EP2281294A1 - High-voltage measuring transducer with flexible insulation - Google Patents

High-voltage measuring transducer with flexible insulation

Info

Publication number
EP2281294A1
EP2281294A1 EP09757030A EP09757030A EP2281294A1 EP 2281294 A1 EP2281294 A1 EP 2281294A1 EP 09757030 A EP09757030 A EP 09757030A EP 09757030 A EP09757030 A EP 09757030A EP 2281294 A1 EP2281294 A1 EP 2281294A1
Authority
EP
European Patent Office
Prior art keywords
insulation
voltage
voltage transducer
compressible
silicone gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09757030A
Other languages
German (de)
French (fr)
Other versions
EP2281294B1 (en
Inventor
Ruthard Minkner
Rolf Fluri
Oliver Belz
Albert Claudi
Jean-Michel Ehret
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trench France SAS
Original Assignee
Trench Switzerland AG
Trench France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trench Switzerland AG, Trench France SAS filed Critical Trench Switzerland AG
Publication of EP2281294A1 publication Critical patent/EP2281294A1/en
Application granted granted Critical
Publication of EP2281294B1 publication Critical patent/EP2281294B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/20Instruments transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/46Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes silicones
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • H01F27/022Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/005Impregnating or encapsulating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/327Encapsulating or impregnating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/20Instruments transformers
    • H01F38/22Instruments transformers for single phase ac
    • H01F38/24Voltage transformers
    • H01F38/26Constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/20Instruments transformers
    • H01F38/22Instruments transformers for single phase ac
    • H01F38/28Current transformers
    • H01F38/30Constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/12Insulating of windings
    • H01F41/127Encapsulating or impregnating

Definitions

  • the invention relates to a high-voltage transducer with an insulation.
  • the high-voltage transducers are installed in networks to measure voltages and currents for the following tasks: power measurement, grid monitoring in terms of faults, load flow control in the networks, optimization or minimization of losses in the networks, etc ..
  • Epoxy resin or polyurethane resin Solid insulation in the range of 6 kV to 100 kV for indoor and outdoor switchgear.
  • Oil paper insulation for the range of 72.5 kV to 800 kV and higher.
  • the insulation mentioned above under point 2 and point 3 has certain disadvantages: if a casing of the insulation of the oil-paper insulation referred to in point 2 is damaged, a very small amount of oil can escape, even though the modern high-voltage transducers are built low in oil. When using pure However, this small amount of mineral oil is degradable. Compared with the SF 6 insulation, the oil-paper insulation makes possible a very compact and highly utilized insulation which is state-of-the-art. Even the slightest leakage on sheaths and sealing systems is immediately noticed by a brown color.
  • SF 6 insulation mentioned in point 3 above is more problematic for outdoor converters, as SF 6 can escape into the atmosphere if a shell or a sealing system of the outdoor converter is damaged.
  • a pressure gauge of the necessary gas pressure is little used, as experience has shown that used measuring instruments represent a weak point. Switchgear systems with SFB insulations are to be judged much cheaper because they are constantly monitored and strict legal requirements must be met.
  • High-voltage transducers equipped with oil paper and SF S insulation are labor-intensive to manufacture. In order to produce more cost-effectively, these labor-intensive insulation should be replaced by a more cost-effective insulation.
  • a measuring part of a high-voltage current transformer according to the prior art with an oil-paper insulation 512 is shown in section in FIG.
  • the high voltage current transformer comprises a metal housing (head) 501 which is at high voltage potential 516.
  • the high voltage current transformer comprises a conductor 502 which carries a current I p to be measured and how the housing 501 is at high voltage potential 516.
  • measuring cores 504 are installed for the detection of the current I p .
  • a gap 505 between the oil-paper insulation 512 and the housing 501 is filled with oil.
  • a bushing 506 (controlled insulation) comprises a metallic support tube 507 at ground potential 508 and any insulator 509, e.g. For example, oil paper (OIP), resin impregnated crepe paper (RIP), kraft paper (RBP), films with a suitable impregnating agent such as SF 6 , air or oil.
  • An insulator 510 is the necessary insulator between the housing at high voltage potential 516 and ground.
  • a compensating bellows 511 is necessary for oil-paper insulation and compensates for a temperature-related volume change of the oil.
  • FIG. 2 shows, in section, a high-voltage voltage converter according to the prior art as a further example of a high-voltage measuring transducer.
  • the high-voltage voltage converter comprises a housing 523b which lies at ground potential 528, a trapezoidal layer winding 531 with insulation, a leadthrough 526, an insulator 529 and an iron core 524.
  • a high-voltage electrode 521 and high-voltage Potential 536 and a ground electrode 523a at ground potential 528 and the housing 523b (ground potential 528) an oil-paper insulation 532 is used.
  • Below ground electrode 523a is a secondary winding ment 535 arranged.
  • the high-voltage voltage converter comprises as a voltage connection 522 a metal tube 527 in the bushing 526 with an active part, the voltage connection 522 being connected to the high-voltage electrode 521.
  • the trapezoidal layer winding 531 is connected to the high voltage electrode 521 and the ground electrode 523a (ground potential 528).
  • the high-voltage voltage converter comprises an oil gap 525, analogous to the gap 505 (see FIG. 1).
  • the oil-paper insulation comprises a ply insulation between the trapezoidal ply wrap 531 and a final-distance insulation 533.
  • the end-distance insulation 533 is disposed between a ply winding end 534 and the housing 523b at ground potential 528.
  • the present invention has for its object to provide a high-voltage transducer, which does not have the disadvantages associated with an oil or SF 6 insulation, can also be used at high voltages and can be produced inexpensively.
  • independent claim 10 relates to a method for producing a high-voltage transducer according to the invention. Vorheilhafte embodiments arise from the dependent patent claims.
  • a high-voltage transducer according to the invention has an insulation comprising a flexible and compressible silicone gel insulation.
  • Compressible insulation allows use existing converter designs for widely varying temperature ranges.
  • the silicone gel insulation is an excellent insulation that is dry and flexible and will not cause environmental damage if damaged.
  • the high voltage transducer of the present invention is a current transformer having a head insulation against ground for measuring a current in a switchgear, wherein the insulation between high voltage and ground comprises the flexible and compressible silicone gel insulation. This eliminates the need for an oil compensation bellows required in the prior art.
  • the high-voltage transducer is an inductive voltage transformer for measuring a primary voltage U p between phase and earth or between phase and neutral in one, two and three-phase systems, with a primary winding and one or more secondary windings, the insulation between layer winding and housing includes flexible and compressible silicone gel insulation.
  • the flexible and compressible silicone gel insulation of the high voltage transducer of the invention has at least one resin and a hardener, e.g.
  • a hardener e.g.
  • the excellent properties of two-pack electrical resins result in insulation that has a very low viscosity in the unpolymerized state and is easily degassed and shed. These properties and a sum of trials and considerations led to the selection of a two component silicone gel casting resin.
  • the WACKER SilGel® 612 is a pourable, room temperature addition-curing two-component silicone insulation. It does not vulcanize to a silicone rubber in the conventional sense, but gives a soft gel-like insulation.
  • This is characterized by the following features: it has a very low hardness (silicone gel), is a crystal-clear compound, has a pronounced self-tackiness and has excellent insulating properties.
  • WACKER SilGel® 612 is supplied without any amount of free silicone fluids.
  • the cross-linked silicone gel is soft and flexible. It has a high dielectric strength, which corresponds to the operating field strengths of the prior art oil paper insulation.
  • the insulation produced with the silicone gel used can be used in the following temperature ranges, which are typically required for high-voltage transducers: outside temperature of -50 0 C to +60 0 C or operating temperature of the insulation due to the self-heating of the high voltage Instrument transformer from -50 0 C to +100 0 C.
  • the flexible and compressible silicone gel insulation of the high-voltage transducer according to the invention has a compressible filler.
  • a filler of compressible hollow microspheres was determined by experiments using gas, e.g. B. with pentane or isobutane, are filled.
  • gas e.g. B. with pentane or isobutane
  • Various fill levels eg 10%, 30%, 50%
  • compression tests were carried out to achieve the required compressibility.
  • Different hollow microspheres of different spherical size, coating, material and filling gas were tested as filler.
  • By- Impact tests with ball-and-ball arrangement and plate-plate arrangement were made.
  • the resulting hollow microspheres have a diameter in the range from 10 .mu.m to 80 .mu.m, preferably from 20 .mu.m to 30 .mu.m.
  • the hollow microspheres have a wall thickness of 1.5 microns to 2.5 microns.
  • the size of the spheres resulted from a compromise on the partial discharge freedom of the cured crosslinked bicomponent insulating resin, price, miscibility, and the electrical requirements determined by experimental breakdown tests. Also, the filler adds to the breakdown field strength and field strength without shortening the life. All of this is done incorporating requirements for treating a casting surface of an inner core shell and an inner header housing wall for high electrical field strengths.
  • the compressible filler comprises hollow microspheres.
  • the hollow microspheres are z. B. the type Expancel 091 DE40d30 the company Expancel.
  • the said hollow microspheres have proven to be particularly advantageous, but another filler is quite conceivable.
  • the proportion of hollow microspheres is 20% to 50%, preferably 30% to 40%.
  • the hollow microspheres each have a thermoplastic shell which is provided with a size for bonding the hollow microspheres to the silicone gel.
  • the hollow microspheres are inside with a gas, eg. For example, isobutane or pen- tan, filled.
  • the size has the function of a Grundie ⁇ tion on the hollow microspheres, so that the silicone gel can adhere well.
  • the flexible and compressible silicon gel insulation is between -50 0 C and +60 0 C ambient temperature, compressed by 15% to 30% with the inventive high-voltage instrument transformer.
  • the necessary compressibility depends on the size of the converter housing. Due to the compressibility of the necessary in the prior art ⁇ lkompensationsbalg omitted.
  • a further aspect of the present invention relates to a method for producing a high-voltage transducer according to the invention, which has a flexible and compressible silicone-gel insulation which comprises a resin, a hardener and a filler, wherein the resin with filler and the hardener can be premixed separately with filler under vacuum.
  • resin, hardener and filler are mixed with a mixer under vacuum, then filled into a housing under vacuum and finally pressurized. After filling, the vacuum is broken and the silicone gel insulation at 20 0 C by 15% until 30% compressed. The filling allows a minimization of the work required for the production of the insulation.
  • FIG. 3 shows a section through an exemplary embodiment of a high-voltage current transformer according to the invention as a high-voltage measuring transducer with a flexible and compressible silicone gel insulation;
  • Fig. 4 - a section through an embodiment of an inventive high voltage voltage converter as a high voltage transducer with a flexible and compressible silicone gel insulation.
  • FIG. 3 shows a first exemplary embodiment of a high-voltage current transformer according to the invention as a high-voltage measuring transducer with a flexible and compressible silicone gel insulation 13 which, in comparison to the prior art, replaces the oil-paper insulation 512 (see FIG. 1).
  • the high-voltage current transformer comprises a housing (head) 1 made of metal, which is at high voltage potential 16. Also, the high-voltage current transformer comprises a conductor 2, which leads a current I p to be measured and how the housing 1 is at high-voltage potential 16.
  • measuring cores 4 are installed for the detection of the current I p .
  • a bushing 6 or controlled insulation comprises a metallic support tube 7 at ground potential 8 and any insulating material 9, z.
  • oil-based paper OIP
  • resin impregnated crepe paper RIP
  • kraft paper RBP
  • films with a suitable impregnating agent such as SF 6 , air or oil.
  • An insulator 10 is the necessary insulator between the housing at high voltage potential 16 and ground.
  • An oil expansion component see compensating bellows 511 in FIG. 1), which is necessary for oil-paper insulation and compensates for a temperature-induced expansion of the oil, is not needed.
  • FIG. 4 shows a section through a second exemplary embodiment of a high-voltage voltage converter according to the invention as a high-voltage transducer with a flexible and compressible silicone gel insulation 36 which, in comparison to the prior art, has the end-distance insulation 533 (see FIG 2) and the oil gap 525 (see Fig. 2) replaced.
  • the high voltage voltage converter comprises a housing 23b, which is at ground potential 28, a high voltage electrode 21 at high voltage potential 36, a ground electrode 23a and an iron core 24. Below the ground electrode 23a, a secondary winding 35 is arranged.
  • the high-voltage voltage converter comprises as a voltage connection a metal tube 27 in a bushing with an active part 29, wherein the voltage terminal is connected to the high-voltage electrode 21.
  • a trapezoidal layer winding 31 as a primary winding with layer windings and a layer winding end 34 are connected to the high voltage electrode 21 and the ground potential 28.
  • the insulation between the ply windings must continue to exist for the construction of the trapezoidal ply winding 31.
  • the insulation between the ply windings must be compatible with the silicone gel insulation and the silicone gel insulation must adhere very well to the ply windings. so that no gaps can form which lead to partial discharges.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Insulating Materials (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Transformers For Measuring Instruments (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Insulating Of Coils (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

A high-voltage transducer comprises an insulation, which includes a compressible silicone gel insulation (13). A compressible insulation permits the application of available transducer constructions for strongly varying temperature ranges, a conventionally necessary oil compensation bellows can be avoided and furthermore the high voltage measuring transducer can be cheaply produced.

Description

Hochspannungs-Messwandler mit flexibler IsolierungHigh voltage transducers with flexible insulation
Die Erfindung betrifft einen Hochspannungs-Messwandler mit einer Isolierung.The invention relates to a high-voltage transducer with an insulation.
Die Hochspannungs-Messwandler werden in Netze eingebaut, um Spannungen und Ströme für folgende Aufgaben zu messen: Leistungsmessung, Netzüberwachung in Bezug auf Störungen, Lastflussregelung in den Netzen, Optimierung bzw. Minimierung der Verluste in den Netzen, etc..The high-voltage transducers are installed in networks to measure voltages and currents for the following tasks: power measurement, grid monitoring in terms of faults, load flow control in the networks, optimization or minimization of losses in the networks, etc ..
Stand der Technik sind folgende Hochspannungs-Messwandler mit Isolierungen für einen Spannungsbereich von 6 kV bis 800 kV Wechsel- oder Gleichspannung:State of the art are the following high-voltage transducers with insulation for a voltage range of 6 kV to 800 kV AC or DC:
1. Epoxydharz oder Polyurethanharz Feststoff-Isolierungen im Bereich von 6 kV bis 100 kV für Innenraum- und Freiluftschaltanlagen .1. Epoxy resin or polyurethane resin Solid insulation in the range of 6 kV to 100 kV for indoor and outdoor switchgear.
2. Ölpapier-Isolierungen für den Bereich von 72.5 kV bis 800 kV und höher .2. Oil paper insulation for the range of 72.5 kV to 800 kV and higher.
3. SF6-Isolierungen für den Bereich von 72.5 kV bis 800 kV und höher .3. SF 6 insulation for the range of 72.5 kV to 800 kV and higher.
Die vorstehend unter Punkt 2 und Punkt 3 genannten Isolierun- gen haben aus der Sicht der Umweltverträglichkeit gewisse Nachteile: Bei Beschädigung einer Hülle der Isolierung der unter Punkt 2 genannten Ölpapier- Isolierung kann eine sehr geringe Menge an Öl austreten, obwohl die modernen Hochspannungs-Messwandler ölarm gebaut sind. Beim Einsatz von reinem Mineralöl ist diese geringe Menge jedoch abbaubar. Verglichen mit der SF6-Isolierung ist mit der Ölpapier-Isolierung eine sehr kompakte und hochausgenutzte Isolierung möglich, die Stand der Technik ist. Auch eine noch so geringe Leckage an Hüllen und DichtungsSystemen wird durch eine braune Farbe sofort bemerkt .From the point of view of environmental compatibility, the insulation mentioned above under point 2 and point 3 has certain disadvantages: if a casing of the insulation of the oil-paper insulation referred to in point 2 is damaged, a very small amount of oil can escape, even though the modern high-voltage transducers are built low in oil. When using pure However, this small amount of mineral oil is degradable. Compared with the SF 6 insulation, the oil-paper insulation makes possible a very compact and highly utilized insulation which is state-of-the-art. Even the slightest leakage on sheaths and sealing systems is immediately noticed by a brown color.
Die vorstehend unter Punkt 3 genannte SF6-Isolierung ist für Freiluftwandler problematischer, da bei Beschädigung einer Hülle oder eines Dichtsystems des Freiluftwandlers SF6 in die Atmosphäre austreten kann. Eine Druckanzeige des notwendigen Gasdruckes wird wenig benutzt, da die Erfahrung gezeigt hat, dass hierfür verwendete Messgeräte einen Schwachpunkt darstellen. Wesentlich günstiger sind Schaltanlagen mit SFβ- Isolierungen zu beurteilen, da sie laufend überwacht werden, und scharfe gesetzliche Auflagen erfüllt werden müssen.The SF 6 insulation mentioned in point 3 above is more problematic for outdoor converters, as SF 6 can escape into the atmosphere if a shell or a sealing system of the outdoor converter is damaged. A pressure gauge of the necessary gas pressure is little used, as experience has shown that used measuring instruments represent a weak point. Switchgear systems with SFB insulations are to be judged much cheaper because they are constantly monitored and strict legal requirements must be met.
Der Einsatz der vorstehend unter Punkt 1 genannten Epoxydharz oder Polyurethan-Harz Feststoff-Isolierungen als Elektro- giessharz-Isolierungen stösst bei hohen Spannungen an Grenzen infolge der durch Erwärmung im Innern der Wandler hervorgeru- fenen mechanischen Spannungen. Ausserdem ist sie fest, starr und nicht flexibel. Hingegen ist sie eine trockene Isolierung, d.h. bei einer Zerstörung der Isolierung durch Überspannung, beispielsweise bei Blitzeinschlag, treten keine schädlichen Produkte auf .The use of the above-mentioned in item 1 epoxy or polyurethane resin solid insulation as Elektro- cast resin insulation pushes at high voltages at limits due to the induced by heating inside the transducer mechanical stresses. Moreover, it is firm, rigid and not flexible. On the other hand, it is a dry insulation, i. if the insulation is damaged by overvoltage, for example lightning strikes, no harmful products occur.
Mit Ölpapier- und SFS-Isolierungen ausgestattete Hochspan- nungs-Messwandler sind arbeitsintensiv in der Herstellung. Um kostengünstiger produzieren zu können, sollen diese arbeitsintensiven Isolierungen durch eine kostengünstigere Isolierung ersetzt werden. Als Beispiel eines Hochspannungs-Messwandlers ist in Fig. 1 im Schnitt ein Messteil eines Hochspannungsstromwandlers ge- mäss dem Stand der Technik mit einer Öl-Papierisolierung 512 gezeigt. Der Hochspannungsstromwandler umfasst ein Gehäuse (Kopf) 501 aus Metall, welches auf Hochspannungspotential 516 liegt. Ebenfalls umfasst der Hochspannungsstromwandler einen Leiter 502, der einen zu messenden Strom Ip führt und wie das Gehäuse 501 auf Hochspannungspotential 516 liegt. In einer inneren Kernschale 503 sind Messkerne 504 für die Erfassung des Stroms Ip eingebaut. Ein Spalt 505 zwischen der Öl- Papierisolierung 512 und dem Gehäuse 501 ist mit Öl gefüllt. Eine Durchführung 506 (gesteuerte Isolierung) umfasst ein metallisches Trägerrohr 507 auf Erdpotential 508 und einen beliebigen Isolierstoff 509, z. B. Öl-Papier (OIP) , harzimpräg- niertes Krepp-Papier (RIP) , Hartpapier (RBP) , Folien mit einem geeigneten Imprägniermittel wie SF6, Luft oder Öl. Ein Isolator 510 ist der notwendige Isolator zwischen dem Gehäuse auf Hochspannungspotential 516 und Erde. Ein Kompensations- balg 511 ist für Öl-Papier-Isolierungen notwendig und kompen- siert eine temperaturbedingte Volumenänderung des Öls.High-voltage transducers equipped with oil paper and SF S insulation are labor-intensive to manufacture. In order to produce more cost-effectively, these labor-intensive insulation should be replaced by a more cost-effective insulation. As an example of a high-voltage transducer, a measuring part of a high-voltage current transformer according to the prior art with an oil-paper insulation 512 is shown in section in FIG. The high voltage current transformer comprises a metal housing (head) 501 which is at high voltage potential 516. Also, the high voltage current transformer comprises a conductor 502 which carries a current I p to be measured and how the housing 501 is at high voltage potential 516. In an inner core shell 503 measuring cores 504 are installed for the detection of the current I p . A gap 505 between the oil-paper insulation 512 and the housing 501 is filled with oil. A bushing 506 (controlled insulation) comprises a metallic support tube 507 at ground potential 508 and any insulator 509, e.g. For example, oil paper (OIP), resin impregnated crepe paper (RIP), kraft paper (RBP), films with a suitable impregnating agent such as SF 6 , air or oil. An insulator 510 is the necessary insulator between the housing at high voltage potential 516 and ground. A compensating bellows 511 is necessary for oil-paper insulation and compensates for a temperature-related volume change of the oil.
In Fig. 2 ist im Schnitt ein Hochspannungs-Spannungswandler gemäss dem Stand der Technik als weiteres Beispiel eines Hochspannungs-Messwandlers gezeigt. Der Hochspannungs- Spannungswandler umfasst ein Gehäuse 523b, welches auf Erdpo- tential 528 liegt-, eine trapezförmige Lagenwicklung 531 mit Isolierung, eine Durchführung 526, einen Isolator 529 und einen Eisenkern 524. Als Isolierung zwischen einer Hochspan- nungs-Elektrode 521 auf Hochspannungs-Potential 536 und einer Erdelektrode 523a auf Erdpotential 528 bzw. dem Gehäuse 523b (Erdpotential 528) wird eine Öl-Papier-Isolierung 532 verwendet. Unterhalb der Erdelektrode 523a ist eine Sekundärwick- lung 535 angeordnet. Der Hochspannungs-Spannungswandler um- fasst als Spannungsanschluss 522 ein Metallrohr 527 in der Durchführung 526 mit einem Aktivteil, wobei der Spannungsanschluss 522 mit der Hochspannungs-Elektrode 521 verbunden ist. Die trapezförmige Lagenwicklung 531 ist mit der Hochspannungs-Elektrode 521 und der Erdelektrode 523a (Erdpotential 528) verbunden. Der Hochspannungs-Spannungswandler umfasst einen Ölspalt 525, analog zum Spalt 505 (siehe Fig. 1) . Die Öl-Papier-Isolierung umfasst eine Lagenisolierung zwischen der trapezförmigen Lagenwicklung 531 und einer Enddistanz-Isolierung 533. Die Enddistanz-Isolierung 533 ist zwischen einem Lagen-Wicklungsende 534 und dem Gehäuse 523b auf Erdpotential 528 angeordnet.FIG. 2 shows, in section, a high-voltage voltage converter according to the prior art as a further example of a high-voltage measuring transducer. The high-voltage voltage converter comprises a housing 523b which lies at ground potential 528, a trapezoidal layer winding 531 with insulation, a leadthrough 526, an insulator 529 and an iron core 524. As insulation between a high-voltage electrode 521 and high-voltage Potential 536 and a ground electrode 523a at ground potential 528 and the housing 523b (ground potential 528), an oil-paper insulation 532 is used. Below ground electrode 523a is a secondary winding ment 535 arranged. The high-voltage voltage converter comprises as a voltage connection 522 a metal tube 527 in the bushing 526 with an active part, the voltage connection 522 being connected to the high-voltage electrode 521. The trapezoidal layer winding 531 is connected to the high voltage electrode 521 and the ground electrode 523a (ground potential 528). The high-voltage voltage converter comprises an oil gap 525, analogous to the gap 505 (see FIG. 1). The oil-paper insulation comprises a ply insulation between the trapezoidal ply wrap 531 and a final-distance insulation 533. The end-distance insulation 533 is disposed between a ply winding end 534 and the housing 523b at ground potential 528.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, einen Hochspannungs-Messwandler vorzuschlagen, welcher die mit einer Öl- oder SF6-Isolierung verbundenen Nachteile nicht aufweist, auch bei hohen Spannungen einsetzbar ist und kostengünstig hergestellt werden kann.The present invention has for its object to provide a high-voltage transducer, which does not have the disadvantages associated with an oil or SF 6 insulation, can also be used at high voltages and can be produced inexpensively.
Diese Aufgabe wird durch den erfindungsgemässen Hochspan- nungs-Messwandler gelöst, wie er im unabhängigen Patentanspruch 1 definiert ist. Der unabhängige Patentanspruch 10 bezieht sich auf ein Verfahren zur Herstellung eines erfin- dungsgemässen Hochspannungs-Messwandlers. Vorheilhafte Ausführungsvarianten ergeben sich aus den abhängigen Patentan- Sprüchen.This object is achieved by the high-voltage transducer according to the invention, as defined in independent claim 1. Independent claim 10 relates to a method for producing a high-voltage transducer according to the invention. Vorheilhafte embodiments arise from the dependent patent claims.
Das Wesen der Erfindung besteht darin, dass ein erfindungsge- mässer Hochspannungs-Messwandler eine Isolierung aufweist, die eine flexible und komprimierbare Silikon-Gel-Isolierung umfasst. Eine komprimierbare Isolierung erlaubt den Einsatz vorhandener Wandlerkonstruktionen für stark variierende Temperaturbereiche. Die Silikon-Gel-Isolierung ist eine hervorragende Isolierung, die trocken und flexibel ist und die bei Beschädigungen keine Umweltverschmutzungen zur Folge hat.The essence of the invention is that a high-voltage transducer according to the invention has an insulation comprising a flexible and compressible silicone gel insulation. Compressible insulation allows use existing converter designs for widely varying temperature ranges. The silicone gel insulation is an excellent insulation that is dry and flexible and will not cause environmental damage if damaged.
Im Speziellen ist der erfindungsgemässe Hochspannungs- Messwandler ein Stromwandler mit einer Kopfisolierung gegen Erde für die Messung eines Stromes in einer Schaltanlage, wobei die Isolierung zwischen Hochspannung und Erde die flexible und komprimierbare Silikon-Gel-Isolierung umfasst. Dadurch kann ein beim Stand der Technik erforderlicher Öl- Kompensationsbalg entfallen.Specifically, the high voltage transducer of the present invention is a current transformer having a head insulation against ground for measuring a current in a switchgear, wherein the insulation between high voltage and ground comprises the flexible and compressible silicone gel insulation. This eliminates the need for an oil compensation bellows required in the prior art.
Im Speziellen ist der erfindungsgemässe Hochspannungs- Messwandler ein induktiver Spannungswandler für die Messung einer Primärspannung Up zwischen Phase und Erde oder zwischen Phase und Nullleiter in Ein-, Zwei- und Dreiphasensystemen, mit einer Primärwicklung und einer oder mehreren Sekundärwicklungen, wobei die Isolierung zwischen Lagenwicklung und Gehäuse die flexible und komprimierbare Silikon-Gel- Isolierung umfasst.In particular, the high-voltage transducer according to the invention is an inductive voltage transformer for measuring a primary voltage U p between phase and earth or between phase and neutral in one, two and three-phase systems, with a primary winding and one or more secondary windings, the insulation between layer winding and housing includes flexible and compressible silicone gel insulation.
Im Speziellen weist die flexible und komprimierbare Silikon- Gel-Isolierung des erfindungsgemässen Hochspannungs- Messwandler mindestens ein Harz und einen Härter auf, z. B. WACKER SilGel® 612. Die hervorragenden Eigenschaften von elektrischen Zweikomponenten-Harzen (Epoxyd- und Polyurethan- harz) führen zu einer Isolierung, die eine sehr niedrige Viskosität im nicht polymerisierten Zustand besitzt und sich leicht entgasen und vergiessen lässt. Diese Eigenschaften und eine Summe von Versuchen und Überlegungen führten zu der Auswahl eines Zweikomponenten Silikongel-Giessharzes . Das WACKER SilGel® 612 ist eine giessbare, bei Raumtemperatur additions- vernetzende Zweikomponenten-Silikonisolierung. Es vulkanisiert nicht zu einem Silikongummi im herkömmlichen Sinn, sondern ergibt eine weiche gelartige Isolierung. Diese ist durch die folgenden Merkmale charakterisiert: sie besitzt eine sehr niedrige Härte (Silikon-Gel) , ist eine glasklare Verbindung, besitzt eine ausgeprägte Eigenklebrigkeit und weist exzellente Isolierungseigenschaften auf. Desweiteren wird das WACKER SilGel® 612 ohne Anteile an freien Silikonflüssigkeiten ge- liefert. Das vernetzte Silikon-Gel ist weich und flexibel. Es weist eine hohe dielektrische Festigkeit auf, die den Betriebsfeldstärken der Ölpapier-Isolierungen des Stands der Technik entsprechen. Die mit dem verwendeten Silikon-Gel hergestellte Isolierung lässt sich in den folgenden Temperatur- bereichen einsetzen, die typischerweise für Hochspannungs- Messwandler gefordert werden: Aussentemperatur von -500C bis +600C bzw. Einsatztemperatur der Isolierung aufgrund der Eigenerwärmung des Hochspannungs -Messwandlers von -500C bis +1000C.Specifically, the flexible and compressible silicone gel insulation of the high voltage transducer of the invention has at least one resin and a hardener, e.g. For example, WACKER SilGel® 612. The excellent properties of two-pack electrical resins (epoxy and polyurethane resin) result in insulation that has a very low viscosity in the unpolymerized state and is easily degassed and shed. These properties and a sum of trials and considerations led to the selection of a two component silicone gel casting resin. The WACKER SilGel® 612 is a pourable, room temperature addition-curing two-component silicone insulation. It does not vulcanize to a silicone rubber in the conventional sense, but gives a soft gel-like insulation. This is characterized by the following features: it has a very low hardness (silicone gel), is a crystal-clear compound, has a pronounced self-tackiness and has excellent insulating properties. In addition, WACKER SilGel® 612 is supplied without any amount of free silicone fluids. The cross-linked silicone gel is soft and flexible. It has a high dielectric strength, which corresponds to the operating field strengths of the prior art oil paper insulation. The insulation produced with the silicone gel used can be used in the following temperature ranges, which are typically required for high-voltage transducers: outside temperature of -50 0 C to +60 0 C or operating temperature of the insulation due to the self-heating of the high voltage Instrument transformer from -50 0 C to +100 0 C.
Im Speziellen weist die flexible und komprimierbare Silikon- Gel-Isolierung des erfindungsgemässen Hochspannungs- Messwandler einen komprimierbaren Füllstoff auf . Für die Komprimierbarkeit des Basismaterials, zur Senkung der Kosten und zur Reduzierung des Gewichts des Basismaterials wurde ein Füllstoff aus komprimierbaren Mikrohohlkugeln durch Versuche ermittelt, die mit Gas, z. B. mit Pentan oder Isobutan, gefüllt sind. Es wurden verschiedene Füllgrade (z. B. 10%, 30%, 50%) untersucht und Druckversuche vorgenommen, um die geforderte Komprimierbarkeit zu erreichen. Verschiedene Mikrohohl- kugeln mit unterschiedlicher Kugelgrösse, -Beschichtung, -Material und Füllgas wurden als Füllstoff getestet. Durch- Schlagsversuche mit Kugel-Kugel-Anordnung und Platte-Platte- Anordnung (Kriterium 1% der Durchschlags feidstärke) wurden vorgenommen. Die daraus resultierenden Mikrohohlkugeln haben einen Durchmesser im Bereich von 10 μm bis 80 μm, vorzugswei- se von 20 μm bis 30 μm. Die Mikrohohlkugeln weisen eine Wandstärke von 1.5 μm bis 2.5 μm auf. Die Grosse der Kugeln ergab sich aus einem Kompromiss an die Teilentladungsfreiheit des ausgehärteten vernetzten Zweikomponentenisolierharzes, Preis, Mischbarkeit und den elektrischen Anforderungen, die durch experimentelle Durchschlagsversuche ermittelt wurden. Auch trägt der Füllstoff zur Erhöhung der Durchschlagfeldstärke und der Betriebsfeldstärke bei, ohne dass die Lebensdauer verkürzt wird. All dies geschieht unter Einbeziehung von Anforderungen zur Behandlung einer Gussoberfläche einer inneren Kernschale und einer inneren Kopf-Gehäusewand für hohe elektrische Betriebsfeldstärken.In particular, the flexible and compressible silicone gel insulation of the high-voltage transducer according to the invention has a compressible filler. For the compressibility of the base material, to reduce the cost and to reduce the weight of the base material, a filler of compressible hollow microspheres was determined by experiments using gas, e.g. B. with pentane or isobutane, are filled. Various fill levels (eg 10%, 30%, 50%) were investigated and compression tests were carried out to achieve the required compressibility. Different hollow microspheres of different spherical size, coating, material and filling gas were tested as filler. By- Impact tests with ball-and-ball arrangement and plate-plate arrangement (criterion 1% of the Durchschlagfeidstärke) were made. The resulting hollow microspheres have a diameter in the range from 10 .mu.m to 80 .mu.m, preferably from 20 .mu.m to 30 .mu.m. The hollow microspheres have a wall thickness of 1.5 microns to 2.5 microns. The size of the spheres resulted from a compromise on the partial discharge freedom of the cured crosslinked bicomponent insulating resin, price, miscibility, and the electrical requirements determined by experimental breakdown tests. Also, the filler adds to the breakdown field strength and field strength without shortening the life. All of this is done incorporating requirements for treating a casting surface of an inner core shell and an inner header housing wall for high electrical field strengths.
Im Speziellen umfasst der komprimierbare Füllstoff Mikrohohlkugeln. Die Mikrohohlkugeln sind z. B. vom Typ Expancel 091 DE40d30 der Firma Expancel. Die besagten Mikrohohlkugeln ha- ben sich als besonders vorteilhaft erwiesen, ein anderer Füllstoff ist aber durchaus denkbar.In particular, the compressible filler comprises hollow microspheres. The hollow microspheres are z. B. the type Expancel 091 DE40d30 the company Expancel. The said hollow microspheres have proven to be particularly advantageous, but another filler is quite conceivable.
Im Speziellen beträgt bei der eingesetzten Isolierung des er- findungsgemässen Hochspannungs-Messwandler der Anteil der Mikrohohlkugeln 20% bis 50%, vorzugsweise 30% bis 40%.Specifically, in the insulation used in the high-voltage transducer according to the invention, the proportion of hollow microspheres is 20% to 50%, preferably 30% to 40%.
Im Speziellen weisen beim erfindungsgemässen Hochspannungs- Messwandler die Mikrohohlkugeln jeweils eine thermoplastische Hülle auf, die mit einer Schlichte zur Verbindung der Mikro- hohlkugel mit dem Silikon-Gel versehen ist. Die Mikrohohlkugeln sind im Innern mit einem Gas, z. B. Isobutan oder Pen- tan, gefüllt. Die Schlichte hat die Funktion einer Grundie¬ rung auf der Mikrohohlkugel , damit das Silikon-Gel gut anhaften kann. Hervorragende Adhäsionskräfte (Klebrigkeit) der Isolierung an eine innere Schale des Wandlerkopfgehäuses und an der inneren Kernschale, in der die Wandlerkerne eingebaut sind, verhindern, dass sich die Isolierung von der Gehäusewand ablöst, und es deshalb zu Teilentladungen in den Spalten kommt, die zu einer Zerstörung der Isolierung führen.Specifically, in the high-voltage transducer according to the invention, the hollow microspheres each have a thermoplastic shell which is provided with a size for bonding the hollow microspheres to the silicone gel. The hollow microspheres are inside with a gas, eg. For example, isobutane or pen- tan, filled. The size has the function of a Grundie ¬ tion on the hollow microspheres, so that the silicone gel can adhere well. Excellent adhesion forces (tackiness) of the insulation to an inner shell of the transducer head housing and to the inner core shell in which the transducer cores are installed, prevent the insulation from separating from the housing wall, and therefore partial discharges occur in the gaps leading to a Cause destruction of the insulation.
Im Speziellen ist beim erfindungsgemässen Hochspannungs- Messwandler die flexible und komprimierbare Silikon-Gel- Isolierung zwischen -500C und +600C Umgebungstemperatur um 15% bis 30% komprimierbar. Die notwendige Komprimierbarkeit hängt von der Grosse des Wandlergehäuses ab. Durch die Komprimierbarkeit kann der beim Stand der Technik notwendige Öl- Kompensationsbalg entfallen.In particular, the flexible and compressible silicon gel insulation is between -50 0 C and +60 0 C ambient temperature, compressed by 15% to 30% with the inventive high-voltage instrument transformer. The necessary compressibility depends on the size of the converter housing. Due to the compressibility of the necessary in the prior art Ölkompensationsbalg omitted.
Ein weiterer Aspekt der vorliegenden Erfindung betrifft ein Verfahren zur Herstellung eines erfindungsgemässen Hochspan- nungs-Messwandlers, der eine flexible und komprimierbare Si- likon-Gel-Isolierung aufweist, welche ein Harz, einen Härter und einen Füllstoff umfasst, wobei das Harz mit Füllstoff und der Härter mit Füllstoff unter Vakuum getrennt vorgemischt werden .A further aspect of the present invention relates to a method for producing a high-voltage transducer according to the invention, which has a flexible and compressible silicone-gel insulation which comprises a resin, a hardener and a filler, wherein the resin with filler and the hardener can be premixed separately with filler under vacuum.
Im Speziellen werden beim erfindungsgemässen Verfahren zur Herstellung eines Hochspannungs-Messwandlers Harz, Härter und Füllstoff mit einem Mischer unter Vakuum gemischt, anschlies- send in ein Gehäuse unter Vakuum eingefüllt und schliesslich unter Druck gesetzt . Nach dem Einfüllen wird das Vakuum gebrochen und die Silikon-Gel-Isolierung bei 200C um 15% bis 30% komprimiert. Das Einfüllen ermöglicht eine Minimierung des Arbeitsaufwandes für die Herstellung der Isolierung.Specifically, in the method of manufacturing a high voltage transducer according to the present invention, resin, hardener and filler are mixed with a mixer under vacuum, then filled into a housing under vacuum and finally pressurized. After filling, the vacuum is broken and the silicone gel insulation at 20 0 C by 15% until 30% compressed. The filling allows a minimization of the work required for the production of the insulation.
Im Folgenden wird der erfindungsgemässe Hochspannungs- Messwandler unter Bezugnahme auf die beigefügten Zeichnungen anhand von zwei Ausführungsbeispielen detaillierter beschrieben. Es zeigen:In the following, the high-voltage transducer according to the invention will be described in more detail with reference to the attached drawings with reference to two exemplary embodiments. Show it:
Fig. 3 - einen Schnitt durch ein Ausführungsbeispiel eines erfindungsgemässen Hochspannungsstromwandlers als Hochspannungs -Messwandler mit einer flexiblen und komprimierbaren Silikon-Gel-Isolierung; und3 shows a section through an exemplary embodiment of a high-voltage current transformer according to the invention as a high-voltage measuring transducer with a flexible and compressible silicone gel insulation; and
Fig. 4 - einen Schnitt durch ein Ausführungsbeispiel eines erfindungsgemässen Hochspannungs-Spannungswandlers als Hochspannungs-Messwandler mit einer flexiblen und komprimierbaren Silikon-Gel-Isolierung.Fig. 4 - a section through an embodiment of an inventive high voltage voltage converter as a high voltage transducer with a flexible and compressible silicone gel insulation.
In Fig. 3 ist ein erstes Ausführungsbeispiel eines erfindungsgemässen Hochspannungsstromwandlers als Hochspannungs- Messwandler mit einer flexiblen und komprimierbaren Silikon- Gel-Isolierung 13 gezeigt, welche im Vergleich zum Stand der Technik die Öl-Papier-Isolierung 512 (siehe Fig. 1) ersetzt. Der Hochspannungsstromwandler umfasst ein Gehäuse (Kopf) 1 aus Metall, welches auf Hochspannungspotential 16 liegt. Ebenfalls umfasst der Hochspannungsstromwandler einen Leiter 2 , der einen zu messenden Strom Ip führt und wie das Gehäuse 1 auf Hochspannungspotential 16 liegt. In einer inneren Kopfschale 3 sind Messkerne 4 für die Erfassung des Stroms Ip eingebaut. Eine Durchführung 6 oder gesteuerte Isolierung umfasst ein metallisches Trägerrohr 7 auf Erdpotential 8 und einen beliebigen Isolierstoff 9, z. B. Öl-Papier (OIP), harz- imprägniertes Krepp-Papier (RIP) , Hartpapier (RBP) , Folien mit einem geeigneten Imprägniermittel wie SF6, Luft oder Öl. Ein Isolator 10 ist der notwendige Isolator zwischen dem Gehäuse auf Hochspannungspotential 16 und Erde. Eine Ölausdeh- nungskomponente (siehe Kompensationsbalg 511 in Fig. 1) , die für Öl-Papier-Isolierungen notwendig ist und eine temperaturbedingte Ausdehnung des Öls kompensiert, wird nicht benötigt.FIG. 3 shows a first exemplary embodiment of a high-voltage current transformer according to the invention as a high-voltage measuring transducer with a flexible and compressible silicone gel insulation 13 which, in comparison to the prior art, replaces the oil-paper insulation 512 (see FIG. 1). The high-voltage current transformer comprises a housing (head) 1 made of metal, which is at high voltage potential 16. Also, the high-voltage current transformer comprises a conductor 2, which leads a current I p to be measured and how the housing 1 is at high-voltage potential 16. In an inner head shell 3 measuring cores 4 are installed for the detection of the current I p . A bushing 6 or controlled insulation comprises a metallic support tube 7 at ground potential 8 and any insulating material 9, z. For example, oil-based paper (OIP), resin impregnated crepe paper (RIP), kraft paper (RBP), films with a suitable impregnating agent such as SF 6 , air or oil. An insulator 10 is the necessary insulator between the housing at high voltage potential 16 and ground. An oil expansion component (see compensating bellows 511 in FIG. 1), which is necessary for oil-paper insulation and compensates for a temperature-induced expansion of the oil, is not needed.
In Fig. 4 ist ein Schnitt durch ein zweites Ausführungsbeispiel eines erfindungsgemässen Hochspannungs-Spannungs- wandlers als Hochspannungs-Messwandler mit einer flexiblen und komprimierbaren Silikon-Gel- Isolierung 36 gezeigt, welche im Vergleich zum Stand der Technik die Enddistanz-Isolierung 533 (siehe Fig. 2) und den Ölspalt 525 (siehe Fig. 2) ersetzt. Der Hochspannungs-Spannungswandler umfasst ein Ge- häuse 23b, welches auf Erdpotential 28 liegt, eine Hochspannungs-Elektrode 21 auf Hochspannungspotential 36, eine Erdelektrode 23a und einen Eisenkern 24. Unterhalb der Erdelektrode 23a ist eine Sekundärwicklung 35 angeordnet. Der Hochspannungs-Spannungswandler umfasst als Spannungsanschluss ein Metallrohr 27 in einer Durchführung mit einem Aktivteil 29, wobei der Spannungsanschluss mit der Hochspannungs- Elektrode 21 verbunden ist. Eine trapezförmige Lagenwicklung 31 als Primärwicklung mit Lagenwicklungen und einem Lagen-Wicklungsende 34 sind an der Hochspannungs-Elektrode 21 und dem Erdpotential 28 angeschlossen. Die Isolierung zwischen den Lagenwicklungen muss weiter bestehen bleiben für den Aufbau der trapezförmigen Lagenwicklung 31. Die Isolierung zwischen den Lagenwicklungen muss kompatibel mit der Si- likon-Gel-Isolierung sein, und die Silikon-Gel- Isolierung muss sehr gut an den Lagenwicklungen haften, damit sich keine Spalten bilden können, die zu Teilentladungen führen. Zu den vorbeschriebenen Hochspannungs-Messwandlern sind weitere konstruktive Variationen realisierbar. Insbesondere sind Kombinationen der verschiedenen Ausführungsbeispiele denkbar. FIG. 4 shows a section through a second exemplary embodiment of a high-voltage voltage converter according to the invention as a high-voltage transducer with a flexible and compressible silicone gel insulation 36 which, in comparison to the prior art, has the end-distance insulation 533 (see FIG 2) and the oil gap 525 (see Fig. 2) replaced. The high voltage voltage converter comprises a housing 23b, which is at ground potential 28, a high voltage electrode 21 at high voltage potential 36, a ground electrode 23a and an iron core 24. Below the ground electrode 23a, a secondary winding 35 is arranged. The high-voltage voltage converter comprises as a voltage connection a metal tube 27 in a bushing with an active part 29, wherein the voltage terminal is connected to the high-voltage electrode 21. A trapezoidal layer winding 31 as a primary winding with layer windings and a layer winding end 34 are connected to the high voltage electrode 21 and the ground potential 28. The insulation between the ply windings must continue to exist for the construction of the trapezoidal ply winding 31. The insulation between the ply windings must be compatible with the silicone gel insulation and the silicone gel insulation must adhere very well to the ply windings. so that no gaps can form which lead to partial discharges. For the above-described high-voltage transducers further constructive variations can be realized. In particular, combinations of the various embodiments are conceivable.

Claims

Patentansprüche claims
1. Hochspannungs-Messwandler, dadurch gekennzeichnet, dass der Hochspannungs-Messwandler eine Isolierung aufweist, die eine flexible und komprimierbare Silikon-Gel- Isolierung (13; 36) umfasst.A high voltage transducer, characterized in that the high voltage transducer comprises insulation comprising flexible and compressible silicone gel insulation (13; 36).
2. Hochspannungs-Messwandler nach Anspruch 1, dadurch gekennzeichnet, dass der Hochspannungs-Messwandler ein Stromwandler mit einer Kopfisolierung (13) gegen Erde für die Messung eines Stromes in einer Schaltanlage ist, und dass die Isolierung zwischen Hochspannung und Erde die flexible und komprimierbare Silikon-Gel-Isolierung (13; 36) umfasst.2. High-voltage transducer according to claim 1, characterized in that the high-voltage transducer is a current transformer with a head insulation (13) to ground for the measurement of a current in a switchgear, and that the insulation between high voltage and ground, the flexible and compressible silicone Gel insulation (13; 36).
3. Hochspannungs-Messwandler nach Anspruch 1, dadurch gekennzeichnet, dass der Hochspannungs-Messwandler ein in- duktiver Spannungswandler für die Messung einer Primärspannung Up zwischen Phase und Erde oder zwischen Phase und Nullleiter in Ein-, Zwei- und Dreiphasensystemen, mit einer Primärwicklung (31) und einer oder mehreren Sekundärwicklungen (35) ist, und dass die Isolierung zwischen Lagenwicklung und Gehäuse (23b) die flexible und komprimierbare Silikon-Gel-Isolierung (13; 36) umfasst.3. High-voltage transducer according to claim 1, characterized in that the high-voltage transducer is a inductive voltage transformer for the measurement of a primary voltage Up between phase and earth or between phase and neutral in one-, two- and three-phase systems, with a primary winding ( 31) and one or more secondary windings (35), and in that the insulation between the layer winding and the housing (23b) comprises the flexible and compressible silicone gel insulation (13; 36).
4. Hochspannungs-Messwandler nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die flexible und komprimierbare Silikon-Gel-Isolierung (13; 36) mindestens ein Harz und einen Härter umfasst, z. B. WACKER SilGel® 612.4. High-voltage transducer according to one of claims 1 to 3, characterized in that the flexible and compressible silicone gel insulation (13; 36) comprises at least one resin and a hardener, for. Eg WACKER SilGel® 612.
5. Hochspannungs-Messwandler nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die flexible und komprimierbare Silikon-Gel-Isolierung (13; 36) einen komprimierbaren Füllstoff umfasst.5. High-voltage transducer according to one of claims 1 to 4, characterized in that the flexible and compressible silicone gel insulation (13; 36) comprises a compressible filler.
6. Hochspannungs-Messwandler nach Anspruch 5, dadurch ge- kennzeichnet, dass der komprimierbare Füllstoff Mikro- hohlkugeln umfasst.6. High-voltage transducer according to claim 5, character- ized in that the compressible filler comprises hollow microspheres.
7. Hochspannungs-Messwandler nach Anspruch 6, dadurch gekennzeichnet, dass bei der eingesetzten Isolierung der Anteil der Mikrohohlkugeln 20% bis 50%, vorzugsweise 30% bis 40%, beträgt.7. High-voltage transducer according to claim 6, characterized in that in the insulation used, the proportion of hollow microspheres 20% to 50%, preferably 30% to 40%.
8. Hochspannungs-Messwandler nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass die Mikrohohlkugeln jeweils eine thermoplastische Hülle aufweisen, die mit einer Schlichte zur Verbindung der Mikrohohlkugel mit dem Silikon-Gel versehen ist, und dass die Mikrohohlkugeln im Innern mit einem Gas, z. B. Isobutan, gefüllt sind.8. High-voltage transducer according to claim 6 or 7, characterized in that the hollow microspheres each having a thermoplastic shell, which is provided with a size for connecting the hollow microspheres with the silicone gel, and that the hollow microspheres inside with a gas, eg , As isobutane, are filled.
9. Hochspannungs-Messwandler nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die flexible und komprimierbare Silikon-Gel-Isolierung (13; 36) zwischen -500C und +600C Umgebungstemperatur um 15% bis 30% komprimierbar ist.9. High-voltage transducer according to one of claims 1 to 8, characterized in that the flexible and compressible silicone gel insulation (13; 36) between -50 0 C and +60 0 C ambient temperature is compressible by 15% to 30% ,
10. Verfahren zur Herstellung eines Hochspannungs- Messwandlers, dadurch gekennzeichnet, dass der Hochspannungs-Messwandler eine flexible und komprimierbare SiIi- kon-Gel-Isolierung (13; 36) aufweist, welche ein Harz, einen Härter und einen Füllstoff umfasst, wobei das Harz mit Füllstoff und der Härter mit Füllstoff unter Vakuum getrennt vorgemischt werden.10. A method of manufacturing a high voltage transducer, characterized in that the high voltage transducer comprises a flexible and compressible silicone gel insulation (13; 36) comprising a resin, a hardener and a filler, wherein the resin with filler and the hardener with filler under vacuum be premixed separately.
11. Verfahren zur Herstellung eines Hochspannungs-Messwandler nach Anspruch 10, dadurch gekennzeichnet, dass Harz, Härter und Füllstoff mit einem Mischer unter Vakuum ge- mischt, anschliessend in ein Gehäuse unter Vakuum eingefüllt und schliesslich unter Druck gesetzt werden. 11. A method for producing a high-voltage transducer according to claim 10, characterized in that the resin, hardener and filler are mixed with a mixer under vacuum, then filled into a housing under vacuum and finally put under pressure.
EP09757030A 2008-06-04 2009-06-04 High-voltage measuring transducer with flexible insulation Active EP2281294B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH8442008 2008-06-04
CH02000/08A CH698970A1 (en) 2008-06-04 2008-12-22 High-voltage transducer with flexible insulation.
PCT/CH2009/000182 WO2009146569A1 (en) 2008-06-04 2009-06-04 High-voltage measuring transducer with flexible insulation

Publications (2)

Publication Number Publication Date
EP2281294A1 true EP2281294A1 (en) 2011-02-09
EP2281294B1 EP2281294B1 (en) 2012-01-25

Family

ID=41051480

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09757030A Active EP2281294B1 (en) 2008-06-04 2009-06-04 High-voltage measuring transducer with flexible insulation

Country Status (7)

Country Link
EP (1) EP2281294B1 (en)
CN (1) CN102057454A (en)
AT (1) ATE543188T1 (en)
CH (1) CH698970A1 (en)
ES (1) ES2383288T3 (en)
HR (1) HRP20120280T1 (en)
WO (1) WO2009146569A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2565884B1 (en) * 2011-08-31 2014-05-14 ABB Technology AG High voltage coil
CN103117160B (en) * 2013-03-12 2016-05-04 李志刚 A kind of outdoor silicon rubber mutual inductor
EP2800112A1 (en) * 2013-04-29 2014-11-05 ABB Technology AG HV instrument transformer
EP2800113B1 (en) * 2013-04-29 2016-03-16 ABB Technology AG High voltage dry instrument transformer
DE102015216860A1 (en) * 2015-09-03 2017-03-09 Siemens Aktiengesellschaft Rim electrode and winding arrangement of a transducer
EP3239997A1 (en) * 2016-04-25 2017-11-01 ABB Schweiz AG A hv apparatus and a method of manufacturing such apparatus
EP3764379A1 (en) * 2019-07-12 2021-01-13 Siemens Aktiengesellschaft Instrument transformer and method to isolate parts
EP3764378A1 (en) * 2019-07-12 2021-01-13 Siemens Aktiengesellschaft Instrument transformer and method to isolate parts
WO2021058102A1 (en) * 2019-09-26 2021-04-01 Siemens Energy Global GmbH & Co. KG Instrument transformer and method of assembling
WO2021063477A1 (en) * 2019-09-30 2021-04-08 Siemens Energy Global GmbH & Co. KG High voltage transformer and method to isolate parts of the voltage transformer
EP4099350A1 (en) 2021-05-31 2022-12-07 ABB Schweiz AG A dry high voltage instrument transformer
DE102022205691A1 (en) * 2022-06-03 2023-12-14 Siemens Energy Global GmbH & Co. KG Coated active component in a high-voltage device and method for increasing dielectric strength

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1563272B1 (en) * 1966-11-29 1970-07-02 Licentia Gmbh Support head current transformer
DE1912635A1 (en) * 1969-03-13 1970-09-24 Standard Elektrik Lorenz Ag Silicone rubber for encapsulation of electri - cal components in caps
DE1944409A1 (en) * 1969-09-02 1971-03-11 Helmut Spruck Transformer with high voltage insulation
JPS56118313A (en) * 1980-02-22 1981-09-17 Denki Onkyo Co Ltd High-voltage transformer
JPH07192929A (en) * 1993-12-27 1995-07-28 Nissin Electric Co Ltd Molding material for electrical equipment, molding method and molded electrical equipment utilizing molding method
GB9815080D0 (en) * 1998-07-10 1998-09-09 Dow Corning Sa Compressible silicone composition
EP0971372A1 (en) * 1998-07-10 2000-01-12 ABB Research Ltd. Electric device with silicone insulating filler
EP1014390A1 (en) * 1998-12-23 2000-06-28 ABB Research Ltd. Method for filling an electrical device for medium and high voltage transmission and/or distribution networks
EP1170846B2 (en) * 2000-07-07 2012-11-07 PRYSMIAN Kabel und Systeme GmbH Method for manufacturing an outdoor termination for a high voltage cable
EP1848009B1 (en) * 2006-04-20 2014-03-26 ABB Technology Ltd An elongated member and use thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009146569A1 *

Also Published As

Publication number Publication date
EP2281294B1 (en) 2012-01-25
CN102057454A (en) 2011-05-11
WO2009146569A1 (en) 2009-12-10
HRP20120280T1 (en) 2012-04-30
ATE543188T1 (en) 2012-02-15
CH698970A1 (en) 2009-12-15
ES2383288T3 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
EP2281294B1 (en) High-voltage measuring transducer with flexible insulation
EP1577904B1 (en) High voltage bushing with element for electric-field control
DE102011053280A1 (en) High-voltage bushing
WO2013117373A1 (en) Self-healing insulating layer for an electrical machine
EP2283493B1 (en) Duct with a base active piece and an insulation device
DE102010050684B4 (en) High-voltage insulator
US20220231451A1 (en) Cable Fitting
EP0660480B1 (en) Supporting insulator
DE60023477T2 (en) Outer sealing for high voltage cable
EP0810705B1 (en) Isolator
EP2837073A1 (en) Over-voltage arrester
WO2022069197A1 (en) Coated conductor in a high-voltage device and method for increasing the dielectric strength
DE102015211939A1 (en) High-voltage insulator
Minkner et al. Insulation for High Voltage Equipment
Arman et al. Progress in oil-filled cables and their accessories
WO1996024144A1 (en) Insulator with cemented joint and process for producing it
DE102022205691A1 (en) Coated active component in a high-voltage device and method for increasing dielectric strength
WO2020048720A1 (en) Arrangement und method for the gradual shutoff of potential in high voltage technology
AT208457B (en) High voltage current transformer
Viswanatha et al. Study of anomalous breakdown of paper-oil insulation under unconventional voltages
EP1091466A1 (en) Cable terminal for high-voltage cable
DE102022200568A1 (en) Gas-insulated electric power transmission equipment
DE10110062A1 (en) Production of electrical insulation in high voltage device, e.g. transformer, comprises filling space between device components with granular solid insulator, and filling spaces between with gaseous or liquid insulator
DE1639416B1 (en) High-voltage-resistant tube base for electron tubes and process for its production
DE102012211762A1 (en) Formulation used to impregnate resin, comprises flowable component comprising e.g. polymer, and monodisperse component comprising nanoparticulate powder fraction, where impregnated resin is useful in high-voltage insulation system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101108

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: EHRET, JEAN-MICHEL

Inventor name: FLURI, ROLF

Inventor name: BELZ, OLIVER

Inventor name: MINKNER, RUTHARD

Inventor name: CLAUDI, ALBERT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TRENCH FRANCE SAS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 543188

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOHEST AG

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009002574

Country of ref document: DE

Effective date: 20120322

REG Reference to a national code

Ref country code: HR

Ref legal event code: TUEP

Ref document number: P20120280

Country of ref document: HR

REG Reference to a national code

Ref country code: HR

Ref legal event code: T1PR

Ref document number: P20120280

Country of ref document: HR

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120125

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2383288

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20120620

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20120125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120425

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120425

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120525

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120525

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120426

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: TRENCH FRANCE SAS

Effective date: 20120630

26N No opposition filed

Effective date: 20121026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009002574

Country of ref document: DE

Effective date: 20121026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130604

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009002574

Country of ref document: DE

Representative=s name: MAIER, DANIEL OLIVER, DIPL.-ING. UNIV., DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090604

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 543188

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140604

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009002574

Country of ref document: DE

Representative=s name: MAIER, DANIEL OLIVER, DIPL.-ING. UNIV., DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009002574

Country of ref document: DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502009002574

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: TRENCH FRANCE SAS, SAINT LOUIS, FR

Ref country code: DE

Ref legal event code: R081

Ref document number: 502009002574

Country of ref document: DE

Owner name: SIEMENS AKTIENGESELLSCHAFT, DE

Free format text: FORMER OWNER: TRENCH FRANCE SAS, SAINT LOUIS, FR

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: SIEMENS AKTIENGESELLSCHAFT

Effective date: 20161005

REG Reference to a national code

Ref country code: HR

Ref legal event code: PPPP

Ref document number: P20120280

Country of ref document: HR

Owner name: SIEMENS AKTIENGESELLSCHAFT, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: SIEMENS AG, DE

Effective date: 20161028

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

Ref country code: CH

Ref legal event code: PUE

Owner name: SIEMENS AKTIENGESELLSCHAFT, DE

Free format text: FORMER OWNER: TRENCH FRANCE SAS, FR

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

REG Reference to a national code

Ref country code: HR

Ref legal event code: PNAN

Ref document number: P20120280

Country of ref document: HR

Owner name: SIEMENS AKTIENGESELLSCHAFT, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20120280

Country of ref document: HR

Payment date: 20190521

Year of fee payment: 11

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20120280

Country of ref document: HR

Payment date: 20200527

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009002574

Country of ref document: DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502009002574

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20120280

Country of ref document: HR

Payment date: 20210601

Year of fee payment: 13

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20120280

Country of ref document: HR

Payment date: 20220601

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220623

Year of fee payment: 14

Ref country code: HR

Payment date: 20220601

Year of fee payment: 14

Ref country code: DE

Payment date: 20220617

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220621

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20220921

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20220907

Year of fee payment: 14

REG Reference to a national code

Ref country code: HR

Ref legal event code: PPPP

Ref document number: P20120280

Country of ref document: HR

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

REG Reference to a national code

Ref country code: HR

Ref legal event code: PBON

Ref document number: P20120280

Country of ref document: HR

Effective date: 20230604

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009002574

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG

Effective date: 20240409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240103

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230630