EP2282614B1 - Schaltungsanordnung und Verfahren zum Zünden einer Entladungslampe - Google Patents

Schaltungsanordnung und Verfahren zum Zünden einer Entladungslampe Download PDF

Info

Publication number
EP2282614B1
EP2282614B1 EP10166293.0A EP10166293A EP2282614B1 EP 2282614 B1 EP2282614 B1 EP 2282614B1 EP 10166293 A EP10166293 A EP 10166293A EP 2282614 B1 EP2282614 B1 EP 2282614B1
Authority
EP
European Patent Office
Prior art keywords
voltage
switch
circuit arrangement
ignition
arrangement according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10166293.0A
Other languages
English (en)
French (fr)
Other versions
EP2282614A2 (de
EP2282614A3 (de
Inventor
Joachim MÜHLSCHLEGEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Osram GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram GmbH filed Critical Osram GmbH
Publication of EP2282614A2 publication Critical patent/EP2282614A2/de
Publication of EP2282614A3 publication Critical patent/EP2282614A3/de
Application granted granted Critical
Publication of EP2282614B1 publication Critical patent/EP2282614B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/02Details
    • H05B41/04Starting switches
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/288Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without preheating electrodes, e.g. for high-intensity discharge lamps, high-pressure mercury or sodium lamps or low-pressure sodium lamps
    • H05B41/2881Load circuits; Control thereof

Definitions

  • the invention relates to a circuit arrangement for igniting a discharge lamp, comprising a primary circuit, which consists of the series connection of an inductor, a firing capacitor and a first switch, wherein the switch is designed as a threshold and the inductance consists of the primary winding of the ignition transformer, and the primary circuit is formed is to generate a firing pulse for the discharge lamp at the secondary winding of an ignition transformer.
  • the invention relates to a circuit arrangement for igniting a discharge lamp according to the preamble of the main claim.
  • a circuit arrangement according to the preamble of claim 1 is for example off DE 19 544 838 known.
  • Fig. 1 shows a circuit arrangement for igniting a discharge lamp according to a further prior art
  • a high circulating current is generated by a primary winding L1 of an ignition transformer TR, which is transformed into a high secondary ignition voltage U3.
  • This ignition voltage U3 is applied to the gas discharge lamp.
  • the primary circuit consists of a series connection of the primary winding L1 of the ignition transformer TR, a firing capacitor C1 and a first switch in the form of a spark gap SG.
  • the voltage at the spark gap SG is substantially equal to the voltage at the ignition capacitor C1, since the inductance of the primary winding of the ignition transformer TR is permeable to DC voltage.
  • the ignition capacitor C1 is in this case charged via a voltage source U11, R11 until its voltage has reached the breakdown voltage of the spark gap, and this breakthrough.
  • the voltage U2 at the spark gap SG drops to very low values in a very short time, which results in a very high current through the primary winding L1 and the spark gap SG.
  • the charge of the ignition capacitor C1 discharges to a large extent.
  • a firing pulse is generated on the secondary side of the ignition transformer TR, which is applied to the gas discharge lamp.
  • the current and thus the height of the ignition pulse is dependent on the charging voltage U1 at the time of breakthrough of the spark gap SG.
  • the primary circuit is thus subjected to a voltage U1, which provides for the charging of the ignition capacitor C1 and for switching on the spark gap SG.
  • spark gaps have the disadvantage that the breakdown voltage is heavily toleranced, and the ignition energy present in the primary circuit due to the charging of the ignition capacitor C1 likewise fluctuates greatly. This makes the ignition of the gas discharge lamp a statistical process, which is very undesirable.
  • a controllable semiconductor switch e.g. a thyristor or a MOS-FET used.
  • semiconductor switches have the disadvantage of a high internal resistance compared to the spark gap, which has a significantly lower primary current result, and thus a significantly smaller ignition pulse.
  • the solution of the object with respect to the circuit arrangement is carried out according to the invention with a circuit arrangement for igniting a discharge lamp, with a primary circuit consisting of the series circuit of an inductor, a firing capacitor and a first switch, wherein the switch is designed as a threshold and the inductance of the primary winding of the Ignition transformer is made, and the primary circuit is formed on the secondary winding of an ignition transformer, a firing pulse for the discharge lamp wherein the primary circuit has two decoupled voltages, a first voltage that is substantially correlated with the energy of the firing pulse, and a second voltage that controls the switching timing of the switch, wherein the first voltage is less than the threshold of the first switch ,
  • the first switch is designed as a threshold value switch, it is switched on when the second voltage corresponds to its threshold value.
  • the voltages are decoupled by an inductance or a diode with an inductance.
  • the decoupling by an inductance is particularly suitable when using a fast-response first switch, whereas the decoupling by a diode has a broader field of application.
  • the first switch may be eg a spark gap, or be a Sidac or a component with a similar threshold characteristic.
  • a spark gap as a threshold value switch offers the advantage of a very low internal resistance and an associated high ignition efficiency.
  • the threshold value switch preferably has a parallel capacitance, via which a voltage across the threshold value switch can be established by charge transport to the capacitance. It is preferred to charge the parallel capacity a controllable voltage source or a controllable current source or a DC-DC converter or a charge pump used. Particularly preferably, a DC-DC converter is used to charge the parallel capacitor, which is designed as a throttle up converter with a second switch.
  • the choke up converter is preferably designed such that a Zener diode is arranged in series with the second switch.
  • Fig. 2 shows a circuit arrangement according to the invention for igniting a discharge lamp in a first embodiment with a diode D1 as a decoupling element and a spark gap SG as the first switch.
  • a diode D1 as a decoupling element and a spark gap SG as the first switch.
  • the diode D1 it is possible to apply a higher voltage U2 to the spark gap SG than to the ignition capacitor C1.
  • the cathode of the diode is connected to the spark gap SG.
  • the ignition capacitor C1 is always charged to a predetermined first voltage U1 in order to ensure a constant ignition energy.
  • a second voltage U2 is applied, which is high enough to break the spark gap SG, So turn it on. This can be done, for example, by an external voltage source, not shown here.
  • the two voltages are decoupled from each other and can be set independently.
  • the prerequisite for this, of course, is that the minimum breakdown voltage of the spark gap is above the first voltage U1.
  • the first voltage U1 at the ignition capacitor C1 is set to a value that allows a predetermined desired Zündpulsenergy.
  • This voltage can either be fixed, or be set variably depending on the operating state.
  • there is a relationship between the ignition pulse energy and the maximum voltage of the ignition pulse so that an ignition pulse with higher Zündpulsenergy with otherwise the same primary circuit parameters always has a higher maximum voltage of the ignition pulse result.
  • the ignition pulse can be generated so that it can always ignite the lamp depending on the current operating state safely, but at the same time is not unnecessarily high, so as not to burden the isolation of the system over charge.
  • a sufficiently high voltage can be applied to the spark gap in two ways: As already described above, a voltage source can be applied to the spark gap that is sufficiently high to allow it to break through. However, it is also possible to apply a charge to the capacitor C2 connected in parallel to the spark gap, by which the second voltage U2 is then generated at the capacitor and thus also at the spark gap.
  • the capacity C2 may consist of the parasitic capacitance of the spark gap and connected components such as the diode D1.
  • the capacitance can also be composed of this capacitance and the capacitance of a real capacitor connected in parallel with the spark gap. This depends on the real conditions and the design of the circuit arrangement according to the invention.
  • the capacitance C2 is chosen to be significantly smaller than the capacitance of the ignition capacitor C1, preferably C2 ⁇ 0.3 * C1. This ensures that the influence of the capacitance C2 on the ignition energy remains negligibly small.
  • Fig. 3 shows a circuit arrangement according to the invention for igniting a discharge lamp in a second embodiment with a diode D1 as a decoupling element, which is part of a choke up converter 3, which uses the primary winding of the ignition transformer as a choke.
  • the choke up converter 3 operates as a charge pump on the capacitance C2, and generates with few cycles a voltage across the capacitance C2, which is sufficient to ignite the spark gap. Because the second voltage U2 is generated by means of fewer cycles, the ignition time of the gas discharge lamp 5 connected to the ignition voltage U3 can be set very precisely.
  • the Zener diode ZD1 serves to reduce the voltage at the second switch S1, which is designed as a transistor. As with the few cycles to the breakthrough of the spark gap, the efficiency of the choke up converter 3 is irrelevant, the Zener diode ZD1 can be installed in series with the second switch, or switching transistor S1. As a result, the switching transistor S1 must be designed for less blocking voltage. The losses in the zener diode ZD1 play no role here. Since switching transistors are less expensive with less blocking voltage, this trick helps to keep the cost of the circuit arrangement according to the invention low.
  • the zener voltage of the zener diode ZD1 must be selected smaller than the stationary value of the first voltage U1, ie the voltage U1, to which the ignition capacitor C1 is ultimately charged. This is necessary because otherwise no current would flow through it when the switch / transistor S1 is turned on. In numbers, the should
  • the choke boost converter 3 uses the primary winding of an ignition transformer TR as a reactor. This requires precise tuning of all components to allow the ignition transformer and the choke up converter to perform their functions optimally. In some cases, however, the function as a primary winding for the ignition transformer TR and the function as a choke for the choke up converter 3 can not be combined for the winding L1, since the inductance values of the winding L1 required for both applications can not be combined. In this case, a third embodiment of the circuit arrangement according to the invention is used.
  • Fig. 4 shows a circuit arrangement according to the invention for igniting a discharge lamp in a third embodiment with a diode as a decoupling element and a choke up converter.
  • the throttle step-up converter here comprises an additional inductor L3, an additional diode D2 and the series connection of a zener diode ZD1 and a switch S1 known from the second embodiment.
  • the input of the inductance converter is connected here to the charging voltage of the ignition capacitor C1.
  • this embodiment requires more components than the second embodiment, it also can be safely ignited with more complex boundary conditions and more difficult to start gas discharge lamps.
  • the throttle step-up converter operates again on the capacitor C2, which may be designed as a parasitic capacitance or as a parallel connection of a parasitic capacitance and a real capacitor.
  • the switch or switching transistor S1 By briefly switching on and off the switch or switching transistor S1, the charge stored in the inductor L3 is transferred to the capacitor, which leads to a significant increase in voltage across the capacitor C2.
  • the switch respectively Switching transistor S1 can be turned on and off several times in succession. In special cases, however, it is also possible that the necessary second voltage U2 is generated with a single switching on and off again of the switch or switching transistor S1.
  • the following table shows the component values of a preferred embodiment of the third embodiment: C1 68nF C2 0..5nF L1 1,3uH L2 700uH LD Unavailable U1 200V..700V D1 Diode with 600V blocking voltage D2 Diode with 600V blocking voltage ZD1 Zener diode with 400V Z voltage L3 470uH SG Spark gap with 800V ⁇ 20% breakdown voltage
  • the voltage U1 can vary depending on the desired ignition energy of 200V to 700V.
  • the ignition energy may depend on the lamp state of the gas discharge lamp 5, for example, it may turn out higher when the lamp is hot.
  • the switch-on time of the switch / switching transistor S1 is varied in accordance with the voltage U1 so that the time duration during which the switch / switching transistor is closed, decreases at higher voltage U1 to reduce the voltage and current load of the switch / switching transistor S1.
  • the switch-on duration of the switch / switching transistor S1 is therefore 2.5 V at a first voltage U1 of 500 V, and at a first voltage U1 of 700 V it is 0.2 ⁇ s.
  • Fig. 5 shows a circuit arrangement according to the invention for igniting a discharge lamp in a fourth embodiment with the primary winding of the ignition transformer as a decoupling element and a switching path for increasing the second voltage.
  • the primary winding of the ignition transformer TR is used as a decoupling element, with the result that all necessary operations for the ignition must run very fast, since the primary winding of the ignition transformer TR as an inductive component for DC voltage and AC voltage of low frequency is permeable.
  • the voltage across the capacitor U2 is generated here with only one switching operation of the second switch S1. By briefly switching on S2, a resonant overvoltage occurs at the threshold value switch S1.
  • the voltage U2 is substantially higher than the voltage U1 for a short time.
  • the resonant voltage overshoot is only for a short time at the threshold value. This leads to the fact that the threshold value switch or the spark gap SG must switch very fast to this To exploit effect. If the spark gap SG switches too slowly, the voltages U1 and U2 have already equalized again, and the ignition mimic does not work.
  • an additional inductance can be connected in series with the primary winding (L1) and / or an additional capacitance can be connected in parallel with the threshold value switch.
  • the additional inductance can be designed so that it goes into saturation after switching on SG when discharging C1. This has the advantage that when the SG is breached, only little voltage drops at the additional inductance and thus the ignition pulse height is reduced only slightly.
  • this switching mimic with a very fast threshold value switch or a fast spark gap SG can also be applied to a circuit arrangement known per se, such as that of FIG Fig. 1 apply. If a voltage is applied to the spark gap SG here by an external voltage source, not shown here, and the spark gap SG switches quickly, the voltage U1 applied to the ignition capacitor C1 can be decoupled from the voltage U2 initiating the threshold value switch or the spark gap SG by means of L1 without the need for additional components.
  • the Fig. 6 & 7 show some relevant signals that illustrate the operation of the circuit arrangement according to the invention at a charging voltage of the ignition capacitor of 500V or 700V. Plotted are here over a time axis of 2 ⁇ s / DIV, the voltages U1, U2, U3 and the voltage across the second switch or switching transistor S1. The basis for these signals is a circuit arrangement according to the invention in the third embodiment.
  • the second switch S1 and the transistor of the inductance converter respectively, which can be seen well at the voltage US1, to zero collapses.
  • time t 2 the second switch S1 or the transistor of the inductance converter switches off again, whereupon an oscillation sets in, which is also reflected in the spark gap voltage U2.
  • the ignition capacitor C1 is charged to a voltage of 500V, and the resulting maximum ignition voltage is about 17 kV.
  • the ignition capacitor is charged to a voltage of 700V, and the maximum ignition voltage is about 22kV.
  • Good to see is also the above-mentioned relationship between the turn-on of the second switch S1 and the voltage U1 on the ignition capacitor C1. Is the ignition capacitor C1 charged to 500V ( Fig. 6 ), the second switch S1 is turned on for about 2.5 ⁇ s. This corresponds to the time span between the times t 1 and t 2 . Is the ignition capacitor C1 charged to 700V ( Fig. 7 ), the second switch S1 is only turned on for about 200ns.
  • Fig. 8 shows a circuit arrangement according to the invention for igniting a discharge lamp in a fifth embodiment with a diode D1 as a decoupling element and a spark gap SG as the first switch, which is similar to the first embodiment.
  • the inductance in the ignition circuit does not only have to consist of the primary inductance L1 of the ignition transformer, but in series therewith also a choke LD can be connected, which together form the inductance L.
  • this circuit variant can also be used in all other embodiments. By this measure it is possible to be able to better adapt the inductance value of L to the requirements of the circuit.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Description

    Technisches Gebiet
  • Die Erfindung betrifft eine Schaltungsanordnung zum Zünden einer Entladungslampe, mit einem Primärkreis, der aus der Serienschaltung einer Induktivität, einem Zündkondensator und einem ersten Schalter besteht, wobei der Schalter als Schwellwertschalter ausgeführt ist und die Induktivität aus der Primärwicklung des Zündtransformators besteht, und der Primärkreis ausgebildet ist, an der Sekundärwicklung eines Zündtransformators einen Zündpuls für die Entladungslampe zu generieren.
  • Stand der Technik
  • Die Erfindung geht aus von einer Schaltungsanordnung zum Zünden einer Entladungslampe nach der Gattung des Hauptanspruchs.
  • Eine Schaltungsanordnung gemäß Oberbegriffes von Anspruch 1 ist zum Beispiel aus DE 19 544 838 bekannt.
  • Fig. 1 zeigt eine Schaltungsanordnung zum Zünden einer Entladungslampe nach einem weiteren Stand der Technik, bei der im Primärkreis ein hoher Kreisstrom durch eine Primärwicklung L1 eines Zündtransformators TR erzeugt wird, die in eine hohe sekundärseitige Zündspannung U3 transformiert wird. Diese Zündspannung U3 wird an die Gasentladungslampe angelegt. Der Primärkreis besteht hierbei aus einer Serienschaltung der Primärwicklung L1 des Zündtransformators TR, eines Zündkondensators C1 und eines ersten Schalters in Form einer Funkenstrecke SG. Bei der im Stand der Technik üblichen Betriebsweise, bei der der Zündkondensator C1 langsam aufgeladen wird, bis die an ihm anliegende Spannung U1 groß genug ist, die Funkenstrecke durchbrechen zu lassen, ist die Spannung an der Funkenstrecke SG im wesentlichen gleich der Spannung am Zündkondensator C1, da die Induktivität der Primärwicklung des Zündtransformators TR für Gleichspannung durchlässig ist. Der Zündkondensator C1 wird hierbei über eine Spannungsquelle U11, R11 aufgeladen, bis seine Spannung die Durchbruchsspannung der Funkenstrecke erreicht hat, und diese Durchbricht. Dabei sinkt die Spannung U2 an der Funkenstrecke SG in sehr kurzer Zeit auf sehr niedrige Werte, was einen sehr hohen Strom durch die Primärwicklung L1 und die Funkenstrecke SG zur Folge hat. Die Ladung des Zündkondensators C1 entlädt sich dabei weitgehend. durch den hohen primärseitigen Strom entsteht an der Sekundärseite des Zündtransformators TR ein Zündpuls, der an die Gasentladungslampe angelegt wird. Der Strom und somit die Höhe des Zündpulses ist dabei abhängig von der Ladespannung U1 zum Zeitpunkt des Durchbruchs der Funkenstrecke SG. Der Primärkreis wird also mit einer Spannung U1 beaufschlagt, die für die Aufladung des Zündkondensators C1 sowie für das Einschalten der Funkenstrecke SG sorgt. Funkenstrecken weisen aber den Nachteil auf, dass die Durchbruchspannung stark Toleranzbehaftet ist, und die im Primärkreis durch die Aufladung des Zündkondensators C1 befindliche Zündenergie dadurch ebenfalls stark schwankt. Dies macht die Zündung der Gasentladungslampe zu einem statistischen Prozess, was sehr unerwünscht ist.
  • In einem weiteren Stand der Technik wird anstatt der Funkenstrecke ein steuerbarer Halbleiterschalter, z.B. ein Thyristor oder ein MOS-FET verwendet. Halbleiterschalter weisen aber den Nachteil eines im Vergleich zur Funkenstrecke hohen Innenwiderstandes auf, was einen signifikant geringeren Primärstrom zu Folge hat, und damit auch einen signifikant kleineren Zündpuls.
  • Aufgabe
  • Es ist Aufgabe der Erfindung, eine Schaltungsanordnung zum Zünden einer Entladungslampe anzugeben, mit einem Primärkreis, der aus der Serienschaltung einer Induktivität, einem Zündkondensator und einem ersten Schalter besteht, wobei der Schalter als Schwellwertschalter ausgeführt ist und die Induktivität aus der Primärwicklung des Zündtransformators besteht, und der Primärkreis ausgebildet ist, an der Sekundärwicklung eines Zündtransformators einen Zündpuls für die Entladungslampe zu generieren, mittels der die Zündenergie deterministisch vorherbestimmt werden kann.
  • Darstellung der Erfindung
  • Die Lösung der Aufgabe bezüglich der Schaltungsanordnung erfolgt erfindungsgemäß mit einer Schaltungsanordnung zum Zünden einer Entladungslampe, mit einem Primärkreis, der aus der Serienschaltung einer Induktivität, einem Zündkondensator und einem ersten Schalter besteht, wobei der Schalter als Schwellwertschalter ausgeführt ist und die Induktivität aus der Primärwicklung des Zündtransformators besteht, und der Primärkreis ausgebildet ist, an der Sekundärwicklung eines Zündtransformators einen Zündpuls für die Entladungslampe zu generieren, wobei der Primärkreis zwei entkoppelte Spannungen aufweist, eine erste Spannung, die im wesentlichen mit der Energie des Zündpulses korreliert ist, und eine zweite Spannung, die den Schaltzeitpunkt des Schalters steuert, wobei die erste Spannung kleiner ist als der Schwellwert des ersten Schalters. Durch diese Maßnahme kann der Zündzeitpunkt der Entladungslampe von der Zündenergie entkoppelt werden, und die Zündenergie auf einen vorbestimmten Wert eingestellt werden. Dadurch, dass der erste Schalter als Schwellwertschalter ausgebildet ist, wird er eingeschaltet, wenn die zweite Spannung seinem Schwellwert entspricht.
  • Erfindungsgemäß sind die Spannungen durch eine Induktivität oder eine Diode mit einer Induktivität entkoppelt. Die Entkopplung durch eine Induktivität eignet sich besonders bei Einsatz eines schnell ansprechenden ersten Schalters, wohingegen die Entkopplung durch eine Diode ein breiteres Anwendungsgebiet aufweist.
  • Die Ausbildung als Schwellwertschalter eröffnet eine Vielzahl von möglichen physikalischen Schaltern, der erste Schalter kann z.B. eine Funkenstrecke sein, oder ein Sidac oder ein Bauteil mit einer ähnlichen Schwellwertcharakteristik sein. Eine Funkenstrecke als Schwellwertschalter bietet den Vorteil eines sehr geringen Innenwiderstandes und einer damit verbundenen hohen Zündeffizienz. Der Schwellwertschalter weist dabei bevorzugt eine Parallelkapazität auf, über die durch einen Ladungstransport auf die Kapazität eine Spannung über dem Schwellwertschalter aufgebaut werden kann. Bevorzugt wird zum Aufladen der Parallelkapazität eine steuerbare Spannungsquelle oder eine steuerbare Stromquelle oder ein Gleichspannungswandler oder eine Ladungspumpe verwendet. Besonders bevorzugt wird zum Aufladen der Parallelkapazität ein Gleichspannungswandler verwendet, der als Drosselaufwärtswandler mit einem zweiten Schalter ausgeführt ist.
  • Der Drosselaufwärtswandler ist vorzugsweise so ausgeführt, dass in Serie zum zweiten Schalter eine Zenerdiode angeordnet ist. Durch diese Maßnahme kann die Sperrspannung des Transistors kleiner ausfallen, und der Drosselwandler kostengünstiger ausgeführt werden.
  • Weitere vorteilhafte Weiterbildungen und Ausgestaltungen der erfindungsgemäßen Schaltungsanordnung zum Zünden einer Entladungslampe ergeben sich aus weiteren abhängigen Ansprüchen und aus der folgenden Beschreibung.
  • Kurze Beschreibung der Zeichnung(en)
  • Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich anhand der nachfolgenden Beschreibung von Ausführungsbeispielen sowie anhand der Zeichnungen, in welchen gleiche oder funktionsgleiche Elemente mit identischen Bezugszeichen versehen sind. Dabei zeigen:
    • Fig. 1 eine Schaltungsanordnung zum Zünden einer Entladungslampe nach einem weiteren Stand der Technik,
    • Fig. 2 eine erfindungsgemäße Schaltungsanordnung zum Zünden einer Entladungslampe in einer ersten Ausführungsform mit einer Diode als Entkopplungselement,
    • Fig. 3 eine erfindungsgemäße Schaltungsanordnung zum Zünden einer Entladungslampe in einer zweiten Ausführungsform mit einer Diode als Entkopplungselement, die Teil eines Drosselaufwärtswandlers ist, der die Primärwicklung des Zündtransformators als Drossel verwendet,
    • Fig. 4 eine erfindungsgemäße Schaltungsanordnung zum Zünden einer Entladungslampe in einer dritten Ausführungsform mit einer Diode als Entkopplungselement und einem Drosselaufwärtswandler,
    • Fig. 5 eine erfindungsgemäße Schaltungsanordnung zum Zünden einer Entladungslampe in einer vierten Ausführungsform mit der Primärwicklung des Zündtransformators als Entkopplungselement und einer Schaltstrecke zur Erhöhung der zweiten Spannung,
    • Fig. 6 einige relevante Signale, die die Arbeitsweise der erfindungsgemäßen Schaltungsanordnung bei einer Ladespannung des Zündkondensators von 500V verdeutlichen,
    • Fig. 7 einige relevante Signale, die die Arbeitsweise der erfindungsgemäßen Schaltungsanordnung bei einer Ladespannung des Zündkondensators von 700V verdeutlichen,
    Bevorzugte Ausführung der Erfindung
  • Fig. 2 zeigt eine erfindungsgemäße Schaltungsanordnung zum Zünden einer Entladungslampe in einer ersten Ausführungsform mit einer Diode D1 als Entkopplungselement und einer Funkenstrecke SG als erstem Schalter. Durch die Diode D1 ist es möglich, an der Funkenstrecke SG eine höhere Spannung U2 anzulegen als an dem Zündkondensator C1. Dazu ist die Kathode der Diode mit der Funkenstrecke SG verbunden. Der Zündkondensator C1 wird hierbei erfindungsgemäß immer auf eine vorbestimmte erste Spannung U1 aufgeladen, um eine konstante Zündenergie zu gewährleisten. An die Funkenstrecke SG wird eine zweite Spannung U2 angelegt, die hoch genug ist, die Funkenstrecke SG durchbrechen zu lassen, also einzuschalten. Dies kann z.B. durch eine externe, hier nicht gezeigte Spannungsquelle erfolgen. Durch die Diode D1 sind die beiden Spannungen voneinander entkoppelt und können so unabhängig eingestellt werden. Vorraussetzung hierfür ist natürlich, dass die minimale Durchbruchsspannung der Funkenstrecke oberhalb der ersten Spannung U1 liegt. Die erste Spannung U1 am Zündkondensator C1 wird auf einen Wert eingestellt, der eine vorbestimmte gewünschte Zündpulsenergie ermöglicht. Diese Spannung kann entweder fest eingestellt sein, oder aber je nach Betriebszustand variabel eingestellt werden. Generell existiert ein Zusammenhang zwischen der Zündpulsenergie und der Maximalspannung des Zündpulses, so dass ein Zündpuls mit höherer Zündpulsenergie bei sonst gleichen Primärkreisparametern immer auch eine höhere Maximalspannung des Zündpulses zur Folge hat. Um die Isolation des Gesamtsystems zu schonen, kann also der Zündpuls so generiert werden, dass er die Lampe je nach dem gerade herrschenden Betriebszustand immer sicher zünden kann, gleichzeitig aber nicht unnötig hoch ist, um die Isolation des Systems nicht über Gebühr zu belasten.
  • Grundsätzlich kann eine genügend hohe Spannung an die Funkenstrecke auf zwei Arten angelegt werden: Es kann, wie oben bereits beschrieben, eine Spannungsquelle an die Funkenstrecke angelegt werden, die genügend hoch ist, um sie durchbrechen zu lassen. Es kann aber auch eine Ladung auf den der Funkenstrecke parallel geschalteten Kondensator C2 aufgebracht werden, durch die dann die zweite Spannung U2 am Kondensator und somit auch an der Funkenstrecke erzeugt wird. Die Kapazität C2 kann aus der parasitären Kapazität der Funkenstrecke und daran angeschlossener Bauteile wie z.B. der Diode D1 bestehen. Die Kapazität kann sich aber auch aus dieser Kapazität und der Kapazität eines parallel zur Funkenstrecke geschalteten realen Kondensators zusammensetzen. Dies hängt von den realen Bedingungen und der Auslegung der erfindungsgemäßen Schaltungsanordnung ab. Bevorzugt wird die Kapazität C2 deutlich kleiner als die Kapazität des Zündkondensators C1 gewählt, vorzugsweise ist C2 < 0,3*C1. Damit wird erreicht, dass der Einfluss der Kapazität C2 auf die Zündenergie vernachlässigbar klein bleibt.
  • Fig. 3 zeigt eine erfindungsgemäße Schaltungsanordnung zum Zünden einer Entladungslampe in einer zweiten Ausführungsform mit einer Diode D1 als Entkopplungselement, die Teil eines Drosselaufwärtswandlers 3 ist, der die Primärwicklung des Zündtransformators als Drossel verwendet. Mit dieser Schaltungsanordnung ist keine Spannungsquelle mehr nötig, um die zweite Spannung U2 bereitzustellen. Der Drosselaufwärtswandler 3 arbeitet als Ladungspumpe auf die Kapazität C2, und erzeugt mit wenigen Zyklen eine Spannung über der Kapazität C2, die Ausreicht, um die Funkenstrecke zu zünden. Dadurch, dass die zweite Spannung U2 mittels weniger Zyklen erzeugt wird, lässt sich der Zündzeitpunkt der an die Zündspannung U3 angeschlossenen Gasentladungslampe 5 sehr präzise einstellen. Die Zenerdiode ZD1 dient hierbei der Verringerung der Spannung am zweiten Schalter S1, der als Transistor ausgeführt ist. Da bei den wenigen Zyklen bis zum Durchbruch der Funkenstrecke die Effizienz des Drosselaufwärtswandlers 3 unerheblich ist, kann die Zenerdiode ZD1 in Serie zum zweiten Schalter, beziehungsweise Schalttransistor S1 eingebaut werden. Dadurch muss der Schalttransistor S1 für weniger Sperrspannung ausgelegt sein. Die Verluste in der Zenerdiode ZD1 spielen dabei keine Rolle. Da Schalttransistoren mit weniger Sperrspannung deutlich kostengünstiger sind, hilft dieser Kniff, die Kosten der erfindungsgemäßen Schaltungsanordnung niedrig zu halten. Die Zenerspannung der Zenerdiode ZD1 muss kleiner gewählt werden, als der stationäre Wert der ersten Spannung U1, d.h. der Spannung U1, auf die der Zündkondensator C1 letztlich aufgeladen wird. Dies ist notwendig, da sonst beim Durchschalten des Schalters/Transistors S1 kein Strom durch ihn fließen würde. In Zahlen ausgedrückt sollte die
  • Zenerspannung Uzerier der Zenerdiode ZD1 dem 0,2 bis 0,95 fachen der Spannung U1 am Zündkondensator C1 betragen: Uzener=(0,2..0,95)*U1. Der Drosselaufwärtswandler 3 verwendet die Primärwicklung eines Zündtransformators TR als Drossel. Dies erfordert eine genaue Abstimmung aller Komponenten, damit der Zündtransformator und der Drosselaufwärtswandler ihre Funktionen optimal erfüllen können. In manchen Fällen lässt sich aber für die Wicklung L1 die Funktion als Primärwicklung für den Zündtransformator TR und die Funktion als Drossel für den Drosselaufwärtswandler 3 nicht vereinen, da sich die für beide Anwendungen geforderten Induktivitätswerte der Wicklung L1 nicht vereinen lassen. In diesem Fall kommt eine dritte Ausführungsform der erfindungsgemäßen Schaltungsanordnung zum Einsatz.
  • Fig. 4 zeigt eine erfindungsgemäße Schaltungsanordnung zum Zünden einer Entladungslampe in einer dritten Ausführungsform mit einer Diode als Entkopplungselement und einem Drosselaufwärtswandler. Der Drosselaufwärtswandler umfasst hier eine zusätzliche Drossel L3, eine zusätzliche Diode D2 und die aus der zweiten Ausführungsform bekannte Serienschaltung einer Zenerdiode ZD1 und eines Schalters S1. Der Eingang des Drosselwandlers ist hier an die Ladespannung des Zündkondensators C1 angeschlossen. Es kann jedoch in bestimmten Anwendungen sinnvoll sein, eine andere interne Spannungsquelle zu verwenden, um den Drosselwandler 3 zu versorgen. Diese Ausführungsform benötigt zwar mehr Bauteile als die zweite Ausführungsform, es können damit aber auch schwieriger zu startende Gasentladungslampen bei gleichzeitig komplexeren Randbedingungen sicher gezündet werden. Diese Ausführungsform weist die meisten Freiheitsgrade im Design auf, somit kann über die entsprechende Anpassung der Bauteilewerte praktisch jede noch so komplexe Zündaufgabe gelöst werden. Der Drosselaufwärtswandler arbeitet hier wieder auf die Kapazität C2, die als parasitäre Kapazität oder als Parallelschaltung einer parasitären Kapazität und eines realen Kondensators ausgeführt sein kann. Durch kurzes Ein- und wiederausschalten des Schalters beziehungsweise Schalttransistors S1 wird die in der Drossel L3 gespeicherte Ladung auf die Kapazität transferiert, was zu einer signifikanten Spannungserhöhung über der Kapazität C2 führt. Dies entspricht der Arbeitsweise der zweiten Ausführungsform, nur dass hier die Drossel L3 und die Kapazität C2 besser aufeinander abgestimmt werden können. Der Schalter beziehungsweise Schalttransistor S1 kann mehrere Male hintereinander Ein- und wieder Ausgeschaltet werden. In speziellen Fällen ist es aber auch möglich, dass die notwendige zweite Spannung U2 mit einem einmaligen Ein- und Wiederausschalten des Schalters beziehungsweise Schalttransistors S1 erzeugt wird.
  • In der folgenden Tabelle sind die Bauteilewerte einer bevorzugten Ausgestaltung der dritten Ausführungsform angegeben:
    C1 68nF
    C2 0..5nF
    L1 1,3uH
    L2 700uH
    LD Nicht vorhanden
    U1 200V..700V
    D1 Diode mit 600V Sperrspannung
    D2 Diode mit 600V Sperrspannung
    ZD1 Z-Diode mit 400V Z-Spannung
    L3 470uH
    SG Funkenstrecke mit 800V±20% Durchbruchsspannung
  • Die Spannung U1 kann dabei je nach gewünschter Zündenergie von 200V bis 700V variieren. Die Zündenergie kann dabei vom Lampenzustand der Gasentladungslampe 5 abhängen, z.B. kann sie bei heißer Lampe höher ausfallen. Bei einer Spannung U1 von 500V beträgt die Zündenergie z.B. 0,5*70nF*(500v)2=8,75mJ entsprechend einer Zündpulshöhe von 17kV. Bei einer Spannung U1 von 700V beträgt die Zündenergie z.B. 0,5*70nF*(700v)2=17,15mJ entsprechend einer Zündpulshöhe von 22kV. Die Einschaltzeit des Schalters/Schalttransistors S1 wird dabei entsprechend der Spannung U1 so variiert, dass die Zeitdauer, während der der Schalter/Schalttransistor geschlossen ist, bei höherer Spannung U1 abnimmt, um die Spannungs- und Strombelastung des Schalters/Schalttransistors S1 zu verringern. Die Einschaltdauer des Schalters/Schalttransistors S1 beträgt demnach bei einer ersten Spannung U1 von 500V 2,5us, und bei einer ersten Spannung U1 von 700V 0,2us.
  • Fig. 5 zeigt eine erfindungsgemäße Schaltungsanordnung zum Zünden einer Entladungslampe in einer vierten Ausführungsform mit der Primärwicklung des Zündtransformators als Entkopplungselement und einer Schaltstrecke zur Erhöhung der zweiten Spannung. Dies stellt eine etwas vereinfachte Ausführungsform der zweiten Ausführungsform dar. Hier wird die Primärwicklung des Zündtransformators TR als Entkopplungselement benutzt, was zur Folge hat, dass alle für die Zündung notwendigen Vorgänge sehr schnell ablaufen müssen, da die Primärwicklung des Zündtransformators TR als induktives Bauteil für Gleichspannung und Wechselspannung niedriger Frequenz durchlässig ist. Idealerweise wird hier die Spannung über der Kapazität U2 mit nur einem Schaltvorgang des zweiten Schalters S1 erzeugt. Durch kurzes Einschalten von S2 entsteht am Schwellwertschalter S1 eine resonante Überspannung. Dadurch ist für kurze Zeit die Spannung U2 wesentlich höher als die Spannung U1. Die resonante Spannungsüberhöhung liegt nur für kurze Zeit am Schwellwertschalter an. Dies führt dazu, dass der Schwellwertschalter respektive die Funkenstrecke SG sehr schnell schalten muss, um diesen Effekt ausnutzen zu können. Schaltet die Funkenstrecke SG zu langsam, haben sich die Spannungen U1 und U2 schon wieder egalisiert, und die Zündmimik funktioniert nicht. Um das Ansprechen des Schwellwertschalters zu verbessern, ist es vorteilhaft die zeitliche Dauer der resonanten Spannungsüberhöhung zu verlängern. Dies kann über eine Vergrößerung der wirksamen Primärinduktivität und durch eine Vergrößerung der Kapazität C2 erreicht werden. Dazu kann eine zusätzliche Induktivität in Serie zur Primärwicklung (L1) geschaltet werden und/oder eine zusätzliche Kapazität parallel zum Schwellwertschalter geschaltet werden. Die zusätzliche Induktivität kann dabei so ausgeführt sein, dass sie nach dem Einschalten von SG beim Entladen von C1 in Sättigung geht. Das hat den Vorteil, dass beim Durchbruch von SG nur wenig Spannung an der zusätzlichen Induktivität abfällt und damit die Zündpulshöhe nur geringfügig vermindert wird.
  • In der folgenden Tabelle sind die Bauteilewerte einer bevorzugten Ausgestaltung der vierten Ausführungsform angegeben:
    C1 68nF
    C2 0,5..5nF
    L1 1,3uH
    LD 1..5uH
    L2 700uH
    U1 500..600V
    ZD1 Z-Diode mit 400V Z-Spannung
    SG Funkenstrecke mit 800V+70% Durchburchsspannung
  • Diese Schaltmimik mit einem sehr schnellen Schwellwertschalter beziehungsweise einer schnellen Funkenstrecke SG lässt sich in erfindungsgemäßer Weise natürlich auch auf eine an sich bekannte Schaltungsanordnung wie die aus Fig. 1 anwenden. Wird hier von einer externen, hier nicht gezeigten Spannungsquelle eine Spannung an die Funkenstrecke SG angelegt, und die Funkenstrecke SG schaltet schnell, so kann mittels L1 die an dem Zündkondensator C1 angelegte Spannung U1 von der den Schwellwertschalter beziehungsweise die Funkenstrecke SG auslösenden Spannung U2 entkoppelt werden, ohne das zusätzliche Bauteile notwendig werden. Dies stellt die einfachste Ausführungsform für ein erfindungsgemäßes Zündverfahren dar und benötigt lediglich einen schnell schaltenden ersten Schwellwertschalter und eine Spannungsquelle, die in der Lage ist, die Spannung mit einer hohen Spannungsänderungsgeschwindigkeit an den Schwellwertschalter anzulegen.
  • Die Fig. 6 & 7 zeigen einige relevante Signale, die die Arbeitsweise der erfindungsgemäßen Schaltungsanordnung bei einer Ladespannung des Zündkondensators von 500V beziehungsweise 700V verdeutlichen. Aufgetragen sind hier über eine Zeitachse von 2µs/DIV die Spannungen U1, U2, U3 und die Spannung über dem zweiten Schalter beziehungsweise Schalttransistor S1. Grundlage für diese Signale ist eine erfindungsgemäße Schaltungsanordnung in der dritten Ausführungsform. Zum Zeitpunkt t1 schaltet der zweite Schalter S1 respektive der Transistor des Drosselwandlers durch, was gut an der Spannung US1 zu erkennen ist, die auf null zusammenbricht. Zum Zeitpunkt t2 schaltet der zweite Schalter S1 respektive der Transistor des Drosselwandlers wieder ab, woraufhin eine Schwingung einsetzt, die sich auch in der Funkenstreckenspannung U2 niederschlägt. Diese Spannung erhöht sich zum Abschaltzeitpunkt schlagartig um einen bestimmten Wert. In diesem Beispiel ist die Auslegung so gewählt, dass die Spannung zum Durchbruch der FA schon bei einem Schaltvorgang erreicht wird. Prinzipiell kann dies aber auch erst nach mehreren Schaltvorgängen der Fall sein. Es ist deutlich zu sehen, dass die Spannung U1 am Zündkondensator unabhängig von der Spannung U2 an der Funkenstrecke ist. Zum Zeitpunkt t3 bricht die Funkenstrecke durch, und die Spannung U1 entlädt sich in einen Kreisstrom im Primärkreis, der auf der Sekundärseite des Zündtransformators TR einen hohen Zündspannungsverlauf der Zündspannung U3 generiert. Vergleicht man die beiden Fig. 6 und 7, so kann der Zusammenhang zwischen der Spannung U1 am Zündkondensator C1 und der Zündspannung U3 gut erkannt werden. In Fig. 6 wird der Zündkondensator C1 auf eine Spannung von 500V aufgeladen, und die resultierende maximale Zündspannung beträgt ca. 17 kV. In der Fig. 7 wird der Zündkondensator auf eine Spannung von 700V aufgeladen, und die maximale Zündspannung beträgt etwa 22kV. Gut zu erkennen ist auch der eingangs erwähnte Zusammenhang zwischen der Einschaltzeit des zweiten Schalters S1 und der Spannung U1 am Zündkondensator C1. Ist der Zündkondensator C1 auf 500V aufgeladen (Fig. 6), so wird der zweite Schalter S1 für etwa 2,5µs eingeschaltet. Dies entspricht der Zeitspanne zwischen den Zeitpunkten t1 und t2. Ist der Zündkondensator C1 auf 700V aufgeladen (Fig. 7), so wird der zweite Schalter S1 nur noch für etwa 200ns eingeschaltet.
  • Fig. 8 zeigt eine erfindungsgemäße Schaltungsanordnung zum Zünden einer Entladungslampe in einer fünften Ausführungsform mit einer Diode D1 als Entkopplungselement und einer Funkenstrecke SG als erstem Schalter, die ähnlich zu ersten Ausführungsform ist. In dieser Ausführungsform ist beispielhaft gezeigt, dass die Induktivität im Zündkreis nicht nur aus der Primärinduktivität L1 des Zündtransformators bestehen muss, sondern in Serie dazu auch eine Drossel LD geschaltet sein kann, die zusammen die Induktivität L bilden. Diese Schaltungsvariante kann natürlich auch in allen anderen Ausführungsformen Anwendung finden. Durch diese Maßnahme ist es möglich, den Induktivitätswert von L besser an die Erfordernisse der Schaltung anpassen zu können. Dies kann vor allem in der zweiten Ausführungsform und der vierten Ausführungsform von Vorteil sein, da hier eine genaue Abstimmung der Komponenten, vor allem des Induktivitätswertes des Aufwärtswandlers, regelmäßig zur Steigerung der Wandlereffizienz führt. Dadurch ist es möglich, in ungünstigen Fällen mit einem einzigen kostengünstigen Bauteil die Wandlereffizienz und somit die Leistung der gesamten Schaltungsanordnung signifikant zu steigern.

Claims (8)

  1. Schaltungsanordnung zum Zünden einer Entladungslampe, mit einem Primärkreis, der aus der Serienschaltung einer Induktivität (L), einem Zündkondensator (C1) und einem ersten Schalter (SG) besteht, wobei der Schalter als Schwellwertschalter ausgeführt ist und die Induktivität aus der Primärwicklung (L1) des Zündtransformators (TR) besteht, und der Primärkreis ausgebildet ist, an der Sekundärwicklung (L2) eines Zündtransformators (TR) einen Zündpuls für die Entladungslampe zu generieren, wobei der Primärkreis zwei entkoppelte Spannungen aufweist, eine erste Spannung (U1), die im wesentlichen mit der Energie des Zündpulses korreliert ist, und eine zweite Spannung (U2), die den Schaltzeitpunkt des Schalters (SG) steuert, wobei die erste Spannung (U1) kleiner ist als der Schwellwert des ersten Schalters (SG),
    dadurch gekennzeichnet, dass zwischen der ersten Spannung (U1) und der zweiten Spannung (U2) die Induktivität (L) oder die Induktivität (L) in Serie mit einer Diode (D1) angeordnet ist, wobei die Kathode der Diode (D1) mit dem ersten Schalter (SG) verbunden ist.
  2. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, dass die Induktivität (L) aus einer Serienschaltung der Primärwicklung (L1) des Zündtransformators (TR) mit einer Zusatzdrossel (LD) besteht.
  3. Schaltungsanordnung nach Anspruch 3, dadurch gekennzeichnet, dass die Zusatzdrossel (LD) beim Entladen des Zündkondensators (C1) im Zündmoment sättigt.
  4. Schaltungsanordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der erste Schalter (SG) eine Funkenstrecke oder ein Sidac oder ein Bauteil mit einer wirkungsgleichen Schwellwertcharakteristik ist.
  5. Schaltungsanordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass dem Schwellwertschalter (SG) eine Kapazität (C2) parallel geschaltet ist.
  6. Schaltungsanordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie eine steuerbare Spannungsquelle oder eine steuerbare Stromquelle oder einen Gleichspannungswandler oder eine Ladungspumpe zum Aufladen der Parallelkapazität (C2) aufweist.
  7. Schaltungsanordnung nach Anspruch 6, dadurch gekennzeichnet, dass der Gleichspannungswandler ein Drosselaufwärtswandler (3) mit einem zweiten Schalter (S1) ist.
  8. Schaltungsanordnung nach Anspruch 7, dadurch gekennzeichnet, dass in Serie zum zweiten Schalter (S1) eine Zenerdiode (ZD1) angeordnet ist, wobei die Anode der Zenerdiode (ZD1) mit dem Schalter verbunden ist.
EP10166293.0A 2009-07-14 2010-06-17 Schaltungsanordnung und Verfahren zum Zünden einer Entladungslampe Not-in-force EP2282614B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009032985A DE102009032985A1 (de) 2009-07-14 2009-07-14 Schaltungsanordnung und Verfahren zum Zünden einer Entladungslampe

Publications (3)

Publication Number Publication Date
EP2282614A2 EP2282614A2 (de) 2011-02-09
EP2282614A3 EP2282614A3 (de) 2013-04-10
EP2282614B1 true EP2282614B1 (de) 2014-06-04

Family

ID=43348358

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10166293.0A Not-in-force EP2282614B1 (de) 2009-07-14 2010-06-17 Schaltungsanordnung und Verfahren zum Zünden einer Entladungslampe

Country Status (6)

Country Link
US (1) US20110037398A1 (de)
EP (1) EP2282614B1 (de)
JP (1) JP2011023352A (de)
KR (1) KR20110006628A (de)
CN (1) CN101959354B (de)
DE (1) DE102009032985A1 (de)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5322137Y2 (de) * 1973-09-18 1978-06-09
DE19544838A1 (de) * 1995-12-01 1997-06-05 Bosch Gmbh Robert Zündvorrichtung für eine Hochdruck-Gasentladungslampe
EP1135008B1 (de) * 1999-09-30 2006-05-24 Matsushita Electric Works, Ltd. Betriebsvorrichtung für entladungslampe
US6373199B1 (en) * 2000-04-12 2002-04-16 Philips Electronics North America Corporation Reducing stress on ignitor circuitry for gaseous discharge lamps
US20070211498A1 (en) * 2004-04-29 2007-09-13 Koninklijke Philips Electronics, N.V. Boost converter
CN101111112A (zh) * 2006-07-21 2008-01-23 上海路创电子镇流器有限公司 用于气体放电灯的混合触发电路

Also Published As

Publication number Publication date
DE102009032985A1 (de) 2011-01-20
JP2011023352A (ja) 2011-02-03
KR20110006628A (ko) 2011-01-20
CN101959354A (zh) 2011-01-26
US20110037398A1 (en) 2011-02-17
EP2282614A2 (de) 2011-02-09
CN101959354B (zh) 2015-09-09
EP2282614A3 (de) 2013-04-10

Similar Documents

Publication Publication Date Title
DE3319739C2 (de) Vorschaltgerät für Gasentladungslampen
EP1854997B1 (de) Zündeinrichtung für eine Brennkraftmaschine
WO2001013402A1 (de) Elektrische versorgungseinheit für plasmaanlagen
DE69820619T2 (de) Resonanzzündgerät für Entladungslampen
DE2909605A1 (de) Vorschaltanordnung zum betreiben einer entladungslampe
DE3334791C2 (de) Mehrfachfunken-Kondensatorzündeinrichtung für Brennkraftmaschinen
EP0116275A2 (de) Blindleistungskompensator
EP1854998B1 (de) Zündeinrichtung für eine Brennkraftmaschine
EP2744110B1 (de) Ansteuerschaltung und Verfahren zur Ansteuerung eines Leistungshalbleiterschalters
EP0868115B1 (de) Schaltung zur Zündung einer HID-Lampe
DE102013105230A1 (de) Treiberschaltkreis für einen Transistor
WO2012048763A1 (de) Zündanlage mit zündung durch mehrmalige erzeugung einer oder mehrerer teilentladungen
DE10041475C2 (de) Schaltnetzteil
DE69008836T2 (de) Schaltungsanordnung, geeignet zum Zünden einer Hochdruckentladungslampe.
EP2282614B1 (de) Schaltungsanordnung und Verfahren zum Zünden einer Entladungslampe
EP1058488A1 (de) Schaltungsanordnung zum Zünden einer Lampe
EP1813135A1 (de) Schaltungsanordnung zum betrieb einer hochdruckentladungslampe
EP1385358B1 (de) Schaltungsvorrichtung zum Betrieb von Entladungslampen
DE10042292B4 (de) Verfahren zum Betreiben eines Excimer-Laser
DE3618890C2 (de) Steuerschaltung für den Leistungsschalter eines Fernsehgerätes
DE2604914C3 (de) Schaltungsanordnung zum Zünden und zum Betrieb einer Entladungslampe
DE102018220247A1 (de) Leistungsschalteranordnung
EP0471228A1 (de) Elektronisches Startgerät für Fluoreszenzlampen
EP0539902A2 (de) Ausschaltentlastungsnetzwerk für einen Gleichspannungswandler
DE1539228C3 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM AG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM GMBH

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

RIC1 Information provided on ipc code assigned before grant

Ipc: H05B 41/288 20060101ALI20130305BHEP

Ipc: H05B 41/04 20060101AFI20130305BHEP

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM GMBH

17P Request for examination filed

Effective date: 20131010

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140102

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 671719

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010007096

Country of ref document: DE

Effective date: 20140717

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140905

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140904

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141006

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141004

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010007096

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140617

26N No opposition filed

Effective date: 20150305

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140904

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010007096

Country of ref document: DE

Effective date: 20150305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140630

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100617

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140617

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160621

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 671719

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150617

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160627

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150617

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010007096

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604