EP2260185A2 - Procédé de production d'énergie a partir d'un courant de gaz d'échappement, et véhicule à moteur correspondant - Google Patents

Procédé de production d'énergie a partir d'un courant de gaz d'échappement, et véhicule à moteur correspondant

Info

Publication number
EP2260185A2
EP2260185A2 EP09718002A EP09718002A EP2260185A2 EP 2260185 A2 EP2260185 A2 EP 2260185A2 EP 09718002 A EP09718002 A EP 09718002A EP 09718002 A EP09718002 A EP 09718002A EP 2260185 A2 EP2260185 A2 EP 2260185A2
Authority
EP
European Patent Office
Prior art keywords
exhaust gas
pump
working fluid
evaporator
mass flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09718002A
Other languages
German (de)
English (en)
Inventor
Jan GÄRTNER
Thomas Koch
Josef Martin Mercz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
Daimler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler AG filed Critical Daimler AG
Publication of EP2260185A2 publication Critical patent/EP2260185A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K15/00Adaptations of plants for special use
    • F01K15/02Adaptations of plants for special use for driving vehicles, e.g. locomotives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/101Regulating means specially adapted therefor

Definitions

  • the invention relates to a method for obtaining energy from an exhaust gas flow from an internal combustion engine and to a motor vehicle, in which such an exhaust gas flow is known to be available and the method can therefore be used.
  • the exhaust gas from an internal combustion engine has a fairly high temperature, and it would seem desirable to use the heat energy contained in the exhaust gas. It makes sense to gain electrical energy by means of the heat energy in the exhaust gas. It makes sense here to resort to known from the field of power plants techniques.
  • a so-called Clausius-Rankine cycle is used: A working fluid, usually water, is vaporized alternately at high pressure and condensed at low pressure. The high pressure is reduced in an expansion machine, in particular a turbine, with release of labor, so that electrical energy is recovered. After condensing in a condenser, the now-liquid working fluid is fed to the evaporator by means of a pump.
  • the working fluid receives heat from another fluid via the so-called indirect heat transfer, in which the other fluid is separated from the working fluid via a dividing wall.
  • said other fluid could be exactly the exhaust gas flow from the internal combustion engine. So far, however, difficulties in the realization result from the fact that the exhaust gas mass flow is variable and in particular depends on the current performance of the internal combustion engine. It therefore does not make sense to move the working fluid evenly in the Rankine cycle. It has already been thought of a regulation of the movement of the working fluid, which should take place as a function of measured values obtained on the working fluid, z. B. as a function of temperature, mass flow or pressure of the working medium. Due to the inertia of such a scheme, by the ratio of system internal volume to mass flow conditional, however, stable regulation of that kind has proved to be impracticable.
  • EP 1 333 157 A1 It is actually described in EP 1 333 157 A1 that the exhaust gas flow from an internal combustion engine is used as the energy source for a Rankine cycle.
  • two circulation systems are provided, in which the working fluids differ from one another by their boiling point.
  • the pump power is variably adjustable. It is stated in EP 1 333 157 A1 that the efficiency of the recovery of heat energy from the exhaust gas flow can be set to the maximum.
  • Object of the present invention to provide a method for recovering energy from an exhaust gas stream from an internal combustion engine, which is practicable, but simplified over the prior art.
  • the object is achieved by a method having the features according to claim 1.
  • To solve the problem also includes the provision of a motor vehicle with the features according to claim 6.
  • a Clausius-Rankine cycle process for obtaining energy from an exhaust gas flow, heat energy being supplied to the working fluid in an evaporator from the exhaust gas flow.
  • the transport performance of the pump is controlled as a function of at least one in the evaporator per time by each of the current exhaust gas flow transferable heat-determining size, thus adjusted by time variable.
  • the invention is based on the recognition that it is possible to dispense with a regulation on the basis of in-circuit variables if the quantity of liquid working fluid transported to the evaporator is adapted to the current exhaust gas flow. If the exhaust gas flow provides more heat energy, the pumping capacity of the pump may be higher, and if the exhaust gas flow provides less heat energy, the pumping capacity of the pump may be lower.
  • the heat energy provided is directly proportional to the exhaust gas mass flow, so that the transport capacity of the pump is preferably set as a function of at least this.
  • a characteristic curve for a control variable determining the transport capacity of the pump can be used as a function of the exhaust gas mass flow when setting the transport capacity of the pump.
  • Particularly preferred is additionally also taken into account the exhaust gas temperature.
  • a map is preferably used, which reproduces a manipulated variable which determines the transport capacity of the pump, depending on exhaust gas mass flow and exhaust gas temperature.
  • the exhaust gas mass flow does not have to be the actual measured variable.
  • the exhaust gas mass flow is defined defined by the operation of the internal combustion engine.
  • One or more variables determining the operation of the internal combustion engine can therefore also be determined, and a characteristic map can be provided for the internal combustion engine (a characteristic curve when only one variable is used), which reproduces the dependence of the exhaust gas mass flow on this variable. Therefore, based on a map of the or the determined size (s) can be closed to the exhaust gas mass flow and depending on this so estimated exhaust gas mass flow, the transport capacity of the pump can be set.
  • the transport capacity of the pump is usually determined directly via a speed of the pump.
  • the invention provides for the first time a motor vehicle with an internal combustion engine, in which a single Rankine cycle is used.
  • the pump transport power is adjustable, namely according to the invention the adjustment of the pump transport performance just by control signals from a control device, and this control device is designed to transport the pump just as a function of at least one in the evaporator per time by the each current exhaust flow to control transferable heat energy determining size.
  • the exhaust gas mass flow if appropriate also the temperature, is preferably used as the input variable for the control.
  • the control device must receive signals which indicate the variables determining the operation of the internal combustion engine.
  • the operation of the internal combustion engine is determined on the one hand by the amount of fuel injected into it and on the other hand by the supplied air. Both variables in turn depend on the setting of an accelerator pedal.
  • the control is preferred with a Source coupled to a signal indicating the position of an accelerator pedal.
  • This source may be in a electronically acting accelerator pedal, a sensor which detects the position of the accelerator pedal directly, wherein the signals from the sensor are then fed to a control device which controls the internal combustion engine (or the fuel and air supply to this).
  • the above-mentioned source of the signals may include a measuring device for the gas flow.
  • the motor vehicle comprises an internal combustion engine 10, in which fuel is burned, whereby exhaust gas is produced, which is discharged via an exhaust gas line 12.
  • the exhaust gas in the exhaust pipe 12 is now used as an energy source for a Clausius-Rankine cycle.
  • a working fluid in this case preferably water
  • the water is pumped in the liquid state from a pump 14 to an evaporator 16.
  • a transfer of heat energy from the exhaust gas to the water takes place, so that it is evaporated and brought to a high pressure.
  • the steam is fed to a turbine 18, which is coupled to a generator 20.
  • the water vapor relaxes when passing through the turbine 18, and the work done here is converted by the generator 20 into electrical energy.
  • the water vapor After passing through the turbine 18, the water vapor is condensed to water in a condenser 22, with a heat transfer to a suitable coolant also taking place here.
  • a suitable coolant also taking place here.
  • This may be as well as the working fluid water, but which is separated from the working fluid by a partition wall in the condenser 22.
  • This water can be passed through the radiator of the motor vehicle.
  • the working fluid water is then returned to the pump 14 from the condenser 22.
  • the rotational speed of the pump 14 is variably adjustable, namely, it is controlled by a control device 24.
  • the control device 24 is to ensure that as much heat energy is transferred from the exhaust gas stream to the working fluid.
  • the control device 24 can in particular use a characteristic map which describes the rotational speed of the pump as a function of exhaust gas mass flow and exhaust gas temperature. Since the control takes place as a function of the variables exhaust gas mass flow and exhaust gas temperature, the control device 24 must receive corresponding information signals.
  • a suitable measuring device 26 may be provided in or on the exhaust gas line 12, which measures the exhaust gas mass flow and also the exhaust gas temperature.
  • a sensor 28 may also detect the position of an accelerator pedal 30 of the motor vehicle, via which the amount of fuel which is supplied via an injection line 32 to the internal combustion engine 10, and the amount of air which is supplied via a line 34 to the internal combustion engine 10, is determined.
  • the position of the accelerator pedal 30 therefore determines the operation of the internal combustion engine 10, and the exhaust gas mass flow is directly dependent on the position of the accelerator pedal 30, in part, the exhaust gas temperature.
  • the control device can determine how large the exhaust gas mass flow or the exhaust gas temperature is, namely for this purpose in the control device 24 appropriate characteristics or maps stored that reflect a relationship of the position of the accelerator pedal 30 to the exhaust gas mass flow.
  • a practicable solution is when it is deduced due to the position of the accelerator pedal 30 on the exhaust gas mass flow, and when the temperature of the exhaust gas flow is determined by the sensor 26.
  • the system according to the invention causes the Rankine cycle to run very stably, especially during transient processes.
  • the system can also be easily integrated into an existing rule solution system, eg.
  • the controller 24 may be identical to the engine controller 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Dans un véhicule à moteur à combustion interne (10), le courant de gaz d'échappement provenant du moteur est utilisé comme source de chaleur pour un processus cyclique Clausius-Rankine. La capacité de transport d'une pompe (14) dans le processus cyclique Clausius-Rankine est variable et est réglée par action d'un dispositif de commande (24), en fonction du débit massique des gaz d'échappement et, éventuellement, également en fonction de la température des gaz d'échappement. L'invention permet l'utilisation, pour la première fois, d'un seul cycle de Clausius-Rankine dans un véhicule à moteur.
EP09718002A 2008-03-06 2009-02-24 Procédé de production d'énergie a partir d'un courant de gaz d'échappement, et véhicule à moteur correspondant Withdrawn EP2260185A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008012907A DE102008012907A1 (de) 2008-03-06 2008-03-06 Verfahren zum Gewinnen von Energie aus einem Abgasstrom sowie Kraftfahrzeug
PCT/EP2009/001287 WO2009109311A2 (fr) 2008-03-06 2009-02-24 Procédé de production d'énergie a partir d'un courant de gaz d'échappement, et véhicule à moteur correspondant

Publications (1)

Publication Number Publication Date
EP2260185A2 true EP2260185A2 (fr) 2010-12-15

Family

ID=40936279

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09718002A Withdrawn EP2260185A2 (fr) 2008-03-06 2009-02-24 Procédé de production d'énergie a partir d'un courant de gaz d'échappement, et véhicule à moteur correspondant

Country Status (5)

Country Link
US (1) US8572964B2 (fr)
EP (1) EP2260185A2 (fr)
JP (1) JP2011519398A (fr)
DE (1) DE102008012907A1 (fr)
WO (1) WO2009109311A2 (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007062580A1 (de) * 2007-12-22 2009-06-25 Daimler Ag Verfahren zur Rückgewinnung einer Verlustwärme einer Verbrennungskraftmaschine
DE102008053066A1 (de) * 2008-10-24 2010-04-29 Behr Gmbh & Co. Kg System mit einem Rankine-Kreislauf
DE102009020615A1 (de) * 2009-05-09 2010-11-11 Daimler Ag Abgaswärmenutzung in Kraftfahrzeugen
FR2956153B1 (fr) * 2010-02-11 2015-07-17 Inst Francais Du Petrole Dispositif de controle d'un fluide de travail a bas point de congelation circulant dans un circuit ferme fonctionnant selon un cycle de rankine et procede utilisant un tel dispositif
DE102010025185A1 (de) 2010-06-26 2011-12-29 Daimler Ag Abwärmenutzungsvorrichtung
DE102010042412A1 (de) * 2010-10-13 2012-04-19 Robert Bosch Gmbh Dampfturbine
CN102061970A (zh) * 2010-11-29 2011-05-18 北京丰凯换热器有限责任公司 一种利用车辆尾气发电的方法
DE102011076405A1 (de) * 2011-05-24 2012-11-29 Robert Bosch Gmbh Verfahren zur Nutzung der Abwärme einer Brennkraftmaschine
DE102011115399A1 (de) 2011-10-06 2013-04-11 Daimler Ag Kraftfahrzeug
KR101399558B1 (ko) * 2012-11-16 2014-05-27 삼성중공업 주식회사 배기가스 질량유량 측정 장치 및 그 방법
WO2015134672A1 (fr) * 2014-03-04 2015-09-11 Wave Solar, Llc Moteur à pistons à liquide
DE102015008998A1 (de) 2015-07-10 2017-01-12 qpunkt Deutschland GmbH Verfahren zur Nutzung der Abgaswärme eines Verbrennungsmotors in einem Kraftfahrzeug in nicht konstanten Betriebszuständen
DE102016005717A1 (de) 2015-12-24 2017-01-26 Daimler Ag Vorrichtung und Verfahren zur Nutzung von Abwärme einer Verbrennungskraftmaschine in einem Kraftfahrzeug
US11156152B2 (en) 2018-02-27 2021-10-26 Borgwarner Inc. Waste heat recovery system with nozzle block including geometrically different nozzles and turbine expander for the same
DE102019217031A1 (de) 2019-11-05 2021-05-06 Mahle International Gmbh Verfahren zur Nutzung von Abwärme einer Wärmekraftmaschine

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH310325A (de) 1952-11-28 1955-10-15 Saurer Ag Adolph Motorbremse an 4-Takt-Brennkraftmaschinen.
DE3428626A1 (de) 1984-08-03 1986-02-13 Daimler-Benz Ag, 7000 Stuttgart Viertakt-brennkraftmaschine
DE3839450A1 (de) 1988-11-23 1990-05-31 Daimler Benz Ag Motorbremse mit einem im zylinderkopf der brennkraftmaschine angeordneten drosselventil
DE4007287A1 (de) 1990-03-08 1991-09-12 Man Nutzfahrzeuge Ag Motorbremse fuer luftverdichtende brennkraftmaschine
DE19505725C2 (de) 1995-02-20 2000-04-27 Daimler Chrysler Ag Motorbremse
DE19634108C1 (de) 1996-08-23 1997-08-21 Daimler Benz Ag Brennkraftmaschine mit mindestens einem je Zylinder angeordneten Drosselventil
IT1291490B1 (it) 1997-02-04 1999-01-11 C R F Societa Consotile Per Az Motore pluricilindrico a ciclo diesel con valvole ad azionamento variabile
JP2002115505A (ja) 2000-10-11 2002-04-19 Honda Motor Co Ltd 内燃機関のランキンサイクル装置
WO2003029619A1 (fr) * 2001-09-28 2003-04-10 Honda Giken Kogyo Kabushiki Kaisha Dispositif de commande thermique d'un evaporateur
JP3901608B2 (ja) * 2002-07-24 2007-04-04 本田技研工業株式会社 ランキンサイクル装置
JP4119281B2 (ja) 2003-02-28 2008-07-16 本田技研工業株式会社 エンジンの排気還流装置
US7954465B2 (en) 2004-08-17 2011-06-07 Jacobs Vehicle Systems, Inc. Combined exhaust restriction and variable valve actuation
FR2884555A1 (fr) * 2005-04-13 2006-10-20 Peugeot Citroen Automobiles Sa Dispositif de recuperation d'energie d'un moteur a combustion interne

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009109311A3 *

Also Published As

Publication number Publication date
WO2009109311A3 (fr) 2011-05-19
US8572964B2 (en) 2013-11-05
WO2009109311A2 (fr) 2009-09-11
DE102008012907A1 (de) 2009-09-10
JP2011519398A (ja) 2011-07-07
US20110056203A1 (en) 2011-03-10

Similar Documents

Publication Publication Date Title
EP2260185A2 (fr) Procédé de production d'énergie a partir d'un courant de gaz d'échappement, et véhicule à moteur correspondant
EP2686526B1 (fr) Procédé pour faire fonctionner un processus à circuit de vapeur
WO2014102027A2 (fr) Système de récupération d'énergie à partir d'un flux de chaleur perdue de moteur à combustion interne
EP2567074A2 (fr) Régulation d'un processus cyclique thermique
EP2229524A2 (fr) Procédé de récupération de pertes de chaleur d'un moteur à combustion interne
WO2014117914A1 (fr) Procédé permettant de faire fonctionner un dispositif de récupération de chaleur résiduelle
DE102015007104A1 (de) Abwärmenutzungsvorrichtung und Verfahren zu deren Betrieb
EP2732140B1 (fr) Procédé de régulation d'un dispositif de récupération de chaleur pour un moteur à combustion interne
WO2012159829A1 (fr) Procédé et circuit thermodynamique pour utiliser la chaleur perdue d'un moteur à combustion interne
WO2016087096A1 (fr) Procédé de fonctionnement d'un dispositif d'utilisation de chaleur dissipée
DE102014206012A1 (de) Verfahren zur Regelung eines Dampfgehalts eines in einem Verdampfer eines Systems zur Durchführung eines thermodynamischen Kreisprozesses erhitzten Arbeitsmediums, Steuereinrichtung für ein System, System für einen thermodynamischen Kreisprozess, und Anordnung aus einer Brennkraftmaschine und einem System
EP3118424B1 (fr) Reglages de processus orc par pulverisation d'un fluide non evapore
EP2886811B1 (fr) Procédé de régulation de condenseur dans un cycle thermique et cycle thermique
WO2015149916A1 (fr) Procédé permettant de faire fonctionner un système pour un circuit fermé thermodynamique, dispositif de commande pour un système d'un circuit fermé thermodynamique, système, et ensemble composé d'un moteur à combustion interne et d'un système
DE102008034977A1 (de) Dampfkreisprozessvorrichtung und Verfahren zur Steuerung derselben
DE102010063701B4 (de) Verfahren und Vorrichtung zur Nutzung von Abwärme einer Wärmekraftmaschine
DE102011084352B4 (de) Verfahren und Steuergerät zum Betreiben eines Leitungskreises zur Abwärmenutzung einer Brennkraftmaschine
WO2017021033A1 (fr) Système de récupération de chaleur d'un moteur à combustion interne et procédé de fonctionnement du système de récupération de chaleur
DE102015208557B3 (de) Verfahren zur Bestimmung eines Schmierstoffanteils in einem Arbeitsfluid-Kreislauf eines Systems zur Durchführung eines thermodynamischen Kreisprozesses, System zur Durchführung eines thermodynamischen Kreisprozesses, und Anordnung mit einer Brennkraftmaschine und einem solchen System
WO2012084242A1 (fr) Détermination de la vapeur vive d'une machine à détente
EP1764486A1 (fr) Procédé pour déterminer la charge de pointe actuelle d'une centrale et système de regulation
DE102017200353A1 (de) Verfahren zur Berechnung einer Verteilung von Flüssigkeiten in einer Abgasanlage eines Verbrennungsmotors
EP2937630A1 (fr) Procédé de fonctionnement d'un système pour un cycle fermé thermodynamique doté d'un évaporateur à plusieurs flux, dispositif de commande pour un système, système pour un cycle fermé thermodynamique doté d'un évaporateur à plusieurs flux et agencement d'un moteur à combustion interne et d'un système
DE102016007186A1 (de) Vorrichtung und Verfahren zum Betrieb eines Abwärmenutzungssystems
DE102011116276B4 (de) Dampfkreisprozessvorrichtung, Verfahren zum Betreiben einer solchen und Fahrzeug

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100907

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MERCZ, JOSEF, MARTIN

Inventor name: KOCH, THOMAS

Inventor name: GAERTNER, JAN

DAX Request for extension of the european patent (deleted)
R17D Deferred search report published (corrected)

Effective date: 20110519

17Q First examination report despatched

Effective date: 20141127

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20150521