EP2269247A1 - Batterie mit einer wärmeleitplatte und mehreren einzelzellen - Google Patents

Batterie mit einer wärmeleitplatte und mehreren einzelzellen

Info

Publication number
EP2269247A1
EP2269247A1 EP09713061A EP09713061A EP2269247A1 EP 2269247 A1 EP2269247 A1 EP 2269247A1 EP 09713061 A EP09713061 A EP 09713061A EP 09713061 A EP09713061 A EP 09713061A EP 2269247 A1 EP2269247 A1 EP 2269247A1
Authority
EP
European Patent Office
Prior art keywords
cell
battery according
battery
individual cells
pressure plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09713061A
Other languages
English (en)
French (fr)
Inventor
Arnold Lamm
Jens Meintschel
Dirk Schröter
Wolfgang Warthmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
Daimler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler AG filed Critical Daimler AG
Publication of EP2269247A1 publication Critical patent/EP2269247A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0468Compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0481Compression means other than compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/296Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/51Connection only in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/663Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a battery with a heat conducting plate and a plurality of individual cells, which are combined to form a cell composite, wherein pole contacts of the individual cells are electrically connected in parallel and / or series, wherein the cell assembly and the heat conducting plate are completely enclosed by a clamping element and the front side at a first Single cell and an electrical connection element is arranged on a last single cell.
  • the pole contacts are electrically and / or connected in parallel with each other and form a cell composite. Furthermore, a heat conducting plate for cooling the battery is provided, which dissipates a heat loss arising in the battery. At least the cell assembly and the heat conducting plate are arranged in a housing frame, which is formed in particular as at least one clamping element completely enclosing the cell assembly and the heat conducting plate. In addition, an electrical connection element is respectively arranged on a first housing side wall of a first individual cell and a housing side wall of a last individual cell of the cell assembly for electrical contacting of the battery.
  • the disadvantage here is that by means of the at least one at least the cell composite and the heat conducting completely surrounding clamping element, the first and the last single cell of the cell network are heavily loaded.
  • the invention is therefore based on the object to provide an improved battery, which overcomes the features specified in the prior art and is simple and inexpensive to produce.
  • the battery with a heat conduction plate for temperature control of the battery has a plurality of individual cells, which are combined to form a cell group. Pole contacts of the individual cells are electrically connected in parallel and / or in series with each other.
  • the cell assembly and the heat conducting plate are completely enclosed by clamping elements, wherein an electrical connection element is arranged on the front side on a first individual cell and on a last individual cell.
  • a pressure plate is arranged on the end side between the first individual cell of the cell assembly and the clamping elements and on the end side between the last individual cell and the clamping elements.
  • a cell composite is formed in an advantageous manner, in which due to the pressure forces generated by the pressure plates and acting on the cell structure high pressure forces a secure series connection is possible.
  • a mechanical stress of the individual cells is largely avoided.
  • the pressure plates are electrically conductive at least at one contact side, which is directed to the cell assembly.
  • the contact sides are metallic, for example by applying a metallic foil executed.
  • the fact that the pressure plates are electrically formed on the contact side, these form at the same time particularly preferably the electrical connection elements of the battery.
  • the pressure plates have at least on one side flag-like extensions.
  • these flag-like extensions advantageously form the poles of the battery, whereby a voltage can be removed.
  • one pole is designed, for example, as a positive pole and the other pole as a negative pole.
  • an electronic component is arranged on the head side to the individual cells, which has in an advantageous manner to the flag-like extensions corresponding recesses, whereby a positive mounting of the battery is ensured.
  • the pressure plates on material recesses which particularly preferably correspond to the dimensions, in particular a width of the clamping elements. Based on this correspondence, which is formed as a kind of leadership of the clamping elements, a non-positive compression of at least the individual cells of the cell assembly can be realized.
  • the height and width dimensions of the pressure plates correspond to the dimensions of a single cell.
  • the individual cells and / or the pole contacts of various individual cells are non-positively, positively and / or cohesively connected to each other. As a result, a permanent electrical contact between the pole contacts of the individual cells is ensured in a simple manner.
  • the individual cells are formed from an electrode stack arranged in a cell housing, wherein at least electrodes of different polarity are separated from one another by a separator, preferably a separator foil, from one another.
  • a separator preferably a separator foil
  • an edge region of the respective electrode foil guided to the outside of the electrode stack forms a stromabieitervahne, whereby a complex contacting of electrode foil and Stromabieiterfahne deleted.
  • this type of contacting is very safe against at least many, especially external influences such as shock or vibration.
  • Stromabieiterfahen same polarity are electrically connected together to form a pole. Further are Stromabieiterfahen a pole electrically conductive pressed together and / or welded.
  • an additional insulating arrangement can be advantageously saved. Furthermore, the handling of the single cell is made easier or safer.
  • 1 is a perspective view in schematic view of a battery according to the prior art
  • 2 is an exploded view of a battery with the cell assembly frontally arranged pressure plates
  • FIG. 3 shows a perspective view in schematic view of a battery according to the invention arranged on the cell assembly pressure plates
  • FIG. 4 is a schematic sectional view of a cell assembly with the heat-conducting plate arranged on the bottom side and pressure plates arranged on the end side,
  • Fig. 5 is an exploded view of a cell assembly with front side arranged pressure plates
  • FIG. 6 is a schematic side view of a cell assembly with end plates arranged pressure plates according to Figure 4.
  • FIG. 1 shows a battery 1 according to the prior art.
  • the battery 1 is formed from a plurality of individual cells 2, which are combined to form a cell group 3.
  • the single cell 2 is designed as a flat cell, in particular crizoflachzelle.
  • a cell housing 2.1 of the single cell 2 is formed of two housing side walls 2.1.1 and 2.1.2 and an edge-surrounding frame 2.1.3 arranged therebetween.
  • the housing side walls 2.1.1 and 2.1.2 of the single cell 2 are made electrically conductive and do not form closer
  • the frame 2.1.3 is designed to be electrically insulating, so that the housing side walls 2.1.1 and 2.1.2 different polarity are arranged electrically isolated from each other.
  • a housing side wall 2.1.1 and 2.1.2 on a partial extension V which protrudes beyond the single cell 2.
  • This partial extension V is a line voltage monitoring.
  • the cell assembly 3 and a heat-conducting plate 4 arranged on the bottom side relative to the individual cells 2 are completely enclosed by two clamping elements 5 which force-fit at least the individual cells 2 of the cell assembly 3. Due to the acting forces, which are generated by the clamping elements 5, in particular a first single cell 2a and a last single cell 2b, which are each arranged on the front side in the cell assembly 3, heavily loaded.
  • an electrical connection element 6 is arranged on a cell side wall of the first individual cell 2a of the cell assembly 3. This connection element 6 is designed as an electrical connection lug and forms the positive pole P PO s of the battery 1.
  • connection element 6 is arranged at the Zeil cleanlinesswand the last single cell 2b of the cell assembly 3.
  • This connection element 6 is likewise embodied as an electrical connection lug and forms the negative pole P NEG of the battery 1.
  • FIG. 2 shows a battery 1 which is used, for example, in a vehicle, in particular a hybrid and / or electric vehicle.
  • the battery 1 in particular the cell assembly 3, for example, from thirty individual cells 2 is formed.
  • the individual cells 2, which are designed as termeffleflachzellen are connected in particular via the pole contacts in series with each other.
  • the heat conducting plate 4 is arranged for controlling the temperature of the battery 1.
  • the heat-conducting plate 4 has connection points 4.1, via which it can be connected, for example, to an air-conditioning circuit of a vehicle.
  • the housing side walls 2.1.1 and 2.1.2 are angled to increase a heat transfer surface between the single cell 1 and heat conducting 4 in the region of the heat conduction plate 4 parallel to this.
  • the individual cells 2 are thermally coupled directly or indirectly via a heat-conductive material, in particular a heat-conducting foil 7, to the heat-conducting plate 4, so that effective cooling of the battery 1 is achieved.
  • a pressure plate 8 is arranged on the end side between the first individual cell 2a of the cell assembly 3 and the clamping elements 5 and on the end side between the last individual cell 2b and the clamping elements 5.
  • a cell assembly 3 is particularly preferably formed, whereby a secure series connection can be realized. Furthermore, mechanical forces acting on the first individual cell 2a and last individual cell 2b of the cell assembly 3 are distributed uniformly and over the entire surface of the pressure plate 8.
  • the pressure plates 8 are electrically conductive at least on one contact side to the cell assembly 3.
  • the contact side of the pressure plate 8 may be provided, for example, with a metallic foil.
  • the pressure plates 8 form the electrical connection elements 6.
  • the pressure plates 8 on one side flag-like extensions 8.1. This banner-like
  • Extensions 8.1 are carried out in an advantageous manner as the poles of the battery 1, via which a voltage of the battery 1, for example, can be removed.
  • one pole is formed as a positive pole P PO s and the other pole as a negative pole P NEG of the battery 1.
  • a film which z. B. made of nickel, provided and arranged between the pressure plates and the first single cell 2a and the last single cell 2b.
  • an electronic component 9 which has at least not shown devices for cell voltage monitoring and / or to a cell voltage equalization of the individual cells 2.
  • the partial extension V of the housing side wall 2.1.1 and 2.1.2 is formed on the individual cells 2.
  • the electronic component 9 may be formed in a continuation of the invention as encapsulated electronic assembly.
  • the electronic component 9 is arranged on the head side to the cell assembly 3 and has to the flag-like extensions 8.1, in particular the poles Pp 0S and P NEG , the pressure plates 8 corresponding recesses 9.1. Through the recesses 9.1 a positive mounting of the battery 1 is ensured.
  • the pressure plates 8 in a particularly preferred manner on material recesses 8.2, which to the Clamping elements 5, in particular a thickness, the clamping elements 5 correspond.
  • this correspondence which is formed as a kind of guidance of the clamping elements 5, a secure compression of at least the individual cells 2 of the cell assembly 3 can be realized, so that the individual cells 2 are held positively and non-positively.
  • height and width extension of the pressure plate (8) correspond particularly preferably to the dimensions of a single cell (2), in particular an end face of the cell composite 3.
  • the material depressions 8.2 are formed as a type of guide, a secure frictional compression of the cell composite 3 can be realized in an advantageous manner.
  • FIG. 3 shows a mounted battery 1 with pressure plates 8 arranged on the first individual cell 2a and on the last individual cell 2b of the cell assembly 3.
  • FIG. 4 shows a sectional view of the cell assembly 3, each with a pressure plate 8 arranged on the front side.
  • an arranged electrode stack 10 which is formed from electrode foils not shown in detail, is shown in a cell housing 2.1 of a single cell 2.
  • the electrode foils of different polarity in particular aluminum and / or copper foils and / or foils of a metal alloy, are stacked on top of one another and electrically insulated from one another by means of a separator, not shown in detail, in particular a separator foil.
  • a separator not shown in detail, in particular a separator foil.
  • electrode films of the same polarity are electrically connected together.
  • the Stromabieiterfahen be electrically conductively pressed together and / or welded and form the poles of
  • Electrode stack 10 The electrode stack 10 is arranged in the edge surrounding the electrode stack 10 frame.
  • the invention can between the poles, which z. B. made of copper, and the housing side walls 2.1.1 and 2.1.2, which z. B. made of aluminum, in addition a film not shown, which z. B. made of nickel, may be arranged to achieve an improved electrical connection between the poles and the housing side walls 2.1.1 and 2.1.2.
  • an electrically insulating film not shown in detail between the poles and the housing side walls 2.1.1 and 2.1.2 or the housing side walls 2.1.1 and 2.1.2 on one side with an electrical insulating layer so that an electrical contacting of the poles with the housing side walls 2.1.1 and 2.1.2 only at a not further running, known from the prior art through-welding process from the outside by the housing side walls 2.1.1 and 2.1.2 arises.
  • FIGS. 5 and 6 each show different views of the cell composite 3 with pressure plates 8 arranged on the end side.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

Die Erfindung betrifft eine Batterie (1) mit einer Wärmeleitplatte (4) und mehreren Einzelzellen (2), die zu einem Zellverbund (3) zusammengefasst sind, wobei Polkontakte der Einzelzellen (2) elektrisch parallel und/oder seriell miteinander verschaltet sind, wobei der Zellverbund (3) und die Wärmeleitplatte (4) von einem Spannelement (5) vollständig umschlossen sind, wobei zwischen der ersten Einzelzelle (2a) und den Spannelementen (5) sowie stirnseitig zwischen der letzten Einzelzelle (2b) und den Spannelementen (5) jeweils eine Andruckplatte (8) angeordnet ist.

Description

Daimler AG
Batterie mit einer Wärmeleitplatte und mehreren Einzelzellen
Die Erfindung betrifft eine Batterie mit einer Wärmeleitplatte und mehreren Einzelzellen, die zu einem Zellverbund zusammengefasst sind, wobei Polkontakte der Einzelzellen elektrisch parallel und/oder seriell miteinander verschaltet sind, wobei der Zellverbund und die Wärmeleitplatte von einem Spannelement vollständig umschlossen sind und stirnseitig an einer ersten Einzelzelle sowie an einer letzten Einzelzelle ein elektrisches Anschlusselement angeordnet ist.
Es ist eine Batterie mit mehreren Einzelzellen bekannt, deren Polkontakte elektrisch und/oder parallel miteinander verschaltet sind und einen Zellverbund bilden. Weiterhin ist eine Wärmeleitplatte zur Kühlung der Batterie vorgesehen, die eine in der Batterie entstehende Verlustwärme abführt. Zumindest der Zellverbund und die Wärmeleitplatte sind in einem Gehäuserahmen angeordnet, der insbesondere als zumindest ein den Zellverbund und die Wärmeleitplatte vollständig umschließendes Spannelement gebildet ist. Darüber hinaus ist an einer ersten Gehäuseseseitenwand einer ersten Einzelzelle und einer Gehäuseseitenwand einer letzten Einzelzelle des Zellverbundes für eine elektrische Kontaktierung der Batterie jeweils ein elektrisches Anschlusselement angeordnet.
Nachteilig hierbei ist, dass mittels des mindestens einen zumindest den Zellverbund und die Wärmeleitplatte vollständig umschließenden Spannelementes die erste sowie die letzte Einzelzelle des Zellverbundes stark belastet sind.
Der Erfindung liegt daher die Aufgabe zugrunde, eine verbesserte Batterie anzugeben, welche die im Stand der Technik angegebenen Merkmale überwindet und einfach und kostengünstig herstellbar ist.
Die Aufgabe wird erfindungsgemäß durch die in Anspruch 1 angegebenen Merkmale gelöst.
Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der Unteransprüche.
Die Batterie mit einer Wärmeleitplatte zum Temperieren der Batterie weist mehrere Einzelzellen auf, die zu einem Zellverbund zusammengefasst sind. Polkontakte der Einzelzellen sind dabei elektrisch parallel und/oder seriell miteinander verschaltet. Der Zellverbund und die Wärmeleitplatte sind von Spannelementen vollständig umschlossen, wobei stirnseitig an einer ersten Einzelzelle sowie an einer letzten Einzelzelle ein elektrisches Anschlusselement angeordnet ist. Erfindungsgemäß ist stirnseitig zwischen der ersten Einzelzelle des Zellverbundes und den Spannelementen sowie stirnseitig zwischen der letzten Einzelzelle und den Spannelementen jeweils eine Andruckplatte angeordnet .
Dadurch ist in vorteilhafter Weise ein Zellverbund gebildet, bei welchem aufgrund der durch die Andruckplatten erzeugten und auf den Zellverband wirkenden hohen Andruckkräfte eine sichere Reihenschaltung ermöglicht ist. Darüber hinaus wirken vorzugsweise auf die erste sowie die letzte Einzelzelle des Zellverbundes keine Spannungen, da auf den Zellverbund wirkende mechanische Beanspruchungen und daraus resultierende Kräfte von den Andruckplatten gleichmäßig über deren gesamte Fläche aufgenommen und verteilt werden. Weiterhin ist dadurch eine Herstellung robusterer Einzelzellen ermöglicht, bei welchen die durch die Spannelemente wirkenden Kräfte weitgehend mittels der Andruckplatten kompensiert werden. Somit ist eine mechanische Beanspruchung der Einzelzellen weitgehend sicher vermieden.
In besonders vorteilhafter Weise sind die Andruckplatten mindestens an einer Kontaktseite, welche zu dem Zellverbund gerichtet ist, elektrisch leitfähig. Hierzu sind die Kontaktseiten metallisch, beispielsweise durch Aufbringen einer metallischen Folie, ausgeführt. Dadurch, dass die Andruckplatten an der Kontaktseite elektrisch ausgebildet sind, bilden diese gleichzeitig besonders bevorzugt die elektrischen Anschlusselemente der Batterie. Hierdurch sind vorzugsweise die Kosten sowie der Montageaufwand der Batterie reduziert, da keine zusätzlichen Bauteile für einen elektrischen Anschluss erforderlich sind.
Die Andruckplatten weisen zumindest an einer Seite fahnenartige Verlängerungen auf. Dabei bilden diese fahnenartigen Verlängerungen in vorteilhafter Weise die Pole der Batterie, wodurch eine Spannung entnehmbar ist. Dabei ist ein Pol beispielsweise als positiver Pol und der andere Pol als negativer Pol ausgebildet.
Ferner ist ein elektronisches Bauelement kopfseitig zu den Einzelzellen angeordnet, welches in vorteilhafter Weise zu den fahnenartigen Verlängerungen korrespondierende Aussparungen aufweist, wodurch eine formschlüssige Montage der Batterie sicher gestellt ist. Darüber hinaus weisen die Andruckplatten Materialvertiefungen auf, die besonders bevorzugt zu den Abmessungen, insbesondere einer Breite der Spannelemente korrespondieren. Anhand dieser Korrespondenz, die als eine Art Führung der Spannelemente ausgeformt ist, ist ein kraftschlüssiges Zusammenpressen wenigstens der Einzelzellen des Zellverbundes realisierbar.
In besonders vorteilhafter Weise entsprechen die Höhen- und Breitenausdehnungen der Andruckplatten den Abmessungen einer Einzelzelle .
In einer weiteren Ausgestaltung der Erfindung sind die Einzelzellen und/oder die Polkontakte verschiedener Einzelzellen kraftschlüssig, formschlüssig und/oder Stoffschlüssig miteinander verbunden. Dadurch wird in einfacher Art und Weise ein dauerhafter elektrischer Kontakt zwischen den Polkontakten der Einzelzellen sichergestellt.
Zusätzlich sind die Einzelzellen aus einem in einem Zellengehäuse angeordneten Elektrodenstapel gebildet, wobei zumindest Elektroden unterschiedlicher Polarität durch einen Separator, vorzugsweise eine Separatorfolie, voneinander isolierend getrennt sind.
In besonderer Weise bildet ein nach außerhalb des Elektrodenstapels geführter Randbereich der jeweiligen Elektrodenfolie eine Stromabieiterfahne, wodurch eine aufwändige Kontaktierung von Elektrodenfolie und Stromabieiterfahne entfällt. Gleichzeitig ist diese Art der Kontaktierung sehr sicher gegen zumindest viele, insbesondere äußere Einflüsse wie Stöße oder Vibrationen.
Stromabieiterfahnen gleicher Polarität sind elektrisch leitend miteinander zu einem Pol verbunden. Ferner sind Stromabieiterfahnen eines Pols elektrisch leitend miteinander verpresst und/oder verschweißt.
Durch eine Anordnung des Elektrodenstapels in einem randseitig umlaufenden, insbesondere elektrisch isolierenden Rahmen, kann in vorteilhafter Weise eine zusätzliche isolierende Anordnung eingespart werden. Weiterhin ist die Handhabbarkeit der Einzelzelle erleichtert bzw. sicherer gestaltet .
In besonderer Weise erfolgt, insbesondere bei bipolaren Einzelzellen, die Kontaktierung der Stromabieiterfahnen direkt zu den gegenüberliegen Gehäuseseitenwänden des Zellgehäuses, wobei diese Gehäuseseitenwände mittels des Rahmens gegeneinander elektrisch isoliert sind. Auf diese Weise sind Stromabieiterfahnen gleicher Polarität direkt mit einer Gehäuseseitenwand des Zellengehäuses, insbesondere einer Flachzelle, elektrisch verbunden, so dass die Gehäuseseitenwände die elektrischen Polkontakte der Einzelzelle bilden. Auch liegt keine Schwächung der Druckdichtigkeit des Zellgehäuses der Einzelzelle vor, da keine Kontaktdurchführung der Pole erfolgt. Hiermit ist direkt auch die Verbesserung der Dichtigkeit des Inneren des Zellengehäuses gegenüber einem Durchtritt an Feuchtigkeit verbunden.
Ausführungsbeispiele der Erfindung werden anhand von Zeichnungen näher erläutert.
Dabei zeigen:
Fig. 1 perspektivisch in schematischer Ansicht eine Batterie nach dem Stand der Technik, Fig. 2 eine Explosionsdarstellung einer Batterie mit am Zellverbund stirnseitig angeordneten Andruckplatten,
Fig. 3 perspektivisch in schematischer Ansicht eine Batterie mit erfindungsgemäß am Zellverbund angeordneten Andruckplatten,
Fig. 4 schematisch eine Schnittdarstellung eines Zellverbundes mit bodenseitig angeordneter Wärmeleitplatte und stirnseitig angeordneten Andruckplatten,
Fig. 5 eine Explosionsdarstellung eines Zellverbundes mit stirnseitig angeordneten Andruckplatten, und
Fig. 6 schematisch eine Seitenansicht eines Zellverbundes mit stirnseitig angeordneten Andruckplatten gemäß Figur 4.
Einander entsprechende Teile sind in allen Figuren mit den gleichen Bezugszeichen versehen.
In Figur 1 ist eine Batterie 1 nach dem Stand der Technik dargestellt. Die Batterie 1 ist aus mehreren Einzelzellen 2 gebildet, die zu einem Zellverbund 3 zusammengefasst sind.
Die Einzelzelle 2 ist als Flachzelle, insbesondere Rahmenflachzelle, ausgebildet. Dabei ist ein Zellengehäuse 2.1 der Einzelzelle 2 aus zwei Gehäuseseitenwänden 2.1.1 und 2.1.2 und einem dazwischen angeordneten randseitig umlaufenden Rahmen 2.1.3 gebildet.
Die Gehäuseseitenwände 2.1.1 und 2.1.2 der Einzelzelle 2 sind elektrisch leitend ausgeführt und bilden nicht näher dargestellte Polkontakte der Einzelzelle 2. Der Rahmen 2.1.3 ist elektrisch isolierend ausgeführt, so dass die Gehäuseseitenwände 2.1.1 und 2.1.2 unterschiedlicher Polarität elektrisch voneinander isoliert angeordnet sind.
Im dargestellten Ausführungsbeispiel der Erfindung weist eine Gehäuseseitenwand 2.1.1 und 2.1.2 eine partielle Verlängerung V auf, die über die Einzelzelle 2 hinausragt. Diese partielle Verlängerung V dient einer Zeilspannungsüberwachung .
Der Zellverbund 3 sowie eine bodenseitig zu den Einzelzellen 2 angeordnete Wärmeleitplatte 4 sind von zwei Spannelementen 5, welche wenigstens die Einzelzellen 2 des Zellverbundes 3 kraftschlüssig zusammenpressen, vollständig umschlossen. Aufgrund der wirkenden Kräfte, die durch die Spannelemente 5 erzeugt werden, sind insbesondere eine erste Einzelzelle 2a sowie eine letzte Einzelzelle 2b, die jeweils stirnseitig im Zellverbund 3 angeordnet sind, stark belastet.
Für eine Entnahme und/oder eine Zuführung elektrischer Energie aus und/oder in die Batterie 1 ist an einer Zeilseitenwand der ersten Einzelzelle 2a des Zellverbundes 3 ein elektrisches Anschlusselement 6 angeordnet. Dieses Anschlusselement 6 ist als elektrische Anschlussfahne ausgeführt und bildet den positiven Pol PPOs der Batterie 1.
An der Zeilseitenwand der letzten Einzelzelle 2b des Zellverbundes 3 ist ein weiteres elektrisches Anschlusselement 6 angeordnet. Dieses Anschlusselement 6 ist ebenfalls als elektrische Anschlussfahne ausgeführt und bildet den negativen Pol PNEG der Batterie 1.
In Figur 2 ist eine Batterie 1, welche beispielsweise in einem Fahrzeug, insbesondere einem Hybrid- und/oder Elektrofahrzeug zum Einsatz kommt, dargestellt. Dabei ist die Batterie 1, insbesondere der Zellverbund 3, beispielsweise aus dreißig Einzelzellen 2 gebildet. Die Einzelzellen 2, die als Rahmenflachzellen ausgeführt sind, sind über deren Polkontakte insbesondere seriell miteinander verschaltet .
Bodenseitig zu den Einzelzellen 2 ist die Wärmeleitplatte 4 zum Temperieren der Batterie 1 angeordnet. Die Wärmeleitplatte 4 weist Anschlussstellen 4.1 auf, über die diese beispielsweise an einen Klimakreislauf eines Fahrzeuges angeschlossen werden kann. Die Gehäuseseitenwände 2.1.1 und 2.1.2 sind zur Vergrößerung einer Wärmeübergangsfläche zwischen Einzelzelle 1 und Wärmeleitplatte 4 im Bereich der Wärmeleitplatte 4 parallel zu dieser abgewinkelt. Dabei sind die Einzelzellen 2 direkt oder indirekt über ein wärmeleit- fähiges Material, insbesondere eine Wärmeleitfolie 7 thermisch an die Wärmeleitplatte 4 gekoppelt, so dass eine effektive Kühlung der Batterie 1 erzielt wird.
Erfindungsgemäß ist stirnseitig zwischen der ersten Einzelzelle 2a des Zellverbundes 3 und den Spannelementen 5 sowie stirnseitig zwischen der letzten Einzelzelle 2b und dem Spannelementen 5 jeweils eine Andruckplatte 8 angeordnet.
Mittels der durch die Andruckplatten 8 erzeugten hohen Andruckkräfte ist besonders bevorzugt ein Zellverbund 3 gebildet, wodurch eine sichere Reihenschaltung realisierbar ist. Weiterhin werden auf die erste Einzelzelle 2a sowie letzte Einzelzelle 2b des Zellverbundes 3 wirkende mechanische Kräfte gleichmäßig und über die gesamte Fläche der Andruckplatte 8 verteilt.
Darüber hinaus sind die Andruckplatten 8 mindestens an einer Kontaktseite zu dem Zellverbund 3 elektrisch leitfähig. Hierzu kann die Kontaktseite der Andruckplatte 8 beispielsweise mit einer metallischen Folie versehen sein. In einer vorteilhaften Ausgestaltung der Batterie 1 bilden die Andruckplatten 8 die elektrischen Anschlusselemente 6. Dazu weisen die Andruckplatten 8 an einer Seite fahnenartige Verlängerungen 8.1 auf. Diese fahnenartigen
Verlängerungen 8.1 sind in vorteilhafter Weise als die Pole der Batterie 1 ausgeführt, über welche eine Spannung der Batterie 1 beispielsweise entnehmbar ist. Dabei ist ein Pol als positiver Pol pPOs und der andere Pol als negativer Pol PNEG der Batterie 1 ausgebildet. Um eine elektrische Leitfähigkeit zwischen Kontaktseite der Andruckplatte 8 und der ersten Einzelzelle 2a sowie der letzten Einzelzelle 2b zu verbessern, kann zusätzlich eine Folie, welche z. B. aus Nickel gefertigt ist, vorgesehen und zwischen den Andruckplatten und der ersten Einzelzelle 2a sowie der letzten Einzelzelle 2b angeordnet sein.
Im dargestellten Ausführungsbeispiel der Erfindung ist ein elektronisches Bauelement 9 vorgesehen, welches zumindest nicht näher dargestellte Einrichtungen zur Zellspannungsüber- wachung und/oder zu einem Zellspannungsausgleich der Einzelzellen 2 aufweist. Um die Zellspannung zu überwachen, ist an den Einzelzellen 2 die partiellen Verlängerung V der Gehäuseseitenwand 2.1.1 und 2.1.2 ausgebildet. Das elektronische Bauelement 9 kann in einer Weiterführung der Erfindung auch als gekapselte elektronische Baueinheit ausgebildet sein. Dabei ist das elektronische Bauelement 9 kopfseitig zu dem Zellverbund 3 angeordnet und weist zu den fahnenartigen Verlängerungen 8.1, insbesondere der Pole Pp0S und PNEG, der Andruckplatten 8 korrespondierende Aussparungen 9.1 auf. Durch die Aussparungen 9.1 ist eine formschlüssige Montage der Batterie 1 sichergestellt.
Des Weiteren weisen die Andruckplatten 8 in besonders bevorzugter Weise Materialvertiefungen 8.2 auf, die zu den Spannelementen 5, insbesondere einer Dicke, der Spannelemente 5 korrespondieren. Anhand dieser Korrespondenz, die als eine Art Führung der Spannelemente 5 ausgeformt ist, ist ein sicheres Zusammenpressen des wenigstens der Einzelzellen 2 des Zellverbundes 3 realisierbar, so dass die Einzelzellen 2 form- und kraftschlüssig gehalten sind.
In besonders vorteilhafter Weise entsprechen Höhen- und Breitenausdehnung der Andruckplatte (8) in besonders bevorzugt den Abmessungen einer Einzelzelle (2), insbesondere einer Stirnseite des Zellverbundes 3.
Dadurch, dass die Materialvertiefungen 8.2 als eine Art Führung ausgeformt sind, ist ein sicheres kraftschlüssiges Zusammenpressen des Zellverbundes 3 in vorteilhafter Weise realisierbar.
Figur 3 zeigt eine montierte Batterie 1 mit an der ersten Einzelzelle 2a sowie an der letzten Einzelzelle 2b des Zellverbundes 3 angeordneten Andruckplatten 8.
In Figur 4 ist eine Schnittdarstellung des Zellverbundes 3 mit jeweils stirnseitig angeordneter Andruckplatte 8 gezeigt.
Dabei ist in einem Zellengehäuse 2.1 einer Einzelzelle 2 ein angeordneter Elektrodenstapel 10, der aus nicht näher dargestellten Elektrodenfolien gebildet ist, gezeigt.
In einem mittleren Bereich sind die Elektrodenfolien unterschiedlicher Polarität, insbesondere Aluminium- und/oder Kupferfolien und/oder Folien aus einer Metalllegierung, übereinander gestapelt und mittels eines nicht näher dargestellten Separators, insbesondere einer Separatorfolie, elektrisch voneinander isoliert. In einem über den mittleren Bereich des Elektrodenstapels 10 überstehenden Randbereich der Elektrodenfolien, den nicht gezeigten Stromabieiterfahnen, sind Elektrodenfolien gleicher Polarität elektrisch miteinander verbunden. Dabei werden die Stromabieiterfahnen elektrisch leitend miteinander verpresst und/oder verschweißt und bilden die Pole des
Elektrodenstapels 10. Der Elektrodenstapel 10 ist in dem den Elektrodenstapel 10 randseitig umlaufenden Rahmen angeordnet.
Bei einer Befestigung der Gehäuseseitenwände 2.1.1 und 2.1.2 welche beispielsweise in nicht näher dargestellter Weise mittels Kleben und/oder Umbördeln der Gehäuseseitenwände 2.1.1 und 2.1.2 in eine in dem Rahmen 2.1.3 umlaufende Aussparung erfolgt, werden die aus den Stromabieiterfahnen gebildeten Pole gegen die Gehäuseseitenwände 2.1.1 und 2.1.2 gepresst, so dass ein elektrisches Potenzial der Stromabieiterfahnen an den Gehäuseseitenwänden 2.1.1 und 2.1.2 anliegt und diese die Polkontakte der Einzelzelle 2 bilden.
In einer Weiterbildung der Erfindung kann zwischen den Polen, welche z. B. aus Kupfer gefertigt sind, und den Gehäuseseitenwänden 2.1.1 und 2.1.2, welche z. B. aus Aluminium gefertigt sind, zusätzlich eine nicht näher dargestellte Folie, welche z. B. aus Nickel gefertigt ist, angeordnet sein, um eine verbesserte elektrische Anbindung zwischen den Polen und den Gehäuseseitenwänden 2.1.1 und 2.1.2 zu erreichen.
In einer Ausgestaltung der Erfindung ist es weiterhin möglich, eine nicht näher dargestellte elektrisch isolierende Folie zwischen den Polen und den Gehäuseseitenwänden 2.1.1 und 2.1.2 anzuordnen bzw. die Gehäuseseitenwände 2.1.1 und 2.1.2 einseitig mit einer elektrischen isolierenden Schicht auszuführen, so dass eine elektrische Kontaktierung der Pole mit den Gehäuseseitenwänden 2.1.1 und 2.1.2 erst bei einem nicht näher ausgeführten, aus dem Stand der Technik bekannten Durchschweißverfahren von außen durch die Gehäuseseitenwände 2.1.1 und 2.1.2 entsteht.
Figur 5 und 6 zeigen jeweils verschiedene Ansichten des Zellverbundes 3 mit stirnseitig angeordneten Andruckplatten 8.
Daimler AG
Bezugszeichenliste
1 Batterie
2 Einzelzelle
2a erste Einzelzelle 2b letzte Einzelzelle 2.1 Zellengehäuse
2.1.1 Gehäuseseitenwand
2.1.2 Gehäuseseitenwand
2.1.3 Rahmen
3 Zellverbund
4 Wärmeleitplatte
4.1 Anschlussstellen
5 Spannelemente
6 elektrisches Anschlusselement
7 Wärmeleitfolie
8 Andruckplatte
8.1 fahnenartige Verlängerung
8.2 Materialvertiefung
9 elektronisches Bauelement 9.1 Aussparungen
10 Elektrodenstapel
Ppos positiver Pol PNEG negativer Pol V partielle Verlängerung

Claims

Daimler AGPatentansprüche
1. Batterie (1) mit einer Wärmeleitplatte (4) und mehreren Einzelzellen (2), die zu einem Zellverbund (3) zusammengefasst sind, wobei Polkontakte der Einzelzellen (2) elektrisch parallel und/oder seriell miteinander verschaltet sind, wobei der Zellverbund (3) und die Wärmeleitplatte (4) von Spannelementen (5) vollständig umschlossen sind, wobei stirnseitig an einer ersten Einzelzelle (2a) sowie an einer letzten Einzelzelle (2b) ein elektrisches Anschlusselement (6) angeordnet ist, dadurch gekennzeichnet, dass stirnseitig zwischen der ersten Einzelzelle (2a) und den Spannelementen (5) sowie stirnseitig zwischen der letzten Einzelzelle (2b) und den Spannelementen (5) jeweils eine Andruckplatte (8) angeordnet ist.
2. Batterie nach Anspruch 1, dadurch gekennzeichnet, dass die Andruckplatten (8) zumindest an einer Kontaktseite zum Zellverbund (3) elektrisch leitfähig ausgebildet sind.
3. Batterie nach Anspruch 1, dadurch gekennzeichnet, dass die Andruckplatten (8) die elektrischen Anschlusselemente (6) bilden.
4. Batterie nach Anspruch 1, dadurch gekennzeichnet, dass die Andruckplatten (8) fahnenartige Verlängerungen (8.1) aufweisen .
5. Batterie nach Anspruch 4, dadurch gekennzeichnet, dass die fahnenartige Verlängerungen (8.1) Pole (PPOs und PNEG) der Batterie (1) bilden.
6. Batterie nach Anspruch 4, dadurch gekennzeichnet, dass ein kopfseitig zu den Einzelzellen (2) angeordnetes elektronisches Bauelement (9) zu den fahnenartigen Verlängerungen (8.1) korrespondierende Aussparungen (9.1) aufweist .
7. Batterie nach Anspruch 1, dadurch gekennzeichnet, dass die Andruckplatten (8) zu den Abmessungen der Spannelemente (5) korrespondierende Materialvertiefungen (8.2) aufweisen.
8. Batterie nach Anspruch 1, dadurch gekennzeichnet, dass die Andruckplatten (8) in ihrer Höhen- und Breitenausdehnung den Abmessungen einer Einzelzelle (2) entsprechen.
9. Batterie nach Anspruch 1, dadurch gekennzeichnet, dass die Einzelzellen (2) kraftschlüssig, formschlüssig und/oder stoffschlüssig miteinander verbunden sind.
10. Batterie nach Anspruch 1, dadurch gekennzeichnet, dass die Polkontakte verschiedener Einzelzellen (2) kraftschlüssig, formschlüssig und/oder stoffschlüssig miteinander verbunden sind.
11. Batterie nach Anspruch 1, dadurch gekennzeichnet, dass in einem Zellengehäuse (2.1) ein Elektrodenstapel (10) angeordnet ist, dessen einzelne Elektroden, vorzugsweise Elektrodenfolien, mit Stromabieiterfahnen elektrisch leitend verbunden sind.
12. Batterie nach Anspruch 11, dadurch gekennzeichnet, dass
Stromabieiterfahnen gleicher Polarität elektrisch leitend miteinander zu einem Polkontakt verbunden sind.
13. Batterie nach Anspruch 11, dadurch gekennzeichnet, dass die Stromabieiterfahnen eines Polkontaktes elektrisch leitend miteinander verpresst und/oder verschweißt sind.
14. Batterie nach Anspruch 11, dadurch gekennzeichnet, dass das Zellengehäuse (2.1) zwei
Gehäuseseitenwände (2.1.1 und 2.1.2) und einen dazwischen angeordneten randseitig umlaufenden Rahmen (2.1.3) aufweist .
15. Batterie nach Anspruch 11, dadurch gekennzeichnet, dass die Gehäuseseitenwände (2.1.1 und 2.1.2) elektrisch leitend und der Rahmen (2.1.3) elektrisch isolierend ausgebildet sind.
EP09713061A 2008-02-23 2009-02-19 Batterie mit einer wärmeleitplatte und mehreren einzelzellen Withdrawn EP2269247A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200810010825 DE102008010825A1 (de) 2008-02-23 2008-02-23 Batterie mit einer Wärmeleitplatte und mehreren Einzelzellen
PCT/EP2009/001178 WO2009103526A1 (de) 2008-02-23 2009-02-19 Batterie mit einer wärmeleitplatte und mehreren einzelzellen

Publications (1)

Publication Number Publication Date
EP2269247A1 true EP2269247A1 (de) 2011-01-05

Family

ID=40626538

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09713061A Withdrawn EP2269247A1 (de) 2008-02-23 2009-02-19 Batterie mit einer wärmeleitplatte und mehreren einzelzellen

Country Status (6)

Country Link
US (1) US20110052961A1 (de)
EP (1) EP2269247A1 (de)
JP (1) JP2011512632A (de)
CN (1) CN101946343A (de)
DE (1) DE102008010825A1 (de)
WO (1) WO2009103526A1 (de)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009005124A1 (de) * 2009-01-19 2010-07-29 Li-Tec Battery Gmbh Elektrochemische Energiespeichervorrichtung
US8808898B2 (en) 2010-01-29 2014-08-19 Renault S.A.S. Battery pack for an electric powertrain vehicle
DE102010028191A1 (de) 2010-04-26 2011-10-27 Robert Bosch Gmbh Batterie mit einer Kühlplatte und Kraftfahrzeug mit einer entsprechenden Batterie
DE102010023092A1 (de) * 2010-05-31 2011-12-01 Varta Microbattery Gmbh Batterie, Verfahren zur Herstellung einer Batterie und Schaltung mit einer Batterie
DE102010022908B4 (de) 2010-06-07 2024-06-13 Vitesco Technologies GmbH Batterie mit Temperaturerfassung, sowie Verwendung einer derartigen Batterie
JP6158081B2 (ja) * 2010-06-28 2017-07-05 エイ123・システムズ・リミテッド・ライアビリティ・カンパニーA123 Systems, Llc 保定バンドを有するバッテリモジュールおよび組み立ての方法
DE102010041701A1 (de) * 2010-09-30 2012-04-05 Sb Limotive Company Ltd. Gehäuse für einen Lithium-Ionen-Akkumulator, ein Lithium-Iionen-Akkumulator sowie ein Kraftfahrzeug mit einem Lithium-Ionen-Akkumulator
EP2442382A1 (de) * 2010-10-13 2012-04-18 Magna E-Car Systems GmbH & Co OG Modulares System für einen Akkumulator
EP2442383A1 (de) * 2010-10-13 2012-04-18 Magna E-Car Systems GmbH & Co OG Modulares System für einen Akkumulator
AT510793B1 (de) * 2010-11-17 2015-04-15 Avl List Gmbh Batterie
US20130230761A1 (en) * 2010-11-30 2013-09-05 Panasonic Corporation Battery module and battery pack
JP5734704B2 (ja) * 2011-02-28 2015-06-17 三洋電機株式会社 電源装置及び電源装置を備える車両
KR101271858B1 (ko) 2011-03-08 2013-06-07 로베르트 보쉬 게엠베하 방열 특성이 향상된 배터리 팩
DE102011013618A1 (de) * 2011-03-11 2012-09-13 Li-Tec Battery Gmbh Energiespeichervorrichtung
CN103718374B (zh) * 2011-04-15 2017-11-03 约翰逊控制技术有限责任公司 具有外部热管理系统的电池系统
DE102011076580A1 (de) 2011-05-27 2012-11-29 Bayerische Motoren Werke Aktiengesellschaft Energiespeichermodul aus mehreren prismatischen Speicherzellen
DE102011120470A1 (de) * 2011-12-07 2013-06-13 Daimler Ag Batterie mit einer Anzahl von elektrisch miteinander verschalteten Einzelzellen und Verfahren zur Wartung, Reparatur und/oder Optimierung einer solchen Batterie
JP6260356B2 (ja) * 2014-03-07 2018-01-17 株式会社豊田自動織機 電池拘束治具
DE102015215502A1 (de) * 2015-08-13 2017-02-16 Robert Bosch Gmbh Gehäuse für Batteriemodul sowie Batteriemodul, Batterie und Fahrzeug
DE102016205270A1 (de) * 2016-03-31 2017-10-05 Robert Bosch Gmbh Batteriemodul
DE102016221817A1 (de) * 2016-11-08 2018-05-09 Robert Bosch Gmbh Batteriemodul mit einer Mehrzahl an Batteriezellen und Batterie
WO2019058937A1 (ja) * 2017-09-22 2019-03-28 パナソニックIpマネジメント株式会社 電池モジュール
JP6922683B2 (ja) * 2017-11-17 2021-08-18 トヨタ自動車株式会社 電池パック、電池パックの製造方法及び介在部材
CN108808174A (zh) * 2018-06-29 2018-11-13 潘仁忠 一种镁金属空气电池
DE102019110010A1 (de) * 2019-04-16 2020-10-22 HELLA GmbH & Co. KGaA Batterie für ein Fahrzeug, Kühlsystem und Herstellungsverfahren
KR102473336B1 (ko) * 2019-10-07 2022-12-01 주식회사 엘지에너지솔루션 전지 모듈 및 이를 포함하는 전지팩

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4020244A (en) * 1975-02-18 1977-04-26 Motorola, Inc. Clamping structure for battery cells
US4115630A (en) * 1977-03-17 1978-09-19 Communications Satellite Corporation Metal-hydrogen battery
US6087036A (en) * 1997-07-25 2000-07-11 3M Innovative Properties Company Thermal management system and method for a solid-state energy storing device
JP4593057B2 (ja) * 2002-05-07 2010-12-08 富士重工業株式会社 板状電池の組付構造
JP4055642B2 (ja) * 2003-05-01 2008-03-05 日産自動車株式会社 高速充放電用電極および電池
JP2005276486A (ja) * 2004-03-23 2005-10-06 Nissan Motor Co Ltd 積層型電池、組電池および車両
JP4652416B2 (ja) * 2004-12-24 2011-03-16 エルジー・ケム・リミテッド 二次電池モジュール
KR100696638B1 (ko) * 2005-09-05 2007-03-19 삼성에스디아이 주식회사 이차 전지 모듈
JP5017843B2 (ja) * 2005-10-26 2012-09-05 日産自動車株式会社 電池モジュール、および組電池
SE530190C2 (sv) * 2006-01-17 2008-03-25 Nilar Int Ab Ett batteristapelarrangemang

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009103526A1 *

Also Published As

Publication number Publication date
JP2011512632A (ja) 2011-04-21
DE102008010825A1 (de) 2009-08-27
CN101946343A (zh) 2011-01-12
US20110052961A1 (en) 2011-03-03
WO2009103526A1 (de) 2009-08-27

Similar Documents

Publication Publication Date Title
EP2269247A1 (de) Batterie mit einer wärmeleitplatte und mehreren einzelzellen
EP2243178B1 (de) Batterie mit mehreren einzelzellen
EP2550697B1 (de) Batterie mit einer mehrzahl von einzelzellen
EP2789029B1 (de) Batterie und zellblock für eine batterie
WO2009103525A1 (de) Batterie mit mehreren einzelzellen
DE102007063184B4 (de) Einzelzelle für eine Batterie zur elektrischen Kontaktierung
WO2011116801A1 (de) Batterie aus einer vielzahl von batterieeinzelzellen
WO2012062396A1 (de) Batterie mit einem zellverbund
DE102008010814B4 (de) Einzelzelle für eine Batterie und ihre Verwendung
WO2011116807A1 (de) Einzelzelle und batterie mit einer mehrzahl von einzelzellen
DE102013020860A1 (de) Zellblock für eine Batterie
DE102009035461A1 (de) Batterie mit einer Vielzahl von Batterieeinzelzellen
EP2676281B1 (de) Anordnung mit einem gehäuse
DE102013021332A1 (de) Zellmodul für eine Batterie, Batterie und Verfahren zur Herstellung eines Zellmoduls
DE102013015754A1 (de) Zellblock für eine Batterie
DE102014206951A1 (de) Batteriemodul mit wenigstens zwei parallel verschalteten Batteriezellen
DE102013015756A1 (de) Zellblock für eine Batterie
DE102012018088A1 (de) Vorrichtung zum elektrischen Kontaktieren von prismatischen Batterieeinzelzellen
DE102013020789A1 (de) Zellblock für eine Batterie
DE102022103702A1 (de) Batteriezelle
DE102008034697A1 (de) Einzelzelle sowie Zellverbund für eine Batterie
DE102022103705A1 (de) Batteriezelle
DE102013221139B4 (de) Batterie mit einer Mehrzahl von Batteriezellen, welche um einen Rand eines Rahmens umgebogene Ableiterelemente aufweisen
DE102010012938A1 (de) Einzelzelle für eine Batterie und Batterie mit einer Mehrzahl von Einzelzellen
DE102008059951B4 (de) Einzelzelle für eine Batterie, Verfahren zur Herstellung einer Einzelzelle und ihre Verwendung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100701

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20120112

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20131011