EP2279053B1 - Method for the continuous casting of a metal strand - Google Patents

Method for the continuous casting of a metal strand Download PDF

Info

Publication number
EP2279053B1
EP2279053B1 EP09749695.4A EP09749695A EP2279053B1 EP 2279053 B1 EP2279053 B1 EP 2279053B1 EP 09749695 A EP09749695 A EP 09749695A EP 2279053 B1 EP2279053 B1 EP 2279053B1
Authority
EP
European Patent Office
Prior art keywords
strand
metal strand
continuous casting
metal
taking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09749695.4A
Other languages
German (de)
French (fr)
Other versions
EP2279053A1 (en
Inventor
Kurt Dittenberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primetals Technologies Austria GmbH
Original Assignee
Primetals Technologies Austria GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primetals Technologies Austria GmbH filed Critical Primetals Technologies Austria GmbH
Priority to SI200931321T priority Critical patent/SI2279053T1/en
Publication of EP2279053A1 publication Critical patent/EP2279053A1/en
Application granted granted Critical
Publication of EP2279053B1 publication Critical patent/EP2279053B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould
    • B22D11/225Controlling or regulating processes or operations for cooling cast stock or mould for secondary cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould

Definitions

  • the present invention relates to a method for continuously casting a metal strand.
  • the invention relates to a method for continuously casting a metal strand, in particular a steel strand, in a continuous casting, wherein a strand with a trapped by a strand shell, liquid core drawn from a cooled continuous casting mold, supported in a continuous casting mold downstream strand support means and cooled with coolant , where thermodynamic state changes of the entire strand in a mathematical simulation model, taking into account the physical parameters of the metal, the thickness of the strand and the constantly measured extraction speed are also calculated.
  • the object of the invention is to provide a method of the type mentioned, with which the accuracy of the simulation of the thermodynamic changes in state of the entire strand can be further increased and in connection with the cooling of the product quality of the metal strand and the production efficiency of the continuous casting process can be improved.
  • This object is achieved by a method of the type mentioned, in which a three-dimensional heat equation is solved numerically in real time in the mathematical simulation model and the cooling of the strand is set taking into account the calculated state changes.
  • thermodynamic state changes as a function of the two-dimensional heat conduction in real time and to influence the temperature profile of the strand by means of strand cooling.
  • thermodynamic state changes by means of a non-linear, transient heat equation as a function of the three-dimensional heat conduction, namely in strand thickness direction, in the strand width direction and in the strand longitudinal direction, ie. in the extension direction of the strand to calculate in real time and to influence by means of strand cooling targeted.
  • the thermodynamic changes in state can be calculated with greater accuracy and be specifically influenced by means of a coordinated strand cooling.
  • the strand is divided into individual volume elements, ie so-called discretized, each discrete Volume element has an extension in strand longitudinal direction, in the strand thickness direction and in the strand width direction.
  • each discrete Volume element has an extension in strand longitudinal direction, in the strand thickness direction and in the strand width direction.
  • individual nozzles of the strand cooling can be assigned to one or more discrete volume elements of the strand and thereby firstly the thermodynamic state changes in these volume elements taking into account the heat conduction in all spatial dimensions and the determined by the strand cooling heat quantity can be determined with high accuracy, and secondly, by means of these nozzles, the thermodynamic properties of the strand can be influenced very targeted and with high efficiency.
  • the three-dimensional heat equation is solved numerically in the mathematical simulation model of the method according to the invention taking into account the temperature-dependent change in density of the metal strand.
  • the change in density of metal as a function of the temperature can assume significant proportions.
  • the density of steel increases from approx. 7000 kg / m 3 at 1550 ° C (melt temperature in the casting distributor) to approx. 7800 kg / m 3 at 300 ° C (solidified strand).
  • the density changes are also relevant in the continuous casting process in connection with the heat conduction equation in the determination of the solidification point.
  • a further, particularly advantageous embodiment of the method according to the invention can be achieved if approximated equations for the enthalpy, which have the exact mass and the exact enthalpy for the entire strand, are used in the numerical solution of the heat equation, taking temperature-dependent density changes of the metal strand into account. It should be noted at this point that the exact three-dimensional, nonlinear and unsteady heat equation with regard to the temperature-dependent density change is still unsolved. The thermal equation used today without taking into account the temperature-dependent density change are only rough approximations of the exact equation and their solutions may differ significantly from the exact solution. By using approximate equations for the enthalpy with global - ie. however, if the entire strand is considered - the exact mass and the exact enthalpy - it is ensured that these essential thermodynamic state variables correspond to the exact values.
  • the method according to the invention can be carried out particularly favorably if either a finite volume method or a finite element method is used to solve the heat equation in the mathematical simulation model.
  • the heat equation is a parabolic partial differential equation that can be solved using standard methods of numerical mathematics, in particular the finite volume method or finite element method (see Chapter 19: Numerical Mathematics by IN Bronstein, KA Semendjajew, G. Musiol, H. Mühlig: Paperback of Mathematics, Publisher Harri Deutsch, 6th Edition, 2005 ).
  • the method according to the invention is carried out when the thermodynamic state changes due to the spatial symmetry are calculated only for a quarter of the strand cross-section.
  • This simplification can be made without loss of accuracy due to the spatial symmetry of the strand cross-section and the time-varying boundary conditions and enables the three-dimensional heat equation can be solved with high accuracy even by relatively low-performance process computers.
  • the method according to the invention can be used without restrictions when casting metal strands with billet, billet, slab or thin slab cross section Any dimensions can be used to improve the quality of the cast metal strands.
  • a cooled mold 1 is fed with liquid steel 2, which is supplied from an intermediate vessel 3.
  • the forming in the mold 1, a liquid core 4 and initially only a thin strand shell 5 having, strand 6 is an arcuate strand support means 7, which is provided with support rollers 8 and supports the strand at the top and at the bottom, redirected to the horizontal where, after solidification, it is either cut up or transported further as a continuous strand.
  • coolant-supplying nozzles 10 are provided along the strand support means, of which in the drawing only those are drawn on the strand top at the beginning of the strand support means 7. In this case, one or more nozzles 10 are connected to a respective supply line 11.
  • the amount of coolant applied by the nozzles to the strand can be varied by means of a continuously adjustable valve 12, to which a flow measuring device 13 is arranged downstream.
  • Each valve 12 is adjustable via an actuator 14 that can be actuated via a control element 16 controlled by a central process computer 15.
  • Each flow measuring device is coupled via an input unit 17 to the process computer 15, which in turn drives all control elements 16 via an output unit 18.
  • the physical parameters of the metal to be cast in the present case of the steel 2, namely the temperature-dependent values of the density, the specific Heat capacity and thermal conductivity, further the flow-dependent spray pattern of the location-dependent arranged nozzles 10, the location-dependent role division 9, the optionally location-dependent strand thickness, the strand width and the continuously measured casting speed of the continuous casting plant are entered.
  • the strand 6 is cooled in a controlled manner at specific, either fixed or variable, positions of the strand support device 7.
  • the control of the strand cooling takes place taking into account the thermodynamic state changes of the entire strand 6 by the release in real time of a three-dimensional heat equation using the process computer 15th
  • This formulation of the heat equation is global, ie when the entire strand is considered, true to mass, but incorrect in terms of enthalpy. It has been shown that in this heat equation, the through-solidification point is overestimated, ie. that the actual through-solidification point is less far from the mold than the calculated through-solidification point. Thus, the use of this equation is indeed problematic with respect to any adverse casting situations, however, the max. allowable casting speed unnecessarily limited, resulting in reduced productivity of the plant.
  • thermodynamic conditions in the strand 6 change significantly at the through-solidification point 19, since the strand 6, viewed in the casting direction, above the through-solidification point has a liquid core 4, which communicates with the liquid steel 2 of the mold 1.
  • the ferrostatic pressure in this area presses the already solidified strand shell 5 against the rollers 8 of the strand support device 7, whereby the strand shrinkage due to the temperature-dependent change in density of the steel 2 is compensated by inflowing, liquid steel 2 in this area. Below the fürerstarrungsticians 19 such compensation does not take place.
  • This heat equation is solved by the process computer 15 in real time by means of the finite volume method.
  • This standard method of numerical mathematics is known to the person skilled in the art and works with discrete volume elements of the strand 6.
  • the simple three-dimensional heat equation described in the v- cast moving, element-fixed coordinate system is to be solved. This is performed periodically for a plurality of volume elements 20, resulting in the time-varying temperature field of the entire strand 6.
  • Out Fig. 2 it can be seen that the strand 6 is divided into discrete volume elements 19, for example, 10 cm edge length.
  • the volume elements 19 are produced in the mold and tracked in accordance with the casting speed through the continuous casting plant.
  • thermodynamic state changes only in one quadrant 20, ie one quarter, of the strand cross-section.
  • the boundary condition is general ⁇ T ⁇ T ⁇ n
  • surface q t in which ⁇ (T) Temperature-dependent thermal conductivity in W mK ⁇ T ⁇ n

Description

Die vorliegende Erfindung betrifft ein Verfahren zum Stranggießen eines Metallstrangs.The present invention relates to a method for continuously casting a metal strand.

Konkret betrifft die Erfindung ein Verfahren zum Stranggießen eines Metallstrangs, insbesondere eines Stahlstrangs, in einer Stranggießanlage, wobei ein Strang mit einem, von einer Strangschale eingeschlossenen, flüssigen Kern aus einer gekühlten Durchlaufkokille ausgezogen, in einer der Durchlaufkokille nachgeordneten Strangstützeinrichtung gestützt und mit Kühlmittel gekühlt wird, wobei thermodynamische Zustandsänderungen des gesamten Strangs in einem mathematischen Simulationsmodell, unter Berücksichtigung der physikalischen Parameter des Metalls, der Dicke des Strangs und der ständig gemessenen Auszugsgeschwindigkeit mitberechnet werden.Specifically, the invention relates to a method for continuously casting a metal strand, in particular a steel strand, in a continuous casting, wherein a strand with a trapped by a strand shell, liquid core drawn from a cooled continuous casting mold, supported in a continuous casting mold downstream strand support means and cooled with coolant , where thermodynamic state changes of the entire strand in a mathematical simulation model, taking into account the physical parameters of the metal, the thickness of the strand and the constantly measured extraction speed are also calculated.

Aus der DE 4417808 A1 ist ein Verfahren zum Stranggießen eines Metallstrangs bekannt, bei dem ein Strang mit von einer Strangschale eingeschlossenem flüssigen Kern aus einer gekühlten Kokille ausgezogen, anschließend in einer Strangstützeinrichtung gestützt und mit Kühlmittel gekühlt wird. Die im Zuge des Stranggussprozesses passierenden Zustandsänderungen werden mittels eines mathematischen Simulationsmodells, beinhaltend die zweidimensionale Wärmeleitungsgleichung, für den gesamten Strang in Echtzeit mitberechnet und die Kühlung des Strangs in Abhängigkeit der berechneten thermodynamischen Zustandsänderungen eingestellt.From the DE 4417808 A1 For example, there is known a method for continuously casting a metal strand in which a strand having a liquid core enclosed by a strand shell is drawn out of a cooled mold, then supported in a strand support and cooled with coolant. The state changes occurring in the course of the continuous casting process are also calculated in real time for the entire strand by means of a mathematical simulation model, including the two-dimensional heat equation, and the cooling of the strand is set as a function of the calculated thermodynamic state changes.

Aufgrund der Zweidimensionalität der verwendeten Wärmeleitungsgleichung war es bislang nicht möglich, die Wärmeleitung und die damit verbundenen Zustandsänderungen in allen Richtungen (der Strangdicke, der Strangbreite und der Strangauszugsrichtung) des Metallstrangs zu berechnen und den Temperaturverlauf in Abhängigkeit der berechneten Zustandsänderungen mittels der Strangkühlung gezielt einzustellen. Außerdem kam es aufgrund von - im Simulationsmodell nicht berücksichtigten - thermodynamischen Effekten zu Abweichungen zwischen dem berechneten und tatsächlichen Durcherstarrungspunkt.Due to the two-dimensionality of the heat equation used, it has not been possible to calculate the heat conduction and the associated state changes in all directions (the strand thickness, the strand width and the strand extraction direction) of the metal strand and adjust the temperature profile depending on the calculated state changes by means of strand cooling targeted. In addition, there were differences between the calculated and the actual thermodynamic effects, which were not taken into account in the simulation model By freezing point.

Aus der EP 0 997 203 A1 ist ein Verfahren zur Regelung einer Kühlstrecke bekannt, wobei mittels eines mathematischen Prozessmodells der Temperaturverlauf über die Länge des Bands berechnet wird. Im Anschluss daran wird die Kühlstrecke unter Berücksichtigung eines Referenzternperaturverlaufs und des berechneten Temperaturverlaufs geregelt.From the EP 0 997 203 A1 a method for controlling a cooling section is known, wherein by means of a mathematical process model, the temperature profile over the length of the tape is calculated. Subsequently, the cooling section is controlled taking into account a Referenzternperaturverlaufs and the calculated temperature profile.

Aufgabe der Erfindung ist es, ein Verfahren der eingangs genannten Art zu schaffen, mit welchem die Genauigkeit der Simulation der thermodynamischen Zustandsänderungen des gesamten Strangs weiter erhöht werden kann und in Verbindung mit der Kühlung die Produktqualität des Metallstrangs und die Produktionsleistung des Stranggießprozesses verbessert werden kann.The object of the invention is to provide a method of the type mentioned, with which the accuracy of the simulation of the thermodynamic changes in state of the entire strand can be further increased and in connection with the cooling of the product quality of the metal strand and the production efficiency of the continuous casting process can be improved.

Diese Aufgabe wird durch ein Verfahren der eingangs genannten Art gelöst, bei dem im mathematischen Simulationsmodell eine dreidimensionale Wärmeleitungsgleichung in Echtzeit numerisch gelöst wird und die Kühlung des Strangs unter Berücksichtigung der errechneten Zustandsänderungen eingestellt wird.This object is achieved by a method of the type mentioned, in which a three-dimensional heat equation is solved numerically in real time in the mathematical simulation model and the cooling of the strand is set taking into account the calculated state changes.

Mittels des Verfahrens aus der DE 4417808 A1 ist es möglich, thermodynamische Zustandsänderungen in Abhängigkeit der zweidimensionalen Wärmeleitung, in Echtzeit zu berechnen und mittels der Strangkühlung den Temperaturverlauf des Strangs zu beeinflussen. Nach dem erfindungsgemäßen Verfahren ist es möglich, thermodynamische Zustandsänderungen mittels einer nichtlinearen, instationären Wärmeleitungsgleichung in Abhängigkeit der dreidimensionalen Wärmeleitung, nämlich in Strangdickenrichtung, in Strangbreitenrichtung und in Stranglängsrichtung, dh. in der Auszugsrichtung des Strangs, in Echtzeit zu berechnen und mittels der Strangkühlung gezielt zu beeinflussen. Hierdurch können die thermodynamischen Zustandsänderungen mit höherer Genauigkeit berechnet werden und mittels einer darauf abgestimmten Strangkühlung ganz gezielt beeinflusst werden. Im mathematischen Simulationsmodell wird der Strang in einzelne Volumenelemente zerteilt, d.h. sog. diskretisiert, wobei jedes diskrete Volumenelement eine Erstreckung in Stranglängsrichtung, in Strangdickenrichtung und in Strangbreitenrichtung aufweist. Mittels dieser Diskretisierung können einzelne Düsen der Strangkühlung einem oder mehreren diskreten Volumenelementen des Strangs zugeordnet werden und dadurch erstens die thermodynamischen Zustandsänderungen in diesen Volumenelementen unter Berücksichtigung der Wärmeleitung in allen räumlichen Dimensionen und der durch die Strangkühlung abgeführten Wärmemenge mit hoher Genauigkeit bestimmt werden, und zweitens, mittels dieser Düsen die thermodynamischen Eigenschaften des Strangs ganz gezielt und mit hoher Effizienz beeinflusst werden.By means of the method from the DE 4417808 A1 It is possible to calculate thermodynamic state changes as a function of the two-dimensional heat conduction in real time and to influence the temperature profile of the strand by means of strand cooling. According to the method of the invention, it is possible thermodynamic state changes by means of a non-linear, transient heat equation as a function of the three-dimensional heat conduction, namely in strand thickness direction, in the strand width direction and in the strand longitudinal direction, ie. in the extension direction of the strand to calculate in real time and to influence by means of strand cooling targeted. As a result, the thermodynamic changes in state can be calculated with greater accuracy and be specifically influenced by means of a coordinated strand cooling. In the mathematical simulation model, the strand is divided into individual volume elements, ie so-called discretized, each discrete Volume element has an extension in strand longitudinal direction, in the strand thickness direction and in the strand width direction. By means of this discretization individual nozzles of the strand cooling can be assigned to one or more discrete volume elements of the strand and thereby firstly the thermodynamic state changes in these volume elements taking into account the heat conduction in all spatial dimensions and the determined by the strand cooling heat quantity can be determined with high accuracy, and secondly, by means of these nozzles, the thermodynamic properties of the strand can be influenced very targeted and with high efficiency.

In einer besonders vorteilhaften Ausprägung, wird im mathematischen Simulationsmodell des erfindungsgemäßen Verfahrens die dreidimensionale Wärmeleitungsgleichung unter Berücksichtigung der temperaturabhängigen Dichteänderung des Metallstrangs numerisch gelöst. Dem Fachmann ist bekannt, dass die Dichteänderung von Metall in Abhängigkeit der Temperatur signifikante Ausmaße annehmen kann. So erhöht sich beispielsweise beim Stranggussprozess die Dichte von Stahl von ca. 7000 kg/m3 bei 1550 °C (Temperatur der Schmelze im Gießverteiler) auf ca. 7800 kg/m3 bei 300 °C (durcherstarrter Strang). Die Dichteänderungen sind beim Stranggussprozess in Verbindung mit der Wärmeleitungsgleichung auch bei der Bestimmung des Durcherstarrungspunkts relevant. Als Durcherstarrungspunkt wird jener Punkt in Strangauszugsrichtung bezeichnet, ab dem der Metallstrang vollkommen durcherstarrt ist, dh. der Metallstrang über keinen flüssigen Kern mehr verfügt. Eine möglichst genaue Berechnung des Durcherstarrungspunkts ist in jedem Fall äußerst vorteilhaft. Wird die Lage des Durcherstarrungspunkts unterschätzt, dh. ist in Auszugsrichtung der berechnete Punkt weniger weit von der Kokille entfernt als der tatsächliche Punkt, so kann dies zu sehr gefährlichen Gießsituationen (z.B. auch einen Strangdurchbruch) führen. Auf der anderen Seite wird die zulässige Gießgeschwindigkeit bei einer Überschätzung des Durcherstarrungspunkts in unnötiger Weise beschränkt, was wiederum die Produktivität der Anlage verschlechtern würde.In a particularly advantageous embodiment, the three-dimensional heat equation is solved numerically in the mathematical simulation model of the method according to the invention taking into account the temperature-dependent change in density of the metal strand. It is known to the person skilled in the art that the change in density of metal as a function of the temperature can assume significant proportions. For example, in the continuous casting process, the density of steel increases from approx. 7000 kg / m 3 at 1550 ° C (melt temperature in the casting distributor) to approx. 7800 kg / m 3 at 300 ° C (solidified strand). The density changes are also relevant in the continuous casting process in connection with the heat conduction equation in the determination of the solidification point. As Durcherstarrungspunkt that point in strand extraction direction is referred to, from which the metal strand is completely solidified, ie. the metal strand no longer has a liquid core. The most accurate calculation of the solidification point is extremely advantageous in any case. If the location of the solidification point underestimated, ie. If the calculated point is less far removed from the mold than the actual point, this can lead to very dangerous casting situations (eg strand breakage). On the other hand, the allowable casting speed is unnecessarily limited in overestimating the through-solidification point, which in turn would degrade the productivity of the equipment.

Eine weitere, besonders vorteilhafte Ausprägung des erfindungsgemäßen Verfahrens lässt sich dann erzielen, wenn bei der numerischen Lösung der Wärmeleitungsgleichung unter Berücksichtigung temperaturabhängiger Dichteänderungen des Metallstrangs approximierte Gleichungen für die Enthalpie verwendet werden, welche für den gesamten Strang die exakte Masse und die exakte Enthalpie aufweisen. Es soll an dieser Stelle bemerkt werden, dass die exakte dreidimensionale, nichtlineare und instationäre Wärmeleitungsgleichung unter Berücksichtigung der temperaturabhängigen Dichteänderung bis heute noch ungelöst ist. Die heute verwendeten Wärmeleitungsgleichungen ohne Berücksichtigung der temperaturabhängigen Dichteänderung sind nur grobe Näherungen der exakten Gleichung und deren Lösungen können deutlich von der exakten Lösung abweichen. Durch die Verwendung von approximierten Gleichungen für die Enthalpie mit global - dh. wenn der gesamte Strang betrachtet wird - der exakten Masse und der exakten Enthalpie ist jedoch sichergestellt, dass diese wesentlichen thermodynamischen Zustandsgrößen den exakten Werten entsprechen.A further, particularly advantageous embodiment of the method according to the invention can be achieved if approximated equations for the enthalpy, which have the exact mass and the exact enthalpy for the entire strand, are used in the numerical solution of the heat equation, taking temperature-dependent density changes of the metal strand into account. It should be noted at this point that the exact three-dimensional, nonlinear and unsteady heat equation with regard to the temperature-dependent density change is still unsolved. The thermal equation used today without taking into account the temperature-dependent density change are only rough approximations of the exact equation and their solutions may differ significantly from the exact solution. By using approximate equations for the enthalpy with global - ie. however, if the entire strand is considered - the exact mass and the exact enthalpy - it is ensured that these essential thermodynamic state variables correspond to the exact values.

Das erfindungsgemäße Verfahren lässt sich besonders günstig ausführen, wenn zur Lösung der Wärmeleitungsgleichung im mathematischen Simulationsmodell entweder ein Finite-Volumen-Verfahren oder ein Finite-Elemente-Verfahren angewendet wird. Die Wärmeleitungsgleichung ist eine parabolische, partielle Differentialgleichung, die mit Standardmethoden der numerischen Mathematik, insbesondere dem Finite-Volumen-Verfahren oder Finite-Elemente-Verfahren, gelöst werden kann (siehe Kapitel 19: Numerische Mathematik von I.N. Bronstein, K. A. Semendjajew, G. Musiol, H. Mühlig: Taschenbuch der Mathematik, Verlag Harri Deutsch, 6. Auflage, 2005 ).The method according to the invention can be carried out particularly favorably if either a finite volume method or a finite element method is used to solve the heat equation in the mathematical simulation model. The heat equation is a parabolic partial differential equation that can be solved using standard methods of numerical mathematics, in particular the finite volume method or finite element method (see Chapter 19: Numerical Mathematics by IN Bronstein, KA Semendjajew, G. Musiol, H. Mühlig: Paperback of Mathematics, Publisher Harri Deutsch, 6th Edition, 2005 ).

In besonders günstiger Weise wird das erfindungsgemäße Verfahren dann ausgeführt, wenn die thermodynamischen Zustandsänderungen aufgrund der räumlichen Symmetrie nur für ein Viertel des Strangquerschnitts berechnet werden. Diese Vereinfachung kann aufgrund der räumlichen Symmetrie des Strangquerschnitts und der zeitlich veränderlichen Randbedingungen ohne Genauigkeitsverlust gemacht werden und ermöglicht es, dass die dreidimensionale Wärmeleitungsgleichung mit hoher Genauigkeit auch von relativ leistungsschwachen Prozessrechnern gelöst werden kann.In a particularly favorable manner, the method according to the invention is carried out when the thermodynamic state changes due to the spatial symmetry are calculated only for a quarter of the strand cross-section. This simplification can be made without loss of accuracy due to the spatial symmetry of the strand cross-section and the time-varying boundary conditions and enables the three-dimensional heat equation can be solved with high accuracy even by relatively low-performance process computers.

Das erfindungsgemäße Verfahren kann uneingeschränkt beim Gießen von Metallsträngen mit Knüppel-, Vorblock-, Brammen- oder Dünnbrammenquerschnitt beliebiger Abmessungen verwendet werden, um die Qualität der gegossenen Metallstränge zu verbessern.The method according to the invention can be used without restrictions when casting metal strands with billet, billet, slab or thin slab cross section Any dimensions can be used to improve the quality of the cast metal strands.

Weitere Vorteile und Merkmale der vorliegenden Erfindung ergeben sich aus der nachfolgenden Beschreibung nicht einschränkender Ausführungsbeispiele, wobei auf die folgenden Figuren Bezug genommen wird, die Folgendes zeigen:

  • Fig. 1 eine Stranggussanlage in schematischer Seitenansicht
  • Fig. 2 eine schematische Darstellung des diskretisierten Metallstrangs
  • Fig. 3 ein Vergleich von Lösungen unterschiedlicher Formulierungen von Wärmeleitungsgleichungen
Further advantages and features of the present invention will become apparent from the following description of non-limiting embodiments, reference being made to the following figures, which show the following:
  • Fig. 1 a continuous casting plant in a schematic side view
  • Fig. 2 a schematic representation of the discretized metal strand
  • Fig. 3 a comparison of solutions of different formulations of heat equation

Eine gekühlte Kokille 1 wird mit flüssigem Stahl 2, der aus einem Zwischengefäß 3 zugeführt wird, gespeist. Der sich in der Kokille 1 bildende, einen flüssigen Kern 4 und zunächst nur eine dünne Strangschale 5 aufweisende, Strang 6 wird über eine bogenförmig ausgebildete Strangstützeinrichtung 7, die mit Stützrollen 8 versehen ist und den Strang an der Ober- und an der Unterseite stützt, in die Horizontale umgeleitet, wo er nach der Durcherstarrung entweder zerteilt oder als ein kontinuierlicher Strang weitertransportiert wird. Zur Kühlung des Strangs 6 sind entlang der Strangstützeinrichtung 7 Kühlmittel zuführende Düsen 10 vorgesehen, von denen in der Zeichnung nur solche an der Strangoberseite am Beginn der Strangstützeinrichtung 7 eingezeichnet sind. Dabei sind ein oder mehrere Düsen 10 an jeweils eine Zuleitung 11 angeschlossen. Die durch die Düsen auf den Strang aufgebrachte Kühlmittelmenge kann mittels eines kontinuierlich einstellbaren Ventils 12 verändert werden, welchem eine Durchflussmesseinrichtung 13 nachgeordnet ist. Jedes Ventil 12 ist über ein Stellglied 14 verstellbar, dass über ein, von einem zentralen Prozessrechner 15 angesteuertes, Regelglied 16 betätigbar ist. Jede Durchflussmesseinrichtung ist über eine Eingebeeinheit 17 an den Prozessrechner 15 angekoppelt, welcher wiederum alle Regelglieder 16 über eine Ausgabeeinheit 18 ansteuert. In die Eingabeeinheit 17 des Prozessrechners 15 können beispielsweise noch die physikalischen Parameter des zu vergießenden Metalls, im vorliegenden Fall des Stahls 2, nämlich die temperaturabhängigen Werte der Dichte, der spezifischen Wärmekapazität und der Wärmeleitfähigkeit, weiters das durchflussabhängige Sprühbild der ortsabhängig angeordneten Düsen 10, die ortsabhängige Rollenteilung 9, die gegebenenfalls ortsabhängige Strangdicke, die Strangbreite und die ständig gemessene Gießgeschwindigkeit der Stranggussanlage eingegeben werden.A cooled mold 1 is fed with liquid steel 2, which is supplied from an intermediate vessel 3. The forming in the mold 1, a liquid core 4 and initially only a thin strand shell 5 having, strand 6 is an arcuate strand support means 7, which is provided with support rollers 8 and supports the strand at the top and at the bottom, redirected to the horizontal where, after solidification, it is either cut up or transported further as a continuous strand. For the cooling of the strand 6 7 coolant-supplying nozzles 10 are provided along the strand support means, of which in the drawing only those are drawn on the strand top at the beginning of the strand support means 7. In this case, one or more nozzles 10 are connected to a respective supply line 11. The amount of coolant applied by the nozzles to the strand can be varied by means of a continuously adjustable valve 12, to which a flow measuring device 13 is arranged downstream. Each valve 12 is adjustable via an actuator 14 that can be actuated via a control element 16 controlled by a central process computer 15. Each flow measuring device is coupled via an input unit 17 to the process computer 15, which in turn drives all control elements 16 via an output unit 18. In the input unit 17 of the process computer 15, for example, the physical parameters of the metal to be cast, in the present case of the steel 2, namely the temperature-dependent values of the density, the specific Heat capacity and thermal conductivity, further the flow-dependent spray pattern of the location-dependent arranged nozzles 10, the location-dependent role division 9, the optionally location-dependent strand thickness, the strand width and the continuously measured casting speed of the continuous casting plant are entered.

Erfindungsgemäß wird der Strangs 6 an bestimmten, entweder fixen oder veränderlichen, Positionen der Strangstützeinrichtung 7 geregelt abgekühlt. Die Regelung der Strangkühlung erfolgt unter Berücksichtigung der thermodynamischen Zustandsänderungen des gesamten Strangs 6 durch das Lösen in Echtzeit einer dreidimensionalen Wärmeleitungsgleichung mit Hilfe des Prozessrechners 15.According to the invention, the strand 6 is cooled in a controlled manner at specific, either fixed or variable, positions of the strand support device 7. The control of the strand cooling takes place taking into account the thermodynamic state changes of the entire strand 6 by the release in real time of a three-dimensional heat equation using the process computer 15th

Eine dreidimensionale, nichtlineare und instationäre Wärmeleitungsgleichung in einer Enthalpie Formulierung lautet beispielsweise ρ E mass x t t + v cast t E mass x t z = 2 u x t x 2 + 2 u x t y 2 + 2 u x t z 2

Figure imgb0001

wobei
t  Zeit in [s]
x  die Koordinate in Strangdickenrichtung in [m]
y  die Koordinate in Strangbreitenrichtung in [m]
z  die Koordinate in Auszugsrichtung bzw. der Stranglängsachse in [m]
t
Figure imgb0002
  partielle Ableitung nach der Zeit t
x , y , z
Figure imgb0003
  partielle Ableitungen nach dem Ort x, y, z
x   Ortsvektor in einem rechtwinkeligen Koordinatensystem in [m]
ρ  Dichte in [kg/m3]
Emass ( x ,t)  Massenbezogene Enthalpie an der Stelle x zur Zeit t in [J/kg]
ξ  Dimensionslose Laufvariable u x t = T ref T x t λ ξ d ξ
Figure imgb0004

vcast (t)  Auszugsgeschwindigkeit des Strangs zur Zeit t in [m/s]For example, a three-dimensional, non-linear and transient heat equation in an enthalpy formulation is ρ e measure x t t + v cast t e measure x t z = 2 u x t x 2 + 2 u x t y 2 + 2 u x t z 2
Figure imgb0001

in which
t time in [s]
x the coordinate in strand thickness direction in [m]
y is the coordinate in the strand width direction in [m]
z the coordinate in the extension direction or the longitudinal axis of the strand in [m]
t
Figure imgb0002
partial derivative after time t
x . y . z
Figure imgb0003
partial derivatives according to the location x, y, z
x Position vector in a rectangular coordinate system in [m]
ρ density in [kg / m 3 ]
E mass ( x , t ) mass-related enthalpy at point x at time t in [J / kg]
ξ Dimensionless run variable u x t = T ref T x t λ ξ d ξ
Figure imgb0004

v cast ( t ) Pull rate of the strand at time t in [m / s]

Bei dieser Wärmeleitungsgleichung bleiben temperaturabhängige Dichteänderungen des Strangs 6 unberücksichtigt. Da die Dichte von Stahl 2 von 7000 kg/m3 bei 1550 °C auf 7800 kg/m3 bei 300 °C ansteigt, führt diese Vereinfachung zu Ungenauigkeiten in der Berechnung der thermodynamischen Zustandsänderungen. Es hat sich herausgestellt, dass bei dieser Wärmeleitungsgleichung der Durcherstarrungspunkt unterschätzt wird, dh. dass der tatsächliche Durcherstarrungspunkt weiter von der Kokille 1 entfernt ist als der berechnete Durcherstarrungspunkt. Um nachteilige und gegebenenfalls sogar gefährliche Gießsituationen zu vermeiden, ist es notwendig, einen Dichtewert p im Bereich der maximalen Dichte des Stahls 2 zu verwenden, was in weiterer Folge die max. zulässige Gießgeschwindigkeit signifikant reduziert.In this heat equation, temperature-dependent changes in density of the strand 6 are disregarded. Since the density of steel 2 increases from 7000 kg / m 3 at 1550 ° C. to 7800 kg / m 3 at 300 ° C., this simplification leads to inaccuracies in the calculation of the thermodynamic state changes. It has been found that in this heat equation, the Durcherstarrungspunkt is underestimated, ie. that the actual through-solidification point is farther from the mold 1 than the calculated through-solidification point. In order to avoid disadvantageous and possibly even dangerous casting situations, it is necessary to use a density value p in the region of the maximum density of the steel 2, which subsequently results in the max. permissible casting speed significantly reduced.

Eine zweite Formulierung einer nichtlinearen, dreidimensionalen und instationären Wärmeleitungsgleichung lautet ρ T x t E mass x t t + v cast t E mass x t z = 2 u x t x 2 + 2 u x t y 2 + 2 u x t z 2

Figure imgb0005

wobei

T( x ,t)
Temperatur an der Stelle x zur Zeit t in [° K]
ρ(T( x ,t))
Dichte des Metallstrangs bei der Temperatur T in [kg/m3]
A second formulation of a nonlinear, three-dimensional and transient heat equation is ρ T x t e measure x t t + v cast t e measure x t z = 2 u x t x 2 + 2 u x t y 2 + 2 u x t z 2
Figure imgb0005

in which
T ( x , t )
Temperature at point x at time t in [° K]
ρ ( T ( x , t ))
Density of the metal strand at the temperature T in [kg / m 3 ]

Diese Formulierung der Wärmeleitungsgleichung ist global, d.h. wenn der gesamte Strang betrachtet wird, massenrichtig, jedoch unrichtig bzgl. der Enthalpie. Es hat sich gezeigt, dass bei dieser Wärmeleitungsgleichung der Durcherstarrungspunkt überschätzt wird, dh. dass der tatsächliche Durcherstarrungspunkt weniger weit von der Kokille entfernt ist als der berechnete Durcherstarrungspunkt. Somit ist die Verwendung dieser Gleichung zwar bzgl. etwaiger nachteiliger Gießsituationen unproblematisch, jedoch wird die max. zulässige Gießgeschwindigkeit unnötigerweise beschränkt, was sich in einer reduzierten Produktivität der Anlage auswirkt.This formulation of the heat equation is global, ie when the entire strand is considered, true to mass, but incorrect in terms of enthalpy. It has been shown that in this heat equation, the through-solidification point is overestimated, ie. that the actual through-solidification point is less far from the mold than the calculated through-solidification point. Thus, the use of this equation is indeed problematic with respect to any adverse casting situations, however, the max. allowable casting speed unnecessarily limited, resulting in reduced productivity of the plant.

Vorteilhafterweise verwendet man die Wärmeleitungsgleichung E trans x t t + v cast t E trans x t z = + 2 u x t x 2 + 2 u x t y 2 + 2 u x t z 2

Figure imgb0006

wobei

Etrans ( x,t)
Transformierte massenbezogene Enthalpie an der Stelle x zur Zeit t
Advantageously, the heat equation is used e trans x t t + v cast t e trans x t z = + 2 u x t x 2 + 2 u x t y 2 + 2 u x t z 2
Figure imgb0006

in which
E trans ( x , t )
Transformed mass-enthalpy at point x at time t

Dabei werden zwei Ansätze für eine, bzgl. der Masse und der Enthalpie global richtige, transformierte Enthalpie Etrans ( x ,t) benützt. Die thermodynamischen Verhältnisse im Strang 6 ändern sich am Durcherstarrungspunkt 19 signifikant, da der Strang 6 - in Gießrichtung betrachtet - oberhalb des Durcherstarrungspunkts einen flüssigen Kern 4 aufweist, welcher mit dem flüssigen Stahl 2 der Kokille 1 in Verbindung steht. Der ferrostatische Druck in diesem Bereich presst die bereits erstarrte Strangschale 5 gegen die Rollen 8 der Strangstützeinrichtung 7, wodurch in diesem Bereich die Strangschrumpfung aufgrund der temperaturabhängigen Dichteänderung des Stahls 2 durch nachströmenden, flüssigen Stahl 2 kompensiert wird. Unterhalb des Durcherstarrungspunkts 19 findet eine derartige Kompensation nicht mehr statt.Two approaches for a, with respect to the mass and the enthalpy, globally correct, transformed enthalpy E trans ( x , t ) used. The thermodynamic conditions in the strand 6 change significantly at the through-solidification point 19, since the strand 6, viewed in the casting direction, above the through-solidification point has a liquid core 4, which communicates with the liquid steel 2 of the mold 1. The ferrostatic pressure in this area presses the already solidified strand shell 5 against the rollers 8 of the strand support device 7, whereby the strand shrinkage due to the temperature-dependent change in density of the steel 2 is compensated by inflowing, liquid steel 2 in this area. Below the Durcherstarrungspunkts 19 such compensation does not take place.

Oberhalb des Durcherstarrungspunkts 19 lautet der Ansatz E trans x t = T ref T x t ρ ξ E ˙ mass ξ - ρ ˙ ξ E mass T tund - E mass ξ d ξ .

Figure imgb0007
Hingegen verwendet man unterhalb des Durcherstarrungspunkts 19 folgenden Ansatz E trans x t = T ref T x t ρ ξ E ˙ mass ξ d ξ
Figure imgb0008

Hierin bedeuten

Tref
eine beliebige, aber konstante Referenztemperatur (üblicherweise 25 °C)
Ttund
Temperatur des Metalls im Gießspiegel in [° K]
mass ( x ,t)
Zeitliche Ableitung der massenbezogenen Enthalpie
Above the Durcherstarrungspunkts 19 is the approach e trans x t = T ref T x t ρ ξ e ˙ measure ξ - ρ ˙ ξ e measure T tund - e measure ξ d ξ ,
Figure imgb0007
On the other hand, below the solidification point 19, the following approach is used e trans x t = T ref T x t ρ ξ e ˙ measure ξ d ξ
Figure imgb0008

Herein mean
T ref
any but constant reference temperature (usually 25 ° C)
T tund
Temperature of the metal in the pouring mirror in [° K]
Ė mass ( x , t )
Time derivative of mass enthalpy

Die Wärmeleitungsgleichung wird auf Lagrange'sche Koordinaten x Lag transformiert, d.h. von einem mit der Strangauszugsbewegung mitbewegten Beobachter betrachtet. Die Transformation lautet CastLg t = t start t v cast ζ ζ

Figure imgb0009
x Lag t = x y CastLg t - z
Figure imgb0010

wobei

tstart
Zeitpunkt der Entstehung des diskreten Volumenelements in der Kokille in [s]
The heat equation becomes Lagrange coordinates x Lag transformed, ie viewed by a moving along with the strand extraction movement observer. The transformation is CastLg t = t begin t v cast ζ ζ
Figure imgb0009
x lag t = x y CastLg t - z
Figure imgb0010

in which
t start
Time of formation of the discrete volume element in the mold in [s]

Die Wärmeleitungsgleichung in Lagrange'schen Koordinaten lautet dann E trans x Lag t t = 2 u x Lag t x 2 + 2 u x Lag t y 2 + 2 u x Lag t z 2

Figure imgb0011
The heat equation in Lagrange coordinates is then e trans x lag t t = 2 u x lag t x 2 + 2 u x lag t y 2 + 2 u x lag t z 2
Figure imgb0011

Diese Wärmeleitungsgleichung wird mittels des Verfahrens der Finiten-Volumen vom Prozessrechner 15 in Echtzeit gelöst. Dieses Standardverfahren der numerischen Mathematik ist dem Fachmann bekannt und arbeitet mit diskreten Volumenelementen des Strangs 6. Für jedes Volumenelement 20 ist daher die einfache, im mit vcast bewegten, elementfesten Koordinatensystem beschriebene dreidimensionale Wärmeleitungsgleichung zu lösen. Dies wird für eine Vielzahl von Volumenelementen 20 periodisch durchgeführt, wodurch sich das zeitveränderliche Temperaturfeld des gesamten Strangs 6 ergibt. Aus Fig. 2 ist ersichtlich, dass der Strang 6 in diskrete Volumenelemente 19 von beispielsweise 10 cm Kantenlänge eingeteilt wird. Die Volumenelemente 19 werden in der Kokille erzeugt und entsprechend der Gießgeschwindigkeit durch die Stranggussanlage verfolgt.This heat equation is solved by the process computer 15 in real time by means of the finite volume method. This standard method of numerical mathematics is known to the person skilled in the art and works with discrete volume elements of the strand 6. For each volume element 20, therefore, the simple three-dimensional heat equation described in the v- cast moving, element-fixed coordinate system is to be solved. This is performed periodically for a plurality of volume elements 20, resulting in the time-varying temperature field of the entire strand 6. Out Fig. 2 it can be seen that the strand 6 is divided into discrete volume elements 19, for example, 10 cm edge length. The volume elements 19 are produced in the mold and tracked in accordance with the casting speed through the continuous casting plant.

Wie in Fig. 2 dargestellt, liegt die Strangdickenachse x und die Strangbreitenachse y symmetrisch zu den Rändern des erstarrenden Strangs 6. Aufgrund dieser räumlichen Symmetrie in Strangbreiten- und Strangdickenrichtung ist es vorteilhaft, die thermodynamischen Zustandsänderungen nur in einem Quadranten 20, d.h. einem Viertel, des Strangquerschnitts zu berechnen.As in Fig. 2 As a result of this spatial symmetry in the strand width and strand thickness direction, it is advantageous to calculate the thermodynamic state changes only in one quadrant 20, ie one quarter, of the strand cross-section.

Zur Lösung der Wärmeleitungsgleichung werden allerdings noch die Anfangs- und die - zufolge der Bewegung der Volumenelemente durch die Kokille sowie durch verschiedene Kühlzonen - zeitlich veränderlichen Randbedingungen benötigt.To solve the heat equation, however, the initial and - depending on the movement of the volume elements through the mold and through different cooling zones - temporally variable boundary conditions are needed.

Die Anfangsbedingung für ein neu erzeugtes Volumenelement lautet T x Lag t start = T tund

Figure imgb0012
The initial condition for a newly created volume element is T x lag t begin = T tund
Figure imgb0012

Die Randbedingung lautet allgemein λ T T n | Oberfläche = q t

Figure imgb0013

wobei
λ(T)  Temperaturabhängige Wärmeleitfähigkeit in W mK
Figure imgb0014

T n | Oberlfläche
Figure imgb0015
  Temperaturgradient normal zur Oberfläche
q(t)  Spezifischer Wärmestrom zur Zeit tThe boundary condition is general λ T T n | surface = q t
Figure imgb0013

in which
λ (T) Temperature-dependent thermal conductivity in W mK
Figure imgb0014

T n | Oberlfläche
Figure imgb0015
Temperature gradient normal to the surface
q (t) Specific heat flow at time t

Um den Wärmestrom q(t) zu modellieren, wird innerhalb der gekühlten Kokille 1 folgender Ansatz verwendet q t = α mold T surf t T surf t - T mold

Figure imgb0016
In order to model the heat flow q (t), the following batch is used within the cooled mold 1 q t = α mold T surf t T surf t - T mold
Figure imgb0016

Außerhalb der Kokille ist q t = α water sw t T surf t - T water + a roll t T surf t - T roll + σ ε T surf t 4 - T amb 4 radiation

Figure imgb0017

wobei

αmold (Tsurf (t))
Wärmeabfuhrfunktion der Kokille
α water (sw(t))
Wärmeabfuhrfunktion der Strangkühlung
sw(t)
Kühlwassermenge der Strangkühlung
aroll (t)
Wärmeabfuhrfunktion der Stützrollen
σ
Stefan-Boltzmann Konstante
ε
der Emissionsgrad
Tsurf (t)
Oberflächentemperatur des Strangs 6
Tamb
Umgebungstemperatur
Outside the mold is q t = α water sw t T surf t - T water + a rolling t T surf t - T rolling + σ ε T surf t 4 - T amb 4 } radiation
Figure imgb0017

in which
α mold ( T surf ( t ))
Heat dissipation function of the mold
α water ( sw ( t ))
Heat dissipation function of strand cooling
sw ( t )
Cooling water quantity of the strand cooling
a roll ( t )
Heat dissipation function of the support rollers
σ
Stefan-Boltzmann constant
ε
the emissivity
T surf ( t )
Surface temperature of the strand 6
T amb
ambient temperature

Da die dreidimensionale Wärmeleitungsgleichung bis heute noch ungelöst ist, soll die hohe Genauigkeit der erfindungsgemäßen Formulierung der Wärmeleitungsgleichung mit einer transformierten Enthalpie Etrans anhand eines eindimensionalen Beispiels überprüft werden. Die exakte Lösung der Wärmeleitungsgleichung unter Berücksichtigung der temperaturabhängigen Dichteänderung (durchgezogene Linie) ist im eindimensionalen Fall bekannt und wird in Fig. 3 mit einer massenrichtigen Formulierung (strichlierte Linie) und einer massen- und enthalpierichtigen Formulierung (gepunktete, durchgezogene Linie) verglichen. In Fig. 3 ist auf der Ordinate der Abstand in Strangauszugsrichtung von der Kokille und auf der Abszisse die Dicke eines Metallstrangs in Strandickenrichtung aufgetragen. Wie in Fig. 3 zu sehen ist, ist bei einer massen- und enthalpierichtigen Formulierung der Wärmeleitungsgleichung der tatsächliche Durcherstarrungspunkt geringfügig weiter von der Kokille entfernt als der berechnete Durcherstarrungspunkt, dh. der Durcherstarrungspunkt wird geringfügig überschätzt. Im Vergleich dazu, wird der Durcherstarrungspunkt bei einer massenrichtigen Formulierung der Wärmeleitungsgleichung signifikant unterschätzt, was zu kritischen Situationen beim Stranggussprozess führen kann.Since the three-dimensional heat equation is still unresolved to date, the high accuracy of the formulation of the heat equation according to the invention with a transformed enthalpy E trans should be checked using a one-dimensional example. The exact solution of the heat conduction equation taking into account the temperature - dependent density change (solid line) is known in the one - dimensional case and is in Fig. 3 with a mass correct formulation (dashed line) and a mass and enthalpierichtage formulation (dotted, solid line) compared. In Fig. 3 On the ordinate, the distance in strand extraction direction from the mold and on the abscissa the thickness of a metal strand in the beach edge direction is plotted. As in Fig. 3 can be seen, in a mass and enthalpierichtichtung the heat conduction equation, the actual Durcherstarrungspunkt is slightly further away from the mold than the calculated Durcherstarrungspunkt, ie. the solidification point is slightly overestimated. In comparison, the solidification point is significantly underestimated in a mass correct formulation of the heat equation, which can lead to critical situations in the continuous casting process.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Kokillemold
22
Stahlstole
33
ZumischgefäßZumischgefäß
44
Flüssiger Kern des StrangsLiquid core of the strand
55
Strangschalestrand shell
66
Strangstrand
77
StrangstützeinrichtungStrand support means
88th
Stützrollensupport rollers
99
Rollenteilungdivision of roles
1010
Kühldüsencooling nozzles
1111
Zuleitung KühlmittelSupply line coolant
1212
VentilValve
1313
DurchflussmesseinrichtungFlow meter
1414
Stellgliedactuator
1515
Prozessrechnerprocess computer
1616
Regelgliedcontrol element
1717
Eingabeeinheitinput unit
1818
Ausgabeeinheitoutput unit
1919
Diskretes VolumenelementDiscrete volume element
2020
Quadrant des StrangsQuadrant of the strand

Claims (5)

  1. Method for continuous casting of a metal strand (6) in a continuous casting plant, wherein the metal strand (6) is extracted from a cooled continuous casting mould (1) with a fluid core (4) enclosed by a strand shell (5), supported in a strand supporting device (7) arranged downstream of the continuous casting mould (1) and cooled by a coolant, wherein thermodynamic status changes of the entire metal strand (6) are calculated in a mathematical simulation model, taking into account the physical parameters of the metal, the thickness of the metal strand (6) and the continuously measured extraction speed, characterised in that in the mathematical simulation model a three-dimensional thermal conduction equation taking into account temperature-dependent changes in density of the metal strand (6) is solved numerically in real time and the cooling of the metal strand (6) is adjusted while taking into account the calculated status changes.
  2. Method according to claim 1, characterised in that the metal strand (6) is embodied as a steel strand.
  3. Method according to one of the preceding claims, characterised in that, in the numerical solution of the thermal conduction equation taking into account temperature-dependent changes in density of the metal strand (6), approximated equations are used for the enthalpy, which have the exact mass and the exact enthalpy for the entire metal strand (6).
  4. Method according to one of the preceding claims, characterised in that the thermal conduction equation is solved numerically using a finite volume method or a finite element method.
  5. Method according to one of the preceding claims, characterised in that the thermodynamic status changes are only calculated for a quarter (20) of the strand cross section as a result of the spatial symmetry.
EP09749695.4A 2008-05-21 2009-04-22 Method for the continuous casting of a metal strand Active EP2279053B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI200931321T SI2279053T1 (en) 2008-05-21 2009-04-22 Method for the continuous casting of a metal strand

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT8152008A AT506847B1 (en) 2008-05-21 2008-05-21 METHOD FOR CONTINUOUSLY GASING A METAL STRUCTURE
PCT/EP2009/054776 WO2009141205A1 (en) 2008-05-21 2009-04-22 Method for the continuous casting of a metal strand

Publications (2)

Publication Number Publication Date
EP2279053A1 EP2279053A1 (en) 2011-02-02
EP2279053B1 true EP2279053B1 (en) 2015-08-26

Family

ID=40901973

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09749695.4A Active EP2279053B1 (en) 2008-05-21 2009-04-22 Method for the continuous casting of a metal strand

Country Status (7)

Country Link
EP (1) EP2279053B1 (en)
KR (1) KR101573666B1 (en)
CN (1) CN102083573B (en)
AT (1) AT506847B1 (en)
ES (1) ES2548978T3 (en)
SI (1) SI2279053T1 (en)
WO (1) WO2009141205A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101806819B1 (en) * 2011-02-07 2017-12-08 프리메탈스 테크놀로지스 오스트리아 게엠베하 Method for regulating a temperature or a temperature profile of a strand by positioning a movable cooling nozzle in a strand guide of a strand casting system
DE102011082158A1 (en) 2011-09-06 2013-03-07 Sms Siemag Ag Casting, in particular continuous casting
EP3437756B1 (en) 2017-08-04 2021-12-22 Primetals Technologies Austria GmbH Continuous casting of a metallic strand
EP3437759B1 (en) 2017-08-04 2022-10-12 Primetals Technologies Austria GmbH Continuous casting of a metallic strand
EP3437757A1 (en) 2017-08-04 2019-02-06 Primetals Technologies Austria GmbH Continuous casting of a metallic strand
KR102098023B1 (en) 2018-10-24 2020-04-07 주식회사 포스코 Apparatus for setting temperature of continuous casting device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT408197B (en) * 1993-05-24 2001-09-25 Voest Alpine Ind Anlagen METHOD FOR CONTINUOUSLY casting a METAL STRAND
DE19612420C2 (en) * 1996-03-28 2000-06-29 Siemens Ag Method and device for controlling the cooling of a strand in a continuous caster
DE19850253A1 (en) * 1998-10-31 2000-05-04 Schloemann Siemag Ag Method and system for controlling cooling sections
AT409352B (en) * 2000-06-02 2002-07-25 Voest Alpine Ind Anlagen METHOD FOR CONTINUOUSLY casting a METAL STRAND
US7024342B1 (en) * 2000-07-01 2006-04-04 Mercury Marine Thermal flow simulation for casting/molding processes
DE102005036068A1 (en) * 2005-08-01 2007-02-08 Siemens Ag Modeling method for the time course of the state of a steel volume by a computer and corresponding objects

Also Published As

Publication number Publication date
CN102083573B (en) 2014-12-10
EP2279053A1 (en) 2011-02-02
WO2009141205A1 (en) 2009-11-26
CN102083573A (en) 2011-06-01
AT506847A1 (en) 2009-12-15
ES2548978T3 (en) 2015-10-22
SI2279053T1 (en) 2015-12-31
AT506847B1 (en) 2011-07-15
KR20110020828A (en) 2011-03-03
KR101573666B1 (en) 2015-12-02

Similar Documents

Publication Publication Date Title
EP3184202B1 (en) Method for continuously casting a metal strand
AT506976B1 (en) METHOD FOR CONTINUOUSLY GASING A METAL STRUCTURE
EP2279053B1 (en) Method for the continuous casting of a metal strand
DE19612420C2 (en) Method and device for controlling the cooling of a strand in a continuous caster
DE10129565B4 (en) Cooling process for a hot-rolled rolling stock and corresponding cooling section model
EP1200216B1 (en) Method and device for making a metal strand
EP1576429B1 (en) Modeling method for a metal
EP2753439B1 (en) Casting method, more particularly continuous casting method
EP1289691B2 (en) Method for continuously casting a metal strand
EP2346631B1 (en) Method and device for controlling the solidification of a cast strand in a continuous casting plant at startup of the casting process
DE4417808A1 (en) Method for the continuous casting of a metal billet
EP2762251B1 (en) Method and device for casting a strand
DE102019208736A1 (en) Method for casting a cast strand in a continuous caster
EP2906369B1 (en) Width-altering system for strip-shaped rolled material
EP2673099B1 (en) Method for regulating a temperature of a strand by positioning a movable cooling nozzle in a strand guide of a strand casting system
EP3173166B1 (en) Method and device for setting the width of a continuously cast metal strand
EP2809465B1 (en) Method for the continuous casting of a metal strand in a continuous casting installation and a continuous casting installation
DE102009048567B4 (en) Method and arrangement for cooling a cast strand in a continuous casting plant
DE102015215328A1 (en) A method of continuously casting a metal strand and determining the shrinkage of a continuously cast metal strand
EP2804708B1 (en) Modelling of a cast rolling device
DE102013212713A1 (en) A method for casting a metal strand and method for determining the temperature of a cast metal strand
Krajewski et al. IMC-B: A New Approach to Investigate Surface Crack Formation in the Continuous Casting Process

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101104

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150330

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PRIMETALS TECHNOLOGIES AUSTRIA GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 744870

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009011466

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151127

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151228

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151226

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009011466

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160530

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160422

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160422

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 744870

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160422

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090422

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20190418

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20190424

Year of fee payment: 11

Ref country code: ES

Payment date: 20190521

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20190611

Year of fee payment: 7

Ref country code: SE

Payment date: 20190418

Year of fee payment: 11

Ref country code: TR

Payment date: 20190416

Year of fee payment: 11

Ref country code: FR

Payment date: 20190418

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009011466

Country of ref document: DE

Representative=s name: KINNSTAETTER, KLAUS, DIPL.-PHYS.UNIV., DE

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20200501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200422

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200423

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200423

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20210903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200422

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230426

Year of fee payment: 15

Ref country code: DE

Payment date: 20230420

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230419

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230419

Year of fee payment: 15