EP2284121B1 - Hohlraum für ein mikromechanisches Bauelement - Google Patents

Hohlraum für ein mikromechanisches Bauelement Download PDF

Info

Publication number
EP2284121B1
EP2284121B1 EP10171427.7A EP10171427A EP2284121B1 EP 2284121 B1 EP2284121 B1 EP 2284121B1 EP 10171427 A EP10171427 A EP 10171427A EP 2284121 B1 EP2284121 B1 EP 2284121B1
Authority
EP
European Patent Office
Prior art keywords
portions
hole
substrate
microcavity
sacrificial material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10171427.7A
Other languages
English (en)
French (fr)
Other versions
EP2284121A1 (de
Inventor
Xavier Baillin
Stéphane CAPLET
Thierry Hilt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Publication of EP2284121A1 publication Critical patent/EP2284121A1/de
Application granted granted Critical
Publication of EP2284121B1 publication Critical patent/EP2284121B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • B81C1/00277Processes for packaging MEMS devices for maintaining a controlled atmosphere inside of the cavity containing the MEMS
    • B81C1/00293Processes for packaging MEMS devices for maintaining a controlled atmosphere inside of the cavity containing the MEMS maintaining a controlled atmosphere with processes not provided for in B81C1/00285
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/01Packaging MEMS
    • B81C2203/0145Hermetically sealing an opening in the lid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1052Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing
    • Y10T156/1056Perforating lamina
    • Y10T156/1057Subsequent to assembly of laminae

Definitions

  • the invention relates to the field of microelectronics, and more particularly to that of microcavity structures used, for example, for packaging, or encapsulation, of microelectronic devices, for example of the MEMS (microelectromechanical systems) and / or NEMS (nanosystems) type. electromechanical) and / or MOEMS (opto-electromechanical microsystems) and / or NOEMS (opto-electromechanical nanosystems), to protect them from the external environment.
  • MEMS microelectromechanical systems
  • NEMS nanosystems
  • a second type of encapsulation process called "Thin-Layer Packaging", or PCM, of a microelectronic device consists in creating an encapsulation structure around the device itself previously disposed on a substrate. This type of method is generally performed collectively for several microelectronic devices arranged on the same substrate and by the implementation of conventional techniques used in the field of microelectronics.
  • the document EP 1 708 958 B1 describes a method for producing a hermetic microcavity in which a microcomponent is encapsulated.
  • the cavity is closed by plugging release ports made through the cap by external plugs.
  • the plugs are based on a material capable of deforming by creep.
  • the dimensions of the release ports corresponding for example to the diameter or the dimensions of the sides according to the shape of the sections of the orifices, are less than about 5 microns.
  • These plugs are based on a polymerized material in order to prevent the material forming the plug from returning inside the cavity during the deposition of the material on the cover.
  • the document EP 1 694 597 B1 describes a method for producing a hermetic microcavity in which a microcomponent is encapsulated.
  • the microcavity can be closed from the outside by an outer layer under mechanical stress in bending tension towards the microcavity.
  • Another outer layer under mechanical stress in compression may be disposed above the first layer to maintain the microcavity open upon release of the microcomponent.
  • the microcavity can also be closed by a first external layer that is not constrained or weakly constrained in compression and covered, after the release of the microcomponent, by a second layer under mechanical tension stress.
  • the cavity is closed by plugging a release port in the hood by a flexible membrane anchored to the interior surface of the cavity.
  • the membrane is actuated using an electrostatic force.
  • An object of the present invention is to provide a microcavity structure for encapsulating at least one microelectronic device, and which does not have the drawbacks of the prior art.
  • Such a structure therefore comprises at least one shut-off valve, at least a portion of which is disposed vertically or facing one or more release holes, and whose operation, that is to say the passage of a first position in which the valve does not close the hole or holes at a second position in which said portion of the valve, disposed opposite the hole or holes, closes the hole or holes is obtained by a bimetallic effect: under the effect of a temperature variation, the two portions of materials of different thermal expansion coefficients deform to come to seal or not the hole or holes. It is thus possible to access the inside of the microcavity when the valve is in a position that does not close the hole or holes, for example when the valve is subjected to a certain temperature, but also to close the hole (s). holes, for example hermetically, when the valve is subjected to another temperature (for example at room temperature), which allows the closure of the hole or holes without polluting the interior of the microcavity by the clogging material.
  • the dimensions of the hole or holes formed through the cover can be much larger than those of the holes made in the covers of the encapsulation structures of the prior art because there is no limitation on capping materials that can be used to plug the hole (s).
  • the release holes can be arranged in such a way as to greatly reduce the release time of the device, in particular by placing them on the entire surface of the cover, including included in line with the device, their closure being ensured by one or more shutter valves.
  • the shutter valve is disposed vertically, or look, several holes and that the shutter valve is able to close several holes simultaneously.
  • the number of holes and / or the number of valves may in particular be chosen according to the dimensions of the microcavity.
  • the cover may comprise a second substrate sealed directly, or via a sealing bead, to the other substrate called the first substrate.
  • the cover may comprise a layer of material with a thickness of between approximately 1 ⁇ m and 10 ⁇ m.
  • the dimensions of the hole may be between about 1 ⁇ m and 100 ⁇ m.
  • At least one of said two portions of materials of different thermal expansion coefficients may be based on a getter material, for example titanium and / or zirconium.
  • the shut-off valve may comprise at least three portions of materials of different thermal expansion coefficients, the value of the coefficient of thermal expansion of the material of the portion disposed between the two others may be between the values of the thermal expansion coefficients of the materials of said two other portions of materials.
  • the intermediate portion located between the two other portions of the valve material reduces the shear stresses in the shutter valve during deformation of the valve between a non-closing position of the hole and a closed position hole (or vice versa), especially when the difference between the coefficients of thermal expansion of the materials of said two other portions is greater than or equal to about 15.10 -6 ° C -1 .
  • Said at least two portions of materials of different thermal expansion coefficients may form a plurality of deformable elements, at least one first end of each deformable element being able to be mechanically connected to the cover via at least one non-deformable element, at least one second end of each deformable element can be free, and at least a portion of each deformable element can be arranged facing at least one hole through the cover.
  • the non-deformable element can therefore form a frame which also makes it possible to increase the mechanical strength of the cover.
  • the structure may further comprise at least one electrical contact through the cover and electrically connected to the shutter valve.
  • the structure may further comprise at least one electrical contact passing through the microcavity from the substrate to the hood.
  • the structure may further comprise at least one stopper plugging the hole.
  • the present invention also relates to an encapsulation structure of a microelectronic device, wherein the microelectronic device is disposed in the microcavity of a structure as described above.
  • Said two portions may be able to close or not the hole under the effect of a temperature variation.
  • Said two portions may be able to close or not the hole under the effect of a temperature variation.
  • the step of eliminating the portion of sacrificial material, or the portion and the sacrificial material layer, can be carried out at a temperature such that the shutter valve can be deformed in a position not obturating the hole.
  • the method may further comprise, after the step of removing the portion of sacrificial material, or the portion and the sacrificial material layer, a step of plugging the microcavity by making a cap on and / or in the hole at a temperature such that the shut-off valve is deformed in a closed position of the hole.
  • the present invention also relates to a method of encapsulation of a microelectronic device, comprising the implementation of a method for producing a microcavity structure as described above, in which the device microelectronics is previously disposed on the substrate or the first substrate.
  • the encapsulation process can be implemented collectively to encapsulate a plurality of microelectronic devices disposed on the substrate. Shut-off valves can therefore also be made collectively.
  • the chips (each chip corresponds to a set formed by a microelectronic device and its encapsulation structure) can then be separated from each other by a cutting operation.
  • the release rate of the microelectronic device i.e., the rate of removal of the sacrificial material, can be much greater. more important.
  • the capping step may correspond to a deposition step by vacuum evaporation of the material intended to form the plug.
  • the shutter valve is at least partly based on a getter material and / or a getter material is present in the microcavity, to activate the getter material prior to this capping step. , in particular by heating in the deposition machine, thereby promoting the desorption of species trapped in the microcavity. It is therefore not necessary to carry out a thermal activation treatment of the getter material after closure of the microcavity.
  • the plugging step of the microcavity can be carried out at a pressure such that the pressure prevailing in the microcavity, after closing, is less than about 10 -3 mbar.
  • the structure 100 comprises a first substrate 104, for example based on a semiconductor such as silicon, on which the microelectronic device 102 is placed.
  • the structure 100 also comprises a second substrate 106 forming a cover.
  • the two substrates 104 and 106 are secured by means of a sealing bead 108, obtained for example by the implementation of a eutectic metal seal between these two substrates 104, 106.
  • the device 102 is thus encapsulated in a microcavity 110 whose walls are formed by the two substrates 104, 106 and by the sealing bead 108.
  • An electrical contact 112 is made in the microcavity 110 and is electrically connected to the device 102.
  • Another electrical contact 116 passes through the second substrate 106 and is electrically connected to the electrical contact 112 by via a through via 114, or conductive pad. This other electrical contact 116 forms a via passing through the second substrate 106.
  • the elements 112, 114 and 116 form an electrical contact passing through the microcavity 110 from the substrate 104 to the second substrate 106, making it possible to electrically connect the device 102 from the outside the microcavity 110.
  • a getter material 118 is also disposed in the microcavity 110 in order to achieve absorption of the gases present in the microcavity 110 and thus reduce the pressure within the microcavity 110.
  • a release hole 120 is also formed through the second substrate 106.
  • This release hole 120 makes it possible, during the production of the structure 100, to remove a sacrificial material (referenced 128 on the Figures 2B to 2D ) on which a shut-off valve 122 and / or a sacrificial material present in the microcavity 110 is constructed, thus releasing the device 102 when the latter is constructed using a sacrificial material, the latter possibly being different from the sacrificial material used for the embodiment of the valve 122.
  • a sacrificial material referenced 128 on the Figures 2B to 2D
  • a shut-off valve 122 and / or a sacrificial material present in the microcavity 110 is constructed, thus releasing the device 102 when the latter is constructed using a sacrificial material, the latter possibly being different from the sacrificial material used for the embodiment of the valve 122.
  • the shut-off valve 122 is here formed by a stack of two portions 123a, 123b of materials whose coefficients of thermal expansion are different. On the example of the figure 1 , the shut-off valve 122 is formed by an upper metal portion 123a and a lower metal portion 123b. The shut-off valve 122 is mechanically connected to the second substrate 106 at a first end 124 of the two portions 123a, 123b. These two portions 123a, 123b also have a second end 126 free.
  • the shutter valve 122 thus forms a bimetallic strip able to deform when subjected to certain temperatures. Depending on the temperature at which the shut-off valve 122 is subjected, it may deform by bending, displacing the free end 126 upwards. or downward, that is to say in a position closing or not the hole 120. On the example of the figure 1 , the free end 126 is in the high position, the valve 122 thus ensuring the closure of the hole 120. This position corresponds to that in which the shutter valve 122 is located when it is not requested, it is at room temperature.
  • the operating direction of the shut-off valve 122 can be adjusted by adjusting the thermal expansion coefficients of the metal portions 123a, 123b of the valve 122, but also on the residual stresses to which the portions 123a, 123b of the shut-off valve 122 are submitted after completion.
  • the residual stresses may be such that the shut-off valve 122 is bent upwardly from the microcavity 110, that is to say towards the second substrate 106, when it is released from the sacrificial material present in the microcavity 110 and placed at room temperature, as shown in FIG. figure 1 .
  • the closure may be sealed or not.
  • the valve 122 closes the hole 120, it is possible to seal the microcavity 110 by a deposition of capping material on the second substrate 106, at the release hole 120, and / or in the release hole 120.
  • FIGS. 2A to 2F represent the steps of a method for producing the structure 100, corresponding to a method of encapsulation of the microelectronic device 102.
  • the second substrate 106 is first produced by depositing a dielectric layer 106b, for example based on SiO 2 , on a semiconductor-based layer 106a, for example silicon.
  • a sacrificial layer for example based on resin.
  • This sacrificial layer is shaped by photolithography, etching and possibly creep, forming a portion 128 of sacrificial material, for example resin (see Figure 2B ).
  • the second substrate 106 is then secured to the first substrate 104 by means of the sealing bead 108 obtained for example by the implementation of a eutectic metal seal.
  • the via 114 electrically connecting the contacts 112 and 116 is also made, for example from the same material as that used to make the cord. sealing.
  • the layer 106a of the second substrate 106 is thinned ( 2D figure ).
  • the release hole 120 is then produced by photolithography and etching through the second substrate 106.
  • the shut-off valve 122 is then released by etching the resin portion 128 dryly and at a temperature such that the free end 126 of the valve 122 bends down towards the microelectronic device 102 ( figure 2E ). In this position, the valve 122 does not close the hole 120.
  • the structure 100 is brought back to ambient temperature.
  • the shut-off valve 122 then closes the access to the microcavity 110 formed by the hole 120, the free end 126 bending upwards (towards the second substrate 106). Clogging of the hole 120 is then performed by a metal deposit 130, for example of the PVD type (physical vapor phase deposition), in particular in the hole 120.
  • the closure of the release hole 120 is obtained by a deposition, advantageously quite directional and of a metallic type, on the second substrate 106, at the level of the release hole 120.
  • a metal deposition by a PVD route thus makes it possible to close the microcavity 110 hermetically.
  • This latter embodiment optionally makes it possible to control a residual partial pressure of noble gas (argon, krypton) brought into play during the deposition process since this gas is not absorbed by the getter materials.
  • noble gas argon, krypton
  • the shutter valve 122 may comprise at least one of its metal portions 123a or 123b, preferably at least one facing the device 102 (that is, the lower portion 123b in the example of FIG. figure 1 ), based on a metal exhibiting a getter effect, thus helping to manage the final pressure in the microcavity 110 enclosing the device 102.
  • the metal of the upper portion 123a of the valve 122 In order for the shut-off valve 122 to move downwards (towards the device 102) during a rise in temperature, the metal of the upper portion 123a of the valve 122, that is to say the one on the side of the second substrate 106, must have a coefficient of thermal expansion greater than that of the metal of the portion on the side of the device 102 (lower portion 123b in the example of the figure 1 ). It is furthermore possible to make shutter valves 122 having a getter effect by producing the upper layer 123a from aluminum and / or copper and / or nickel and / or platinum, and the lower layer 123b from titanium and / or zirconium (titanium and zirconium being metals having a getter effect).
  • the structure 200 comprises a second substrate 202, for example based on a semiconductor such as silicon, forming a hood and secured to the first substrate 104 by direct sealing at an interface 204.
  • the structure 200 does not comprise a bead between the two substrates 104, 202.
  • the getter material 118 is not present in the microcavity 110.
  • the fixed end 124 of the shut-off valve 122 is electrically connected to an electrical contact 132.
  • the shut-off valve 122 can be actuated by a heater by Joule effect obtained by means of an electric current applied to the electrical contact 132.
  • this Joule effect also makes it possible to achieve a thermal activation of this getter material.
  • the method of producing this structure 200 is similar to that of the structure 100, except for the securing of the second substrate 202 to the first substrate 104 which is made here by direct sealing between the two substrates 104, 202.
  • a microcavity structure 300 forming an encapsulation structure of the microelectronic device 102, according to a third embodiment, is shown in FIG. figure 4 .
  • the cover of the microcavity 110 is not made by joining two substrates together, but is formed by a thin layer 302 to which the shutter valve 122 is mechanically connected.
  • This Thin layer 302 is for example based on an oxide, for example SiO 2 , and / or nitride, for example SiN.
  • the shut-off valve 122 is here formed by a stack of three portions 123a, 123b and 123c of materials whose thermal expansion coefficients are different from each other.
  • the material of the portion 123c disposed between the two portions 123a and 123b has a coefficient of thermal expansion greater than that of the material of the portion 123b on the side of the device 102 and less than the material of the portion 123a lying the side of the release hole 120.
  • the intermediate portion 123c reduces the shear effects that may occur during the deformation of the valve 122.
  • Figures 5A to 5F represent the steps of a method for producing the microcavity structure 300.
  • a sacrificial layer 304 is deposited on the substrate 104, covering the microelectronic device 102 disposed on the substrate 104.
  • the microelectronic device 102 may be produced using methods involving sacrificial materials which may be etched at the same time or after the sacrificial layer 304.
  • This sacrificial layer 304 is for example based on photosensitive resin, for example a resin of positive polarity or polyimide.
  • the sacrificial layer 304 is then shaped by photolithography and etching so that its volume corresponds to a portion of the volume of the future microcavity 110 of the structure 300.
  • the sacrificial layer 304 is also subjected to heat treatment in order to make it able to withstand the following technological steps of the process.
  • a second layer of sacrificial material 306 is deposited and then shaped by photolithography and etching to form a sacrificial portion 306 intended to form a portion of the microcavity 110 in which the valve 122 will deform to close the release hole 120.
  • the sacrificial portion 306 is for example based on the same material used to produce the sacrificial layer 304.
  • the thin layer 302 intended to form the cover of the structure 300 is then deposited in order to cover the sacrificial layer 304, the valve 122 and the sacrificial portion 306.
  • the release hole 120 is also produced by photolithography and etching through the bonnet layer 302 ( figure 5D ). It would also be possible, at this stage of the process, to make other holes through the cover layer 302 to access electrical via connected to the microelectronic device 102. These via can be made before the deposit of the sacrificial layer 304 on the substrate 104, and raised from the substrate 104 to the cover layer 302 to mechanically prop up the cover layer 302.
  • shut-off valve 122 is then released by etching the sacrificial portion 306 and the sacrificial layer 304.
  • the temperature during this etching is such that the valve is bent downward (towards the device 102 disposed at the bottom of the microcavity 110 ).
  • valve 122 then takes its closed position of the hole 120, which makes it possible to plug the hole by making the plug 130 without polluting the interior of the microcavity 110 ( figure 5F ).
  • the valve 122 comprises a single deformable element formed by the stack of portions 123a, 123b and optionally 123c.
  • the shutter valve has several deformable elements separate from each other.
  • Such a valve 122 is shown on the figure 6 .
  • the valve 122 comprises a plurality of deformable elements 127 formed by portions of similar material to the portions 123a, 123b (and optionally 123c) of the previously described valves. Dotted circles 10 symbolically represent the holes that can be closed by the various deformable elements 127. It can therefore be seen that each deformable element 127 can close off a different number of holes.
  • a valve 122 of length equal to 100 microns, width equal to 30 microns, consisting of portions 123a, 123b based on nickel and titanium.
  • the thickness of each portion 123a, 123b is equal to 0.5 microns.
  • the diameter of the release hole 120 is 20 ⁇ m.
  • the value of x is 70 ⁇ m and that of d is 3 ⁇ m.
  • the temperature variation is 100 ° C. In this case n is about 21.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Micromachines (AREA)

Claims (16)

  1. Struktur (100, 200, 300) mit einer Mikrokavität (110), umfassend wenigstens:
    - ein Substrat (104),
    - einen Deckel (106, 202, 302), der mit dem Substrat (104) derart verbunden ist, dass ein zwischen dem Deckel (106, 202, 302) und dem Substrat (104) gebildeter Raum die Mikrokavität (110) bildet,
    - wenigstens ein Loch (120), das den Deckel (106, 202, 302) durchsetzt, und
    - wenigstens eine Klappe (122) zum Verschließen des Lochs (120), die im Inneren der Mikrokavität (110) angeordnet ist und wenigstens zwei Bereiche (123a, 123b, 123c) aus Materialien mit unterschiedlichen thermischen Ausdehnungskoeffizienten umfaßt, die gegeneinander angeordnet sind, wobei wenigstens ein erstes Ende (124, 125) der zwei Bereiche (123a, 123b, 123c) mechanisch mit dem Deckel (106, 202, 302) verbunden ist, wobei wenigstens ein zweites Ende (126) der zwei Bereiche frei ist, und wobei wenigstens ein Teil der Verschlußklappe (122) gegenüber dem Loch (120) angeordnet ist, wobei die zwei Bereiche (123a, 123b, 123c) dazu ausgelegt sind, das Loch (120) unter Einwirkung einer Temperaturveränderung wohl oder nicht zu verschließen.
  2. Struktur (100, 200) nach Anspruch 1, bei der der Deckel ein zweites Substrat (106, 202) umfaßt, welches direkt oder mittels eines Kopplungsgurts (108) mit dem anderen Substrat (104), genannt erstes Substrat, verbunden ist.
  3. Struktur (300) nach Anspruch 1, bei der der Deckel eine Schicht (302) aus Material mit einer Dicke umfaßt, die zwischen ungefähr 1 µm und 10 µm enthalten ist.
  4. Struktur (100, 200, 300) nach einem der vorhergehenden Ansprüche, bei der die Abmessungen des Lochs (120) zwischen ungefähr 1 µm und 100 µm enthalten sind.
  5. Struktur (100, 200, 300) nach einem der vorhergehenden Ansprüche, bei der wenigstens einer (123b) der zwei Bereiche aus Materialien mit unterschiedlichen thermischen Ausdehnungskoeffizienten auf Basis eines Gettermaterials hergestellt ist.
  6. Struktur (300) nach einem der vorhergehenden Ansprüche, bei der die Verschlußklappe (122) wenigstens drei Bereiche (123a, 123b, 123c) aus Materialien mit unterschiedlichen thermischen Ausdehnungskoeffizienten umfaßt, wobei der Wert des thermischen Ausdehnungskoeffizienten des Materials des Bereichs (123c), der zwischen den zwei anderen (123a, 123b) angeordnet ist, zwischen den Werten der thermischen Ausdehnungskoeffizienten der Materialien der zwei anderen Materialbereiche (123a, 123b) enthalten ist.
  7. Struktur nach einem der vorhergehenden Ansprüche, bei der die wenigstens zwei Bereiche (123a, 123b, 123c) aus Materialien mit unterschiedlichen thermischen Ausdehnungskoeffizienten mehrere verformbare Elemente (127) bilden, wobei wenigstens ein erstes Ende jedes verformbaren Elements (127) mechanisch mittels wenigstens eines nicht verformbaren Elements mit dem Deckel (106, 108, 202, 302) verbunden ist, wobei wenigstens ein zweites Ende (126) jedes verformbaren Elements (127) frei ist, und wobei wenigstens ein Teil jedes verformbaren Elements (127) gegenüber wenigstens einem Loch (120) angeordnet ist, das den Deckel (106, 202, 302) durchsetzt.
  8. Struktur (200) nach einem der vorhergehenden Ansprüche, ferner umfassend wenigstens einen elektrischen Kontakt (132), der den Deckel (202) durchsetzt und elektrisch mit der Verschlußklappe (122) verbunden ist.
  9. Struktur (100, 200) nach einem der vorhergehenden Ansprüche, ferner umfassend wenigstens einen elektrischen Kontakt (112, 114, 116), der die Mikrokavität (110) ausgehend vom Substrat (104) bis zum Deckel (106, 202) durchsetzt.
  10. Struktur (100, 200, 300) nach einem der vorhergehenden Ansprüche, ferner umfassend wenigstens einen Stöpsel (130), der das Loch (120) verstopft.
  11. Struktur (100, 200, 300) zur Einkapselung einer mikroelektronischen Vorrichtung (102), bei der die mikroelektronische Vorrichtung (102) in der Mikrokavität (110) einer Struktur (100, 200, 300) nach einem der vorhergehenden Ansprüche angeordnet ist.
  12. Verfahren zur Herstellung einer Struktur (100, 200) mit einer Mikrokavität (110), umfassend wenigstens die folgenden Schritte:
    - Realisieren eines Bereichs (128) aus Opfermaterial auf einem zweiten Substrat (106);
    - Realisieren von wenigstens zwei Bereichen (123a, 123b, 123c) aus Materialien mit unterschiedlichen thermischen Ausdehnungskoeffizienten gegeneinander angeordnet und teilweise auf dem Bereich (128) aus Opfermaterial derart, dass wenigstens ein erstes Ende (124) der zwei Bereiche (123a, 123b, 123c) auf dem zweiten Substrat (106) angeordnet ist und wenigstens ein zweites Ende (126) der zwei Bereiche auf dem Bereich (128) aus Opfermaterial angeordnet ist;
    - Verbinden des zweiten Substrats (106) mit einem ersten Substrat (104) derart, dass ein Raum zwischen dem zweiten Substrat (106) und dem ersten Substrat (104) die Mikrokavität (110) bildet;
    - Realisieren wenigstens eines Lochs (120) durch das zweite Substrat (106) hindurch, welches einen Zugang zu dem Bereich (128) aus Opfermaterial bildet;
    - Entfernen des Bereichs (128) aus Opfermaterial durch das Loch (120) hindurch, wobei die zwei Bereiche (123a, 123b, 123c) aus Materialien mit unterschiedlichen thermischen Ausdehnungskoeffizienten eine Klappe (122) zum Verschließen des Lochs (120) derart bilden, dass die zwei Bereiche (123a, 123b, 123c) dazu ausgelegt sind, das Loch (120) unter Einwirkung einer Temperaturveränderung wohl oder nicht zu verschließen.
  13. Verfahren zur Herstellung einer Struktur (300) mit einer Mikrokavität (110), umfassend wenigstens die folgenden Schritte:
    - Aufbringen einer Schicht (304) aus Opfermaterial auf einem Substrat (104);
    - Formen der Schicht (304) aus Opfermaterial;
    - Realisieren von wenigstens zwei Bereichen (123a, 123b, 123c) aus Materialien mit unterschiedlichen thermischen Ausdehnungskoeffizienten gegeneinander angeordnet auf der Schicht (304) aus Opfermaterial;
    - Realisieren eines Bereichs (306) aus Opfermaterial teilweise auf den zwei Bereichen (123a, 123b, 123c) aus Materialien mit unterschiedlichen thermischen Ausdehnungskoeffizienten und auf der Schicht (304) aus Opfermaterial angeordnet;
    - Aufbringen einer Deckelschicht (302), die die Schicht (304) aus Opfermaterial, die zwei Bereiche (123a, 123b, 123c) aus Materialien mit unterschiedlichen thermischen Ausdehnungskoeffizienten sowie den Bereich (306) aus Opfermaterial bedeckt;
    - Realisieren wenigstens eines Lochs (120) durch die Deckelschicht (302) hindurch, das einen Zugang zu dem Bereich (306) aus Opfermaterial bildet;
    - Entfernen des Bereichs (306) und der Schicht (304) aus Opfermaterial durch das Loch (120) hindurch zum Bilden der Mikrokavität (110), wobei die zwei Bereiche (123a, 123b, 123c) aus Materialien mit unterschiedlichen thermischen Ausdehnungskoeffizienten eine Klappe (122) zum Verschließen des Lochs (120) derart bilden, dass die zwei Bereiche (123a, 123b, 123c) dazu ausgelegt sind, unter Einwirkung einer Temperaturveränderung das Loch (120) wohl oder nicht zu verschließen.
  14. Verfahren nach einem der Ansprüche 12 oder 13, bei dem der Schritt des Entfernens des Bereichs (128) aus Opfermaterial oder des Bereichs (306) und der Schicht (304) aus Opfermaterial bei einer derartigen Temperatur durchgeführt wird, dass die Verschlußklappe (122) in eine Position verformt ist, bei der sie das Loch (120) nicht verschließt.
  15. Verfahren nach einem der Ansprüche 12 bis 14, ferner umfassend, nach dem Schritt des Entfernens des Bereichs (128) aus Opfermaterial oder des Bereichs (306) und der Schicht (304) aus Opfermaterial, einen Schritt des Verstopfens der Mikrokavität (110) durch Realisierung eines Stöpsels (130) auf und/oder in dem Loch (120) bei einer derartigen Temperatur, dass die Verschlußklappe (122) in eine Position zum Verschließen des Lochs (120) verformt ist.
  16. Verfahren zur Einkapselung einer mikroelektronischen Vorrichtung (102), umfassend die Durchführung eines Verfahrens zur Herstellung einer Struktur (100, 200, 300) mit einer Mikrokavität (110) nach einem der Ansprüche 12 bis 15, bei dem die mikroelektronische Vorrichtung (102) zuvor auf dem Substrat (104) oder dem ersten Substrat (104) angeordnet wird.
EP10171427.7A 2009-08-06 2010-07-30 Hohlraum für ein mikromechanisches Bauelement Not-in-force EP2284121B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0955537A FR2948928B1 (fr) 2009-08-06 2009-08-06 Structure a microcavite et structure d'encapsulation d'un dispositif microelectronique

Publications (2)

Publication Number Publication Date
EP2284121A1 EP2284121A1 (de) 2011-02-16
EP2284121B1 true EP2284121B1 (de) 2015-10-07

Family

ID=42115302

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10171427.7A Not-in-force EP2284121B1 (de) 2009-08-06 2010-07-30 Hohlraum für ein mikromechanisches Bauelement

Country Status (4)

Country Link
US (1) US8367929B2 (de)
EP (1) EP2284121B1 (de)
JP (1) JP2011036994A (de)
FR (1) FR2948928B1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012005024A1 (ja) * 2010-07-08 2012-01-12 株式会社村田製作所 表面実装型電子部品
CN103620726B (zh) * 2011-07-04 2016-12-28 利乐拉瓦尔集团及财务有限公司 一种电子束装置、吸气器片和制造装配有所述吸气器片的电子束装置的方法
DE102011109006A1 (de) * 2011-07-29 2013-01-31 Epcos Ag Gehäuse für einen Halbleiterchip und Halbleiterchip mit einem Gehäuse
FR2982073B1 (fr) * 2011-10-28 2014-10-10 Commissariat Energie Atomique Structure d'encapsulation hermetique d'un dispositif et d'un composant electronique
CA2915409A1 (en) * 2013-06-24 2014-12-31 President And Fellows Of Harvard College Printed three-dimensional (3d) functional part and method of making
FR3021814B1 (fr) 2014-08-08 2018-06-15 Commissariat Energie Atomique Connecteur pour la connexion en matrice entre un boitier et un support, comportant un corps principal plie
FR3044306B1 (fr) * 2015-11-27 2017-12-15 Commissariat Energie Atomique Procede d'encapsulation d'un dispositif microelectronique avec un trou de liberation de dimension variable
FR3046299B1 (fr) 2015-12-23 2017-12-22 Commissariat Energie Atomique Procede de realisation d'une cavite fermee comportant un clapet protegeant la cavite lors de sa fermeture
DE102015226772A1 (de) * 2015-12-29 2017-06-29 Robert Bosch Gmbh Gettervorrichtung für ein mikromechanisches Bauelement
DE102016203024A1 (de) * 2016-02-26 2017-08-31 Zf Friedrichshafen Ag Elektromagnetisches Ventil mit Federzungen
CN106249372A (zh) * 2016-09-18 2016-12-21 上海晶鼎光电科技有限公司 一种晶圆级集成光学窗口及其制作方法
DE102017125140B4 (de) * 2017-10-26 2021-06-10 Infineon Technologies Ag Verfahren zum Herstellen eines hermetisch abgedichteten Gehäuses mit einem Halbleiterbauteil

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6032923A (en) * 1998-01-08 2000-03-07 Xerox Corporation Fluid valves having cantilevered blocking films
US7429495B2 (en) * 2002-08-07 2008-09-30 Chang-Feng Wan System and method of fabricating micro cavities
FR2864341B1 (fr) 2003-12-19 2006-03-24 Commissariat Energie Atomique Microcomposant a cavite hermetique comportant un bouchon et procede de fabrication d'un tel microcomposant
FR2864340B1 (fr) 2003-12-19 2006-03-24 Commissariat Energie Atomique Microcomposant comportant une microcavite hermetique et procede de fabrication d'un tel microcomposant
DE102005062554A1 (de) * 2005-12-27 2007-07-05 Robert Bosch Gmbh Mikromechanisches Bauelement mit Kappe mit Verschluss
DE102005062553A1 (de) * 2005-12-27 2007-07-05 Robert Bosch Gmbh Mikromechanisches Bauelement mit Kappe
US8643128B2 (en) * 2009-02-24 2014-02-04 Pixart Imaging Incorporation Micro-electro-mechanical-system sensor and method for making same

Also Published As

Publication number Publication date
US20110030989A1 (en) 2011-02-10
FR2948928A1 (fr) 2011-02-11
JP2011036994A (ja) 2011-02-24
EP2284121A1 (de) 2011-02-16
US8367929B2 (en) 2013-02-05
FR2948928B1 (fr) 2012-02-24

Similar Documents

Publication Publication Date Title
EP2284121B1 (de) Hohlraum für ein mikromechanisches Bauelement
EP2829508B1 (de) Einkapselungsstruktur, die eine mechanisch verstärkte Hülle mit Getter-Effekt umfasst
EP2308797B1 (de) Struktur mit Hohlraum, die eine Bindungsschnittstelle auf der Basis eines Getter-Materials umfasst
EP1243903B1 (de) Strahlungsdetektoren und Verfahren zu ihrer Herstellung
EP2450949B1 (de) Einkapselungssstruktur einer Mikrovorrichtung, die ein Getter-Material umfasst
EP2952471B1 (de) Verkapselungsstruktur mit mehreren hohlräumen versehen mit zugangskanälen unterschiedlicher höhe
EP2586741B1 (de) Hermetisch verschlossene Einkapselungsstruktur einer Vorrichtung und einer elektronischen Komponente
EP2897162B1 (de) Einkapselungsstruktur, die teilweise mit Gettermaterial gefüllte Rinnen umfasst
EP2581339B1 (de) Einkapselungsstruktur einer elektronischen Vorrichtung und Herstellungsverfahren einer solchen Struktur
EP2628708B1 (de) Mikroelektronisches Substrat mit einer vergrabenen Schicht organischem Materials
EP2213616B1 (de) Verfahren zum Verschließen eines Hohlraums für mindestens eine mikroelektronische Vorrichtung
FR2994332A1 (fr) Procede d'encapsulation d'un dispositif microelectronique
EP3020684B1 (de) Einkapselungsstruktur mit hohlraum der an einen aus einem durchlässigen material gebildeten gasinjektionskanal gekoppelt ist
EP2581338A1 (de) Einkapselungsverfahren einer Mikrovorrichtung durch Aufbringung einer Haube und Getterdepot durch diese Haube
EP2354083B1 (de) Verpackungsverfahren für mikromechanisches Bauteil mit mechanisch verstärkter Kappe
EP2571048A2 (de) Verfahren zur Herstellung einer Struktur mit einem hermetisch und unter kontrolliertem Unterdruck verschlossenem Hohlraum
EP3184486B1 (de) Verfahren zur herstellung eines versiegelten mems-hohlraums mit einer klappe zum schützen des hohlraums während des verkapselungsvorgangs
EP3173375B1 (de) Einkapselungsverfahren einer mikroelektronischen vorrichtung mit einem auslassloch variabler grösse
EP3159302A1 (de) Einkapselungsverfahren eines mikroelektronischen bauteils
EP3165502B1 (de) Mikroelektronische vorrichtung
WO2005121018A1 (fr) Procede d’obturation d’un event et utilisation d’une machine de soudure par ultrasons pour mettre en oeuvre un tel procede
EP3031775B1 (de) Verfahren zur herstellung einer elektrischen verbindung in einem sackloch
EP2292553B1 (de) Bauelement und Verfahren zur Herstellung einer Mikroverkapselung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

17P Request for examination filed

Effective date: 20110727

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150507

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 753625

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151015

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010028012

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20151007

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 753625

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151007

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160207

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160107

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160208

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160108

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010028012

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

26N No opposition filed

Effective date: 20160708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160730

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160730

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170713

Year of fee payment: 8

Ref country code: FR

Payment date: 20170731

Year of fee payment: 8

Ref country code: GB

Payment date: 20170721

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151007

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602010028012

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190201

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180730

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731