EP2283865A1 - Procédé pour augmenter la concentration de testosterone et de steroides apparentes chez la femme - Google Patents

Procédé pour augmenter la concentration de testosterone et de steroides apparentes chez la femme Download PDF

Info

Publication number
EP2283865A1
EP2283865A1 EP10184108A EP10184108A EP2283865A1 EP 2283865 A1 EP2283865 A1 EP 2283865A1 EP 10184108 A EP10184108 A EP 10184108A EP 10184108 A EP10184108 A EP 10184108A EP 2283865 A1 EP2283865 A1 EP 2283865A1
Authority
EP
European Patent Office
Prior art keywords
testosterone
pharmaceutically
steroid
woman
women
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10184108A
Other languages
German (de)
English (en)
Inventor
Robert E. Dudley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Laboratoires Besins International SAS
Unimed Pharmaceuticals LLC
Original Assignee
Laboratoires Besins International SAS
Unimed Pharmaceuticals LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/651,777 external-priority patent/US6503894B1/en
Application filed by Laboratoires Besins International SAS, Unimed Pharmaceuticals LLC filed Critical Laboratoires Besins International SAS
Priority claimed from EP01964525.8A external-priority patent/EP1322336B1/fr
Publication of EP2283865A1 publication Critical patent/EP2283865A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/565Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids not substituted in position 17 beta by a carbon atom, e.g. estrane, estradiol
    • A61K31/568Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids not substituted in position 17 beta by a carbon atom, e.g. estrane, estradiol substituted in positions 10 and 13 by a chain having at least one carbon atom, e.g. androstanes, e.g. testosterone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/565Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids not substituted in position 17 beta by a carbon atom, e.g. estrane, estradiol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/565Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids not substituted in position 17 beta by a carbon atom, e.g. estrane, estradiol
    • A61K31/568Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids not substituted in position 17 beta by a carbon atom, e.g. estrane, estradiol substituted in positions 10 and 13 by a chain having at least one carbon atom, e.g. androstanes, e.g. testosterone
    • A61K31/5685Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids not substituted in position 17 beta by a carbon atom, e.g. estrane, estradiol substituted in positions 10 and 13 by a chain having at least one carbon atom, e.g. androstanes, e.g. testosterone having an oxo group in position 17, e.g. androsterone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/12Carboxylic acids; Salts or anhydrides thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/14Esters of carboxylic acids, e.g. fatty acid monoglycerides, medium-chain triglycerides, parabens or PEG fatty acid esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/32Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0014Skin, i.e. galenical aspects of topical compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/02Drugs for genital or sexual disorders; Contraceptives for disorders of the vagina
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/08Drugs for genital or sexual disorders; Contraceptives for gonadal disorders or for enhancing fertility, e.g. inducers of ovulation or of spermatogenesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/10Drugs for genital or sexual disorders; Contraceptives for impotence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/12Drugs for genital or sexual disorders; Contraceptives for climacteric disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/06Anabolic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/24Antidepressants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/12Ophthalmic agents for cataracts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/12Drugs for disorders of the metabolism for electrolyte homeostasis
    • A61P3/14Drugs for disorders of the metabolism for electrolyte homeostasis for calcium homeostasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/24Drugs for disorders of the endocrine system of the sex hormones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/24Drugs for disorders of the endocrine system of the sex hormones
    • A61P5/26Androgens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/48Drugs for disorders of the endocrine system of the pancreatic hormones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives

Definitions

  • the present invention is related to methods, kits, combinations, and compositions for transdermally delivering an effective amount of testosterone using a hydroalcoholic gel formulation.
  • Transdermal preparations of testosterone have provided a useful delivery system for normalizing serum testosterone levels in hypogonadal men and preventing the clinical symptoms and long term effects of androgen deficient men.
  • Available transdermal preparations of testosterone include, for example, TESTODERM®, TESTODERM® TTS, and ANDRODERM®.
  • Testosterone is also available in other formulations including those available as an injectable, for example, DEPO-TESTOSTERONE® (testosterone cypionate), and DELATESTRYL BTG® (testosterone enanthate), or as a gel, for example, ANDROGEL® marketed by Unimed Pharmaceuticals, Inc., Deerfield, Illinois, the assignee of this application.
  • transdermal patches are applied to the scrotal skin or other parts of the body.
  • a one-percent testosterone gel has been approved for use in men, and provides dosing flexibility with minimal skin irritation. This gel is marketed under the name ANDROGEL®.
  • ANDROGEL® a one-percent testosterone gel
  • all currently available testosterone transdermal products are specifically contraindicated for use in women in the United States.
  • none of the currently available androgen treatment modalities for women, for example, oral methyltestosterone, intramuscular testosterone ester injections or subcutaneous testosterone implants can achieve reproducible testosterone serum levels on a consistent daily basis.
  • the normal physiological effects of androgens in women have been much less appreciated.
  • the major physiological effects of androgens in normal women include, but are not limited to anabolic effects on muscle, skin, hair and bone; stimulatory effects on erythropoiesis; modulatory effects on immune function; and psychological effects on mood, well-being and sexual function.
  • endogenous androgens are important for the development of pubic hair and are thought to modulate the action of estrogens and progestins on a variety of reproductive target tissues. It is also believed that androgens play an important role in modulating the secretory function of the lacrimal gland.
  • testosterone Fifty percent of circulating testosterone is derived from direct ovarian secretion in the thecal cells under the control of luteinizing hormone. The other half is derived from peripheral conversion of adrenal androgen precursors dehydroepiandrosterone, androstenedione, and dehydroepiandrosterone sulfate. Testosterone can also be converted to dihydrotestosterone or estradiol. Thus, testosterone serves as both a hormone and as a prohormone.
  • Testosterone circulates in the blood 98% bound to protein. In women, approximately 66% of the binding is to the high-affinity sex hormone binding globulin. The remaining 34% is bound weakly to albumin. Thus, a number of measurements for testosterone are available from clinical laboratories.
  • the term "free” testosterone as used herein refers to the fraction of testosterone in the blood that is not bound to protein.
  • total testosterone or “testosterone” as used herein means the free testosterone plus protein-bound testosterone.
  • bioavailable testosterone refers to the non-sex hormone binding globulin bound testosterone and includes that weakly bound to albumin.
  • Table 1 Hormone Levels in Normal Pre-Menopausal Women Hormone Mean ⁇ sd Median Range Testosterone (nmol/L) 1.20 ⁇ 0.69 0.98 0.4 - 2.7 Free testosterone (pmol/L) 12.80 ⁇ 5.59 12.53 4.1 - 24.2 % Free testosterone of total testosterone 1.4 ⁇ 1.1 1.1 0.4 - 6.3 Luteinizing hormone (IU/L) 7.2 ⁇ 3.3 6.7 3.0 - 18.7 Follicle stimulating hormone (IU/L) 4.7 ⁇ 3.6 4.2 1.5 - 21.4 Sex hormone binding globulin (nmol/L) 66.1 ⁇ 22.7 71.0 17.8 - 114.0
  • testosterone deficiency in women because historically it has been impossible to develop assays capable of measuring such small hormonal levels. This is especially true when measuring free or bioavailable testosterone levels. Consequently, currently available laboratory evaluations, including measuring total, free, and bioavailable serum testosterone levels, have not been used extensively to identify hypoandrogenic women.
  • testosterone deficiency in women has been largely ignored as a clinical entity. Nevertheless, there exist well-defined patient populations where androgen production is clearly deficient and where associated symptomatology has been described, including, for example, young oophorectomized/hysterectomized women, post-menopausal women on estrogen replacement therapy, women on oral contraceptives, women with adrenal dysfunction, women with corticosteroid-induced adrenal suppression, and human immunodeficiency virus-positive women.
  • testosterone delivery preparations for human use are designed for hypogonadal men who require significantly greater amounts of testosterone than a testosterone deficient women.
  • these formulations and devices are unsuitable for women requiring low doses of testosterone.
  • Intramuscular injunction of testosterone esters, for example, is the popular form of androgen replacement for men but is unsatisfactory for women because of the very high levels of testosterone in the first 2-3 days after injection.
  • many women report increased acne and occasional cliteromegaly with this type of testosterone administration. Patients receiving injection therapy often complain that the delivery mechanism is painful and causes local skin reactions.
  • Table 2 Mode of Application and Dosage of Various Testosterone Preparations Preparation Route Of Application Full Substitution Dose In Clinical Use Testosterone enanthate Intramuscular injection 200-25.0 g every 2-3 weeks Testosterone cypionate Intramuscular injection 200 mg every 2 weeks Testosterone undecanoate Oral 2-4 capsules at 40 mg per day Transdermal testosterone Scrotal skin 1 membrane per day patch Non-scrotal skin 1 or 2 systems per day Transdermal testosterone Implantation under the 3-6 implants of 200 mg every patch abdominal skin 6 months Testosterone implants Under Development Testosterone cyclodextrin Sublingual 2.5-5.0 mg twice daily Testosterone undecanoate Intramuscular injection 1000 mg every 8-10 weeks Testosterone buciclate Intramuscular injection 1000 mg every 12-16 weeks Testosterone microspheres Intramuscular injection 315 mg for 11 weeks Obsolete 17 ⁇ -Methyltestosterone Oral 25-5.0 g per day Fluoxymesterone Sublingual 10-25 mg
  • the long acting injectable testosterone-esters such as enanthate or cypionate are formulated for high dose administration to men (for example 200 -300 mg) and produce supra-physiological hormone levels, even when given at lower doses to women (for example 50-100 mg) (see, for example, Sherwin B.B. and Gelfand M.M., Differential symptom response to parenteral estrogen and/or androgen administration in the surgical menopause, Am. J. Obstet. Gynecol. 1985; 151:153-160 ).
  • Testosterone implants which have been used experimentally in the past, can likewise produce supra-physiological hormone levels in women, see, for example, Burger H.G.
  • ESTRATEST® which is a combination of methyltestosterone and esterified estrogens in oral tablet formulations, is the most commonly used androgen product used to treat women in the United States. At present, however, its only approved indication is for the treatment of moderate to severe vasomotor symptoms associated with menopause in those patients not improved by estrogens alone. Pharmacological doses of methyltestosterone higher than those suggested for hypogonadal men have also been used to treat breast cancer in women. However, oral administration produces inappropriate testosterone levels and unpredictable absorption patters between patients (Buckler 1998). Moreover, because the liver metabolizes the preparation, there is a risk ofhepatoxicity not to mention first pass metabolism.
  • Testosterone pellet implants (50 mg or 100 mg of testosterone) inserted under local anesthesia in the abdominal wall have been used in conjunction with estrogen pellet implants for many years. Testosterone levels peak about one month after implantation and then return to baseline by month five or six. The testosterone levels are high and characterized by substantial rises and falls over several months and marked individual variation in this period. In addition, implants require a surgical procedure that many men and women simply do not wish to endure. In hypogonadal men, for example, implant therapy includes a risk of extrusion (8.5%), bleeding (2.3%), or infection (0.6%).
  • estradiol has become recognized as a safe, physiological and patient-friendly method for estrogen replacement therapy in women.
  • Second generation estradiol patches that use adhesive matrix technology have recently become available in the United States and Europe.
  • Matrix technology now exists to transdermally administer physiological amounts of testosterone alone for the treatment of androgen deficiency states in women.
  • the transdermal systems have been designed to deliver approximately half of the normal daily testosterone production rate or about 150 ⁇ g per day.
  • Matrix technology-based transdermal testosterone administration has been used successfully in women to treat acquired immunodeficiency syndrome wasting and female sexual dysfunction after oophorectomy.
  • TMTDS patch (Watson Laboratories, Salt Lake City, UT) is a translucent patch having a surface area of 18 cm 2 which uses sorbitan monooleate as a permeation enhancer and a hypoallergenic acrylic adhesive in an alcohol-free matrix.
  • the average testosterone content of each patch is 4.1 mg.
  • Each patch is designed to deliver testosterone at a nominal rate of 150 g of testosterone per day over an application period of three to four days.
  • the TMTDS patch is applied twice per week (Javanbakht et al. 2000).
  • the testosterone-containing patch is capable of increasing testosterone concentrations in women via a controlled release mechanism
  • the patches do not provide dosing flexibility.
  • their visibility may be esthetically unappealing to some women and may have a tendency to fall off, especially during rigorous physical exercise.
  • any other steroid in the testosterone synthetic pathway can, if desired, be substituted in whole or in part for testosterone in the methods, kits, combinations, and compositions herein described.
  • any other inhibitor of the synthesis of sex hormone binding globulin can, if desired, be substituted in whole or in part for methyltestosterone in the methods, kits, combinations, and compositions herein described.
  • estradiol it will be understood that any other estrogenic hormone can, if desired, be substituted in whole or in part for estradiol in the methods, kits, combinations, and compositions herein described.
  • the present invention is directed to methods, kits, combinations, and compositions for treating, preventing or reducing the risk of developing a testosterone deficient disorder, or the symptoms associated with, or related to a testosterone deficient disorder in a female mammal in need thereof.
  • the method comprises percutaneously administering a testosterone deficient disorder-effective amount of steroid in the testosterone synthetic pathway, for example, testosterone, to a female mammal.
  • the present invention includes methods of reversing, halting or slowing the progression of a testosterone deficient disorder once it becomes clinically evident, or treating the symptoms associated with, or related to the testosterone deficient disorder.
  • the patient may already have a testosterone deficient disorder at the time of administration, or be at risk of developing a testosterone deficient disorder.
  • a method of administering a steroid in the testosterone synthetic pathway for example testosterone
  • the method comprises administering to the mammal a testosterone deficient disorder-effective amount of a percutaneously deliverable composition comprised of a pharmaceutically-acceptable steroid in the testosterone synthetic pathway, for example testosterone, one or more lower alcohols, such as ethanol or isopropanol, a penetration enhancing agent, a thickener, and water.
  • a pharmaceutically-acceptable steroid in the testosterone synthetic pathway for example testosterone, one or more lower alcohols, such as ethanol or isopropanol, a penetration enhancing agent, a thickener, and water.
  • pharmaceutical compositions comprising a testosterone deficient disorder-effective amount of testosterone.
  • the testosterone composition is formulated as a hydroalcoholic gel.
  • the gel comprises testosterone, one or more lower alcohols, such as ethanol or isopropanol, a penetration enhancing agent, a thickener, and water.
  • the present invention also includes kits comprising percutaneously deliverable testosterone.
  • the kits also contain a set of instructions for the patient.
  • the methods, kits, combinations, and compositions are used in conjunction with other steroids or pharmaceutical agents effective at treating, preventing, or reducing the risk of developing a testosterone deficient disorder.
  • the present invention employing testosterone is used in conjunction with a pharmacologically effective amount of an estrogenic hormone, for example, estradiol either in the same dosage form or as separate dosage forms.
  • the methods, kits, combinations, and compositions are used with another steroid or pharmaceutical agent that increases testosterone levels in a mammal, for example, methyltestosterone.
  • the present invention optionally include salts, esters, amides, enantiomers, isomers, tautomers, prodrugs, or derivatives of the compounds of the present invention, as well as emollients, stabilizers, antimicrobials, fragrances, and propellants.
  • the methods, kits, combinations, and compositions of the present invention provide enhanced treatment options for treating a testosterone deficient disorder in a female mammal, for example, a women, as compared to those currently available.
  • the present invention is also useful for veterinary treatment of companion mammals, exotic animals and farm animals, including mammals, rodents, and the like.
  • the mammals include horses, dogs, and cats.
  • a class of steroids in the testosterone synthetic pathway useful in the methods, kits, combinations, and compositions of the present invention include steroids in the testosterone anabolic or catabolic pathway.
  • the active ingredients employed in the composition may include anabolic steroids such as androisoxazole, bolasterone, clostebol, ethylestrenol, formyldienolone, 4-hydroxy-19-nortestosterone, methenolone, methyltrienolone, nandrolone, oxymesterone, quinbolone, stenbolone, trenbolone; androgenic steroids such as boldenone, fluoxymesterone, mestanolone, mesterolone, methandrostenolone, 17 ⁇ methyltestosterone, 17 alpha-methyl-testosterone 3-cyclopentyl enol ether, norethandrolone, normethandrone, oxandrolone, oxymetholone, prasterone, stanlolone
  • anabolic steroids
  • testosterone is formulated as a hydroalcoholic gel.
  • the gel comprises testosterone, one or more lower alcohols, such as ethanol or isopropanol, a penetration enhancing agent, a thickener, and water.
  • the gel optionally includes the salts, esters, amides, enantiomers, isomers, tautomers, prodrugs, or derivatives of testosterone, as well as emollients, stabilizers, antimicrobials, fragrances, and propellants.
  • certain formulations of the present invention deliver about 0.01 g to about 100.0 g testosterone, or the equivalent thereof, to a patient per dosage unit. In another embodiment of the present invention, the formulations deliver from about 0.1 g to about 10.0 g testosterone, or the equivalent thereof, to a patient per dosage unit. In yet another embodiment of the present invention, the formulations of the present invention deliver from about 0.17 g to about 0.5 g testosterone, or the equivalent thereof, to a patient per dosage unit. In still another embodiment of the present invention, the formulations of the present invention deliver about 0.25 g testosterone, or the equivalent thereof, to a patient per dosage unit.
  • a testosterone gel formulated as a single dosage unit for once a day administration contains about 0.17 g, or about 0.25 g, or about 0.5 g testosterone
  • a gel formulated as a single dosage unit for once a week administration contains about 1.19 g, or about 1.75 g, or about 3.50 g testosterone, respectfully.
  • the formulation is a gel and is comprised of the following substances in approximate amounts: Table 3: Composition of Testosterone Gel SUBSTANCE AMOUNT (w/w) PER 100g OF GEL Testosterone 1.0 g Carbopol 980 0.90 g Isopropyl myristate 0.50 g 0.1 N NaOH 4.72 g Ethanol (95% w/w) 72.5 g* Purified water (qsf) 100 g *Corresponding to 67 g of ethanol.
  • Table 3 Composition of Testosterone Gel SUBSTANCE AMOUNT (w/w) PER 100g OF GEL Testosterone 1.0 g Carbopol 980 0.90 g Isopropyl myristate 0.50 g 0.1 N NaOH 4.72 g Ethanol (95% w/w) 72.5 g* Purified water (qsf) 100 g *Corresponding to 67 g of ethanol.
  • the gel is rubbed onto the clean dry skin of the upper outer thigh and hip once daily. Following application, the gel is allowed to air dry. The patient washes her hands. Application of the gel results in an increased testosterone level having a desirable pharmacokinetic profile similar to that in normal women. The gel is thus useful for treating a number of conditions or diseases in women.
  • Achieving target delivery rates demonstrated by testosterone gel can be estimated from the pharmacokinetics in testosterone gel in men.
  • the mean serum concentration (Cavg) values in men after applying of varying amounts of gel to the upper body is given below in Table 4.
  • a testosterone gel dose of 0.5 grams delivers approximately 300 ⁇ g of testosterone per day.
  • a testosterone deficient disorder-effective amount of testosterone per daily dose delivers to the blood serum typically about 100 ⁇ g to about 150 ⁇ g to about 300 ⁇ g of testosterone per day.
  • RELIBRATM (applicant's trademark for gel product for women) is administered at about 0.17 g/day, which delivers about 1.7 mg/day of testosterone to the skin of which about 0.1 mg, is absorbed; or to achieve a serum blood level of about 150 ⁇ g testosterone, RELIBRA is administered at about 0.25 g/day, which delivers about 2.5 mg/day of testosterone to the skin of which about 0.15 mg, is absorbed; or to achieve a serum blood level of about 300 ⁇ g testosterone, RELIBRA is administered at about 0.5 g/day, which delivers 5.0 mg/day of testosterone to the skin of which about 0.3 mg, is absorbed.
  • composition may contain about 0.01 to about 100.0 g of testosterone, about 0.1 to about 5.0 g Carbopol, about 0.1 to about 5.0 g isopropyl myristate, and about 30.0 to about 98 g ethanol.
  • pharmaceutically acceptable is used adjectivally herein to mean that the modified noun is appropriate for use in a pharmaceutical product.
  • Pharmaceutically acceptable cations include metallic ions and organic ions. More preferred metallic ions include, but are not limited to appropriate alkali metal salts, alkaline earth metal salts and other physiological acceptable metal ions. Exemplary ions include aluminum, calcium, lithium, magnesium, potassium, sodium and zinc in their usual valences.
  • Preferred organic ions include protonated tertiary amines and quaternary ammonium cations, including in part, trimethylamine, diethylamine, N,N'-dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumine (N-methylglucamine) and procaine.
  • Exemplary pharmaceutically acceptable acids include without limitation hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid, methanesulfonic acid, acetic acid, formic acid, tartaric acid, maleic acid, malic acid, citric acid, isocitric acid, succinic acid, lactic acid, gluconic acid, glucuronic acid, pyruvic acid oxalacetic acid, fumaric acid, propionic acid, aspartic acid, glutamic acid, benzoic acid, and the like.
  • penetration enhancer refers to an agent known to accelerate the delivery of the drug through the skin.
  • These agents also have been referred to as accelerants, adjuvants, and absorption promoters, and are collectively referred to herein as “enhancers.”
  • This class of agents includes those with diverse mechanisms of action including those which have the function of improving the solubility and diffusibility of the drug, and those which improve percutaneous absorption by changing the ability of the stratum corneum to retain moisture, softening the skin, improving the skin's permeability, acting as penetration assistants or hair-follicle openers or changing the state of the skin such as the boundary layer.
  • the penetration enhancer of the present invention is a functional derivative of a fatty acid, which includes isosteric modifications of fatty acids or non-acidic derivatives of the carboxylic functional group of a fatty acid or isosteric modifications thereof.
  • the functional derivative of a fatty acid is an unsaturated alkanoic acid in which the --COOH group is substituted with a functional derivative thereof, such as alcohols, polyols, amides and substituted derivatives thereof.
  • fatty acid means a fatty acid that has four (4) to twenty-four (24) carbon atoms.
  • Non-limiting examples of penetration enhancers include C8-C22 fatty acids such as isostearic acid, octanoic acid, and oleic acid; C8-C22 fatty alcohols such as oleyl alcohol and lauryl alcohol; lower alkyl esters of C8-C22 fatty acids such as ethyl oleate, isopropyl myristate, butyl stearate, and methyl laurate; di(lower)alkyl esters of C6-C22 diacids such as diisopropyl adipate; monoglycerides of C8-C22 fatty acids such as glyceryl monolaurate; tetrahydrofurfuryl alcohol polyethylene glycol ether; polyethylene glycol, propylene glycol; 2-(2-ethoxyethoxy)ethanol; diethylene glycol monomethyl ether; alkylaryl ethers of polyethylene oxide; polyethylene oxide monomethyl ethers; polyethylene oxide dimethyl ether
  • the thickeners used herein may include anionic polymers such as polyacrylic acid (CARBOPOL® by B.F. Goodrich Specialty Polymers and Chemicals Division of Cleveland, Ohio), carboxymethylcellulose and the like. Additional thickeners, enhancers and adjuvants may generally be found in Remington's The Science and Practice of Pharmacy, Meade Publishing Co. , United States Pharmaeopeia/National Formulary .
  • anionic polymers such as polyacrylic acid (CARBOPOL® by B.F. Goodrich Specialty Polymers and Chemicals Division of Cleveland, Ohio), carboxymethylcellulose and the like. Additional thickeners, enhancers and adjuvants may generally be found in Remington's The Science and Practice of Pharmacy, Meade Publishing Co. , United States Pharmaeopeia/National Formulary .
  • the term "lower alcohol,” alone or in combination, means a straight-chain or branched-chain alcohol moiety containing one to about six carbon atoms. In one embodiment, the lower alcohol contains one to about 4 carbon atoms, and in another embodiment the lower alcohol contains two to about 3 carbon atoms. Examples of such alcohol moieties include methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, sec-butanol, and tert-butanol.
  • lower alkyl means a straight-chain or branched-chain alkyl radical containing one to about six carbon atoms. In one embodiment, the lower alkyl contains one to about four carbon atoms. Examples of such radicals include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, and tert-butyl.
  • treat refers to any treatment of a mammalian condition, disorder, or disease associated with an androgen deficiency or a testosterone deficiency, and includes, but is not limited to, preventing the condition, disorder, or disease from occurring in a mammal which may be predisposed to the condition, disorder, or disease, but has not yet been diagnosed as having the condition, disorder, or disease; inhibiting the condition, disorder, or disease, for example, arresting the development of the condition, disorder, or disease; relieving the condition, disorder, or disease, for example, causing regression of the condition, disorder, or disease; or relieving the condition caused by the disease or disorder, for example, stopping the symptoms of the disease or disorder.
  • prevent in relation to a testosterone deficient condition, disorder, or disease, means no testosterone deficient condition, disorder, or disease development if none had occurred, or no further testosterone deficient condition, disorder, or disease development if there had already been development of the testosterone deficient condition, disorder, or disease.
  • testosterone deficient disorder refers to a to a condition, disorder, or disease that occurs in a mammal due to lack of endogenous testosterone production.
  • conditions, disorders, or diseases include, but are not limited to, hypogonadism, sexual dysfunction, decreased libido, hypercholesterolemia, abnormal electrocardiograms, vasomotor symptoms, diabetic retinopathy, hyperglycemia, hyperinsulinemia, hypoinsulinemia, increased percentage of body fat, hypertension, obesity, osteoporosis, osteopenia, vaginal dryness, thinning of the vaginal wall, menopausal symptoms and hot flashes, cognitive dysfunction, cardiovascular disease, Alzheimer's disease, dementia, cataracts, and cervical cancer uterine cancer or breast cancer.
  • Decreased production of testosterone by a woman can be caused by several factors, including, but not limited to, use of oral contraceptives; surgery, for example, removal of the uterus (hysterectomy), or removal of one of both ovaries (oophorecty/ ovariectomy); estrogen replacement therapy in post-menopausal women; premature ovarian failure; adrenal dysfunction, for example primary adrenal insufficiency; coricosteroid-induced adrenal suppression; panhypopituitarism; and chronic illness, such as systemic lupus erythematosis, rheumatoid arthritis, human immunodeficiency virus (HIV) infection, chronic obstructive lung disease, and end stage renal disease.
  • oral contraceptives for example, removal of the uterus (hysterectomy), or removal of one of both ovaries (oophorecty/ ovariectomy); estrogen replacement therapy in post-menopausal women; premature ovarian failure; adrenal dysfunction, for example primary adrenal insufficiency; coricoste
  • Physiological and psychological disorders associated with testosterone deficiency in a woman include, for example, decreased libido and sexual performance, decreased bone mineral density and related markers, diminished body composition, human immunodeficiency virus wasting syndrome, decreased cognition, diminished mood and self-esteem, decreased muscle mass and performance, premenstrual syndrome, and autoimmune disease.
  • testosterone deficient disorder effect or “testosterone deficient disorder-effective amount” is intended to qualify the amount of testosterone required to treat or prevent a testosterone deficient disorder in a mammal, or relieve to some extent one or more of the symptoms associated with, or related to, a testosterone deficient disorder in a mammal.
  • this includes, but is not limited to, normalizing hypogonadism; improving sexual dysfunction; increasing libido; normalizing cholesterol levels; normalizing abnormal electrocardiograms of patients and improving vasomotor symptoms; improving diabetic retinopathy as well as lowering the insulin requirements of diabetic patients; decreasing the percentage of body fat; normalizing glucose levels; decreasing the risk factors for cardiovascular disease, including normalizing hypertension, and treating obesity; preventing osteoporosis, osteopenia, vaginal dryness, and thinning of the vaginal wall; relieving menopausal symptoms and hot flashes; improving cognitive dysfunction; treating, preventing or reducing the onset of cardiovascular disease, Alzheimer's disease, dementia, and cataracts; and treating, preventing or reducing the risk of cervical, uterine or breast cancer.
  • compositions of the present invention are used in a "testosterone deficient disorder effective amount.”
  • concentration of the testosterone is such that a therapeutic level of drug is delivered over the term that the percutaneously delivered formulation is to be used.
  • delivery is dependent on a number of variables including the time period for which the individual dosage unit is to be used, the flux rate of the therapeutic agent, for example, testosterone, from the gel, surface area of application site, etc.
  • the amount of therapeutic agent necessary can be experimentally determined based on the flux rate of the drug through the gel, and through the skin when used with and without enhancers.
  • Treatment dosages generally may be titrated to optimize safety and efficacy.
  • dosage-effect relationships from in vitro and/or in vivo tests initially can provide useful guidance on the proper doses for patient administration.
  • Studies in animal models generally may be used for guidance regarding effective dosages for treatment of menopause in accordance with the present invention.
  • the dosage to be administered will depend on several factors, including the particular agent that is administered, the route administered the condition of the particular patient, etc. Generally speaking, one will desire to administer an amount of the compound that is effective to achieve a serum level commensurate with the concentrations found to be effective in vitro. Thus, where an compound is found to demonstrate in vitro activity at, for example, 10 ng/ml, one will desire to administer an amount of the drug that is effective to provide about a 10 ng/ml concentration in vivo. Determination of these parameters is well within the skill of the art. These considerations, as well as effective formulations and administration,procedures are well known in the art and are described in standard textbooks.
  • serum testosterone concentrations can be measured using standard assay techniques. Free serum testosterone levels are measured by the recently validated and highly sensitive equilibrium dialysis method discussed in Sinha-Hikim et al., The Use of a Sensitive Equilibrium Dialysis Method for the Measurement of Free Testosterone Levels in Healthy, Cycling Women and in HIV-Infected Women, 83 J. CLINICAL ENDOCRINOLOGY & METABOLISM 1312-18. (1998 ), and is herein fully incorporated by reference.
  • the phrases "androgen deficiency” or “testosterone deficiency” are used interchangeably, and refer to lower serum levels of free testosterone in a subject as compared to the median serum levels for healthy women of the same age.
  • Normal cycling women produce approximately 300 ⁇ g of testosterone per day.
  • Their total serum testosterone levels generally range from about 20 ng/dL to about 80 ng/dL averaging about 40 ng/dL.
  • mean free testosterone levels are generally about 3.6 pg/mL.
  • several factors may influence both total and free testosterone serum levels. For example, in regularly ovulating women, there is a small but significant increase in plasma testosterone levels during the middle third of the menstrual cycle.
  • testosterone concentrations decrease by about 50%. Diagnosis of a testosterone deficiency is known to the average physician practicing in the relevant field of medicine.
  • Patients to be treated with the present invention include those at risk of developing a testosterone deficient disorder, or patients currently experiencing a testosterone deficient disorder event.
  • Standard testosterone deficient disorder risk factors are known to the average physician practicing in the relevant field of medicine.
  • Patients who are identified as having one or more risk factors known in the art to be at risk of developing a testosterone deficient disorder, as well as people who already have a testosterone deficient disorder, are intended to be included within the group of people considered to be at risk for having a testosterone deficient disorder event.
  • contemplated methods, kits, combinations, and compositions of the present invention are useful to treat testosterone deficiency in a woman, which includes a woman where testosterone production is deficient, or where the associated symptomatology related to deficient testosterone production is clinically evident.
  • HIV human immunodeficiency virus
  • the methods, kits, combinations, and composition are useful in treating a woman who have undergone surgery, including, for example, bilateral oophorectomy with hysterectomy, and particularly a woman whose surgery was performed at a younger age, prior to her natural menopause.
  • a woman who have undergone surgery including, for example, bilateral oophorectomy with hysterectomy, and particularly a woman whose surgery was performed at a younger age, prior to her natural menopause.
  • Serum testosterone levels typically decrease by 50% in a oophorectomized woman compared to their pre-operative levels, however, in some cases the levels may still remain within the normal reference range (approximately 20 - 80 ng/dL).
  • Estrogen and progesterone levels which are primarily dependent on ovarian secretion, are also markedly reduced after oophorectomy.
  • the resulting multiple hormone deficiency state is associated with vasomotor symptoms, high-turnover osteoporosis, and female sexual dysfunction.
  • estrogen replacement therapy is standard for the treatment of vasomotor symptoms and osteoporosis in the oophorectomized/hysterectomized female
  • concomitant testosterone therapy has not been indicated for treatment of female sexual dysfunction or for its effects with estrogen replacement therapy on bone metabolism. Such women are contemplated as falling within the scope of the present invention.
  • the methods, kits, combinations, and composition are useful in treating a post-menopausal woman.
  • the post-menopausal ovary may continue to synthesize testosterones in the stromal tissue at rates that are not necessarily lower than the premenopausal period.
  • testosterone levels increase as a consequence of the stromal response to elevated luteinizing hormone levels, while in others testosterone levels decrease or remain the same. Since estrogen replacement therapy lowers luteinizing hormone levels, ovarian testosterone secretion would be expected to decrease in post-menopausal women who receive estrogen replacement therapy.
  • testosterone levels may be obscured by the concomitant rise in sex hormone binding globulin levels, which reduces testosterone clearance.
  • free and/or bioavailable testosterone levels are found to be lower in a post-menopausal woman receiving oral estrogen replacement therapy. While the effects of transdermal estrogen replacement therapy on the androgen/luteinizing hormone status of post-menopausal women has not been studied, a reduction in total and free testosterone levels, associated with a decrease in luteinizing hormone levels, would also be expected. As many post-menopausal women experience symptoms of female sexual dysfunction that are not ameliorated by estrogen replacement therapy, it is believed that testosterone deficiency is a contributing factor, and this group of women would fall within the scope of the present invention.
  • the methods, kits, combinations, and composition are useful in treating a woman who uses oral contraception.
  • Oral contraception is the most common method of contraception among adolescents, and overall about 46% of the sexually active population use oral contraception.
  • the most common type of oral contraceptive contains both estrogen and progestin and has proven to be about 99% effective.
  • almost half of all premenopausal women ⁇ 44 years old are potentially taking oral contraceptives.
  • the testosterone levels in women treated with estrogen-containing oral contraceptives are markedly lower, particularly when compared at the pre-ovulatory phase of the normal cycle, when testosterone levels are highest.
  • the methods, kits, combinations; and composition are useful in treating a woman who have an undergone an ovariectomy by, for example, surgery, chemical means, irradiation, or gonadotropin-releasing hormone antagonists. Such surgery leads to decreased ovarian androgen product.
  • the methods, kits, combinations, and composition are useful in treating a woman with premature ovarian failure.
  • Premature ovarian failure such as that associated with Turner's Syndrome or the autoimmune or idiopathic destruction of the ovary, is associated with impaired testosterone production.
  • the methods, kits, combinations, and composition are useful in treating a woman who has decreased adrenal function.
  • Decrease adrenal function which may result from a variety of causes, represents another category of patients where testosterone production may be reduced by approximately 50%.
  • Primary adrenocortical deficiency, or Addison's disease is a rare endocrine disorder with multiple etiologies, including tuberculosis and fungal infections. The estimated prevalence in women is approximately 5 per 100,000. Due to the lack of gluco- and mineral corticoid secretion, Addison's disease can be life threatening. While some researchers have noted the associated testosterone deficiency, replacement therapy is often ignored.
  • adrenocorticotropic hormone appears to be the primary stimulator of adrenal androgen production
  • deficient adrenocorticotropic hormone secretion can also lead to testosterone deficiency in women. This can result from pituitary disease or surgery, for example, secondary adrenocortical deficiency, or as a pharmacological effect of exogenous corticosteroid administration that can suppress adrenocorticotropic hormone secretion.
  • the methods, kits, combinations, and composition are useful in treating a woman where chronic corticosteroid therapy is administered.
  • Chronic corticosteroid therapy is used for a variety of conditions, which include rheumatoid arthritis, systemic lupus erythematosus, Sjogren's syndrome, immunosuppression for transplants, asthma, etc.
  • Corticosteroid-induced adrenal suppression may thus represent the largest group of patients with deficient adrenal androgen production. Androgen deficiency is recognized as a contributory factor to corticosteroid-induced osteoporosis.
  • testosterone replacement By stimulating bone formation (osteoblast activity), testosterone replacement is beneficial in the treatment of corticosteroid-induced osteoporosis in premenopausal women, and is beneficial in estrogen replacement therapy where treating post-menopausal women.
  • osteoblast activity In a woman with autoimmune disorders, such as rheumatoid arthritis and systemic lupus erythematosus, testosterone deficiency can contribute to the underlying tendency to produce autoantibodies, as has been seen in a variety of animal models of autoimmune disease. Testosterone replacement can thus help to ameliorate the autoimmune disease process, itself.
  • the potential therapeutic benefits of testosterone replacement in treating corticosteroid suppressed women have largely been ignored.
  • the methods, kits, combinations, and composition are useful in treating a panhypopituitarism woman.
  • Panhypopituitarism from any cause is attended by a severe testosterone deficiency because of derangement of androgen secretion by both the ovaries and the adrenal glands.
  • the methods, kits, combinations, and composition are useful in treating a woman with primary adrenal insufficiency.
  • Primary adrenal insufficiency is associated with testosterone deficiency.
  • the methods, kits, combinations, and composition are useful in treating a woman with chronic illnesses.
  • Chronic illnesses in a woman are attended by decreased circulating testosterone concentrations.
  • Glucocorticoid administration inhibits adrenal androgen production by their inhibitory effects on adrenocorticotropic hormone secretion.
  • glucocorticoids also have inhibitory effects at all levels of the hypothalamic-pituitary-ovarian axis.
  • the methods, kits, combinations, and composition are useful in treating a human immunodeficiency virus-positive woman.
  • human immunodeficiency virus-positive men where testosterone deficiency is common, it is not known whether human immunodeficiency virus-positive women are deficient in testosterone.
  • Amenorrhea which appears to be increased in women with acquired immunodeficiency syndrome (AIDS), may be an indication that ovarian steroid production is diminished.
  • Adrenal function can also be deficient in acquired immunodeficiency syndrome patients due to cytomegalovirus infection, tuberculosis and/or fungal infections.
  • Megestrol acetate a progestational agent used to stimulate appetite in human immunodeficiency virus infected persons, suppresses gonadotropins and is it believed to lower testosterone levels in women, similar to its effects in men.
  • oral contraceptives by a human immunodeficiency virus-positive woman also reduces testosterone levels, as described above in normal women.
  • Physiological testosterone replacement can be used as an anabolic agent for treating/preventing the wasting syndrome and for enhancing quality of life in a woman.
  • the methods, kits, combinations, and compositions of the present invention are also useful to treat a number of physiological and psychological parameters associated with testosterone deficiency in a woman, and include, for example, increasing libido and improving sexual performance and dysfuntion, increasing bone mineral density and related markers, improving body composition, preventing human immunodeficiency virus wasting syndrome, improving cognition, improving mood and self-esteem, improving muscle mass and performance, treating premenstrual syndrome, and treating autoimmune diseases.
  • the methods, kits, combinations, and composition are useful in treating the libido of a woman.
  • Testosterone concentrations clearly affect female libido.
  • higher testosterone levels were associated with less sexual avoidance, more sexual gratification, more sexual thoughts, more initiation of sexual activity, higher levels of sexual interest and desire, and more anticipation of sexual activity.
  • the methods, kits, combinations, and composition are useful in treating sexual performance in a woman.
  • the methods, kits, combinations, and composition are useful in treating female sexual dysfunction in a woman.
  • Surgical menopause that is, total abdominal hysterectomy and bilateral salpingo-oophorectomy, performed prior to the natural menopause causes a syndrome of female sexual dysfunction in a significant number of women that is unrelieved by conventional estrogen replacement therapy.
  • the sexual components of this syndrome include decreased libido, decreased arousal and a diminished ability to attain orgasm.
  • the psychological components include decreased energy, depressed mood, and a general decrease in well-being.
  • estrogen deficiency symptoms of vaginal atrophy, diminished lubrication, hot flushes and emotional liability that can adversely affect sexual function and psychological well-being in menopausal women who do not receive adequate estrogen replacement therapy.
  • estrogen deficiency the hormonal basis for this syndrome is attributed to a testosterone deficiency state resulting from the absent ovarian production of testosterone and its precursors.
  • the mean ( ⁇ SD) serum free testosterone concentration increased from 1.2 ⁇ 0.8 pg/mL during placebo treatment to 3.9 ⁇ 2.4 pg/mL and 4.9 ⁇ 4.8 pg/mL during treatment with 160 and 300 ⁇ g of testosterone per day, respectively (normal range,1.3 to 6.8 pg/mL.
  • P 0.03 for both comparisons with placebo.
  • the percentages of women who had sexual fantasies, masturbated, or engaged in sexual intercourse at least once a week increased two to three times from base line.
  • testosterone therapy is used in conjunction with estrogen therapy.
  • estrogen therapy results in increased sexual desire, frequency of sexual fantasies, sexual arousal, and coital or orgasmic frequency compared to those given estrogen alone or a placebo reported that women receiving estrogen plus testosterone experienced more increased libido, activity, satisfaction, pleasure, fantasy, orgasm, and relevancy as compared to women receiving estrogen alone.
  • Treatment with premarin and methyltestosterone resulted in significantly increased reports of pleasure from masturbation.
  • Treatment with estrogen and methyltestosterone similarly results in increased sexual interest.
  • transdermal testosterone treatment in women after oophorectomy improved sexual function and psychological well-being. It is contemplated that testosterone administration alone will have therapeutic benefits if given without estrogen.
  • women with hypothalamic amenorrhea show increased vaginal vasocongestion with testosterone treatment compared to a placebo.
  • the methods, kits, combinations, and composition are useful in treating decreased bone density in a woman.
  • Another physiologic parameter linked to testosterone administration in women is decreased bone mineral density.
  • increased testosterone concentrations are associated with increased bone mineral density. It has been found that higher bioavailable testosterone levels were associated with higher bone mineral density in the ultradistal radius in women. Women having polycystic ovary syndrome had neck bone mineral density positively correlated to free testosterone levels. Upper body bone mineral density had significant correlation with testosterone.
  • testosterone is often given in conjunction with estrogen in order to prevent bone loss or increase bone mineral density.
  • subcutaneous estradiol (75 mg) and testosterone (100 mg) prevented osteoporosis and maintained normal bone mineral density in post-menopausal women.
  • estrogen-only group had a reduction in serum markers of bone formation
  • women treated with combined estrogen and testosterone had increased bone formation markers.
  • estrogen and testosterone replacement with implant pellets increases bone mass more than estrogen implants alone, increased bone mineral density by 5.7% in the spine and 5.2% in the neck femur region. Treatment with estrogen and methyltestosterone similarly results in increased spine and hip bone mineral density.
  • orally given estrogens and methyltestosterone prevented bone loss and increased bone mineral density in the spine and hip.
  • the methods, kits, combinations, and composition are useful in treating body composition of a woman.
  • Testosterone has been linked to improved body composition in women.
  • Testosterone is positively correlated to body mass index and exogenous androgens influenced body composition and regional body fat distribution in obese post-menopausal women.
  • Other researchers have found an increase in fat-free mass and a reduced fat mass to fat free mass ratio in postmenopausal women treated with concurrent estrogen-testosterone therapy.
  • administration of testosterone to normal women or those having testosterone deficiencies may have a therapeutic improvement in body composition.
  • the methods, kits, combinations, and composition are useful in treating or preventing human immunodeficiency virus wasting syndrome in a woman.
  • testosterone administration to women infected with human immunodeficiency virus may treat or prevent human immunodeficiency virus wasting syndrome. It has been found that lower free testosterone levels in human immunodeficiency virus-infected women using a tracer analog method. For example, testosterone replacement in a patch delivering 150 ug/day of testosterone to human immunodeficiency virus-infected women had a 4% increase in body weight over 12 weeks. In addition, the patients had an improved quality of life.
  • testosterone administration can be used as a method of preventing wasting in women suffering from acquired immunodeficiency syndrome or related disorders.
  • the methods, kits, combinations, and composition are useful in treating or preventing short-term and long-term memory and other higher-order cognitive functions in a woman.
  • Sex steroids are important for short-term and long-term memory and other higher-order cognitive functions.
  • Postmenopausal women receiving estrogen plus testosterone following oophorectomy had higher scores on two tests of short-term memory, a test of long-term memory, and a test of logical reasoning. It has been reported that the administration of testosterone is associated with better visio-spacial function and verbal skills. Women with high testosterone levels scored higher on special/mathematical tasks than women with low testosterone concentrations. Women with higher Mini-Mental State Examination scores had significantly higher mean total and bioavailable testosterone concentrations. Testosterone levels are also related to verbal fluency.
  • the benefits of testosterone administration on cognitive parameters may be optimized by concurrent estrogen administration. For example, subcutaneous implants of oestradiol (40 mg) and testosterone (100 mg) have shown increases in concentration.
  • the methods, kits, combinations, and compositions are useful in treating or preventing a mood or self-esteem disorder in a woman.
  • Parameters associated with testosterone serum levels in women are mood and self-esteem. Menopausal women who received both estrogen and testosterone felt more composed, elated, and energetic than those who were given estrogen alone. Similarly, testosterone concentrations are positively correlated to self-esteem. Thus, it is contemplated that testosterone therapy will improve mood when used alone or in conjunction with estrogen.
  • the methods, kits, combinations, and composition are useful in increasing muscle size and performance in a woman. Androgens and anabolic steroids have long since been used to increase muscle size and performance in men.
  • researchers have recently also found that testosterone is an important determinant of greater muscle size in women with polycystic ovary syndrome. Thus, administration of testosterone to a normal or testosterone deficient woman may be useful for improving muscle mass and performance.
  • premenstrual syndrome Many of the symptoms described above fall under the umbrella of what is commonly considered to be premenstrual syndrome (PMS). In general, lower levels of testosterone throughout the menstrual cycle have been reported in women who suffer from premenstrual syndrome compared with controls. Testosterone replacement is currently used as a management of premenstrual syndrome in the United Kingdom and Austalia. Managing premenstrual syndrome with oestradiol/testosterone implants resulted in improvements in libido, enjoyment of sex, and tiredness. Thus, it is contemplated that the methods, kits, combinations, and compositions of the present invention can be useful in treating premenstrual syndrome in a woman, especially in conjunction with estrogen administration.
  • the methods, kits, combinations, and composition are useful in suppressing both cell-mediated and humoral immune responses in a woman. Androgens appear to suppress both cell-mediated and humoral immune responses. Many researchers have advocated increasing testosterone levels in women as protective against autoimmune disease, such as rheumatoid arthritis. Testosterone administration therefore is contemplated to be effective in treating a woman with such disorders.
  • Toxicity and therapeutic efficacy of the therapeutic agents of the present invention can be determined by standard pharmaceutical procedures, for example, for determining LD 50 (the dose lethal to 50% of the population) and the ED 50 (the dose therapeutically effective in 50% of the population).
  • the dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD 50 /ED 50 .
  • Compounds which exhibit large therapeutic induces are preferred. While compounds that exhibit toxic side effects may be used, care should be taken to design a delivery system that targets such compounds to the site of affected tissue in order to minimize potential damage to uninfected cells and, thereby, reduce side effects.
  • the active agents of the present invention may be administered, if desired, in the form of salts, esters, amides, enantiomers, isomers, tautomers, prodrugs, derivatives and the like, provided the salt, ester, amide, enantiomer, isomer, tautomer, prodrug, or derivative is suitable pharmacologically, that is, effective in the present methods, kits, combinations, and compositions.
  • Salts, esters, amides, enantiomers, isomers, tautomers, prodrugs and other derivatives of the active agents may be prepared using standard procedures known to those skilled in the art of synthetic organic chemistry and described, for example, by J. March, Advanced Organic Chemistry; Reactions, Mechanisms and Structure, 4th Ed.
  • acid addition salts are prepared from the free base using conventional methodology, and involves reaction with a suitable acid.
  • a suitable acid such as methanol or ethanol
  • the base form of the drug is dissolved in a polar organic solvent such as methanol or ethanol and the acid is added thereto.
  • the resulting salt either precipitates or may be brought out of solution by addition of a less polar solvent.
  • Suitable acids for preparing acid addition salts include both organic acids, for example, acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, malic acid, malonic acid, succinic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid, and the like, as well as inorganic acids, for example, hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like.
  • organic acids for example, acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, malic acid, malonic acid, succinic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid
  • An acid addition salt may be reconverted to the free base by treatment with a suitable base.
  • Particularly preferred acid addition salts of the active agents herein are halide salts, such as may be prepared using hydrochloric or hydrobromic acids.
  • Particularly preferred basic salts here are alkali metal salts, for example, the sodium salt, and copper salts.
  • Preparation of esters involves functionalization of hydroxyl and/or carboxyl groups which may be present within the molecular structure of the drug.
  • the esters are typically acylsubstituted derivatives of free alcohol groups, that is, moieties that are derived from carboxylic acids of the formula RCOOH where R is alkyl, and preferably is lower alkyl.
  • Esters can be reconverted to the free acids, if desired, by using conventional hydrogenolysis or hydrolysis procedures.
  • Amides and prodrugs may also be prepared using techniques known to those skilled in the art or described in the pertinent literature. For example, amides may be prepared from esters, using suitable amine reactants, or they may be prepared from an anhydride or an acid chloride by reaction with ammonia or a lower alkyl amine.
  • Prodrugs are typically prepared by covalent attachment of a moiety, which results in a compound that is therapeutically inactive until modified by an individual's metabolic system.
  • the therapeutic agents of the present invention can be formulated as a single pharmaceutical composition containing at least one therapeutic agent, or as independent multiple pharmaceutical compositions where each composition contains at least one therapeutic agent.
  • Pharmaceutical compositions according to the present invention include those compositions with at least one therapeutic agent formulated for percutaneous administration.
  • Percutaneous administration includes transdermal delivery systems that include patches, gels, tapes and creams, and can contain excipients such as alcohols, penetration enhancers, and thickeners, as well as solubilizers (for example propylene glycol, bile salts, and amino acids), hydrophilic polymers (for example, polycarbophil and polyvinylpyrolidone), and adhesives and tackifiers (for example, polyisobutylenes, silicone-based adhesives, acrylates and polybutene).
  • excipients such as alcohols, penetration enhancers, and thickeners, as well as solubilizers (for example propylene glycol, bile salts, and amino acids), hydrophilic polymers (for example, polycarbophil and polyvinylpyrolidone), and adhesives and tackifiers (for example, polyisobutylenes, silicone-based adhesives, acrylates and polybutene).
  • solubilizers for example propylene glycol, bil
  • the therapeutic agents of the present invention can then be administered percutaneously in dosage unit formulations containing conventional nontoxic pharmaceutically acceptable carriers, adjuvants, and vehicles as desired.
  • the compounds of the present invention can be administered by any conventional means available for use in conjunction with pharmaceuticals, either as individual therapeutic compounds or as a combination of therapeutic compounds.
  • compositions of the present invention can be administered for treating, preventing, or reducing the risk of developing a testosterone deficiency in a mammal by any means that produce contact of these compounds with their site of action in the body, for example in the ileum, the plasma, or the liver of a mammal.
  • compositions of the present invention may optionally include salts, emollients, stabilizers, antimicrobials, fragrances, and propellants.
  • the therapeutic agents come in the form of kits or packages containing testosterone.
  • the kits or packages contain testosterone in a dosage form suitable for percutaneous administration, for example, a gel or a patch, in amounts for the proper dosing of the drugs.
  • the therapeutic agents of the present invention can be packaged in the form of kits or packages in which the daily (or other periodic) dosages are arranged for proper sequential or simultaneous administration.
  • the present invention further provides a kit or package containing a plurality of dosage units, adapted for successive daily administration, each dosage unit comprising at least one of the therapeutic agents of the present invention.
  • This drug delivery system can be used to facilitate administering any of the various embodiments of the therapeutic compositions.
  • the system contains a plurality of dosages to be to be administered daily or weekly via percutaneous administration.
  • the kits or packages also contain a set of instructions for the patient.
  • kits, combinations, and compositions can also be used in "combination therapy" with another steroid or pharmaceutical agent that increases testosterone levels in a mammal, or, as mentioned above, with an estrogenic hormone.
  • a class of steroids or pharmaceutical agents that increases testosterone levels in a mammal useful in the methods, kits, combinations, and compositions of the present invention include compounds that inhibit the synthesis of the sex hormone binding globulin.
  • Sex hormone binding globulin is a serum protein, and is known to bind to testosterone and estradiol, effecting the biological activity of these hormones.
  • Specific compounds of interest that inhibit the synthesis the sex hormone binding globulin include but are not limited to methyltestosterone and fluoxymesterone, and all salts, esters, amides, enantiomers, isomers, tautomers, prodrugs and derivatives of these compounds.
  • Methyltestosterone is currently available in various formulations including those available orally, for example ANDROID® and TESTRED®. Fluoxymesterone is also currently available in various formulations including those available orally, for example HALOSTESTIN®. Combinations of the above mentioned compounds can be used.
  • methyltestosterone decreases hepatic synthesis of endogenous proteins like sex hormone binding globulin. This decrease in synthesis produces a decline in blood concentrations of sex hormone binding globulin, which is the primary means of endogenous hormone transport. The decrease in sex hormone binding globulin subsequently causes an increase in free-hormone concentration for binding at the receptor.
  • Transdermal application of an androgen, for example, testosterone, or an estrogen, for example, estradiol bypasses first-pass metabolism and can provide a means of increasing hormone concentrations in the bloodstream.
  • methyltestosterone and percutaneously administered testosterone produce a greater therapeutic effect and provide a means of increasing hormone concentrations in the bloodstream.
  • Methyltestosterone and testosterone (and optionally estradiol) produce a greater therapeutic effect than either entity alone because the decrease in hormone binding ability is coupled with an increased hormone bioavailability, producing higher free-hormone concentrations that would be produced by testosterone alone.
  • the estrogenic hormone that can be used in conjunction with the methods, kits, combinations, and composition is the naturally occurring estrogen 17 beta-estradiol (beta-estradiol; 1, 3, 5(10)-estratriene-3, 17 beta-diol).
  • Other estrogenic steroid hormones can be used in partial or complete replacement of 17 beta-estradiol, for example, an ester which is biologically compatible and can be absorbed effectively transdermally.
  • the estradiol esters can be, illustratively estradiol-3,17-diacetate; estradiol-3-acetate; estradiol-17-acetate; estradiol-3,17-divalerate; estradiol-3-valerate; estradiol-17-valerate; 3-mono, 17-mono and 3,17-dipropionate esters, corresponding cypionate, heptanoate, benzoate and the like esters; ethynil estradiol; estrone and other estrogenic steroids and salts, enantiomers, isomers, tautomers, prodrugs and derivatives thereof that are possible to administer by transdermal route.
  • estrogen-related compounds that may be used in the methods, kits, combinations, and compositions of the present invention include, but are not limited to conjugated estrogens (including estrone sulfate, equilin, and 17-.alpha.-dihydroequilin), estradiol valerate, estriol, estrone, estrone sulfate, estropipate, ethinyl estradiol, mestranol, and all salts, esters, amides, enantiomers, isomers, tautomers, prodrugs and derivatives of these compounds.
  • conjugated estrogens including estrone sulfate, equilin, and 17-.alpha.-dihydroequilin
  • estradiol valerate estriol
  • estrone, estrone sulfate estropipate
  • ethinyl estradiol mestranol
  • esters amides, enantiomers, isomers
  • Estrogenic hormones are currently available in various formulations including, but not limited to those available as a cream, pessary, vaginal ring, vaginal tablet, transdermal preparation, gel, and oral tablet.
  • vaginal creams include PREMARIN® (conjugated estrogen), ORTHO DIENOSTEROL® (dienosterol), and OVESTIN® (estriol).
  • Available pessary formulations include ORTHO-GYNEST® (estriol), and TAMPOVAGAN® (stilbestrol).
  • An example of a vaginal ring formulation is ESTRING® (estradiol)
  • an example of a vaginal tablet is VAGIFEM® (estradiol).
  • estradiol available transdermal estrogen preparations containing estradiol include ERC ALORA®, CLIMARA®, DERMESTRIL®, ESTRADERM®, ESTRADERM® TTS, ESTRADERM® MX, EVOREL®, FEMATRIX®, FEMPATCH®, FEMSEVEN®, MENOREST®, PROGYNOVA® TS, and VIVELLE®.
  • Estrogen gels containing estradiol include ESTRAGEL (under development by Applicant), and SANDRENA®.
  • Estradiol is also available formulated as an implant pellet, for example, ESTRADIOL IMPLANT®.
  • Tablet formulations include PREMARIN® (conjugated estrogen), ESTRATAB® (esterified estrogen), ESTRATEST® (esterified estrogen, methyltestosterone), MENEST® (esterified estrogen), CLIMAGEST®, (estradiol), CLIMAVAL® (estradiol), ELLESTE SOLO® (estradiol), ESTRACE® (estradiol), PROGYNOVA® (estradiol), ZUMENON® (estradiol), HORMONIN® (estradiol, estrone, estriol), HARMOEN® (estrone), OGEN® (estropipate), and ORTHO-EST® (estropipate).
  • the estrogenic hormone is formulated for percutaneous administration in a hydroalcoholic gel.
  • the gel comprises one or more lower alcohols, a penetration enhancing agent, a thickener, and water. Additionally, the estrogenic gel optionally includes salts, emollients, stabilizers, antimicrobials, fragrances, and propellants.
  • the estrogenic gel is comprised of the following substances as shown below in Table 6, in approximate amounts.
  • Table 6 Composition of ESTRAGEL SUBSTANCE AMOUNT (w/w) PER 100g OF GEL 17-beta-oestradiol 0.06 g Carbopol 980 1.0 g Triethanolamine 1.35 g Ethanol (95% w/w) (59 ml) Purified water (qsf) 100 g
  • composition may contain about 0.1 to about 10.0 g of estradiol, about 0.1 to about 5.0 g CARBOPOL, about 0.1 to about 5.0 g triethanolamine, and about 30.0 to about 98.0 g ethanol.
  • combination therapy embraces the administration of a steroid in the testosterone synthesis pathway in conjunction with another steroid or pharmaceutical agent that increases testosterone levels in a mammal, or with an estrogenic hormone, as part of a specific treatment regimen intended to provide a beneficial effect from the co-action of these therapeutic agents for the treatment of a testosterone deficient disorder in a mammal.
  • the beneficial effect of the combination includes, but is not limited to, pharmacokinetic or pharmacodynamic co-action resulting from the combination of therapeutic agents.
  • Administration of these therapeutic agents in combination typically is carried out over a defined time period (usually minutes, hours, days, weeks, months or years depending upon the combination selected).
  • “Combination therapy” generally is not intended to encompass the administration of two or more of these therapeutic agents as part of separate monotherapy regimens that incidentally and arbitrarily result in the combinations of the present invention.
  • “Combination therapy” is intended to embrace administration of these therapeutic agents in a sequential manner, that is, where each therapeutic agent is administered at a different time, as well as administration of these therapeutic agents, or at least two of the therapeutic agents, in a substantially simultaneous manner. Substantially simultaneous administration can be accomplished, for example, by administering to the subject a single gel having a fixed ratio of each therapeutic agent or in multiple, single capsules, tablets, or gels for each of the therapeutic agents.
  • each therapeutic agent can be effected by any appropriate route including, but not limited to, oral routes, percutaneous routes, intravenous routes, intramuscular routes, and direct absorption through mucous membrane tissues.
  • the therapeutic agents can be administered by the same route or by different routes.
  • a first therapeutic agent of the combination selected may be administered orally, while the other therapeutic agents of the combination may be administered percutaneously.
  • all therapeutic agents may be administered percutaneously, or all therapeutic agents may be administered intravenously, or all therapeutic agents may be administered intramuscularly, or all therapeutic agents can be administered by direct absorption through mucous membrane tissues.
  • the sequence in which the therapeutic agents are administered is not narrowly critical.
  • “Combination therapy” also can embrace the administration of the therapeutic agents as described above in further combination with other biologically active ingredients, such as, but not limited to, agents for improving sexual performance or increasing, and non-drug therapies, such as, but not limited to, surgery.
  • the therapeutic compounds which make up the combination therapy may be a combined dosage form or in separate dosage forms intended for substantially simultaneous oral administration.
  • the therapeutic compounds that make up the combination therapy may also be administered sequentially, with either therapeutic compound being administered by a regimen calling for two step administration.
  • a regimen may call for sequential administration of the therapeutic compounds with spaced-apart administration of the separate, active agents.
  • the time period between the multiple administration steps may range from, for example, a few minutes to several hours to days, depending upon the properties of each therapeutic compound such as potency, solubility, bioavailability, plasma half-life and kinetic profile of the therapeutic compound, as well as depending upon the effect of food ingestion and the age and condition of the patient. Circadian variation of the target molecule concentration may also determine the optimal dose interval.
  • the therapeutic compounds of the combined therapy may involve a regimen calling for administration of one therapeutic compound by oral route and another therapeutic compound by percutaneous route.
  • the therapeutic compounds of the combined therapy are administered orally, by inhalation spray, rectally, topically, buccally (e.g., sublingual), or parenterally (e.g., subcutaneous, intramuscular, intravenous and intradermal injections, or infusion techniques), separately or together, each such therapeutic compound will be contained in a suitable pharmaceutical formulation of pharmaceutically-acceptable excipients, diluents or other formulations components. Examples of suitable pharmaceutically-acceptable formulations containing the therapeutic compounds are given above.
  • testosterone therapy in surgically menopausal women who, for example, experience female sexual dysfunction is to replace the missing ovarian testosterone production of approximately 150 ⁇ g per day and restore the levels of testosterone and its active androgenic metabolite dihydrotestosterone (DHT) to their previous levels within the normal physiological range.
  • DHT dihydrotestosterone
  • Example 1 Dosage of Testosterone in a Female after Bilateral Oophorectomy
  • the methods, kits, combinations, and compositions are comprised of a percutaneously deliverable testosterone formulation.
  • testosterone is formulated as a gel for transdermal administration as described above in Table 3 (RELIBRA).
  • 24 pre-menopausal women who have undergone bilateral oophorectomy are randomized to receive: (a) 0.17 g/day of RELIBRA, which delivers 1.7 mg/day of testosterone to the skin of which about 0.1 mg, is absorbed, for 30 days; or (b) 0.25 g/day of RELIBRA, which delivers 2.5 mg/day of testosterone to the skin of which about 0.15 mg is absorbed, for 30 days; or (c) 0.5 g/day of RELIBRA, which delivers 5.0 mg/day of testosterone to the skin of which about 0.3 mg is absorbed, for 30 days; or (d) a gel containing a placebo for 30 days.
  • the gel is rubbed onto the clean dry skin of the upper outer thigh and hip once daily. Following application, the gel is allowed to air dry. The patient washes her hands
  • Example 2 Dosage of Testosterone and Methyltestosterone in a Female after Bilateral Oophorectomy
  • the methods, kits, combinations, and compositions are comprised of a percutaneously deliverable testosterone formulation, and an orally deliverable methyltestosterone formulation.
  • testosterone is formulated as a gel for transdermal administration as described above in Table 3 (RELIBRA)
  • methyltestosterone is formulated as a capsule for oral administration and each dosage unit contains 10 mg of methyltestosterone.
  • 24 pre-menopausal women who have undergone bilateral oophorectomy are randomized to receive a daily oral dose of 10 mg or 50 mg methyltestosterone for 30 days, plus: (a) 0.17 g/day of RELIBRA, which delivers 1.7 mg/day of testosterone to the skin of which about 0.1 mg, is absorbed, for 30 days; or (b) 0.25 g/day of RELIBRA, which delivers 2.5 mg/day of testosterone to the skin of which about 0.15 mg is absorbed, for 30 days; or (c) 0.5 g/day of RELIBRA, which delivers 5.0 mg/day of testosterone to the skin of which about 0.3 mg is absorbed, for 30 days; or (d) a gel containing a placebo for 30 days.
  • the gel is rubbed onto the clean dry skin of the upper outer thigh and hip once daily. Following application, the gel is allowed to air dry. The patient washes her hands.
  • RELIBRA can be administered in conjunction with methyltestosterone to improve female sexual dysfunction as compared to placebo in pre-menopausal women who have undergone a bilateral oophorectomy.
  • Example 3 Dosage of Testosterone and Estrogen in a Female after Bilateral Oophorectomy
  • the methods, kits, combinations, and compositions are comprised of a percutaneously deliverable testosterone formulation, and a non-orally deliverable estrogen.
  • testosterone is formulated as a gel for transdermal administration as described above in Table 3 (RELIBRA)
  • estradiol is formulated as a gel for transdermal administration as described above in Table 5 (ESTRAGEL).
  • 24 pre-menopausal women who have undergone bilateral oophorectomy are randomized to receive a daily dose of 5 g or 10 g ESTRAGEL for 30 days, plus: (a) 0.17 g/day of RELIBRA, which delivers 1.7 mg/day of testosterone to the skin of which about 0.1 mg, is absorbed, for 30 days; or (b) 0.25 g/day of RELIBRA, which delivers 2.5 mg/day of testosterone to the skin of which about 0.15 mg is absorbed, for 30 days; or (c) 0.5 g/day of RELIBRA, which delivers 5.0 mg/day of testosterone to the skin of which about 0.3 mg is absorbed, for 30 days; or (d) a gel containing a placebo for 30 days.
  • the gel is rubbed onto the clean dry skin of the upper outer thigh and hip once daily. Following application, the gel is allowed to air dry. The patient washes her hands.
  • RELIBRA can be administered in conjunction with estradiol to improve female sexual dysfunction as compared to placebo in pre-menopausal women who have undergone a bilateral oophorectomy.
  • the gel is rubbed onto the clean dry skin of the upper outer thigh and hip once daily. Following application, the gel is allowed to air dry. The patient washes her hands. Application of the gel results in an increased testosterone level having a desirable pharmacokinetic profile similar to that in normal women. The gel is thus useful for treating a number of conditions or diseases in women.
  • the invention also highlights the following items:
EP10184108A 2000-08-30 2001-08-29 Procédé pour augmenter la concentration de testosterone et de steroides apparentes chez la femme Withdrawn EP2283865A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US09/651,777 US6503894B1 (en) 2000-08-30 2000-08-30 Pharmaceutical composition and method for treating hypogonadism
US70375300A 2000-11-01 2000-11-01
US29239801P 2001-05-21 2001-05-21
EP01964525.8A EP1322336B1 (fr) 2000-08-30 2001-08-29 Procédé pour augmenter la concentration de testostérone et de stéroides apparentés chez la femme

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP01964525.8 Division 2001-08-29

Publications (1)

Publication Number Publication Date
EP2283865A1 true EP2283865A1 (fr) 2011-02-16

Family

ID=27096141

Family Applications (2)

Application Number Title Priority Date Filing Date
EP10184108A Withdrawn EP2283865A1 (fr) 2000-08-30 2001-08-29 Procédé pour augmenter la concentration de testosterone et de steroides apparentes chez la femme
EP01966486A Expired - Lifetime EP1315502B1 (fr) 2000-08-30 2001-08-29 Methode pour traiter la dyserection et augmenter la libido chez l'homme

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP01966486A Expired - Lifetime EP1315502B1 (fr) 2000-08-30 2001-08-29 Methode pour traiter la dyserection et augmenter la libido chez l'homme

Country Status (22)

Country Link
US (1) US20050054623A1 (fr)
EP (2) EP2283865A1 (fr)
JP (1) JP2004524267A (fr)
KR (1) KR100861603B1 (fr)
CN (1) CN1473047A (fr)
AT (1) ATE460939T1 (fr)
AU (2) AU8699501A (fr)
BR (1) BR0113651A (fr)
CA (2) CA2746787A1 (fr)
CY (1) CY1110085T1 (fr)
DE (1) DE60141587D1 (fr)
DK (1) DK1315502T3 (fr)
ES (1) ES2341090T3 (fr)
IL (1) IL154692A0 (fr)
MX (1) MXPA03001858A (fr)
NO (1) NO332649B1 (fr)
NZ (1) NZ524601A (fr)
PL (1) PL205279B1 (fr)
PT (1) PT1315502E (fr)
SI (1) SI1315502T1 (fr)
TR (1) TR200300776T2 (fr)
WO (1) WO2002017927A1 (fr)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPN814496A0 (en) 1996-02-19 1996-03-14 Monash University Dermal penetration enhancer
US5968547A (en) 1997-02-24 1999-10-19 Euro-Celtique, S.A. Method of providing sustained analgesia with buprenorphine
US6503894B1 (en) 2000-08-30 2003-01-07 Unimed Pharmaceuticals, Inc. Pharmaceutical composition and method for treating hypogonadism
US20030139384A1 (en) * 2000-08-30 2003-07-24 Dudley Robert E. Method for treating erectile dysfunction and increasing libido in men
US20040092494A9 (en) * 2000-08-30 2004-05-13 Dudley Robert E. Method of increasing testosterone and related steroid concentrations in women
US20040002482A1 (en) * 2000-08-30 2004-01-01 Dudley Robert E. Androgen pharmaceutical composition and method for treating depression
JP5039252B2 (ja) * 2000-08-31 2012-10-03 ユニメッド ファーマシューティカルズ,リミティド ライアビリティ カンパニー 性機能低下を治療するための医薬組成物及び方法
MY139721A (en) 2002-04-19 2009-10-30 Cpex Pharmaceuticals Inc Pharmaceutical composition
ES2589077T3 (es) 2002-06-25 2016-11-10 Acrux Dds Pty Ltd Control de la tasa de administración transdérmica usando composiciones farmacéuticas amorfas
AUPS317302A0 (en) * 2002-06-25 2002-07-18 Drug Delivery Solutions Pty Ltd Metastable pharmaceutical compositions
IL152573A (en) 2002-10-31 2009-11-18 Transpharma Medical Ltd A system for the transmission through the skin of a medical preparation against vomiting and nausea
IL152575A (en) 2002-10-31 2008-12-29 Transpharma Medical Ltd A skin-to-skin transmission system of water-insoluble drugs
US20040259852A1 (en) 2003-06-18 2004-12-23 White Hillary D. Trandsdermal compositions and methods for treatment of fibromyalgia and chronic fatigue syndrome
US8883769B2 (en) 2003-06-18 2014-11-11 White Mountain Pharma, Inc. Methods for the treatment of fibromyalgia and chronic fatigue syndrome
BRPI0511079A (pt) 2004-05-11 2007-12-26 Emotional Brain Bv usos de uma combinação de um inibidor de pde5 e testosterona ou de um seu análogo, e de testosterona ou de um seu análogo, formulação farmacêutica, e, kit de partes
EP1634583A1 (fr) * 2004-09-09 2006-03-15 Laboratoires Besins International Gels de testostérone comprenant du propylèneglycol comme promoteur d'absorption
US20070088012A1 (en) * 2005-04-08 2007-04-19 Woun Seo Method of treating or preventing type-2 diabetes
MX2007015255A (es) * 2005-06-03 2008-02-22 Acrux Dds Pty Ltd Metodo y composicion para administracion transdermica de un farmaco.
NZ563946A (en) 2005-06-03 2012-02-24 Acrux Dds Pty Ltd Testosterone containing non-occlusive transdermal drug delivery composition for application to the arm pit / axilla
US20070065494A1 (en) * 2005-08-03 2007-03-22 Watson Laboratories, Inc. Formulations and Methods for Enhancing the Transdermal Penetration of a Drug
PL2450041T3 (pl) 2005-10-12 2019-02-28 Unimed Pharmaceuticals, Llc Ulepszony żel zawierający testosteron do zastosowania do leczenia hipogonadyzmu
EP1790343A1 (fr) 2005-11-11 2007-05-30 Emotional Brain B.V. Compositions pharmaceutiques et leur utilisation pour le traitement des dysfonctions sexuelles chez la femme
US8613360B2 (en) 2006-09-29 2013-12-24 M-I L.L.C. Shaker and degasser combination
EP1925307A1 (fr) 2006-11-03 2008-05-28 Emotional Brain B.V. Utilisation de 3-alpha-androstanediol pour le traitement des dysfonctions sexuelles
GB2461725B (en) 2008-07-10 2012-06-13 United Wire Ltd Improved sifting screen
US20100022497A1 (en) * 2008-07-24 2010-01-28 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Method for treating or preventing a cardiovascular disease or condition utilizing estrogen receptor modulators based on APOE allelic profile of a mammalian subject
US20100022487A1 (en) * 2008-07-24 2010-01-28 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Method, device, and kit for maintaining physiological levels of steroid hormone in a subject
US20100061976A1 (en) * 2008-07-24 2010-03-11 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Method for treating or preventing osteoporosis by reducing follicle stimulating hormone to cyclic physiological levels in a mammalian subject
US20100022494A1 (en) * 2008-07-24 2010-01-28 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Method, device, and kit for maintaining physiological levels of steroid hormone in a subject
US20110190201A1 (en) * 2008-07-24 2011-08-04 Searete Llc Method, device, and kit for maintaining physiological levels of steroid hormone in a subject
NZ621292A (en) 2010-05-12 2015-05-29 Pomerleau Mechanica Inc Systems and methods for drying drill cuttings
RU2474424C2 (ru) * 2010-09-24 2013-02-10 Государственное образовательное учреждение высшего профессионального образования "Ивановская государственная медицинская академия Федерального агентства по здравоохранению и социальному развитию" Способ коррекции гиперэстрадиолемии и нормогонадотропного гипогонадизма у мужчин
EP2640398A4 (fr) 2010-11-18 2014-05-14 White Mountain Pharma Inc Méthodes pour traiter la douleur chronique ou réfractaire et/ou pour augmenter le seuil de la douleur chez un sujet, et compositions pharmaceutiques associées
US9795639B1 (en) 2013-03-16 2017-10-24 BioDlogics, LLC Methods for the treatment of erectile dysfunction by human birth tissue material compostion
US8785426B1 (en) 2013-12-13 2014-07-22 Upsher-Smith Laboratories, Inc. Testosterone gel compositions and related methods
EP3710012A4 (fr) * 2018-02-02 2021-07-28 Acerus Biopharma Inc. Procédés de thérapie à la testostérone
CA3155267A1 (fr) 2019-11-06 2021-05-14 Thomas Hnat Formulations topiques d'inhibiteurs de la cyclo-oxygenase et leur utilisation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4496556A (en) * 1982-08-16 1985-01-29 Norman Orentreich Topical applications for preventing dry skin
WO1992010231A1 (fr) * 1990-12-11 1992-06-25 Theratech, Inc. Dispositif d'acheminement transdermique sous-sature de medicament presentant un meilleur flux medicamenteux
WO1998034621A1 (fr) * 1997-02-07 1998-08-13 Theratech, Inc. Composition et procede servant a administrer testosterone a des femmes presentant des symptomes de deficience en testosterone
WO1999024041A1 (fr) * 1997-11-10 1999-05-20 Cellegy Pharmaceuticals, Inc. Systeme ameliorant l'administration de medicaments et reduisant les irritations
US5955455A (en) * 1993-01-19 1999-09-21 Endorecherche, Inc. Therapeutic methods and delivery systems utilizing sex steroid precursors

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4855305A (en) * 1987-03-23 1989-08-08 Applied Medical Research Compositions and methods of effecting contraception utilizing melatonin
TW224048B (fr) * 1992-03-30 1994-05-21 Hoechst Roussel Pharma
EP0644746B1 (fr) * 1992-06-11 1999-09-15 Theratech, Inc. Utilisation de glycerine pour moderer un apport medicamenteux transdermique
US5698589A (en) * 1993-06-01 1997-12-16 International Medical Innovations, Inc. Water-based topical cream containing nitroglycerin and method of preparation and use thereof
JP4036496B2 (ja) * 1995-10-24 2008-01-23 リンテック株式会社 ゲル製剤の製造方法
AUPN814496A0 (en) * 1996-02-19 1996-03-14 Monash University Dermal penetration enhancer
US5730987A (en) * 1996-06-10 1998-03-24 Omar; Lotfy Ismail Medication for impotence containing lyophilized roe and a powdered extract of Ginkgo biloba
DE19701949A1 (de) * 1997-01-13 1998-07-16 Jenapharm Gmbh Transdermales therapeutisches System
GB9700878D0 (en) * 1997-01-17 1997-03-05 Scherer Ltd R P Dosage forms and method for ameliorating male erectile dysfunction
US6037346A (en) * 1997-10-28 2000-03-14 Vivus, Inc. Local administration of phosphodiesterase inhibitors for the treatment of erectile dysfunction
JP2002518417A (ja) * 1998-06-25 2002-06-25 ラヴィファム ラボラトリーズ インコーポレーテッド 勃起機能不全の治療装具及び方法
JP2000225116A (ja) * 1998-12-04 2000-08-15 Eisai Co Ltd 陰茎径の測定法
JP2000212080A (ja) * 1999-01-26 2000-08-02 Hiroshi Azuma 勃起機能不全改善剤
DE19903087A1 (de) * 1999-01-27 2000-08-10 Forssmann Wolf Georg Behandlung von erektilen Dysfunktionen mit C-Typ Natriuretischem Polypeptid (CNP) als Monotherapie oder in Kombination mit Phosphodiesterasehemmern
EP1150661B1 (fr) * 1999-02-05 2003-10-22 Cipla Ltd. Sprays topiques contenant une composition filmogene
US6087362A (en) * 1999-03-16 2000-07-11 Pentech Pharmaceuticals, Inc. Apomorphine and sildenafil composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4496556A (en) * 1982-08-16 1985-01-29 Norman Orentreich Topical applications for preventing dry skin
WO1992010231A1 (fr) * 1990-12-11 1992-06-25 Theratech, Inc. Dispositif d'acheminement transdermique sous-sature de medicament presentant un meilleur flux medicamenteux
US5955455A (en) * 1993-01-19 1999-09-21 Endorecherche, Inc. Therapeutic methods and delivery systems utilizing sex steroid precursors
WO1998034621A1 (fr) * 1997-02-07 1998-08-13 Theratech, Inc. Composition et procede servant a administrer testosterone a des femmes presentant des symptomes de deficience en testosterone
WO1999024041A1 (fr) * 1997-11-10 1999-05-20 Cellegy Pharmaceuticals, Inc. Systeme ameliorant l'administration de medicaments et reduisant les irritations

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
"Pharmaceutical Dosage Forms", 1980, MARCEL DECKER
"Remineton's The Science and Practice of Pharmacy", MEADE PUBLISHING CO.
"The Merck Index", 1998, MERCK & CO.
ABRAHAM G.E.: "Ovarian and adrenal contribution to peripheral androgens during the menstrual cycle", J. CLIN. ENDOCRINOL. METAB., vol. 39, 1974, pages 340 - 346
BURGER H.G. ET AL.: "The management of persistent menopausal symptoms with oestradioltestosterone implants: clinical, lipid and hormonal results", MATURITAS, vol. 6, 1984, pages 351 - 358
GEIST S.H.: "Androgen therapy in the human female", J. CLIN. ENDOCRINOL., vol. 1, 1941, pages 154 - 161
GOORENLJ. G.; POLDENNAN K. H.: "Testosterone: Action, Deficiency, Substitution", 1990, SPRINGER-VERLAG, article "Safety aspects of androgens", pages: 136
HOOVER, JOHN E.: "Remington's Pharmaceutical Sciences", 1975, MACK PUBLISHING CO.
J. MARCH: "Advanced Organic Chemistry; Reactions, Mechanisms and Structure", 1992, WILEY-INTERSCIENCE
LOBO R.A.: "Androgen excess in Infertility, Contraception and Reproductive Endocrinology", 1991, BLACKWELL SCIENTIFIC PUBLICATIONS, pages: 422 - 446
SHERWIN B.B.; GELFAND M.M.: "Differential symptom response to parenteral estrogen and/or androgen administration in the surgical menopause", AM. J. OBSTET. GYNECOL., vol. 151, 1985, pages 153 - 160
SINHA-HIKIM ET AL.: "The Use of a Sensitive Equilibrium Dialysis Method for the Measurement of Free Testosterone Levels in Healthy, Cycling Women and in HIV-Infected Women", CLINICAL ENDOCRINOLOGY & METABOLISM, vol. 83 J, 1998, pages 1312 - 18
SOUTHREN A. L. ET AL.: "Further study of factors affecting the metabolic clearance rate of testosterone in man", J. CLIN. ENDOCRINOL, METAB., vol. 28, 1968, pages 1105 - 1112
URMAN B. ET AL.: "Elevated serum testosterone, hirsutism and virilism associated with combined androgen- estrogen hormone replacement therapy", OBSTET. GYNECOL., vol. 7, 1991, pages 595 - 598

Also Published As

Publication number Publication date
ES2341090T3 (es) 2010-06-15
EP1315502B1 (fr) 2010-03-17
MXPA03001858A (es) 2004-05-21
ATE460939T1 (de) 2010-04-15
SI1315502T1 (sl) 2010-07-30
DE60141587D1 (de) 2010-04-29
AU2001286995B2 (en) 2006-11-30
TR200300776T2 (tr) 2005-10-21
BR0113651A (pt) 2004-11-09
NO20030955D0 (no) 2003-02-28
NZ524601A (en) 2006-04-28
AU8699501A (en) 2002-03-13
CA2746787A1 (fr) 2002-03-07
EP1315502A1 (fr) 2003-06-04
CY1110085T1 (el) 2015-01-14
CA2420895A1 (fr) 2002-03-07
PL205279B1 (pl) 2010-03-31
NO332649B1 (no) 2012-11-26
DK1315502T3 (da) 2010-07-19
PL366037A1 (en) 2005-01-24
CN1473047A (zh) 2004-02-04
IL154692A0 (en) 2003-09-17
WO2002017927A1 (fr) 2002-03-07
CA2420895C (fr) 2007-03-13
NO20030955L (no) 2003-04-28
US20050054623A1 (en) 2005-03-10
PT1315502E (pt) 2010-05-06
JP2004524267A (ja) 2004-08-12
KR20030043949A (ko) 2003-06-02
KR100861603B1 (ko) 2008-10-07

Similar Documents

Publication Publication Date Title
AU2001285367B2 (en) Method of increasing testosterone and related steroid concentrations in women
US20040092494A9 (en) Method of increasing testosterone and related steroid concentrations in women
EP2283865A1 (fr) Procédé pour augmenter la concentration de testosterone et de steroides apparentes chez la femme
AU2001285367A1 (en) Method of increasing testosterone and related steroid concentrations in women
CN101081203B (zh) 水醇凝胶的制药用途
US20150250801A1 (en) Androgen pharmaceutical composition and method for treating depression
CA2451725C (fr) Combinaisons therapeutiques pour le traitement des carences hormonales
US20070154533A1 (en) Method of increasing testosterone and related steriod concentrations in women
US20110306582A1 (en) Androgen pharmaceutical composition and method for treating depression
CA2484164C (fr) Composition pharmaceutique androgene et procede pour le traitement de la depression
RU2286787C2 (ru) Способ повышения концентрации тестостерона и родственных стероидов у женщин
CA2497686A1 (fr) Procede pour augmenter la concentration de testosterone et de steroides apparentes chez la femme
CA2501846A1 (fr) Combinaisons therapeutiques pour le traitement des carences hormonales

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 1322336

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20110816

17Q First examination report despatched

Effective date: 20111201

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120612