EP2274753A1 - Transformateur de puissance pour signaux radiofrequences - Google Patents

Transformateur de puissance pour signaux radiofrequences

Info

Publication number
EP2274753A1
EP2274753A1 EP09735922A EP09735922A EP2274753A1 EP 2274753 A1 EP2274753 A1 EP 2274753A1 EP 09735922 A EP09735922 A EP 09735922A EP 09735922 A EP09735922 A EP 09735922A EP 2274753 A1 EP2274753 A1 EP 2274753A1
Authority
EP
European Patent Office
Prior art keywords
winding
block
transformer
printed
windings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09735922A
Other languages
German (de)
English (en)
Other versions
EP2274753B1 (fr
Inventor
Pierre Bertram
Charles Richardeau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP2274753A1 publication Critical patent/EP2274753A1/fr
Application granted granted Critical
Publication of EP2274753B1 publication Critical patent/EP2274753B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F19/00Fixed transformers or mutual inductances of the signal type
    • H01F19/04Transformers or mutual inductances suitable for handling frequencies considerably beyond the audio range
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • H01F2027/2819Planar transformers with printed windings, e.g. surrounded by two cores and to be mounted on printed circuit

Definitions

  • the present invention relates to a power transformer for radiofrequency signals.
  • the invention applies in particular to the realization of RF radio transmitting terminals.
  • Power transformers are generally made by wire windings on cores of ferromagnetic materials. This artisanal achievement has an impact on the cost of manufacturing the transformer. Also, other types of transformer, made with printed coils, have been proposed to facilitate their manufacture.
  • planar transformer has been proposed by Motorola Inc in the US patent published under the reference US5015972.
  • the planar transformer has two printed turns separated by a dielectric layer. Capacitors may also be provided to interconnect two printed turns to improve the performance of the transformer in the operating frequency band.
  • the structure of this transformer uses a thermal conductive substrate to dissipate the heat generated during its operation, making the realization complex and expensive.
  • the design of the proposed windings generates a non-optimal coupling between said windings, which leads to losses of magnetic energy.
  • An object of the invention is to provide a high-frequency power transformer that is efficient - that is to say, with low losses and by controlling the impedances in the frequency band considered - and whose integration into an electronic circuit is simple, this to provide an impedance transformation function at a lower cost.
  • the subject of the invention is a high-frequency power transformer comprising a primary winding and a secondary winding, characterized in that it is produced in a low-cost multilayer printed circuit board, for example of the FR4 type (FIG.
  • a first conductive layer a first dielectric substrate layer, a second conductive layer, a second layer; of a dielectric substrate, and a third conductive layer
  • the primary winding being formed by turns printed in the second conductive layer
  • the secondary winding being formed by a first half-winding printed in the first conductive layer, the first half-winding.
  • the turns of the secondary winding being placed opposite the turns of the primary, the widths of the turns of the windings being chosen as a function of the thicknesses of the dielectric substrate layers, the instantaneous frequency band and the power of the high frequency signal passing through the transformer in order to minimize the losses and to favor the impedance matching in the RF band considered, said card being clamped above and below by two plates of ferromagnetic material.
  • the primary winding is clamped by the secondary winding, the choice of the width of the lines and the thickness of the substrate layers to optimize the capacitive coupling between the windings.
  • an orifice is formed in the center of the printed circuit board, the ferromagnetic block comprising two parts assembled to form a binocular block, each part of said block occupying one side of the printed circuit board, the first part of said block being formed of an extruded E, the central leg of the E being inserted into the hole formed in the center of the printed circuit, thereby forming a magnetic core in the center of the windings, the second portion of said block being formed of a substantially planar plate.
  • the presence of a magnetic core makes it possible in particular to obtain a better concentration of the magnetic field.
  • At least one capacitor is connected between at least one turn of one of the windings, preferably the primary winding, and an electrical ground in order to improve the behavior of the transformer with respect to the impedances that it is present in the RF band under consideration.
  • This (these) capacitance (s) makes it possible to better control the impedances presented by said winding in the RF band with respect to the surrounding components, for example power transistors connected to the input of the transformer, particularly in the high frequencies of the frequency band of operation.
  • the capacitance value is chosen according to the amplifier setup using this RF transformer.
  • the ferromagnetic block parts are made of ferrite and have standard dimensions, thus enabling a low-cost transformer to be produced.
  • the transformer is able to operate for high frequency signals comprised in an instantaneous frequency band between 1 MHz and a few tens of MHz, preferably from 1 to 50 MHz.
  • the transformer according to the invention is able to operate at high power, of the order of 1 Watt to a few tens of Watts.
  • the widths of the turns of the windings are chosen according to the operating frequency band of the transformer.
  • the invention also relates to a radio transmitter power card comprising a transformer as described above.
  • FIGS. 3a and 3b an example of a block of ferromagnetic material included in the transformer according to the invention
  • - Figure 4 a perspective view of a transformer according to the invention
  • FIG. 6, an illustration of a second embodiment comprising compensation capacitors
  • FIG. 7 an illustration, through a graph, of the effect produced by the addition of compensation capacitors on the impedance matching.
  • Figure 1 shows a winding structure used in the power transformer according to the invention.
  • the power transformer 100 comprises a winding 101 for the primary circuit framed by two half-windings 103, 103 'belonging to the secondary circuit.
  • Each winding 101, 103, 103 ' is a printed track in a multilayer printed circuit layer 201, two neighboring layers comprising a winding being separated by at least one thickness E1, E2 of dielectric substrate.
  • the substrate separating the conductive layers is not shown.
  • the turns of the primary winding 101 are placed substantially parallel to and opposite the turns of the half-windings 103, 103' of the secondary winding. to obtain an efficient coupling between the primary circuit and the secondary circuit of the power transformer 100.
  • the layer C2 in which the winding 101 of the primary circuit is printed is framed by two layers C1, C3 on which are printed the secondary half-windings 103, 103 ', magnetic leakage is minimized.
  • Figure 2 shows a perspective view of a printed circuit used in a transformer according to the invention.
  • the transformer according to the invention comprises a multilayer printed circuit 201 comprising the windings 101, 103, 103 'as shown in FIG.
  • the printed circuit 201 comprises a central orifice 202 around which the windings 101, 103, 103 'are printed.
  • FIG. 2 only the first half-winding 103 of the secondary circuit is visible, the winding 101 of the primary circuit and the second half-winding 103 'of the secondary circuit being printed in inner layers of the printed circuit 201.
  • FIG. 3a shows an example of a block of ferromagnetic material 203 forming part of the transformer according to the invention, the block being in two parts 203a, 203b shown separately in the figure.
  • the ferromagnetic block 203 has a first portion 203a E-shaped extruded and a second portion 203b parallelepiped whose width 11 and length 12 are substantially equal to those of the first portion 203a.
  • the first part 203a of the block 203 is a plate whose flank F1 is provided with three protuberances 204, 204 ', 204 "substantially parallelepipedal and of the same dimensions in addition to the thickness of the plate.
  • the second portion 203b of the ferromagnetic block 203 is a plate having, in the example, substantially the same dimensions 11, 12 as the plate of the first portion 203a.
  • the second portion 203b of the ferromagnetic block 203 is devoid of growths.
  • the block of ferromagnetic material 203 takes the form of a block binocular, that is to say, in the example, a substantially parallelepiped block in which two orifices 207, 207 'are distinct.
  • the binocular form of the ferromagnetic block 203 makes it possible to concentrate the magnetic field lines in order to extend the band
  • this block form 203 also makes it possible to improve the electromagnetic shielding of the transformer 100. This shielding can also be improved by increasing the efficiency of the transformer 100 to the lowest frequencies (on the order of 1 MHz). insertion of vias around the perimeter of the printed circuit 201 and / or ground pads disposed on either side of the windings 101, 103, 103 '.
  • the two parts 203a, 203b of the ferromagnetic block 203 consist of ferrite, whose permeability ⁇ is quite high (of the order of 700-1000) to ensure proper operation for frequencies bass.
  • the two parts 203a, 203b of the ferromagnetic block 203 are held together simply by means of a metal rod 205 enclosing the two parts 203a, 203b.
  • a bonding is performed to hold the two parts 203a, 203b together.
  • Figure 4 shows a perspective view of a transformer according to the invention comprising the printed circuit of Figure 2a wherein the first portion 203a of the ferromagnetic block 203 is embedded.
  • Figure 5 shows a view of this transformer in cross section.
  • the second protrusion 204 'of the plate is inserted into the central orifice 202 of the printed circuit 201 and the first 204 and third 204 "protuberances frame the windings of the printed circuit 201 on its sides, so that when the second portion 203b of the block 203 is contiguous with the first part 203a, the ferromagnetic block 203 composed of the two contiguous parts envelops the printed circuit 201 and forms a magnetic core in the center of said circuit 201.
  • a thermal interface is plated on the ferromagnetic block 203 to dissipate the calories from the magnetic losses inside said block
  • the RF transformer according to the invention exploits the capacitive coupling between the primary 101 and secondary windings 103, 103 '( Figure 1). Indeed, at operating frequencies, that is to say radiofrequency, a capacitive coupling occurs between the turns of the windings placed opposite 101, 103 and 101, 103 ', this capacitive coupling to improve the behavior of the transformer (impedances of the windings) in particular vis-à-vis the power transistors possibly connected to the input of the transformer according to the invention, particularly at the highest frequencies.
  • the widths of the turns (ie printed tracks) are chosen in particular as a function of the thicknesses E1, E2 (FIG.
  • the power of Current flowing through the transformer is also a variable taken into account in choosing the width of the turns.
  • Figure 6 shows an illustration of a second embodiment including compensation capabilities.
  • the first connection of a capacitance 601a, 601b, 601c is connected to each turn of the winding 101 of the primary circuit.
  • the second connection of each of these capacitors 601a, 601b, 601c is connected to an electrical ground 602.
  • the addition of these capacitors 601a, 601b, 601c makes it possible to improve the adaptation of the transformer to its environment , for example the adaptation to power transistors connected to the transformer, particularly in the high frequencies, in the example in a frequency band of 15 MHz to 50 MHz.
  • capacitors 601a, 601b, 601c connected in parallel between the winding considered and the ground compensate in an original way the imperfections of the transformer by creating a transmission line with the inductive component of the considered winding. They may possibly be replaced by different capacitive elements, or even more complex components (for example LC networks) in order to modify more favorably the behavior of the transformer in the band, in particular at the highest frequencies.
  • additional capacitive elements can be connected in parallel with the primary winding or, as proposed by US5015972 mentioned above in preamble, between the turns of the same winding.
  • FIG. 7 illustrates, through a graph, the effect produced by the addition of capacitors 601a, 601b, 601c of compensation connected between the turns of the primary winding 101 and the electrical earth 602 (FIG. 6).
  • a first curve 701 shows the evolution of the reflection coefficient S1 1 of a transformer without compensation capacity as a function of the frequency of the signal entering the transformer.
  • a second curve 702 shows the evolution of the reflection coefficient S1 1 of a transformer comprising compensation capacity as a function of the frequency of the signal entering the transformer.
  • the adaptation of the transformer is improved, especially at high frequencies.
  • An advantage of the transformer according to the invention is its low manufacturing cost, in particular because the multilayer printed circuit used can be a standard circuit at low cost.
  • the structure of the transformer according to the invention simplifies the connection of components to the primary circuit and the secondary circuit. Indeed, the transformer being formed from a multilayer printed circuit, no transfer manipulation (ie a manual soldering) is required to integrate the transformer in an existing circuit.
  • the RF power transformer according to the invention limits the losses of magnetic coupling with respect to the structure proposed in US5015972 cited in the preamble, in particular because of its winding structure in which the primary circuit is surrounded by above and below by the secondary circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Multimedia (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

La présente invention concerne un transformateur de puissance pour signaux radiof réquences. Le transformateur est réalisé dans une carte de circuit imprimé multicouches (201) à bas coût comprenant au moins successivement les couches empilées suivantes : une première couche conductrice, une première couche de substrat diélectrique, une seconde couche conductrice, une seconde couche de substrat diélectrique, et une troisième couche conductrice, l'enroulement primaire étant formé par une spire imprimée dans la seconde couche conductrice, l'enroulement secondaire (103) étant formé par une première spire imprimée dans la première couche conductrice, cette première spire étant reliée à une deuxième spire imprimée dans la troisième couche conductrice, les spires de l'enroulement secondaire étant placées en regard de la spire du primaire, la carte étant enserrée au-dessus et au-dessous par deux plaques de matériau ferromagnétique. Des composants capacitifs connectés entre enroulement (s) d'une part et masse d'autre part peuvent améliorer le comportement du transformateur proposé.

Description

Transformateur de puissance pour signaux radiofréquences
La présente invention concerne un transformateur de puissance pour signaux radiofréquences. L'invention s'applique notamment à la réalisation de terminaux radioélectriques émetteurs HF.
Les transformateurs de puissance sont généralement réalisés par des bobinages filaires sur des noyaux de matériaux ferromagnétiques. Cette réalisation artisanale impacte le coût de réalisation du transformateur. Aussi, d'autres types de transformateur, réalisés avec des bobines imprimées, ont été proposés pour faciliter leur fabrication.
Notamment, un transformateur planaire a été proposé par Motorola Inc dans le brevet américain publié sous la référence US5015972. Le transformateur planaire comporte deux spires imprimées séparées par une couche diélectrique. Des condensateurs peuvent également être disposés pour interconnecter deux spires imprimées afin d'améliorer les performances du transformateur dans la bande de fréquences de fonctionnement. Cependant, la structure de ce transformateur utilise un substrat conducteur thermique pour dissiper la chaleur dégagée lors de son fonctionnement, rendant la réalisation complexe et coûteuse. De plus, le dessin des enroulements proposé engendre un couplage non optimal entre lesdits enroulements, ce qui conduit à des pertes d'énergie magnétique.
Un but de l'invention est de proposer un transformateur de puissance haute fréquence performant — c'est à dire à faibles pertes et en maîtrisant les impédances dans la bande de fréquence considérée — et dont l'intégration dans un circuit électronique est simple, ceci afin d'offrir une fonction de transformation d'impédance à moindre coût. A cet effet, l'invention a pour objet un transformateur de puissance haute fréquence comprenant un enroulement primaire et un enroulement secondaire, caractérisé en ce qu'il est réalisé dans une carte de circuit imprimé multicouches à bas coût, par exemple de type FR4 (connu de l'Homme du Métier), comprenant au moins successivement les couches empilées suivantes : une première couche conductrice, une première couche de substrat diélectrique, une seconde couche conductrice, une seconde couche de substrat diélectrique, et une troisième couche conductrice, l'enroulement primaire étant formé par des spires imprimées dans la seconde couche conductrice, l'enroulement secondaire étant formé par un premier demi- enroulement imprimé dans la première couche conductrice, ce premier demi-enroulement étant relié à un deuxième demi-enroulement imprimé dans la troisième couche conductrice, les spires de l'enroulement secondaire étant placées en regard des spires du primaire, les largeurs des spires des enroulements étant choisies en fonction des épaisseurs des couches de substrat diélectrique, de la bande de fréquence instantanée et de la puissance du signal haute fréquence traversant le transformateur afin de minimiser les pertes et favoriser l'adaptation d'impédance dans la bande RF considérée, ladite carte étant enserrée au-dessus et au-dessous par deux plaques de matériau ferromagnétique. Ainsi, l'enroulement primaire est enserré par l'enroulement secondaire, le choix de la largeur des lignes et de l'épaisseur des couches de substrat permettant d'optimiser le couplage capacitif entre les enroulements.
Selon un mode de réalisation, un orifice est formé au centre de la carte imprimée, le bloc ferromagnétique comprenant deux parties assemblées pour former un bloc binoculaire, chaque partie dudit bloc occupant un côté de la carte imprimée, la première partie dudit bloc étant formée d'un E extrudé, la branche centrale du E étant insérée dans l'orifice formé au centre de la carte imprimée, formant ainsi un noyau magnétique au centre des enroulements, la seconde partie dudit bloc étant formée d'une plaque sensiblement plane. La présence d'un noyau magnétique permet notamment d'obtenir une meilleure concentration du champ magnétique.
Selon un mode de réalisation, au moins une capacité est connectée entre au moins une spire d'un des enroulements, de préférence l'enroulement primaire, et une masse électrique afin d'améliorer le comportement du transformateur vis-à-vis des impédances qu'il présente dans la bande RF considérée. La présence de cette (ces) capacité(s) permet de mieux contrôler les impédances présentées par ledit enroulement dans la bande RF par rapport aux composants environnants, par exemple des transistors de puissance connectés en entrée du transformateur, particulièrement dans les fréquences élevées de la bande de fréquences de fonctionnement. La valeur de capacité est choisie en fonction du montage d'amplificateur utilisant ce transformateur RF.
Selon un mode de réalisation, les parties du bloc ferromagnétique sont en ferrite et possèdent des dimensions standards, permettant ainsi une réalisation du transformateur à faible coût.
Selon un mode de réalisation, le transformateur est apte à fonctionner pour des signaux hautes fréquences compris dans une bande de fréquences instantanée entre 1 MHz et quelques dizaines de MHz, de préférence de 1 à 50 MHz. De plus, le transformateur selon l'invention est apte à fonctionner à des puissances élevées, de l'ordre de 1 Watt à quelques dizaines de Watts.
Par ailleurs, les largeurs des spires des enroulements sont choisies en fonction de la bande de fréquences de fonctionnement du transformateur.
L'invention a également pour objet une carte d'émetteur radioélectrique de puissance comportant un transformateur tel que décrit plus haut.
D'autres caractéristiques apparaîtront à la lecture de la description détaillée donnée à titre d'exemple et non limitative qui suit faite en regard de dessins annexés qui représentent :
- la figure 1 , une illustration d'une structure d'enroulements utilisée dans le transformateur de puissance selon l'invention ;
- la figure 2, une vue de dessus d'un circuit imprimé utilisé dans un transformateur selon l'invention ;
- les figures 3a et 3b, un exemple de bloc de matériau ferromagnétique compris dans le transformateur selon l'invention ; - la figure 4, une vue en perspective d'un transformateur selon l'invention ;
- la figure 5, une vue en coupe transversale du transformateur de la figure 4 ;
- la figure 6, une illustration d'un deuxième mode de réalisation comprenant des capacités de compensation, - la figure 7, une illustration, à travers un graphique, de l'effet produit par l'adjonction de capacités de compensation sur l'adaptation d'impédance.
Les mêmes références dans des figures différentes désignent les mêmes éléments.
La figure 1 , présente une structure d'enroulements utilisée dans le transformateur de puissance selon l'invention. Dans cet exemple, le transformateur de puissance 100 comporte un enroulement 101 pour le circuit primaire encadré par deux demi-enroulements 103, 103' appartenant au circuit secondaire. Chaque enroulement 101 , 103, 103' est une piste imprimée dans une couche de circuit imprimé 201 multicouches, deux couches voisines comprenant un enroulement étant séparées par au moins une épaisseur E1 , E2 de substrat diélectrique. Pour clarifier la figure 1 , le substrat séparant les couches conductrices n'est pas représenté. Les demi- enroulements 103, 103' du secondaire sont reliés par un ou plusieurs vias métallisés 107. Les spires de l'enroulement 101 du primaire sont placées sensiblement parallèlement et en regard des spires des demi-enroulements 103, 103' du secondaire afin d'obtenir un couplage efficace entre le circuit primaire et le circuit secondaire du transformateur de puissance 100. De plus, comme la couche C2 dans laquelle est imprimé l'enroulement 101 du circuit primaire est encadrée par deux couches C1 , C3 sur lesquelles sont imprimés les demi-enroulements 103, 103' du secondaire, les fuites magnétiques sont minimisées. La figure 2 présente une vue en perspective d'un circuit imprimé utilisé dans un transformateur selon l'invention.
Le transformateur selon l'invention comporte un circuit imprimé multicouches 201 comprenant les enroulements 101 , 103, 103' tels que présentés en figure 1 . Le circuit imprimé 201 comprend un orifice central 202 autour duquel les enroulements 101 , 103, 103' sont imprimés. Sur la figure 2, seul le premier demi-enroulement 103 du circuit secondaire est visible, l'enroulement 101 du circuit primaire et le deuxième demi-enroulement 103' du circuit secondaire étant imprimés dans des couches intérieures du circuit imprimé 201 . La figure 3a présente un exemple de bloc de matériau ferromagnétique 203 faisant partie du transformateur selon l'invention, le bloc étant en deux parties 203a, 203b représentées séparément sur la figure.
Dans l'exemple, le bloc ferromagnétique 203 comporte une première partie 203a en forme de E extrudé et une seconde partie 203b parallélépipédique dont la largeur 11 et la longueur 12 sont sensiblement égales à celles de la première partie 203a. En d'autres termes, la première partie 203a du bloc 203 est une plaque dont un flanc F1 est pourvu de trois excroissances 204, 204', 204" sensiblement parallélépipédiques et de mêmes dimensions s'ajoutant à l'épaisseur de la plaque, une première excroissance 204 étant placée, dans l'exemple, dans la largeur 11 sur un premier bord B1 de la plaque, une deuxième excroissance 204' étant placée sensiblement au centre, la troisième excroissance 204" étant placée sur le bord B2 opposé à celui B1 de la première excroissance 204. La seconde partie 203b du bloc ferromagnétique 203 est une plaque ayant, dans l'exemple, sensiblement les mêmes dimensions 11 , 12 que la plaque de la première partie 203a. En outre, contrairement à la plaque de la première partie 203a, la seconde partie 203b du bloc ferromagnétique 203 est dépourvue d'excroissances. Ainsi, comme l'illustre la figure 3b, lorsqu'un flanc F3 de la seconde partie 203b est accolée aux excroissances 204, 204', 204" de la première partie 203a, le bloc de matériau ferromagnétique 203 prend la forme d'un bloc binoculaire, c'est à dire, dans l'exemple, un bloc sensiblement parallélépipédique dans lequel deux orifices 207, 207' distincts sont pratiqués. La forme binoculaire du bloc ferromagnétique 203 permet de concentrer les lignes de champ magnétique afin d'étendre la bande de fonctionnement du transformateur 100 vers les fréquences les plus basses (de l'ordre de 1 MHz). De fait, cette forme de bloc 203 permet également d'améliorer le blindage électromagnétique du transformateur 100. Ce blindage peut en outre être amélioré par l'insertion de vias sur le pourtour du circuit imprimé 201 et/ou de plages de masse disposées de part et d'autre des enroulements 101 , 103, 103'.
Les deux parties 203a, 203b du bloc ferromagnétique 203 sont constituées de ferrite, dont la perméabilité μ est assez élevée (de l'ordre de 700-1000) afin d'assurer un bon fonctionnement pour des fréquences basses. Dans l'exemple, les deux parties 203a, 203b du bloc ferromagnétique 203 sont maintenues ensemble simplement grâce à une tige métallique 205 enserrant les deux parties 203a, 203b. Selon un autre mode de réalisation, un collage est effectué pour maintenir les deux parties 203a, 203b ensemble.
La figure 4 présente une vue en perspective d'un transformateur selon l'invention comprenant le circuit imprimé de la figure 2a dans lequel la première partie 203a du bloc ferromagnétique 203 est encastrée. La figure 5 présente une vue de ce transformateur en coupe transversale. La deuxième excroissance 204' de la plaque est insérée dans l'orifice central 202 du circuit imprimé 201 et les première 204 et troisième 204" excroissances, encadrent les enroulements du circuit imprimé 201 sur ses côtés, de sorte que lorsque la seconde partie 203b du bloc 203 est accolée à la première partie 203a, le bloc ferromagnétique 203 composé des deux parties accolées enveloppe le circuit imprimé 201 et forme un noyau magnétique au centre dudit circuit 201 .
Selon un mode de réalisation du transformateur selon l'invention, une interface thermique est plaquée sur le bloc ferromagnétique 203 pour dissiper les calories issues des pertes magnétiques à l'intérieur dudit bloc
203. Contrairement à un transformateur d'alimentation planaire classique, le transformateur RF selon l'invention exploite le couplage capacitif entre les enroulements primaire 101 et secondaire 103, 103' (figure 1 ). En effet, aux fréquences de fonctionnement, c'est à dire en radiofréquence, un couplage capacitif apparaît entre les spires des enroulements placés en vis à vis 101 , 103 et 101 , 103', ce couplage capacitif permettant d'améliorer le comportement du transformateur (impédances des enroulements) notamment vis-à-vis des transistors de puissance éventuellement connectés en entrée du transformateur selon l'invention, particulièrement aux fréquences les plus élevées. Les largeurs des spires (c'est à dire des pistes imprimées) sont notamment choisies en fonction des épaisseurs E1 , E2 (figure 1 ) des couches de substrat diélectrique, plus l'épaisseur E1 , E2 de substrat étant importante, plus les spires des enroulements 101 , 103, 103' devant être élargies pour favoriser le couplage capacitif entre les enroulements 101 , 103 et 101 , 1 03'. La puissance du courant traversant le transformateur est également une variable prise en compte dans le choix de la largeur des spires.
La figure 6 présente une illustration d'un deuxième mode de réalisation comprenant des capacités de compensation. Dans l'exemple, la première connexion d'une capacité 601 a, 601 b, 601 c est connectée à chaque spire de l'enroulement 101 du circuit primaire. La deuxième connexion de chacune de ces capacités 601 a, 601 b, 601 c est reliée à une masse électrique 602. L'ajout de ces capacités 601 a, 601 b, 601 c permet d'améliorer l'adaptation du transformateur à son environnement, par exemple l'adaptation à des transistors de puissance connectés au transformateur, particulièrement dans les fréquences élevées, dans l'exemple dans une bande de fréquences de 15 MHz à 50 MHz. Ces capacités 601 a, 601 b, 601 c connectées en parallèle entre l'enroulement considéré et la masse compensent de manière originale les imperfections du transformateur en créant une ligne de transmission avec la composante selfique de l'enroulement considéré. Elles peuvent éventuellement être remplacées par des éléments capacitifs différents, voire des composants plus complexes (par exemple des réseaux LC) afin de modifier plus favorablement le comportement du transformateur dans la bande, notamment aux fréquences les plus élevées.
Selon un autre mode de réalisation, pour améliorer le contrôle des impédances, des éléments capacitifs supplémentaires peuvent être branchés en parallèle de l'enroulement primaire ou, comme proposé par le brevet US5015972 susmentionné en préambule, entre les spires d'un même enroulement.
La figure 7 illustre, à travers un graphique, l'effet produit par l'adjonction de capacités 601 a, 601 b, 601 c de compensation connectées entre les spires de l'enroulement primaire 101 et la masse électrique 602 (figure 6). Une première courbe 701 montre l'évolution du coefficient de réflexion S1 1 d'un transformateur sans capacité de compensation en fonction de la fréquence du signal entrant dans le transformateur. Une seconde courbe 702 montre l'évolution du coefficient de réflexion S1 1 d'un transformateur comprenant capacité de compensation en fonction de la fréquence du signal entrant dans le transformateur. L'adaptation du transformateur est améliorée, particulièrement au niveau des hautes fréquences.
Un avantage du transformateur selon l'invention est son faible coût de fabrication, notamment parce que le circuit imprimé multicouches utilisé peut être un circuit standard à faible coût. De plus, la structure du transformateur selon l'invention permet de simplifier la connexion de composants au circuit primaire et au circuit secondaire. En effet, le transformateur étant formé à partir d'un circuit imprimé multicouches, aucune manipulation de report (c'est à dire un brasage manuel) n'est requis pour intégrer le transformateur dans un circuit existant.
Par ailleurs, le transformateur de puissance RF selon l'invention limite les pertes de couplage magnétique par rapport à la structure proposée dans le brevet US5015972 cité dans le préambule, notamment grâce à sa structure d'enroulements dans laquelle le circuit primaire est encadré au- dessus et au-dessous par le circuit secondaire.

Claims

REVENDICATIONS
1 . Transformateur haute fréquence de puissance comprenant un enroulement primaire (101 ) et un enroulement secondaire (103, 103'), caractérisé en ce qu'il est réalisé dans une carte de circuit imprimé multicouches (201 ) comprenant au moins successivement les couches empilées suivantes : une première couche conductrice (C1 ), une première couche de substrat diélectrique (E1 ), une seconde couche conductrice (C2), une seconde couche de substrat diélectrique (E2), et une troisième couche conductrice (C3), l'enroulement primaire (101 ) étant formé par des spires imprimées dans la seconde couche conductrice (C2), l'enroulement secondaire (103, 103') étant formé par un premier demi-enroulement (103) imprimé dans la première couche conductrice (C1 ), ce premier demi-enroulement étant relié à un deuxième demi-enroulement (103') imprimé dans la troisième couche conductrice, les spires de l'enroulement secondaire (103, 103') étant placées en regard des spires du primaire (101 ), les largeurs des spires des enroulements (101 , 103, 103') étant choisies en fonction des épaisseurs des couches de substrat diélectrique, de la bande de fréquence instantanée et de la puissance du signal haute fréquence traversant le transformateur, ladite carte (201 ) étant enserrée au- dessus et au-dessous par deux plaques (203a, 203b) de matériau ferromagnétique assemblées pour former un bloc binoculaire, la première partie (203a) dudit bloc étant formée d'un E extrudé, la branche centrale du E (204') étant insérée dans l'orifice (202) formé au centre de la carte imprimée, formant ainsi un noyau magnétique au centre des enroulements, la seconde partie (203b) dudit bloc étant formée d'une plaque sensiblement plane.
2. Transformateur de puissance radiofréquence selon la revendication 1 , caractérisé en ce qu'au moins un élément capacitif (601 a, 601 b, 601 c) est connecté entre au moins une spire d'un des enroulements (101 , 103, 103') et une masse électrique (602).
3. Transformateur de puissance radiofréquence selon la revendication 2, caractérisé en ce qu'au moins un élément capacitif (601 a, 601 b, 601 c) est connecté entre au moins une spire de l'enroulement primaire (101 ) et une masse électrique (602).
4. Transformateur de puissance radiofréquence selon l'une quelconque des revendications précédentes, caractérisé en ce qu'un orifice (202) est formé au centre de la carte imprimée (201 ), le bloc ferromagnétique comprenant au moins deux parties (203a, 203b) assemblées pour former un bloc binoculaire, chaque partie dudit bloc occupant un côté de la carte imprimée, la première partie (203a) dudit bloc étant formée d'un E extrudé, la branche centrale du E (204') étant insérée dans l'orifice (202) formé au centre de la carte imprimée, formant ainsi un noyau magnétique au centre des enroulements, la seconde partie (203b) dudit bloc étant formée d'une plaque sensiblement plane.
5. Transformateur de puissance radiofréquence selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il est apte à fonctionner pour des signaux de bande de fréquence instantanée comprise entre 1 MHz et 50 MHz.
6. Carte d'émetteur radiofréquence de puissance, caractérisée en ce qu'elle comporte un transformateur selon l'une des revendications précédentes.
EP09735922.8A 2008-04-22 2009-04-14 Transformateur de puissance pour signaux radiofrequences Active EP2274753B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0802247A FR2930368B1 (fr) 2008-04-22 2008-04-22 Transformateur de puissance pour signaux radiofrequences.
PCT/EP2009/054378 WO2009130139A1 (fr) 2008-04-22 2009-04-14 Transformateur de puissance pour signaux radiofréquences

Publications (2)

Publication Number Publication Date
EP2274753A1 true EP2274753A1 (fr) 2011-01-19
EP2274753B1 EP2274753B1 (fr) 2017-06-07

Family

ID=39944447

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09735922.8A Active EP2274753B1 (fr) 2008-04-22 2009-04-14 Transformateur de puissance pour signaux radiofrequences

Country Status (4)

Country Link
US (1) US20110109417A1 (fr)
EP (1) EP2274753B1 (fr)
FR (1) FR2930368B1 (fr)
WO (1) WO2009130139A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2764073C1 (ru) * 2018-11-15 2022-01-13 Мкс Инструментс, Инк. Резонансная линия передачи для доставки точного rf-напряжения

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ578449A (en) * 2006-12-20 2010-10-29 Primozone Production Ab Power supply apparatus for a capacitive load including a third coil to determine zero crossings and a device to control the ac power delivered to the load
CN103377811B (zh) * 2012-04-24 2016-08-10 乾坤科技股份有限公司 电磁器件及其线圈结构
US9009951B2 (en) 2012-04-24 2015-04-21 Cyntec Co., Ltd. Method of fabricating an electromagnetic component
US10134518B2 (en) * 2012-06-15 2018-11-20 Qorvo Us, Inc. Radio frequency transmission line transformer
US11227825B2 (en) * 2015-12-21 2022-01-18 Intel Corporation High performance integrated RF passives using dual lithography process
US10014250B2 (en) * 2016-02-09 2018-07-03 Advanced Semiconductor Engineering, Inc. Semiconductor devices
FR3079981B1 (fr) * 2018-04-06 2020-05-01 Eca Robotics Machine electrique comportant un dispositif de dissipation thermique
WO2023232437A1 (fr) * 2022-05-30 2023-12-07 Valeo Eautomotive France Sas Ensemble et transformateur électrique planaire
CN117995531B (zh) * 2024-04-03 2024-07-23 锐石创芯(深圳)科技股份有限公司 射频功率放大器、射频前端模组

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3210704A (en) * 1962-12-27 1965-10-05 Westinghouse Electric Corp Electrical inductive apparatus having interleaved windings
US5015972A (en) * 1989-08-17 1991-05-14 Motorola, Inc. Broadband RF transformer
US5173671A (en) * 1990-12-18 1992-12-22 Raytheon Company Monolithic lumped element networks
US5801602A (en) * 1996-04-30 1998-09-01 3Com Corporation Isolation and signal filter transformer
US5781093A (en) * 1996-08-05 1998-07-14 International Power Devices, Inc. Planar transformer
US6091206A (en) * 1996-12-27 2000-07-18 Susan Siao Electronic ballast system for fluorescent lamps
US6429763B1 (en) * 2000-02-01 2002-08-06 Compaq Information Technologies Group, L.P. Apparatus and method for PCB winding planar magnetic devices
JP2002136138A (ja) * 2000-10-27 2002-05-10 Sony Corp スイッチング電源回路
DE20022015U1 (de) * 2000-12-29 2001-03-01 Vogt Electronic Ag, 94130 Obernzell Planarkerntransformator
JP4165034B2 (ja) * 2001-05-14 2008-10-15 サンケン電気株式会社 トランス
US6501361B1 (en) * 2001-06-14 2002-12-31 Eaton Corporation Rotary transformer with synchronized operation
DE10148133A1 (de) * 2001-09-28 2003-04-24 Ascom Energy Systems Ag Bern Flachtransformator mit gesteckten Sekundärwicklungen
JPWO2005096007A1 (ja) * 2004-03-31 2008-02-21 日本電気株式会社 磁界センサ
TWI278876B (en) * 2006-01-03 2007-04-11 Delta Electronics Inc Transformer structure
US7479863B2 (en) * 2006-03-31 2009-01-20 Astec International Limited Jointless windings for transformers
TWI354302B (en) * 2006-05-26 2011-12-11 Delta Electronics Inc Transformer
US7750787B2 (en) * 2006-06-22 2010-07-06 Broadcom Corporation Impedance transformer and applications thereof
TW200847201A (en) * 2007-05-29 2008-12-01 Delta Electronics Inc Conductive winding structure and transformer using same
JP5685815B2 (ja) * 2009-03-16 2015-03-18 Tdk株式会社 トランスおよびスイッチング電源装置
EP2242067B1 (fr) * 2009-04-16 2013-01-23 SEPS Technologies AB Transformateur

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009130139A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2764073C1 (ru) * 2018-11-15 2022-01-13 Мкс Инструментс, Инк. Резонансная линия передачи для доставки точного rf-напряжения

Also Published As

Publication number Publication date
FR2930368B1 (fr) 2011-10-07
FR2930368A1 (fr) 2009-10-23
EP2274753B1 (fr) 2017-06-07
US20110109417A1 (en) 2011-05-12
WO2009130139A1 (fr) 2009-10-29

Similar Documents

Publication Publication Date Title
EP2274753B1 (fr) Transformateur de puissance pour signaux radiofrequences
EP2299790B1 (fr) Dispositif de raccordement pour signaux haute fréquence entre un connecteur et une ligne de transmission
WO2006125916A2 (fr) Entite electronique a antenne magnetique
FR2730122A1 (fr) Carte de circuits imprimes multicouche et son procede de fabrication
WO2006125917A2 (fr) Entite electronique a antenne magnetique
FR2928066A1 (fr) Systeme d'interconnexion de deux substrats comportant chacun au moins une ligne de transmission
WO2007000503A1 (fr) Entite electronique a antenne magnetique
US6992556B2 (en) Inductor part, and method of producing the same
EP1995740A1 (fr) Structure inductive plane
EP0446107B1 (fr) Système de transmission d'énergie électrique, aux hyperfréquences, à effet gyromagnétique, tel que circulateur, isolateur ou filtre
US7109829B2 (en) Filter circuit and laminate filter
FR2680605A1 (fr) Filtre coupe-bande en ceramique monolithique a plusieurs etages, ou les etages sont isoles les uns des autres.
EP0616490B1 (fr) Dispositif électronique miniaturisé, notamment dispositif à effet gyromagnétique
FR2806534A1 (fr) Dispositif a circuit non reciproque et appareil a circuit haute frequence l'incorporant
FR3053547B1 (fr) Carte electronique
EP2688137B1 (fr) Résonateur hyperfréquence a saut d'impédance, notamment pour filtres hyperfréquence coupe-bande ou passe-bande
JP4051307B2 (ja) 積層型バンドパスフィルタ
FR2780546A1 (fr) Circuit integre monolithique comprenant une inductance plane ou un transformateur plan, et procede de fabrication d'un tel circuit
EP1661206B1 (fr) Substrat haute impedance
WO2008000385A1 (fr) Antenne imprimée a deux boucles magnétiques, circuit imprimé et dispositif électronique embarqué correspondants
EP2507865B1 (fr) Transformateur d'impedance de puissance vhf/uhf planaire compact
FR2682545A1 (fr) Filtre electrique haute frequence d'ordre quelconque.
WO2007099063A1 (fr) Filtre passe bande hyperfrequences
FR2735926A1 (fr) Coupleur hybride
FR3142851A1 (fr) Module de variation d'une inductance et filtre radiofréquence comportant un tel module

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101022

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20170104

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THALES

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 899763

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009046490

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170607

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170908

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170907

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 899763

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170907

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171007

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009046490

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

26N No opposition filed

Effective date: 20180308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090414

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170607

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200331

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200326

Year of fee payment: 12

Ref country code: GB

Payment date: 20200409

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602009046490

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211103

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200414

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240321

Year of fee payment: 16

Ref country code: BE

Payment date: 20240319

Year of fee payment: 16