive that reduces formation of piston deposits, for example high-temperature varnish and lacquer deposits, in engines; it normally has acid-neutralising properties and is capable of keeping finely divided solids in suspension.
  • Most detergents are based on metal "soaps", that is metal salts of acidic organic compounds.
  • Detergents generally comprise a polar head with a long hydrophobic tail, the polar head comprising a metal salt of an acidic organic compound.
  • the salts may contain a substantially stoichiometric amount of the metal when they are usually described as normal or neutral salts and would typically have a total base number or TBN (as may be measured by ASTM D2896 in mg KOH/g) of from 0 to 80.
  • a metal base can be included by reaction of an excess of a metal compound, such as an oxide or hydroxide, with an acidic gas such as carbon dioxide.
  • the resulting overbased detergent comprises neutralised detergent as an outer layer of a metal base (e.g. carbonate) micelle.
  • Such overbased detergents may have a TBN of 150 or greater, and typically of from 250 to 500 or more.
  • Detergents that may be used include oil-soluble neutral and overbased sulfonates, phenates, sulfurized phenates, thiophosphonates, salicylates, and naphthenates and other oil-soluble carboxylates of a metal, particularly the alkali or alkaline earth metals, e.g. sodium, potassium, lithium, calcium and magnesium.
  • a metal particularly the alkali or alkaline earth metals, e.g. sodium, potassium, lithium, calcium and magnesium.
  • the most commonly-used metals are calcium and magnesium, which may both be present in detergents used in a lubricant, and mixtures of calcium and/or magnesium with sodium.
  • Particularly preferred metal detergents are neutral and overbased alkali or alkaline earth metal salicylates having a TBN of from 50 to 450, preferably a TBN of 50 to 250.
  • Highly preferred salicylate detergents include alkaline earth metal salicylates, particularly magnesium and calcium, especially, calcium salicylates.
  • the alkali or alkaline earth metal salicylate detergent is the sole detergent in the lubricating oil composition.
  • Friction modifiers include glyceryl monoesters of higher fatty acids, for example, glyceryl mono-oleate; esters of long chain polycarboxylic acids with diols, for example, the butane diol ester of a dimerized unsaturated fatty acid; oxazoline compounds; and alkoxylated alkyl-substituted mono-amines, diamines and alkyl ether amines, for example, ethoxylated tallow amine and ethoxylated tallow ether amine.
  • Other known friction modifiers comprise oil-soluble organo-molybdenum compounds. Such organo-molybdenum friction modifiers also provide antioxidant and antiwear credits to a lubricating oil composition.
  • Suitable oil-soluble organo-molybdenum compounds have a molybdenum-sulfur core.
  • dithiocarbamates dithiophosphates, dithiophosphinates, xanthates, thioxanthates, sulfides, and mixtures thereof.
  • Particularly preferred are molybdenum dithiocarbamates, dialkyldithiophosphates, alkyl xanthates and alkylthioxanthates.
  • the molybdenum compound is dinuclear or trinuclear.
  • One class of preferred organo-molybdenum compounds useful in all aspects of the present invention is tri-nuclear molybdenum compounds of the formula Mo 3 S k L n Q z and mixtures thereof wherein L are independently selected ligands having organo groups with a sufficient number of carbon atoms to render the compounds soluble or dispersible in the oil, n is from 1 to 4, k varies from 4 through to 7, Q is selected from the group of neutral electron donating compounds such as water, amines, alcohols, phosphines, and ethers, and z ranges from 0 to 5 and includes non-stoichiometric values. At least 21 total carbon atoms should be present among all the ligands' organo groups, such as at least 25, at least 30, or at least 35 carbon atoms.
  • the molybdenum compounds may be present in a lubricating oil composition at a concentration in the range 0.1 to 2 mass %, or providing at least 10 such as 50 to 2,000 ppm by mass of molybdenum atoms.
  • the molybdenum from the molybdenum compound is present in an amount of from 10 to 1500, such as 20 to 1000, more preferably 30 to 750, ppm based on the total weight of the lubricating oil composition.
  • the molybdenum is present in an amount of greater than 500 ppm.
  • Anti-oxidants are sometimes referred to as oxidation inhibitors; they increase the resistance of the composition to oxidation and may work by combining with and modifying peroxides to render them harmless, by decomposing peroxides, or by rendering an oxidation catalyst inert. Oxidative deterioration can be evidenced by sludge in the lubricant, varnish-like deposits on the metal surfaces, and by viscosity growth.
  • radical scavengers e.g. sterically hindered phenols, secondary aromatic amines, and organo-copper salts
  • hydroperoxide decomposers e.g., organosulfur and organophosphorus additives
  • multifunctionals e.g. zinc dihydrocarbyl dithiophosphates, which may also function as anti-wear additives, and organo-molybdenum compounds, which may also function as friction modifiers and anti-wear additives).
  • antioxidants are selected from copper-containing antioxidants, sulfur-containing antioxidants, aromatic amine-containing antioxidants, hindered phenolic antioxidants, dithiophosphates derivatives, metal thiocarbamates, and molybdenum-containing compounds.
  • Anti-wear agents reduce friction and excessive wear and are usually based on compounds containing sulfur or phosphorous or both, for example that are capable of depositing polysulfide films on the surfaces involved.
  • Examples of ashless anti-wear agents include 1,2,3-triazoles, benzotriazoles, sulfurised fatty acid esters, and dithiocarbamate derivatives.
  • Rust and corrosion inhibitors serve to protect surfaces against rust and/or corrosion.
  • rust inhibitors there may be mentioned non-ionic polyoxyalkylene polyols and esters thereof, polyoxyalkylene phenols, thiadiazoles and anionic alkyl sulfonic acids.
  • Pour point depressants otherwise known as lube oil flow improvers, lower the minimum temperature at which the oil will flow or can be poured.
  • Such additives are well known. Typical of these additive are C 8 to C 18 dialkyl fumerate/vinyl acetate copolymers and polyalkylmethacrylates.
  • Additives of the polysiloxane type for example silicone oil or polydimethyl siloxane, can provide foam control.
  • a small amount of a demulsifying component may be used.
  • a preferred demulsifying component is described in EP-A-330,522 . It is obtained by reacting an alkylene oxide with an adduct obtained by reaction of a bis-epoxide with a polyhydric alcohol.
  • the demulsifier should be used at a level not exceeding 0.1 mass % active ingredient. A treat rate of 0.001 to 0.05 mass % active ingredient is convenient.
  • Viscosity modifiers impart high and low temperature operability to a lubricating oil.
  • Viscosity modifiers that also function as dispersants are also known and may be prepared as described above for ashless dispersants.
  • these dispersant viscosity modifiers are functionalised polymers (e.g. interpolymers of ethylene-propylene post grafted with an active monomer such as maleic anhydride) which are then derivatised with, for example, an alcohol or amine.
  • the lubricant may be formulated with or without a conventional viscosity modifier and with or without a dispersant viscosity modifier.
  • Suitable compounds for use as viscosity modifiers are generally high molecular weight hydrocarbon polymers, including polyesters.
  • Oil-soluble viscosity modifying polymers generally have weight average molecular weights of from 10,000 to 1,000,000, preferably 20,000 to 500,000, which may be determined by gel permeation chromatography or by light scattering.
  • the additives may be incorporated into an oil of lubricating viscosity (also known as a base oil) in any convenient way.
  • each additive can be added directly to the oil by dispersing or dissolving it in the oil at the desired level of concentration. Such blending may occur at ambient temperature or at an elevated temperature.
  • an additive is available as an admixture with a base oil so that the handling thereof is easier.
  • additives When a plurality of additives are employed it may be desirable, although not essential, to prepare one or more additive packages (also known as additive compositions or concentrates) comprising additives and a diluent, which can be a base oil, whereby the additives, with the exception of viscosity modifiers, multifuntional viscosity modifiers and pour point depressants, can be added simultaneously to the base oil to form the lubricating oil composition. Dissolution of the additive package(s) into the oil of lubricating viscosity may be facilitated by diluent or solvents and by mixing accompanied with mild heating, but this is not essential.
  • additive packages also known as additive compositions or concentrates
  • a diluent which can be a base oil
  • dissolution of the additive package(s) into the oil of lubricating viscosity may be facilitated by diluent or solvents and by mixing accompanied with mild heating, but this is not essential.
  • the additive package(s) will typically be formulated to contain the additive(s) in proper amounts to provide the desired concentration in the final formulation when the additive package(s) is/are combined with a predetermined amount of oil of lubricating viscosity.
  • one or more detergents may be added to small amounts of base oil or other compatible solvents (such as a carrier oil or diluent oil) together with other desirable additives to form additive packages containing from 2.5 to 90, preferably from 5 to 75, most preferably from 8 to 60, mass %, based on the mass of the additive package, of additives on an active ingredient basis in the appropriate proportions.
  • the final formulations may typically contain 5 to 40 mass % of the additive package(s), the remainder being oil of lubricating viscosity.
  • the additive components (B) and (C), and (D) if present, form part of an additive package which also includes a diluent, preferably a base stock, and one or more co-additives in a minor amount, other than additive components (B), (C) and (D), selected from ashless dispersants, metal detergents, corrosion inhibitors, antioxidants, antiwear agents, friction modifiers, demulsifiers and antifoam agents; the additive package being added to the oil of lubricating viscosity.
  • a diluent preferably a base stock
  • co-additives in a minor amount, other than additive components (B), (C) and (D)
  • ashless dispersants selected from ashless dispersants, metal detergents, corrosion inhibitors, antioxidants, antiwear agents, friction modifiers, demulsifiers and antifoam agents
  • HTCBT High Temperature Corrosion Bench Test
  • test lubricating oil 100 ml
  • the sample tube is immersed in a heated oil bath so that the temperature of the test lubricating oil is heated to 135°C.
  • the test lubricating oil is heated at 135°C for 168 hours and during this time dry air is blown through the heated oil at a rate of 5 litres per hour. After which, the test lubricating oil is cooled and the metal specimens removed and examined for corrosion.
  • concentration of copper, tin and lead in the test lubricating oil composition and a reference sample of the lubricating oil composition i.e.
  • test lubricating oil a new sample of the test lubricating oil is then determined in accordance with ASTM D5185.
  • concentration of each of the metal contaminants in the test lubricating oil composition and those of the reference sample lubricating oil composition provides a value for the change in the various metal concentrations before and after the test.
  • the industry standard limits to meet the requirements of API CJ-4 which involves testing the lubricant in the absence of any added fuel, are 20 ppm maximum for copper and 120 ppm maximum for lead (i.e. these are the test limits for the pure lubricant only).
  • a lubricating oil composition which includes a biofuel or a petroleum fuel
  • the test has essentially been modified and such compositions are not required to meet the requirements of API CJ-4; the results of the test being used for comparative purposes to assess the effects of certain additives in the presence of a biofuel.
  • a 5W-40 multigrade base crankcase lubricating oil formulation (Oil A) was prepared by admixing an oil of lubricating viscosity (a mixture of Group IV and Group III base stocks (67 mass %)) and a viscosity modifier concentrate (6.7 mass %) with a commercial additive package that contains an overbased detergent, an antioxidant, a dispersant and a ZDDP.
  • Base Oil A has a phosphorus content of 0.11 mass % and a sulphated ash content of 0.99 mass %. All chemical additives described herein are available from standard suppliers of lubricant additives such as Infineum UK Ltd, Lubrizol Corporation, Afton Chemicals Corporation, for example.
  • the following 5W-40 multigrade lubricating oil formulations as detailed below were prepared by admixing Oil A with one or more of the specified components.
  • Biodiesel fuel or petroleum diesel fuel was added to the lubricating oil compositions to simulate contamination of the oil during operation of a compression ignited internal combustion engine fuelled with biodiesel fuel or petroleum diesel fuel, respectively.
  • Each lubricating oil formulation was evaluated for copper and lead corrosion control using the High Temperature Corrosion Bench Test; the results are displayed in Table 1.
  • Lubricant 1 i.e. Lubricant 2 of the present invention
  • Lubricant 2 essentially results in the complete suppression of the biodiesel induced lead corrosion (Compare Lubricant 2 with Reference Lubricants 1 and 2).
  • Base lubricating oil formulation (Oil A) as detailed in Example 1 and Lubricant 3 of the invention comprising Oil A (98.5 mass %) and an oil-soluble carbodiimide compound (Additin RC8500 TM ,1.5 mass %) were evaluated in the Mack T-12 Engine Test in accordance with ASTM D7427.
  • the Mack T-12 Engine Test is a standard test for evaluating wear performance in diesel engine lubricating oil formulations. The test is run over a 300 hour period employing a modified Mack E7 E-TECH V-MAC III diesel engine with exhaust gas recirculation (EGR). A warm up and a 1 hour break in are followed by a two phase test consisting of 100 hours at 1800 rpm and 200 hours at 1200rpm, both at constant speed and load.
  • EGR exhaust gas recirculation
  • Figure 1 shows the extent of lead corrosion over the course of the tests.
  • the level of lead corrosion increased gradually starting at 100 hours and was 25 ppm at the end of the test.
  • the lead level increased significantly after 100 hours with an end of test value of 60 ppm.
  • Lubricant 3 of the invention is tested and the engine fuelled with B30 biodiesel fuel (designated as B30 + booster)
  • the lead level after 100 hours not only increases more slowly than the test using Oil A and fuelling the engine with B30 biodiesel but also the test employing Oil A and fuelling the engine with petroleum diesel.
  • the lead level of Lubricant 3 of the invention when the engine is fuelled with B30 biodiesel fuel, is essentially identical to the run employing Oil A where the engine is fuelled with petroleum diesel.
  • a series of 5W-30 multigrade crankcase lubricating oil compositions were prepared by admixing a Group III base stock and the various components as detailed in Table 2, namely: a calcium sulphonate detergent (TBN 300); a calcium phenate detergent; a dispersant, an antioxidant and a viscosity modifier concentrate.
  • Reference Lubricants 3 and 4 did not include a ZDDP or an oil-soluble carbodiimide compound
  • Reference Lubricant 5 further included an oil-soluble carbodiimide compound (Additin RC8500 TM ) but no ZDDP
  • Lubricant 4 of the invention included both a ZDDP and an oil-soluble carbodiimide compound (Additin RC8500 TM ).
  • B50 biodiesel fuel (10 mass %) was added to Reference Lubricants 4 and 5 and Lubricant 4 of the invention to simulate contamination of the oil during operation of a diesel engine fuelled with biodiesel fuel; no biodiesel fuel was added to Reference Lubricant 3.
  • a lubricant of the present invention (Lubricant 4), containing a combination of both an oil-soluble carbodiimide compound and a ZDDP, suppresses biodiesel induced lead corrosion significantly compared with a comparable lubricant including only an oil-soluble carbodiimide compound and not a ZDDP (Reference Lubricant 5).
  • a 10W-40 multigrade base crankcase lubricating oil formulation (Oil B) was prepared by admixing a Group III base stock (69 mass %) and a viscosity modifier concentrate (10 mass %) with a commercial additive package containing an overbased detergent, a dispersant, an antioxidant and a ZDDP. Oil B has a phosphorus content of 0.08 mass % and a sulphated ash content of 1 mass %.
  • Reference Lubricant 6 comprises Oil B; Reference Lubricant 7 comprises Oil B plus an oil-soluble benzotriazole metal deactivator (IRGAMET 39 TM ); Lubricants 5 to 7 of the invention are prepared by admixing Oil B with an oil-soluble carbodiimide compound (Additin RC8500 TM ); and, Lubricant 8 of the invention is prepared by admixing Oil B with an oil-soluble carbodiimide compound (Additin RC8500 TM ) and an oil-soluble benzotriazole metal deactivator (IRGAMET 39 TM ).
  • B50 biodiesel fuel (10 mass %) is added to each of the lubricants to simulate contamination of the oil during operation of a diesel engine fuelled with biodiesel fuel.
  • the combination of an oil-soluble benzotriazole metal deactivator, as an additive in a minor amount, and a ZDDP, as an additive in a minor amount, in a lubricating oil composition, comprising an oil of lubricating viscosity in a major amount, also suppresses both biodiesel induced lead and copper corrosion; the level of copper corrosion being reduced by approximately 70 % and the level of lead corrosion being reduced by approximately 30 % (Compare Reference Lubricant 7 with Reference Lubricant 6).
  • a 5W-30 multigrade base crankcase lubricating oil composition (Oil C) was prepared by admixing an oil of lubricating viscosity (a mixture of Group IV and Group III base stocks (70 mass %)) and a viscosity modifier concentrate (9.5 mass %) with a commercial additive package containing an overbased detergent, a dispersant, an antioxidant and a ZDDP. Oil C has a phosphorus content of 0.06 mass % and a sulphated ash content of 0.6 mass %.
  • Lubricants 9 and 10 of the invention are prepared by admixing Oil C with an oil-soluble carbodiimide compound (Additin RC8500 TM ).
  • Petroleum gasoline fuel designated as E0
  • E0 Petroleum gasoline fuel
  • E0 was added to Oil C to form Reference Lubricant 8
  • Lubricant 9 of the invention to simulate contamination of the oil during operation of a spark-ignited internal combustion engine fuelled with petroleum gasoline fuel.
  • Bioethanol fuel (E85 comprising a mixture of E100 bioethanol (85 mass %) and petroleum gasoline (15 mass %)) was added to Oil C to form Reference Lubricant 9 and also to Lubricant 10 of the invention to simulate contamination of the oil during operation of a spark-ignited internal combustion engine fuelled with bioethanol fuel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)
EP10170109A 2009-08-24 2010-07-20 Schmierölzusammensetzung enthaltend ein Metalldialkyldithiophosphat und ein Carbodiimid Active EP2290043B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10170109A EP2290043B1 (de) 2009-08-24 2010-07-20 Schmierölzusammensetzung enthaltend ein Metalldialkyldithiophosphat und ein Carbodiimid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP09010812 2009-08-24
EP10170109A EP2290043B1 (de) 2009-08-24 2010-07-20 Schmierölzusammensetzung enthaltend ein Metalldialkyldithiophosphat und ein Carbodiimid

Publications (2)

Publication Number Publication Date
EP2290043A1 true EP2290043A1 (de) 2011-03-02
EP2290043B1 EP2290043B1 (de) 2012-08-29

Family

ID=41343496

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10170109A Active EP2290043B1 (de) 2009-08-24 2010-07-20 Schmierölzusammensetzung enthaltend ein Metalldialkyldithiophosphat und ein Carbodiimid

Country Status (6)

Country Link
US (1) US20110041797A1 (de)
EP (1) EP2290043B1 (de)
JP (1) JP5570358B2 (de)
CN (1) CN101993761B (de)
CA (1) CA2713922C (de)
SG (1) SG169299A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3127952A1 (fr) 2021-10-11 2023-04-14 Totalenergies Marketing Services Carbodiimide comme additif dans des lubrifiants destinés à des systèmes de motorisation pour améliorer la compatibilité avec les élastomères

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2015014765A (es) 2013-04-22 2016-03-11 Basf Se Aditivo de compatibilidad con los sellos para mejorar la compatibilidad con los sellos fluoropoliméricos de composiciones lubricantes.
US10066186B2 (en) 2013-04-22 2018-09-04 Basf Se Lubricating oil compositions containing a halide seal compatibility additive and a second seal compatibility additive
JP6096986B2 (ja) * 2013-05-07 2017-03-15 ライン・ケミー・ライノー・ゲーエムベーハー 特定のカルボジイミドを用いる油配合物の調製方法
JP5991956B2 (ja) * 2013-09-18 2016-09-14 株式会社豊田中央研究所 内燃機関及び自動車
EP2977436B1 (de) * 2014-07-17 2021-07-14 Infineum International Limited Schmierölzusammensetzungen
FR3043718B1 (fr) * 2015-11-13 2019-07-26 Total Marketing Services Methode de lubrification separee d'un systeme de motorisation pour vehicule automobile
CN109852456A (zh) * 2017-11-30 2019-06-07 中国海洋石油集团有限公司 一种长换油周期柴油机油组合物
CN111088092B (zh) * 2018-10-23 2022-07-15 中国石油化工股份有限公司 一种重负荷柴油机油组合物及其制备方法
CN111088091B (zh) * 2018-10-23 2022-03-11 中国石油化工股份有限公司 一种汽油机油组合物及其制备方法
US11702614B2 (en) 2019-03-20 2023-07-18 Eneos Corporation Lubricating oil composition
CN111763555A (zh) * 2020-07-22 2020-10-13 南宁广壮润滑油有限公司 一种耐高温且低温流动性能优异的柴油机油制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3024237A (en) 1959-08-24 1962-03-06 California Research Corp Alkenyl succinimides of piperazines
US3087936A (en) 1961-08-18 1963-04-30 Lubrizol Corp Reaction product of an aliphatic olefinpolymer-succinic acid producing compound with an amine and reacting the resulting product with a boron compound
US3154560A (en) 1961-12-04 1964-10-27 Monsanto Co Nu, nu'-azaalkylene-bis
US3172892A (en) 1959-03-30 1965-03-09 Reaction product of high molecular weight succinic acids and succinic anhydrides with an ethylene poly- amine
US3202678A (en) 1959-08-24 1965-08-24 California Research Corp Alkenyl succinimides of tetraethylene pentamine
US3216936A (en) 1964-03-02 1965-11-09 Lubrizol Corp Process of preparing lubricant additives
EP0330522A2 (de) 1988-02-26 1989-08-30 Exxon Chemical Patents Inc. Demulgierte Schmieröle
EP0992571A1 (de) * 1998-10-09 2000-04-12 Exxon Research And Engineering Company Schmieröle mit verbesserter Oxydationsstabilität
US6410490B1 (en) 1999-05-19 2002-06-25 Ciba Specialty Chemicals Corporation Stabilized hydrotreated and hydrowaxed lubricant compositions
US20060122077A1 (en) * 2004-12-03 2006-06-08 Bruce Wilburn Compositions comprising at least one carbodiimide
EP2055761A2 (de) * 2007-10-31 2009-05-06 Chevron Oronite Company LLC Schmierölzusammensetzungen mit einem Biodieselkraftstoff und einem Detergens

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63208605A (ja) * 1987-02-23 1988-08-30 Mazda Motor Corp アルコ−ルエンジン
JPH03160106A (ja) * 1989-11-15 1991-07-10 Mazda Motor Corp アルコールエンジン
DE4435548A1 (de) * 1994-10-05 1996-04-11 Rhein Chemie Rheinau Gmbh Stabilisierte Schmierstoff-Grundsubstanz
US7456137B2 (en) * 2004-12-03 2008-11-25 Afton Chemical Corporation Compositions comprising at least one carbodiimide
JP2007009123A (ja) * 2005-07-01 2007-01-18 Nippon Oil Corp 含酸素燃料エンジン用潤滑油組成物
JP3987555B1 (ja) * 2006-03-28 2007-10-10 三洋化成工業株式会社 粘度指数向上剤および潤滑油組成物
WO2008120599A1 (ja) * 2007-03-30 2008-10-09 Idemitsu Kosan Co., Ltd. 潤滑油組成物
US7960322B2 (en) * 2007-10-26 2011-06-14 Chevron Oronite Company Llc Lubricating oil compositions comprising a biodiesel fuel and an antioxidant

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3172892A (en) 1959-03-30 1965-03-09 Reaction product of high molecular weight succinic acids and succinic anhydrides with an ethylene poly- amine
US3219666A (en) 1959-03-30 1965-11-23 Derivatives of succinic acids and nitrogen compounds
US3024195A (en) 1959-08-24 1962-03-06 California Research Corp Lubricating oil compositions of alkylpiperazine alkenyl succinimides
US3202678A (en) 1959-08-24 1965-08-24 California Research Corp Alkenyl succinimides of tetraethylene pentamine
US3024237A (en) 1959-08-24 1962-03-06 California Research Corp Alkenyl succinimides of piperazines
US3254025A (en) 1961-08-18 1966-05-31 Lubrizol Corp Boron-containing acylated amine and lubricating compositions containing the same
US3087936A (en) 1961-08-18 1963-04-30 Lubrizol Corp Reaction product of an aliphatic olefinpolymer-succinic acid producing compound with an amine and reacting the resulting product with a boron compound
US3154560A (en) 1961-12-04 1964-10-27 Monsanto Co Nu, nu'-azaalkylene-bis
US3216936A (en) 1964-03-02 1965-11-09 Lubrizol Corp Process of preparing lubricant additives
EP0330522A2 (de) 1988-02-26 1989-08-30 Exxon Chemical Patents Inc. Demulgierte Schmieröle
EP0992571A1 (de) * 1998-10-09 2000-04-12 Exxon Research And Engineering Company Schmieröle mit verbesserter Oxydationsstabilität
US6410490B1 (en) 1999-05-19 2002-06-25 Ciba Specialty Chemicals Corporation Stabilized hydrotreated and hydrowaxed lubricant compositions
US20060122077A1 (en) * 2004-12-03 2006-06-08 Bruce Wilburn Compositions comprising at least one carbodiimide
EP2055761A2 (de) * 2007-10-31 2009-05-06 Chevron Oronite Company LLC Schmierölzusammensetzungen mit einem Biodieselkraftstoff und einem Detergens

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3127952A1 (fr) 2021-10-11 2023-04-14 Totalenergies Marketing Services Carbodiimide comme additif dans des lubrifiants destinés à des systèmes de motorisation pour améliorer la compatibilité avec les élastomères
WO2023061899A1 (fr) 2021-10-11 2023-04-20 Totalenergies Onetech Carbodiimide comme additif dans des lubrifiants destinés à des systèmes de motorisation pour ameliorer la compatibilite avec les elastomeres

Also Published As

Publication number Publication date
JP5570358B2 (ja) 2014-08-13
CA2713922A1 (en) 2011-02-24
CN101993761B (zh) 2014-05-21
CA2713922C (en) 2016-12-20
SG169299A1 (en) 2011-03-30
EP2290043B1 (de) 2012-08-29
JP2011042792A (ja) 2011-03-03
US20110041797A1 (en) 2011-02-24
CN101993761A (zh) 2011-03-30

Similar Documents

Publication Publication Date Title
EP2290043B1 (de) Schmierölzusammensetzung enthaltend ein Metalldialkyldithiophosphat und ein Carbodiimid
EP2457984B1 (de) Schmierölzusammensetzung
CN106566596B (zh) 润滑油组合物
EP2692839B1 (de) Schmierölzusammensetzung enthaltend einen Korrosionsinhibitor
EP2913384B1 (de) Schmierölzusammensetzung
EP2290038B1 (de) Schmierölzusammensetzung
EP2952563A1 (de) Schmierölzusammensetzungen
EP2371932B1 (de) Schmierölzusammensetzung
JP2017218588A (ja) 添加剤パッケージおよび潤滑油組成物
JP5646311B2 (ja) 潤滑油組成物
JP2013043990A (ja) 潤滑油組成物

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100720

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C10M 141/10 20060101AFI20120125BHEP

Ipc: C10N 40/25 20060101ALN20120125BHEP

Ipc: C10N 30/14 20060101ALN20120125BHEP

Ipc: C10N 30/12 20060101ALN20120125BHEP

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 573106

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010002603

Country of ref document: DE

Effective date: 20121025

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 573106

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120829

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120829

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120829

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121129

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121229

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120829

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120829

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120829

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121130

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120829

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120829

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121210

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120829

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120829

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120829

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120829

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121129

26N No opposition filed

Effective date: 20130530

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010002603

Country of ref document: DE

Effective date: 20130530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120829

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130720

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120829

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120829

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100720

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130720

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120829

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20200617

Year of fee payment: 11

Ref country code: BE

Payment date: 20200617

Year of fee payment: 11

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20210801

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230711

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240613

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240613

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240613

Year of fee payment: 15