EP2254705B1 - Method and device for automatically introducing or applying viscous material - Google Patents

Method and device for automatically introducing or applying viscous material Download PDF

Info

Publication number
EP2254705B1
EP2254705B1 EP09724219A EP09724219A EP2254705B1 EP 2254705 B1 EP2254705 B1 EP 2254705B1 EP 09724219 A EP09724219 A EP 09724219A EP 09724219 A EP09724219 A EP 09724219A EP 2254705 B1 EP2254705 B1 EP 2254705B1
Authority
EP
European Patent Office
Prior art keywords
gap
transition
volume
groove
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09724219A
Other languages
German (de)
French (fr)
Other versions
EP2254705A1 (en
Inventor
Heinz Schmitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INOS Automationssoftware GmbH
Original Assignee
INOS Automationssoftware GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INOS Automationssoftware GmbH filed Critical INOS Automationssoftware GmbH
Publication of EP2254705A1 publication Critical patent/EP2254705A1/en
Application granted granted Critical
Publication of EP2254705B1 publication Critical patent/EP2254705B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/08Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means
    • B05B12/12Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means responsive to conditions of ambient medium or target, e.g. humidity, temperature position or movement of the target relative to the spray apparatus
    • B05B12/122Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means responsive to conditions of ambient medium or target, e.g. humidity, temperature position or movement of the target relative to the spray apparatus responsive to presence or shape of target
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/04Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation
    • B05B13/0431Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation with spray heads moved by robots or articulated arms, e.g. for applying liquid or other fluent material to 3D-surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • B05C11/1002Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves
    • B05C11/1005Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves responsive to condition of liquid or other fluent material already applied to the surface, e.g. coating thickness, weight or pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • B05C11/1002Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves
    • B05C11/1015Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves responsive to a conditions of ambient medium or target, e.g. humidity, temperature ; responsive to position or movement of the coating head relative to the target
    • B05C11/1021Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves responsive to a conditions of ambient medium or target, e.g. humidity, temperature ; responsive to position or movement of the coating head relative to the target responsive to presence or shape of target
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/0208Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work for applying liquid or other fluent material to separate articles
    • B05C5/0212Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work for applying liquid or other fluent material to separate articles only at particular parts of the articles
    • B05C5/0216Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work for applying liquid or other fluent material to separate articles only at particular parts of the articles by relative movement of article and outlet according to a predetermined path

Definitions

  • the present invention relates to a method for the automatic introduction or application of viscous material from a doser into a groove, a gap, a channel or a joint or along an edge or a transition according to the preamble of claim 1, and a corresponding device according to the The preamble of claim 12.
  • Methods and devices of the generic type are, for example, from the DE 20 2006 008 005 U1 or the US 6,165,562 A known.
  • the introduced or applied material is in one pneumatically or hydraulically, preferably electrically, operated dosing device which is moved along the gap or transition to be filled or coated.
  • the material in the doser is heated to be more fluid, and then cools in the gap or at the transition.
  • the material to be introduced or applied is, for example, an adhesive, a corrosion protection, a seal, a sealing material, foam or the like.
  • Delivery volume and feed rate of the doser are specified.
  • the preset values for delivery volume and feed rate are based on empirical values and standard values for the dimensions of the gap to be filled or the transition to be coated. Experience has shown that these default values can not be met in practice. To ensure a complete filling or coating of the gap or the transition, even if the dimensions of the gap or the transition are above the standard values, the feed rate and delivery volume are very high. This requires a time and labor intensive manual or automatic post-processing of the introduced or applied material to remove excess material (so-called. Amount compensation). Alternatively, feed rate and delivery volume can also be predetermined according to the values of the standard dimensions of the gap or the transition, which then however also requires automatic or manual post-processing (so-called minimum quantity compensation). Post-processing may be required for aesthetic or other reasons (e.g., technical, physical or chemical reasons).
  • the present invention is based on the object, the introduction or application of viscous material from a doser in a groove, a gap, a channel or a joint or design along an edge or a transition to the effect and further develop that the time-consuming and labor-intensive post-processing of the filled or coated material in the region of the gap or transition can be omitted.
  • the introduced or applied material volume is measured and the delivery volume or the feed rate of the dosing is controlled or regulated in dependence on the measured value.
  • the device comprises means for measuring the introduced or applied material volume and means for controlling or regulating the delivery volume or the feed rate of the dosing in dependence on the measured value.
  • the calculated amount of material can be introduced or applied so that no shortages or excess quantities occur.
  • the proposed method compensates for variations in the dimensions of the grooves, gaps, channels, joints, edges, transitions or seams of the part of the workpiece to be filled or coated. A time-consuming and labor-intensive post-processing of the applied or applied material can thus be omitted.
  • sensors For measuring the grooves, gaps, channels, joints, edges, transitions or seams of the workpiece to be filled or coated, preferably several sensors are used. These may be attached to a robot arm together with the doser and guided by the robot along the part of the workpiece to be groomed or coated.
  • the introduced or applied volume of material is measured, and the delivery volume or the feed rate of the metering device is controlled or regulated as a function of the measured value.
  • the measurement of the introduced or applied material volume can be used for a correction of the control of the metering device (feed rate and / or delivery volume).
  • the volume or area of the part of the workpiece is measured, in which the material is introduced or onto which the material is to be applied.
  • the measurement may also be part of a regulation of the metering device.
  • the introduced or applied amount of material can be constantly determined.
  • the feed of the dosing is increased or decreased or reduces the delivery volume of the dosing or increased.
  • the correct backfilling or coating of the workpiece can be regulated.
  • the groove, the gap, the channel, the joint, the edge or the transition be measured by means of laser triangulation sensors, stereo cameras or laser transit time sensors.
  • any other suitable sensors for measuring the to be filled or to coating part of the workpiece are used.
  • the proposed methods are particularly well suited for measuring grooves, gaps, channels, joints, edges, transitions and seams. In particular, they provide the accuracy and reliability required for the measurement to prevent spills in the grouting or coating material.
  • the gap, the channel, the joint, the edge or the transition is measured , and during a subsequent run of the groove, the gap, the channel, the joint, the edge or the transition, the determined material volume is introduced or applied.
  • the sensors are moved along the part of the workpiece to be filled or coated.
  • the part of the workpiece to be filled or coated is measured and the measured values are stored.
  • the actual grouting or coating of the workpiece is controlled or regulated as a function of the stored measured values.
  • the first pass for measuring the workpiece to be grouted or coated can be limited to random samples at specific times.
  • the sensors may be mounted on the same robotic arm as the doser (in which case the same robotic arm would be moved twice along the part of the workpiece to be grouted) or on a separate robotic arm (in this case both would Robot arms successively along the to be grouted or coated
  • the sensors are mounted on the same robot arm as the doser.
  • the robot arm only has to be moved once along the part of the workpiece to be grouted or coated.
  • the detection field of the sensors in the direction of movement of the robot arm is arranged in front of the operating point of the metering device.
  • the sensors are arranged in the direction of movement of the robot arm in front of the metering device.
  • the measurement of the grooves, gaps, channels or joints to be filled or the edges, transitions or seams to be coated and the calculation of the required volume of material preferably takes place in real time. This means that measurement and calculation and application or application of the material takes place in the same run and results in the measurement and calculation no delay in the introduction or application of the material.
  • the filled or coated part of the workpiece should have a certain amount of material or a certain volume of material.
  • the material in the doser is heated and cools after being applied. When the material cools, the volume of the material may change.
  • the volume of material required taking into account a change in volume, in particular a reduction in volume, by temperature change, in particular by reducing the temperature, after the introduction or application of the material is determined such that the introduced or applied material volume corresponds to a predetermined target value.
  • the volume change during a temperature change of the material, in particular during a cooling of the material is taken into account in the calculation of the required material volume.
  • the introduced or applied volume of material is measured by means of laser triangulation sensors, stereo cameras or laser transit time sensors. These allow a fast and reliable measurement of the material volume.
  • the metering device is first operated at a predetermined feed rate and with a predetermined delivery volume and that correction values for the feed rate and / or the delivery volume are determined by the method according to the invention and determined during activation or deactivation Control of the dosing device must be taken into account.
  • the preset values for delivery volume and feed rate are based on empirical values and standard values for the dimensions of the gap to be filled or the transition to be coated. Experience has shown that these default values can not be met in practice. Deviations from the empirical values and standard values can be taken into account with the aid of the method according to the invention.
  • the groove, the gap, the channel, the joint, the edge, the seam or the transition is automatically measured by sensors, wherein by means of the sensors at the same time the course of the groove, the gap, the channel, the joint, the edge or of the transition.
  • the sensors are used both for measuring the part of the workpiece in or on which the material is to be applied, and for determining the trajectory along which the meter is moved during the introduction or application of the material to the workpiece.
  • the detection of the trajectory can during a separate run before the actual application or application of the material, for example simultaneously in a run for measuring the groove, the gap, the channel, the joint, the edge or the transition, or simultaneously with the Applying or applying the material to the workpiece in a single pass are performed.
  • the method according to the invention can be used particularly advantageously in the manufacture of motor vehicles.
  • the method be used in the manufacture of motor vehicles for sealing, seam sealing or foam filling.
  • the method can also be used in other areas, for example in prefabricated house construction, in mechanical engineering, etc.
  • the present invention relates to a method for automatic introduction or application of viscous material from a doser into a gap or along a seam.
  • the term "gap” and “seam” are used below to represent any kind of groove, gap, channel, joint, edge, seam or transition.
  • the viscous material is, for example, an adhesive, a corrosion inhibitor (eg underbody protection, cavity seal), an insulation foam or the like.
  • the method is preferably used in the field of motor vehicle manufacturing. Of course, it can also be used in any other areas, for example. In mechanical engineering or in the manufacture of prefabricated houses, etc.
  • FIG. 9 A known from the prior art device for implementing the method is in FIG. 9 represented and designated in its entirety by the reference numeral 1.
  • the device 1 comprises a metering device 2, in which the material 3 to be filled or applied is kept ready.
  • the metering device 2 comprises a storage container 4 having an opening and a nozzle 5 which is connected via a hose 6 to the opening of the container 4.
  • an electrically, hydraulically, pneumatically or otherwise driven pressure generating unit 7 By means of an electrically, hydraulically, pneumatically or otherwise driven pressure generating unit 7, the material 3 is conveyed into the tube 6 and the nozzle 5.
  • the delivery volume V of the metering device 2 can be varied.
  • the metering device 2 or the nozzle 5 is moved by means of an industrial robot 8 or in any other way at a feed rate v along the gap 9 to be filled or coated or transition of a workpiece 10.
  • the nozzle 5 is attached to a robot arm.
  • a robot controller 11 provided, for example, a programmable logic controller (PLC) includes. This sends control commands via a control line 12 to the robot 8 and can receive feedback signals from the robot 8 via the line 12.
  • PLC programmable logic controller
  • delivery volume V and feed rate v of the metering device 2 are predetermined.
  • the predetermined values are based on empirical values and standard values for the dimensions of the gap 9 to be filled or the transition to be coated. Experience has shown that these default values can not be met in practice. In particular, the dimensions of the gap 9 may be subject to fluctuations due to manufacturing tolerances. The prior art can not respond to these fluctuations. In order to bring in any case enough material 3 'in the gap 9 or on the transition or apply relatively much material 3' is introduced or applied in the prior art. This requires time-consuming and labor-intensive manual or automatic post-processing of the introduced or applied material 3 'in order to remove excess material (so-called additional quantity compensation).
  • FIG. 1 schematically proposed method proposed.
  • the method begins in a function block 20.
  • the gap 9 or the transition is measured in a function block 21.
  • suitable sensors which enabled an accurate, non-contact, optical measurement of the gap 9 or of the transition, for example by means of laser triangulation sensors, stereo cameras or laser transit time sensors.
  • the material volume required for filling the gap 9 or for covering the transition is determined as a function of the measured volume of the gap 9 or the measured dimensions of the transition.
  • the required material volume can be dependent on application-specific specifications. For example, in some applications, it may be sufficient if a small amount of material 3 'is contained in the gap 9, so that the surface of the material 3' is concave inwardly. In other applications, it may again be necessary that so much material 3 'is introduced into the gap 9, that the surface of the material 3' bulges convexly outward.
  • the doser 2 is activated in a function block 23, so that the determined amount of material is applied to the gap 9 or to the transition.
  • the delivery volume V of the metering device 2 can be varied by the pressure generating means 7 are driven accordingly.
  • the feed rate v of the dosing device 2 can be changed by the robot controller 11 is controlled accordingly. In this way, it is ensured that even with deviations in the dimensions of the gap 9 or the transition from the standard values, a sufficient filling of the gap 9 or coating of the transition is always ensured, without a subsequent processing is required.
  • a function block 24 the process is completed.
  • Method step 21 may be performed either in the same pass as steps 22 or 23, or alternatively in a previous first pass.
  • the robot 8 moves the nozzle 5 and sensors attached thereto once along the gap 9 to be filled or the transition to be coated.
  • the sensors are fixed or aligned so that their detection range in Feed direction in front of the nozzle 5 is located.
  • the gap 9 or the transition is measured by the sensors (step 21) and the required amount of material is calculated (step 22). Measurement and calculation preferably takes place in real time.
  • the nozzle 5 reaches the immediately previously measured range, it conveys the calculated material volume into the region of the gap 9 or onto the region of the transition (step 23). The measurement of the gap 9 and the transition and the conveying of the material 3 'takes place in one pass.
  • the sensors are first moved along the gap 9 or the transition in a first pass, and the gap 9 or the transition is measured (step 21).
  • the movement of the sensors can be done by means of the robot 8 or in another way, for example by means of another robot.
  • the required material volume can also be calculated in the first pass (step 22). This completes the first pass.
  • the required volume of material is first calculated (step 22), if this has not already taken place in the first pass.
  • the nozzle 5 is again moved along the gap 9 or the transition by means of the robot 8 and controlled in such a way that it conveys the calculated material volume into the region of the gap 9 or onto the region of the transition (step 23). Measuring the gap 9 or the transition (and calculating the required material volume) takes place offset in time to the introduction or application of the material 3 'on the workpiece 10th
  • FIG. 2 a structural diagram illustrating the method according to the invention according to a first preferred embodiment is shown.
  • the metering device 2 is controlled as part of a control.
  • the workpiece 10 can be seen with the gap 9 formed therein.
  • the dimensions of the gap 9, in particular its cross-sectional area or its volume, are detected by a plurality of sensors 32 during movement along the gap 9.
  • the sensors 32 used are preferably optical sensors, in particular laser triangulation sensors, stereo cameras or laser transit time sensors.
  • the sensors 32 allow a non-contact measurement of the part of the workpiece 10 to which the material 3 is to be introduced or applied.
  • the sensors 32 preferably emit light in any wavelength range. In particular, the sensors can emit visible light or invisible UV or IR radiation.
  • two sensors 32 are used. Of course, more than two sensors 32 can be used.
  • the measuring ranges of the sensors 32 are designated by the reference numeral 33.
  • the measuring areas 33 comprise the gap 9 to be measured and are preferably arranged in front of the nozzle 5 (not shown) in the feed direction.
  • the sensor signals are passed to a processing unit 34, which determines the dimensions of the gap 9.
  • the result of the measurement of the gap 9 is forwarded to a further processing unit 35, where then the required volume of material for "sufficient" filling of the gap 9 with material 3 'is calculated. What is “sufficient” depends on the application and the wishes of the user. What the user considers "sufficient", he can specify in the form of parameters Par.
  • the calculated volume of material is then forwarded to a further processing unit 36, where suitable control signals (eg delivery volume V or feed rate v) for the doser 2 are determined as a function of the calculated required volume of material.
  • suitable control signals eg delivery volume V or feed rate v
  • correction values for fixed values for delivery volume V and / or feed rate v can also be determined.
  • a correction of the control can be provided.
  • the amount of material introduced into the gap 9 or applied to a transition is measured in a processing unit 37. This can be done by means of suitable sensors, however, in FIG. 2 are not shown. In particular, the use of laser triangulation sensors, stereo cameras or laser transit time sensors is intended. From the processing unit 36, the calculated volume of material and the degree of "sufficient" filling of the gap 9 is available. From a comparison of the values for a "sufficient" filling of the gap 9 and the actually introduced into the gap 9 amount of material suitable correction values for the control of the metering device 2 can be determined.
  • correction values are passed back to the processing unit 35, where the calculated material volume is corrected, so that the actually introduced amount of material actually achieves a "sufficient" filling of the gap 9.
  • the correction values could also be taken directly into the processing unit 36 when controlling the dosing device 2.
  • processing units 34 to 37 are preferably implemented as software which can run on a computing device, in particular on a microprocessor.
  • any disturbances S can be considered, such as, for example, a change the dimensions or the volume of the introduced material 3 'due to a change in temperature of the material 3'.
  • a shrinkage of the material 3 'due to cooling of the introduced in the heated state material 3' is taken into account.
  • a heating of the introduced material 3 'to cure the material 3' or to connect the material 3 'with the surface of the workpiece 10 is conceivable, which can also lead to a change in the dimensions or the volume of the introduced material 3'.
  • the inventive method can be used for any type of groove, gap, channel, joint, edge, seam or transition. Exemplary are in the FIGS. 4 to 6 presented various uses.
  • a gap or groove 9, which is partially filled with a material 3 ', is in FIG. 4 shown.
  • a transition between two workpieces 10 'and 10 is in FIG. 5 shown.
  • the inner edge 30 is partially coated with a material 3 '.
  • At the inner edge 30 may also be formed a weld which is covered by the material 3 '.
  • a weld seam 31 is shown between two end-to-end adjoining workpieces 10 'and 10 "The weld seam 31 and the surface regions of the workpieces 10', 10" adjoining the seam 31 are partially coated with material 3 '.
  • FIG. 7 is a device 1 for implementing the method according to the first preferred embodiment shown.
  • the sensors 32 are fastened together with the nozzle 5 to the arm of the industrial robot 8.
  • the part of the gap 9 still to be filled with material 3 'in the feed direction in front of the nozzle 5 lies in the detection area 33 of the sensors 32.
  • the measured values of the sensors 32 are passed to a metering control 38 where the dimensions of the gap 9 are then determined as a function of the measured values , the required material volume for a "sufficient" filling of the gap 9 and drive signals 40, 41st (Delivery volume V * and / or feed rate v * or alternatively correction values for the delivery volume .DELTA.V or the feed rate .DELTA.v) are determined for the doser 2.
  • the control signals 40, 41 are then transmitted to the pressure generating device 7 (for varying the delivery volume V) or the robot controller 11 (for varying the feed rate v).
  • the dosing control 38 thus comprises the processing units 34 to
  • FIG. 3 shows a further embodiment of the method according to the invention.
  • the control of the dosing device 2 by means of a control.
  • the processing units 34 to 37 correspond to the processing units 34 to 37 FIG. 2 .
  • the measured values of the material 3 'introduced into the gap 9 or applied to the transition are supplied as actual values to the processing unit 35, which then determines a control difference from a comparison of the actual values with the desired values predefined on the basis of the parameter Par.
  • the control difference is fed to a controller 39, which determines one or more signal variables for controlling the metering unit 2 in the processing unit 36.
  • a closed loop for introducing and / or applying material 3 'results in a gap 9 or on a transition.
  • FIG. 8 is a part of a device 1 for implementing the method according to the second preferred embodiment shown.
  • An essential difference to the embodiment FIG. 7 consists in that sensors 39 are additionally provided on the robot arm, which detect with their measuring areas 42 a part of the gap 9 in the feed direction after the nozzle 5.
  • the sensors 39 thus measure the material 3 'introduced into the gap 9 and forward the measured values to the processing unit 37. If the amount of material 3' introduced is too small (less than specified by the parameters Par), the controller 39 reduces the value Feed rate v and / or increases the delivery volume V. With the help of the controller 39 and the closed loop to control the metering 2, the last minor differences between the actual and target value of the introduced into the gap 9 material 3 'can be compensated.
  • the decisive improvement over the prior art already results from the fact that before the introduction of the material 3 ', the dimensions of the gap 9 and the transition are measured and the amount of material to be introduced is adjusted by appropriate control of the dosing device 2.

Description

Die vorliegende Erfindung betrifft ein Verfahren zum automatischen Einbringen oder Auftragen von zähflüssigem Material aus einem Dosierer in eine Nut, einen Spalt, einen Kanal oder eine Fuge bzw. entlang einer Kante oder eines Übergangs gemäß dem Oberbegriff des Anspruchs 1, sowie eine entsprechende Vorrichtung gemäß dem Oberbegriff des Anspruchs 12.The present invention relates to a method for the automatic introduction or application of viscous material from a doser into a groove, a gap, a channel or a joint or along an edge or a transition according to the preamble of claim 1, and a corresponding device according to the The preamble of claim 12.

Verfahren und Vorrichtungen der gattungsgemäßen Art sind bspw. aus der DE 20 2006 008 005 U1 oder der US 6,165,562 A bekannt.Methods and devices of the generic type are, for example, from the DE 20 2006 008 005 U1 or the US 6,165,562 A known.

Derartige Verfahren werden beispielsweise in der Automobilindustrie eingesetzt, um Innenkanten im Bereich von überlappenden Blechen zu versiegeln, Schweißnähte zwischen zwei Blechen abzudichten oder Spalte und Nuten zu verfüllen. Eine sorgsame Ausführung dieser Arbeiten ist unter dem Gesichtspunkt eines möglichst effektiven und langlebigen Korrosionsschutzes von großer Bedeutung. Verfahren der genannten Art werden aber auch in anderen Bereichen eingesetzt, bspw. dem Fertighausbau, im Maschinenbau, etc. eingesetzt.Such methods are used, for example, in the automotive industry to seal inner edges in the area of overlapping sheets, to seal welds between two sheets or to fill gaps and grooves. A careful execution of this work is from the point of view of the most effective and durable corrosion protection of great importance. However, methods of the type mentioned are also used in other areas, for example. Prefabricated houses, used in mechanical engineering, etc.

Das eingebrachte bzw. aufgetragene Material ist in einem pneumatisch oder hydraulisch, vorzugsweise elektrisch, betriebenen Dosierer enthalten der entlang des zu verfüllenden oder zu beschichtenden Spalts oder Übergangs bewegt wird. Vorzugsweise wird das Material im Dosierer erwärmt, damit es besser fließfähig ist, und erkaltet dann in dem Spalt oder am Übergang. Das einzubringende bzw. aufzutragende Material ist bspw. ein Klebstoff, ein Korrosionsschutz, eine Versiegelung, ein Dichtmaterial, Schaum oder ähnliches.The introduced or applied material is in one pneumatically or hydraulically, preferably electrically, operated dosing device which is moved along the gap or transition to be filled or coated. Preferably, the material in the doser is heated to be more fluid, and then cools in the gap or at the transition. The material to be introduced or applied is, for example, an adhesive, a corrosion protection, a seal, a sealing material, foam or the like.

Fördervolumen und Vorschubgeschwindigkeit des Dosierers sind dabei vorgegeben. Die vorgegebenen Werte für Fördervolumen und Vorschubgeschwindigkeit beruhen auf Erfahrungswerten und Standardwerten für die Abmessungen des zu verfüllenden Spalts bzw. des zu beschichtenden Übergangs. Erfahrungsgemäß können diese Standardwerte in der Praxis jedoch nicht eingehalten werden. Um ein vollständiges Verfüllen bzw. Beschichten des Spalts bzw. des Übergangs sicherzustellen, selbst wenn die Abmessungen des Spalts bzw. des Übergangs über den Standardwerten liegen, sind Vorschubgeschwindigkeit und Fördervolumen sehr hoch vorgegeben. Das macht eine zeit- und arbeitsintensive manuelle oder automatische Nachbearbeitung des eingebrachten bzw. aufgetragenen Materials erforderlich, um überschüssiges Material zu entfernen (sog. Mehrmengenausgleich). Alternativ können Vorschubgeschwindigkeit und Fördervolumen aber auch entsprechend den Werten der Standardabmessungen des Spalts bzw. des Übergangs vorgegebenen sein, wodurch dann allerdings ebenfalls eine automatische oder manuelle Nachbearbeitung erforderlich wird (sog. Mindermengenausgleich). Die Nachbearbeitung kann aus ästhetischen oder aus anderen Gründen (z.B. technischen, physikalischen oder chemischen Gründen) erforderlich sein.Delivery volume and feed rate of the doser are specified. The preset values for delivery volume and feed rate are based on empirical values and standard values for the dimensions of the gap to be filled or the transition to be coated. Experience has shown that these default values can not be met in practice. To ensure a complete filling or coating of the gap or the transition, even if the dimensions of the gap or the transition are above the standard values, the feed rate and delivery volume are very high. This requires a time and labor intensive manual or automatic post-processing of the introduced or applied material to remove excess material (so-called. Amount compensation). Alternatively, feed rate and delivery volume can also be predetermined according to the values of the standard dimensions of the gap or the transition, which then however also requires automatic or manual post-processing (so-called minimum quantity compensation). Post-processing may be required for aesthetic or other reasons (e.g., technical, physical or chemical reasons).

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, das Einbringen oder Auftragen von zähflüssigem Material aus einem Dosierer in eine Nut, einen Spalt, einen Kanal oder eine Fuge bzw. entlang einer Kante oder eines Übergangs dahingehend auszugestalten und weiterzubilden, dass die zeit- und arbeitsintensive Nachbearbeitung des verfüllten bzw. beschichteten Materials im Bereich des Spalts oder Übergangs entfallen kann.The present invention is based on the object, the introduction or application of viscous material from a doser in a groove, a gap, a channel or a joint or design along an edge or a transition to the effect and further develop that the time-consuming and labor-intensive post-processing of the filled or coated material in the region of the gap or transition can be omitted.

Zur Lösung dieser Aufgabe wird ausgehend von dem Verfahren der eingangs genannten Art vorgeschlagen, dass das eingebrachte bzw. aufgetragene Materialvolumen gemessen wird und das Fördervolumen oder die vorschubgeschwindigkeit des Dosierers in Abhängigkeit von dem Messwert gesteuert oder geregelt wird. Ausgehend von der Vorrichtung der eingangs genannten Art wird zur Lösung der Aufgabe vorgeschlagen, dass die Vorrichtung Mittel zum Messen des eingebrachten bzw. aufgetragenen Materialvolumens und Mittel zum Steuern bzw. Regeln des Fördervolumens oder der Vorschubgeschwindigkeit des Dosierers in Abhängigkeit von dem Messwert aufweist.To solve this problem is proposed starting from the method of the type mentioned that the introduced or applied material volume is measured and the delivery volume or the feed rate of the dosing is controlled or regulated in dependence on the measured value. Starting from the device of the type mentioned is proposed to solve the problem that the device comprises means for measuring the introduced or applied material volume and means for controlling or regulating the delivery volume or the feed rate of the dosing in dependence on the measured value.

Mit der vorliegenden Erfindung wird die benötigte Materialmenge zum Verfüllen einer Nut, eines Spalts, eines Kanals oder einer Fuge bzw. zum Beschichten einer Kante, eines Übergangs oder einer Naht vor dem Einbringen bzw. Auftragen des Materials und anhand des konkret zu verfüllenden bzw. zu beschichtenden Werkstücks berechnet. Die berechnete Materialmenge kann so eingebracht bzw. aufgebracht werden, dass keine Minder- oder Mehrmengen auftreten. Durch das vorgeschlagene Verfahren werden Schwankungen in den Abmessungen der Nuten, Spalte, Kanäle, Fugen, Kanten, Übergänge oder Nähte des zu verfüllenden bzw. zu beschichtenden Teils des Werkstücks kompensiert. Eine zeit- und arbeitsintensive Nachbearbeitung des ein- bzw. aufgebrachten Materials kann somit entfallen.With the present invention, the required amount of material for filling a groove, a gap, a channel or a joint or for coating an edge, a transition or a seam prior to the introduction or application of the material and on the basis of concrete to be filled or calculated coating workpiece. The calculated amount of material can be introduced or applied so that no shortages or excess quantities occur. The proposed method compensates for variations in the dimensions of the grooves, gaps, channels, joints, edges, transitions or seams of the part of the workpiece to be filled or coated. A time-consuming and labor-intensive post-processing of the applied or applied material can thus be omitted.

Zum Vermessen der Nuten, Spalte, Kanäle, Fugen, Kanten, Übergänge oder Nähte des zu verfüllenden bzw. zu beschichtenden Werkstücks werden vorzugsweise mehrere Sensoren eingesetzt. Diese können zusammen mit dem Dosierer an einem Roboterarm befestigt sein und von dem Roboter entlang des zu verfugenden bzw. zu beschichtenden Teils des Werkstücks geführt werden.For measuring the grooves, gaps, channels, joints, edges, transitions or seams of the workpiece to be filled or coated, preferably several sensors are used used. These may be attached to a robot arm together with the doser and guided by the robot along the part of the workpiece to be groomed or coated.

Ferner wird das eingebrachte bzw. aufgetragene Materialvolumen gemessen, und wird das Fördervolumen oder die vorschubgeschwindigkeit des Dosierers in Abhängigkeit von dem Messwert gesteuert oder geregelt. Die Messung des eingebrachten bzw. aufgetragenen Materialvolumens kann für eine Korrektur der Ansteuerung des Dosierers (Vorschubgeschwindigkeit und/oder Fördervolumen) herangezogen werden. Einerseits wird dann also das Volumen bzw. die Fläche des Teils des Werkstücks gemessen, in das das Material eingebracht bzw. auf das das Material aufgetragen werden soll. Zusätzlich wird dann geprüft, ob die Ansteuerung des Dosierers den erwünschten Erfolg hatte, das heißt ob die gewünschte Materialmenge tatsächlich eingebracht bzw. aufgetragen worden ist. Falls nein, wird die Ansteuerung des Doseriers entsprechend korrigiert. Die Korrektur wirkt sich dann auf die nachfolgende Ansteuerung des Dosierers aus. Alternativ kann die Messung auch Teil einer Regelung des Dosierers sein. Dabei kann die eingebrachte bzw. aufgetragene Materialmenge ständig ermittelt werden. Je nach dem ob die Nut, der Spalt, der Kanal, die Fuge, die Kante, die Naht oder der Übergang ausreichend mit Material gefüllt bzw. beschichtet ist oder nicht, wird der Vorschub des Dosierers erhöht oder verringert bzw. das Fördervolumen des Dosierers verringert oder erhöht. Dadurch kann die richtige Verfüllung bzw. Beschichtung des Werkstücks geregelt werden.Furthermore, the introduced or applied volume of material is measured, and the delivery volume or the feed rate of the metering device is controlled or regulated as a function of the measured value. The measurement of the introduced or applied material volume can be used for a correction of the control of the metering device (feed rate and / or delivery volume). On the one hand, then, the volume or area of the part of the workpiece is measured, in which the material is introduced or onto which the material is to be applied. In addition, it is then checked whether the control of the dosing had the desired success, that is, whether the desired amount of material has actually been introduced or applied. If no, the control of the dosing unit is corrected accordingly. The correction then affects the subsequent activation of the dosing unit. Alternatively, the measurement may also be part of a regulation of the metering device. In this case, the introduced or applied amount of material can be constantly determined. Depending on whether the groove, the gap, the channel, the joint, the edge, the seam or the transition is sufficiently filled or coated with material or not, the feed of the dosing is increased or decreased or reduces the delivery volume of the dosing or increased. As a result, the correct backfilling or coating of the workpiece can be regulated.

Gemäß einer vorteilhaften Weiterbildung der Erfindung wird vorgeschlagen, dass die Nut, der Spalt, der Kanal, die Fuge, die Kante oder der Übergang mittels Lasertriangulationssensoren, Stereokameras oder Laserlaufzeitsensoren vermessen wird. Selbstverständlich können auch beliebig andere geeignete Sensoren zum Vermessen des zu verfüllenden bzw. zu beschichtenden Teils des Werkstücks eingesetzt werden. Die vorgeschlagenen Verfahren sind jedoch besonders gut zum Vermessen von Nuten, Spalten, Kanälen, Fugen, Kanten, Übergängen und Nähten geeignet. Insbesondere bieten sie die für die Messung erforderliche Genauigkeit und Zuverlässigkeit, um Minder- bzw. Mehrmengen des verfugenden bzw. beschichtenden Materials zu verhindern.According to an advantageous development of the invention, it is proposed that the groove, the gap, the channel, the joint, the edge or the transition be measured by means of laser triangulation sensors, stereo cameras or laser transit time sensors. Of course, any other suitable sensors for measuring the to be filled or to coating part of the workpiece are used. However, the proposed methods are particularly well suited for measuring grooves, gaps, channels, joints, edges, transitions and seams. In particular, they provide the accuracy and reliability required for the measurement to prevent spills in the grouting or coating material.

Gemäß einer bevorzugten Ausführungsform der Erfindung wird vorgeschlagen, dass während eines ersten Abfahrens der Nut, des Spalts, des Kanals, der Fuge, der Kante oder des Übergangs die Nut, der Spalt, der Kanal, die Fuge, die Kante oder der Übergang vermessen wird, und während eines nachfolgenden Abfahrens der Nut, des Spalts, des Kanals, der Fuge, der Kante oder des Übergangs das ermittelte Materialvolumen eingebracht oder aufgetragen wird. Bei dieser Ausführungsform werden in einem ersten Durchlauf die Sensoren entlang des zu verfüllenden bzw. zu beschichtenden Teils des Werkstücks bewegt. Dabei wird der zu verfüllende bzw. zu beschichtende Teil des Werkstücks vermessen und die Messwerte werden abgespeichert. In einem anschließenden Durchlauf erfolgt dann das eigentliche Verfugen bzw. Beschichten des Werkstücks. Dabei werden die Vorschubgeschwindigkeit und das Fördervolumen des Dosierers in Abhängigkeit von den abgespeicherten Messwerten angesteuert bzw. geregelt. Bei dieser Ausführungsform muss nicht zwangsläufig jedes zu verfugende bzw. zu beschichtende Werkstück vermessen werden. Vielmehr kann der erste Durchlauf zum Vermessen des zu verfugenden bzw. zu beschichtenden Werkstücks auf Stichproben zu bestimmten Zeitpunkten beschränkt werden. Bei dieser Ausführungsform können die Sensoren an dem gleichen Roboterarm angebracht sein wie der Dosierer (in diesem Fall würde der gleiche Roboterarm zweimal entlang des zu verfugenden bzw. zu beschichtenden Teils des Werkstücks verfahren werden) oder aber an einem separaten Roboterarm (in diesem Fall würden beide Roboterarme nacheinander entlang des zu verfugenden bzw. zu beschichtendenAccording to a preferred embodiment of the invention it is proposed that during a first run of the groove, the gap, the channel, the joint, the edge or the transition, the groove, the gap, the channel, the joint, the edge or the transition is measured , and during a subsequent run of the groove, the gap, the channel, the joint, the edge or the transition, the determined material volume is introduced or applied. In this embodiment, in a first pass, the sensors are moved along the part of the workpiece to be filled or coated. In this case, the part of the workpiece to be filled or coated is measured and the measured values are stored. In a subsequent run then the actual grouting or coating of the workpiece. The feed rate and the delivery volume of the dosing device are controlled or regulated as a function of the stored measured values. In this embodiment, it is not necessary to measure every workpiece to be grouted or coated. Instead, the first pass for measuring the workpiece to be grouted or coated can be limited to random samples at specific times. In this embodiment, the sensors may be mounted on the same robotic arm as the doser (in which case the same robotic arm would be moved twice along the part of the workpiece to be grouted) or on a separate robotic arm (in this case both would Robot arms successively along the to be grouted or coated

Teils des Werkstücks verfahren werden).Part of the workpiece are moved).

Gemäß einer besonders bevorzugten Ausführungsform der Erfindung wird vorgeschlagen, dass während des gleichen Abfahrens der Nut, des Spalts, des Kanals, der Fuge, der Kante oder des Übergangs die Nut, der Spalt, der Kanal, die Fuge, die Kante oder der Übergang vermessen wird und das ermittelte Materialvolumen eingebracht oder aufgetragen wird. Bei dieser Ausführungsform sind die Sensoren an dem gleichen Roboterarm angebracht wie der Dosierer. Der Roboterarm muss nur einmal entlang des zu verfugenden bzw. zu beschichtenden Teils des Werkstücks verfahren werden. Dabei ist das Erfassungsfeld der Sensoren in Bewegungsrichtung des Roboterarms vor dem Arbeitspunkt des Dosierers angeordnet. Insbesondere sind die Sensoren in Bewegungsrichtung des Roboterarms vor dem Dosierer angeordnet. Das Vermessen der zu verfüllenden Nuten, Spalten, Kanäle oder Fugen bzw. der zu beschichtenden Kanten, Übergänge oder Nähte und die Berechnung des erforderlichen Materialvolumens erfolgt vorzugsweise in Echtzeit. Das bedeutet, dass Messung und Berechnung und Einbringen bzw. Auftragen des Materials in dem gleichen Durchlauf erfolgt und sich durch die Messung und Berechnung keine Verzögerung des Einbringens bzw. Auftragens des Materials ergibt.According to a particularly preferred embodiment of the invention it is proposed that, during the same travel of the groove, the gap, the channel, the joint, the edge or the transition, the groove, the gap, the channel, the joint, the edge or the transition are measured and the determined volume of material is introduced or applied. In this embodiment, the sensors are mounted on the same robot arm as the doser. The robot arm only has to be moved once along the part of the workpiece to be grouted or coated. In this case, the detection field of the sensors in the direction of movement of the robot arm is arranged in front of the operating point of the metering device. In particular, the sensors are arranged in the direction of movement of the robot arm in front of the metering device. The measurement of the grooves, gaps, channels or joints to be filled or the edges, transitions or seams to be coated and the calculation of the required volume of material preferably takes place in real time. This means that measurement and calculation and application or application of the material takes place in the same run and results in the measurement and calculation no delay in the introduction or application of the material.

Nach dem Verfüllen bzw. Beschichten soll das verfüllte bzw. beschichtete Teil des Werkstücks eine bestimmte Materialmenge bzw. ein bestimmtes Materialvolumen aufweisen. Häufig ist das Material in dem Dosierer erwärmt und erkaltet nach dem Einbringen bzw. Auftragen. Beim Erkalten des Materials kann es zu einer Volumenänderung des Materials kommen. Um trotz dieser Volumenänderung während des Erkaltens sicherzustellen, dass die vorgegebene Materialmenge bzw. das vorgegebene Materialvolumen in das Werkstück eingebracht bzw. auf das Werkstück aufgetragen ist, wird gemäß einer bevorzugten Ausführungsform der Erfindung vorgeschlagen, dass das benötigte Materialvolumen unter Berücksichtigung einer Volumenveränderung, insbesondere einer Volumenverringerung, durch Temperaturänderung, insbesondere durch Temperaturverringerung, nach dem Einbringen oder Auftragen des Materials derart ermittelt wird, dass das eingebrachte bzw. aufgetragene Materialvolumen einem vorgebbaren Sollwert entspricht. Dabei wird die Volumenänderung während einer Temperaturänderung des Materials, insbesondere während einem Erkalten des Materials, bei der Berechnung des erforderlichen Materialvolumens berücksichtigt.After filling or coating, the filled or coated part of the workpiece should have a certain amount of material or a certain volume of material. Often, the material in the doser is heated and cools after being applied. When the material cools, the volume of the material may change. In order to ensure, despite this change in volume during cooling, that the predetermined amount of material or the predetermined volume of material is introduced into the workpiece or applied to the workpiece, it is proposed according to a preferred embodiment of the invention that the volume of material required, taking into account a change in volume, in particular a reduction in volume, by temperature change, in particular by reducing the temperature, after the introduction or application of the material is determined such that the introduced or applied material volume corresponds to a predetermined target value. The volume change during a temperature change of the material, in particular during a cooling of the material, is taken into account in the calculation of the required material volume.

Zur Messung des eingebrachten bzw. aufgetragenen Materialvolumens können beliebige Sensoren verwendet werden. Vorzugsweise wird das eingebrachte bzw. aufgetragene Materialvolumen jedoch mittels Lasertriangulationssensoren, Stereokameras oder Laserlaufzeitsensoren gemessen. Diese erlauben eine schnelle und zuverlässige Messung des Materialvolumens.For the measurement of the introduced or applied material volume any sensors can be used. Preferably, however, the introduced or applied volume of material is measured by means of laser triangulation sensors, stereo cameras or laser transit time sensors. These allow a fast and reliable measurement of the material volume.

Um die Steuerung bzw. Regelung des Dosierers zu beschleunigen, wird vorgeschlagen, dass der Dosierer zunächst mit einer vorgegebenen Vorschubgeschwindigkeit und mit einem vorgegebenen Fördervolumen betrieben wird und dass durch das erfindungsgemäße Verfahren Korrekturwerte für die Vorschubgeschwindigkeit und/oder das Fördervolumen ermittelt und bei der Ansteuerung bzw. Regelung des Dosierers berücksichtigt werden. Die vorgegebenen Werte für Fördervolumen und Vorschubgeschwindigkeit beruhen auf Erfahrungswerten und Standardwerten für die Abmessungen des zu verfüllenden Spalts bzw. des zu beschichtenden Übergangs. Erfahrungsgemäß können diese Standardwerte in der Praxis jedoch nicht eingehalten werden. Mit Hilfe des erfindungsgemäßen Verfahrens können Abweichungen von den Erfahrungswerten und Standardwerten berücksichtigt werden. Dabei werden mittels der vorgeschlagenen Weiterbildung nicht die vollständigen Ansteuerwerte für den Dosierer (Fördervolumen und Vorschubgeschwindigkeit), sondern lediglich Differenzwerte zu den vorgegebenen Ansteuerwerten ermittelt und berücksichtigt. Dadurch kann die Steuerung bzw. Regelung beschleunigt werden. Zudem werden große Sprünge in der Ansteuerung vermieden und wird das Regelverhalten stabilisiert.In order to accelerate the control or regulation of the metering device, it is proposed that the metering device is first operated at a predetermined feed rate and with a predetermined delivery volume and that correction values for the feed rate and / or the delivery volume are determined by the method according to the invention and determined during activation or deactivation Control of the dosing device must be taken into account. The preset values for delivery volume and feed rate are based on empirical values and standard values for the dimensions of the gap to be filled or the transition to be coated. Experience has shown that these default values can not be met in practice. Deviations from the empirical values and standard values can be taken into account with the aid of the method according to the invention. In this case, by means of the proposed development, it is not the complete activation values for the dosing unit (delivery volume and feed rate) that are determined, but only difference values for the predefined activation values. As a result, the control or regulation can be accelerated. In addition, big jumps in the control avoided and the control behavior is stabilized.

Gemäß einer anderen vorteilhaften Weiterbildung der Erfindung wird vorgeschlagen, dass mittels Sensoren ein Verlauf der Nut, des Spalts, des Kanals, der Fuge, der Kante, der Naht oder des Übergangs erfasst und die Bewegung einer Düse des Dosierers entlang des erfassten Verlaufs mit der ermittelten Vorschubgeschwindigkeit gesteuert oder geregelt wird. Vorzugsweise wird die Nut, der Spalt, der Kanal, die Fuge, die Kante, die Naht oder der Übergang mittels Sensoren automatisch vermessen, wobei mittels der Sensoren gleichzeitig auch der Verlauf der Nut, des Spalts, des Kanals, der Fuge, der Kante oder des Übergangs erfasst wird. Dabei dienen die Sensoren also sowohl zum Vermessen des Teils des Werkstücks, in bzw. auf das das Material aufgebracht werden soll, als auch zur Ermittlung der Verfahrbahn, entlang der der Dosierer während des Einbringens bzw. Auftragens des Materials auf das Werkstück bewegt wird. Das Erfassen der Verfahrbahn kann während eines gesonderten Durchlaufs vor dem eigentlichen Einbringen bzw. Auftragen des Materials, zum Beispiel gleichzeitig in einem Durchlauf zum Vermessen der Nut, des Spalts, des Kanals, der Fuge, der Kante oder des Übergangs, oder aber gleichzeitig mit dem Einbringen bzw. Auftragen des Materials auf das Werkstück in einem einzigen Durchlauf ausgeführt werden.According to another advantageous embodiment of the invention, it is proposed that by sensors a course of the groove, the gap, the channel, the joint, the edge, the seam or the transition detected and the movement of a nozzle of the doser along the detected course with the determined Feed rate is controlled or regulated. Preferably, the groove, the gap, the channel, the joint, the edge, the seam or the transition is automatically measured by sensors, wherein by means of the sensors at the same time the course of the groove, the gap, the channel, the joint, the edge or of the transition. In this case, the sensors are used both for measuring the part of the workpiece in or on which the material is to be applied, and for determining the trajectory along which the meter is moved during the introduction or application of the material to the workpiece. The detection of the trajectory can during a separate run before the actual application or application of the material, for example simultaneously in a run for measuring the groove, the gap, the channel, the joint, the edge or the transition, or simultaneously with the Applying or applying the material to the workpiece in a single pass are performed.

Das erfindungsgemäße Verfahren kann besonders vorteilhaft in der Fertigung von Kraftfahrzeugen eingesetzt werden. Insbesondere wird vorgeschlagen, dass das Verfahren in der Fertigung von Kraftfahrzeugen zur Versiegelung, Nahtabdichtung oder Schaumverfüllung eingesetzt wird. Selbstverständlich kann das Verfahren auch in anderen Bereichen eingesetzt werden, bspw. im Fertighausbau, im Maschinenbau etc.The method according to the invention can be used particularly advantageously in the manufacture of motor vehicles. In particular, it is proposed that the method be used in the manufacture of motor vehicles for sealing, seam sealing or foam filling. Of course, the method can also be used in other areas, for example in prefabricated house construction, in mechanical engineering, etc.

Besondere Merkmale und Vorteile der Erfindung werden nachfolgend unter Bezugnahme auf die Figuren anhand von bevorzugten Ausführungsbeispielen näher erläutert. Es zeigen:

Figur 1
ein schematisches Ablaufdiagramm des erfindungsgemäßen Verfahrens gemäß einer bevorzugten Ausführungsform,
Figur 2
ein Struktogramm zur Veranschaulichung des erfindungsgemäßen Verfahrens gemäß einer ersten bevorzugten Ausführungsform,
Figur 3
ein Struktogramm zur Veranschaulichung des erfindungsgemäßen Verfahrens gemäß einer zweiten bevorzugten Ausführungsform,
Figur 4
eine Nut, die teilweise mit Material verfüllt ist,
Figur 5
einen Übergang, der teilweise mit Material beschichtet ist,
Figur 6
eine Schweißnaht, die teilweise mit Material beschichtet ist,
Figur 7
eine Vorrichtung zur Realisierung des erfindungsgemäßen Verfahrens gemäß der ersten Ausführungsform aus Figur 2,
Figur 8
eine Vorrichtung zur Realisierung des erfindungsgemäßen Verfahrens gemäß der zweiten Ausführungsform aus Figur 3, und
Figur 9
eine aus dem Stand der Technik bekannte Vorrichtung zum automatischen Einbringen oder Auftragen von zähflüssigem Material aus einem Dosierer in eine Nut, einen Spalt, einen Kanal oder eine Fuge bzw. entlang einer Kante oder eines Übergangs.
Particular features and advantages of the invention will be explained in more detail below with reference to the figures with reference to preferred embodiments. Show it:
FIG. 1
a schematic flow diagram of the method according to the invention according to a preferred embodiment,
FIG. 2
a structural diagram illustrating the method according to the invention according to a first preferred embodiment,
FIG. 3
a structural diagram illustrating the method according to the invention according to a second preferred embodiment,
FIG. 4
a groove that is partially filled with material,
FIG. 5
a transition that is partially coated with material,
FIG. 6
a weld partially coated with material,
FIG. 7
an apparatus for implementing the method according to the invention according to the first embodiment FIG. 2 .
FIG. 8
an apparatus for implementing the method according to the invention according to the second embodiment FIG. 3 , and
FIG. 9
a known from the prior art device for automatically introducing or applying viscous material from a doser in a groove, a gap, a channel or a groove or along an edge or a transition.

Die vorliegende Erfindung betrifft ein Verfahren zum automatischen Einbringen oder Auftragen von zähflüssigem Material aus einem Dosierer in einen Spalt bzw. entlang einer Naht. Die Begriff "Spalt" und "Naht" werden nachfolgend stellvertretend für jegliche Art von Nut, Spalt, Kanal, Fuge, Kante, Naht oder Übergang verwendet. Das zähflüssige Material ist bspw. ein Klebstoff, ein Korrosionsinhibitor (z.B. Unterbodenschutz, Hohlraumversiegelung), ein Isolationsschaum oder ähnliches. Das Verfahren wird vorzugsweise im Bereich der Fertigung von Kraftfahrzeugen eingesetzt. Selbstverständlich kann es aber auch in beliebigen anderen Bereichen eingesetzt werden, bspw. im Maschinenbau oder in der Fertigung von Fertighäusern, etc.The present invention relates to a method for automatic introduction or application of viscous material from a doser into a gap or along a seam. The term "gap" and "seam" are used below to represent any kind of groove, gap, channel, joint, edge, seam or transition. The viscous material is, for example, an adhesive, a corrosion inhibitor (eg underbody protection, cavity seal), an insulation foam or the like. The method is preferably used in the field of motor vehicle manufacturing. Of course, it can also be used in any other areas, for example. In mechanical engineering or in the manufacture of prefabricated houses, etc.

Eine aus dem Stand der Technik bekannte Vorrichtung zur Realisierung des Verfahrens ist in Figur 9 dargestellt und in ihrer Gesamtheit mit dem Bezugszeichen 1 bezeichnet. Die Vorrichtung 1 umfasst einen Dosierer 2, in dem das zu verfüllende bzw. aufzutragende Material 3 vorgehalten wird. Der Dosierer 2 umfasst einen Vorratsbehälter 4 mit einer Öffnung und eine Düse 5, die über einen Schlauch 6 an der Öffnung des Behälters 4 angeschlossen ist. Mittels einer elektrisch, hydraulisch, pneumatisch oder auf andere Weise angetriebenen Druckerzeugungseinheit 7 wird das Material 3 in den Schlauch 6 und die Düse 5 gefördert. Durch Variation des Drucks p kann das Fördervolumen V des Dosierers 2 variiert werden.A known from the prior art device for implementing the method is in FIG. 9 represented and designated in its entirety by the reference numeral 1. The device 1 comprises a metering device 2, in which the material 3 to be filled or applied is kept ready. The metering device 2 comprises a storage container 4 having an opening and a nozzle 5 which is connected via a hose 6 to the opening of the container 4. By means of an electrically, hydraulically, pneumatically or otherwise driven pressure generating unit 7, the material 3 is conveyed into the tube 6 and the nozzle 5. By varying the pressure p, the delivery volume V of the metering device 2 can be varied.

Der Dosierer 2 bzw. die Düse 5 wird mittels eines Industrieroboters 8 oder auf beliebig andere Weise mit einer Vorschubgeschwindigkeit v entlang des zu verfüllenden bzw. zu beschichtenden Spalts 9 oder Übergangs eines Werkstücks 10 bewegt. Die Düse 5 ist an einem Roboterarm befestigt. In Figur 9 ist zu erkennen, dass der Teil des Spalts 9 oder Übergangs in Vorschubrichtung gesehen hinter der Düse 5 bereits mit Material 3' gefüllt bzw. beschichtet ist. Zur Steuerung und/oder Regelung des Roboters 8 ist eine Robotersteuerung 11 vorgesehen, die bspw. eine Speicherprogrammierbare Steuerung (SPS) umfasst. Diese sendet über eine Steuerleitung 12 Steuerbefehle an den Roboter 8 und kann über die Leitung 12 Rückmeldungssignale von dem Roboter 8 empfangen. Je größer das Fördervolumen V bzw. je langsamer die Vorschubgeschwindigkeit v ist, desto mehr Material 3' wird in den Spalt 9 bzw. auf den Übergang pro zurückgelegtem Weg entlang des Spalts 9 oder Übergangs eingebracht bzw. aufgebracht.The metering device 2 or the nozzle 5 is moved by means of an industrial robot 8 or in any other way at a feed rate v along the gap 9 to be filled or coated or transition of a workpiece 10. The nozzle 5 is attached to a robot arm. In FIG. 9 It can be seen that the part of the gap 9 or transition seen in the feed direction behind the nozzle 5 is already filled or coated with material 3 '. For controlling and / or regulating the robot 8, a robot controller 11 provided, for example, a programmable logic controller (PLC) includes. This sends control commands via a control line 12 to the robot 8 and can receive feedback signals from the robot 8 via the line 12. The greater the delivery volume V or the slower the feed rate v, the more material 3 'is introduced or applied into the gap 9 or to the transition per path traveled along the gap 9 or transition.

Beim Stand der Technik sind Fördervolumen V und Vorschubgeschwindigkeit v des Dosierers 2 vorgegeben. Die vorgegebenen Werte beruhen auf Erfahrungswerten und Standardwerten für die Abmessungen des zu verfüllenden Spalts 9 bzw. des zu beschichtenden Übergangs. Erfahrungsgemäß können diese Standardwerte in der Praxis jedoch nicht eingehalten werden. Insbesondere die Abmessungen des Spalts 9 können aufgrund von Fertigungstoleranzen Schwankungen unterworfen sein. Beim Stand der Technik kann auf diese Schwankungen nicht reagiert werden. Um auf jeden Fall genug Material 3' in den Spalt 9 bzw. auf den Übergang einzubringen bzw. aufzutragen wird im Stand der Technik relativ viel Material 3' eingebracht bzw. aufgebracht. Das macht eine zeit- und arbeitsintensive manuelle oder automatische Nachbearbeitung des eingebrachten bzw. aufgetragenen Materials 3' erforderlich, um überschüssiges Material zu entfernen (sog. Mehrmengenausgleich).In the prior art, delivery volume V and feed rate v of the metering device 2 are predetermined. The predetermined values are based on empirical values and standard values for the dimensions of the gap 9 to be filled or the transition to be coated. Experience has shown that these default values can not be met in practice. In particular, the dimensions of the gap 9 may be subject to fluctuations due to manufacturing tolerances. The prior art can not respond to these fluctuations. In order to bring in any case enough material 3 'in the gap 9 or on the transition or apply relatively much material 3' is introduced or applied in the prior art. This requires time-consuming and labor-intensive manual or automatic post-processing of the introduced or applied material 3 'in order to remove excess material (so-called additional quantity compensation).

Hier setzt die vorliegende Erfindung an. Um auf eine Nachbearbeitung des Werkstücks 10 bzw. des Materials 3' verzichten zu können, wird das in Figur 1 schematisch dargestellte Verfahren vorgeschlagen. Das Verfahren beginnt in einem Funktionsblock 20. Anschließend wird in einem Funktionsblock 21 der Spalt 9 bzw. der Übergang vermessen. Dies kann mittels geeigneter Sensoren erfolgen, die eine genaue, berührungslose, optische Vermessung des Spalts 9 bzw. des Übergangs ermöglichten, bspw. anhand von Lasertriangulationssensoren, Stereokameras oder Laserlaufzeitsensoren.This is where the present invention begins. In order to be able to do without reworking of the workpiece 10 or the material 3 ', the in FIG. 1 schematically proposed method proposed. The method begins in a function block 20. Subsequently, the gap 9 or the transition is measured in a function block 21. This can be done by means of suitable sensors, which enabled an accurate, non-contact, optical measurement of the gap 9 or of the transition, for example by means of laser triangulation sensors, stereo cameras or laser transit time sensors.

In einem anschließenden Funktionsblock 22 wird in Abhängigkeit des gemessenen Volumens des Spalts 9 bzw. der gemessenen Abmessungen des Übergangs das zum Verfüllen des Spalts 9 bzw. zum Abdecken des Übergangs erforderliche Materialvolumen ermittelt. Das erforderliche Materialvolumen kann abhängig von anwendungsspezifischen Vorgaben sein. So kann es bspw. in manchen Anwendungen ausreichend sein, wenn in dem Spalt 9 eine geringe Menge an Material 3' enthalten ist, so dass Oberfläche des Materials 3' konkav nach innen geformt ist. Bei anderen Anwendungen kann es wiederum erforderlich sein, dass so viel Material 3' in den Spalt 9 eingebracht wird, dass sich die Oberfläche des Materials 3' konvex nach außen wölbt.In a subsequent functional block 22, the material volume required for filling the gap 9 or for covering the transition is determined as a function of the measured volume of the gap 9 or the measured dimensions of the transition. The required material volume can be dependent on application-specific specifications. For example, in some applications, it may be sufficient if a small amount of material 3 'is contained in the gap 9, so that the surface of the material 3' is concave inwardly. In other applications, it may again be necessary that so much material 3 'is introduced into the gap 9, that the surface of the material 3' bulges convexly outward.

Anschließend wird in einem Funktionsblock 23 der Dosierer 2 angesteuert, damit die ermittelte Materialmenge in den Spalt 9 bzw. auf den Übergang aufgebracht wird. Dabei kann das Fördervolumen V des Dosierers 2 variiert werden, indem die Druckerzeugungsmittel 7 entsprechend angesteuert werden. Alternativ oder zusätzlich kann auch die Vorschubgeschwindigkeit v des Dosierers 2 verändert werden, indem die Robotersteuerung 11 entsprechend angesteuert wird. Auf diese Weise wird sichergestellt, dass auch bei Abweichungen der Abmessungen des Spalts 9 bzw. des Übergangs von den Standardwerten stets ein ausreichendes Verfüllen des Spalts 9 bzw. Beschichten des Übergangs sichergestellt ist, ohne dass eine Nachbearbeitung erforderlich ist. In einem Funktionsblock 24 ist das Verfahren beendet.Subsequently, the doser 2 is activated in a function block 23, so that the determined amount of material is applied to the gap 9 or to the transition. In this case, the delivery volume V of the metering device 2 can be varied by the pressure generating means 7 are driven accordingly. Alternatively or additionally, the feed rate v of the dosing device 2 can be changed by the robot controller 11 is controlled accordingly. In this way, it is ensured that even with deviations in the dimensions of the gap 9 or the transition from the standard values, a sufficient filling of the gap 9 or coating of the transition is always ensured, without a subsequent processing is required. In a function block 24, the process is completed.

Der Verfahrensschritt 21 kann entweder in dem gleichen Durchlauf ausgeführt werden, wie die Schritte 22 oder 23, oder alternativ in einem vorangehenden ersten Durchlauf. Bei der ersten Alternative bewegt der Roboter 8 die Düse 5 und daran befestigte Sensoren einmal entlang des zu verfüllenden Spalts 9 bzw. des zu beschichtenden Übergangs. Die Sensoren sind so befestigt bzw. ausgerichtet, dass ihr Erfassungsbereich in Vorschubrichtung vor der Düse 5 liegt. Der Spalt 9 bzw. der Übergang wird von den Sensoren vermessen (Schritt 21) und die erforderliche Materialmenge wird berechnet (Schritt 22). Vermessen und Berechnen erfolgt vorzugsweise in Echtzeit. Wenn die Düse 5 den unmittelbar zuvor vermessenen Bereich erreicht, fördert sie das berechnete Materialvolumen in den Bereich des Spalts 9 bzw. auf den Bereich des Übergangs (Schritt 23). Das Vermessen des Spalts 9 bzw. des Übergangs und das Fördern des Materials 3' erfolgt dabei in einem Durchlauf.Method step 21 may be performed either in the same pass as steps 22 or 23, or alternatively in a previous first pass. In the first alternative, the robot 8 moves the nozzle 5 and sensors attached thereto once along the gap 9 to be filled or the transition to be coated. The sensors are fixed or aligned so that their detection range in Feed direction in front of the nozzle 5 is located. The gap 9 or the transition is measured by the sensors (step 21) and the required amount of material is calculated (step 22). Measurement and calculation preferably takes place in real time. When the nozzle 5 reaches the immediately previously measured range, it conveys the calculated material volume into the region of the gap 9 or onto the region of the transition (step 23). The measurement of the gap 9 and the transition and the conveying of the material 3 'takes place in one pass.

Bei der zweiten Alternative werden in einem ersten Durchlauf zunächst die Sensoren entlang des Spalts 9 bzw. des Übergangs bewegt und der Spalt 9 bzw. der Übergang wird vermessen (Schritt 21). Das Bewegen der Sensoren kann mittels des Roboters 8 oder auf andere Weise erfolgen, bspw. mittels eines anderen Roboters. Zusätzlich kann in dem ersten Durchlauf auch das erforderliche Materialvolumen berechnet werden (Schritt 22). Damit ist der erste Durchlauf beendet. Anschließend wird dann in einem zweiten Durchlauf, zunächst das erforderliche Materialvolumen berechnet (Schritt 22), falls dies nicht bereits im ersten Durchlauf erfolgt ist. Anschließend wird die Düse 5 mittels des Roboters 8 nochmals entlang des Spalts 9 bzw. des Übergangs bewegt und derart angesteuert, dass sie das berechnete Materialvolumen in den Bereich des Spalts 9 bzw. auf den Bereich des Übergangs fördert (Schritt 23). Vermessen des Spalts 9 bzw. des Übergangs (und Berechnen des erforderlichen Materialvolumens) erfolgt zeitlich versetzt zu dem Einbringen bzw. Aufbringen des Materials 3' auf das Werkstück 10.In the second alternative, the sensors are first moved along the gap 9 or the transition in a first pass, and the gap 9 or the transition is measured (step 21). The movement of the sensors can be done by means of the robot 8 or in another way, for example by means of another robot. In addition, the required material volume can also be calculated in the first pass (step 22). This completes the first pass. Subsequently, in a second pass, the required volume of material is first calculated (step 22), if this has not already taken place in the first pass. Subsequently, the nozzle 5 is again moved along the gap 9 or the transition by means of the robot 8 and controlled in such a way that it conveys the calculated material volume into the region of the gap 9 or onto the region of the transition (step 23). Measuring the gap 9 or the transition (and calculating the required material volume) takes place offset in time to the introduction or application of the material 3 'on the workpiece 10th

In Figur 2 ist ein Struktogramm zur Veranschaulichung des erfindungsgemäßen Verfahrens gemäß einer ersten bevorzugten Ausführungsform dargestellt. Dabei wird die Dosiereinrichtung 2 im Rahmen einer Steuerung angesteuert. In Figur 2 ist das Werkstück 10 mit dem darin ausgebildeten Spalt 9 zu erkennen. Die Abmessungen des Spalts 9, insbesondere seine Querschnittsfläche oder sein Volumen, werden durch mehrere Sensoren 32 während einer Bewegung entlang des Spalts 9 erfasst. Als Sensoren 32 werden vorzugsweise optische Sensoren, insbesondere Lasertriangulationssensoren, Stereokameras oder Laserlaufzeitsensoren, eingesetzt. Die Sensoren 32 ermöglichen ein berührungsloses Vermessen des Teils des Werkstücks 10, auf das das Material 3 eingebracht bzw. aufgetragen werden soll. Die Sensoren 32 senden vorzugsweise Licht in einem beliebigen Wellenlängenbereich aus. Insbesondere können die Sensoren sichtbares Licht oder unsichtbare UV- oder IR-Strahlung aussenden. In dem dargestellten Ausführungsbeispiel werden zwei Sensoren 32 eingesetzt. Selbstverständlich können auch mehr als zwei Sensoren 32 verwendet werden.In FIG. 2 a structural diagram illustrating the method according to the invention according to a first preferred embodiment is shown. In this case, the metering device 2 is controlled as part of a control. In FIG. 2 the workpiece 10 can be seen with the gap 9 formed therein. The dimensions of the gap 9, in particular its cross-sectional area or its volume, are detected by a plurality of sensors 32 during movement along the gap 9. The sensors 32 used are preferably optical sensors, in particular laser triangulation sensors, stereo cameras or laser transit time sensors. The sensors 32 allow a non-contact measurement of the part of the workpiece 10 to which the material 3 is to be introduced or applied. The sensors 32 preferably emit light in any wavelength range. In particular, the sensors can emit visible light or invisible UV or IR radiation. In the illustrated embodiment, two sensors 32 are used. Of course, more than two sensors 32 can be used.

Die Messbereiche der Sensoren 32 sind mit dem Bezugszeichen 33 bezeichnet. Die Messbereiche 33 umfassen den zu vermessenden Spalt 9 und sind vorzugsweise in Vorschubrichtung gesehen vor der Düse 5 (nicht dargestellt) angeordnet. Die Sensorsignale werden an eine Verarbeitungseinheit 34 geleitet, welche die Abmessungen des Spalts 9 ermittelt. Das Ergebnis der Messung des Spalts 9 wird an eine weitere Verarbeitungseinheit 35 weitergeleitet, wo dann das erforderliche Materialvolumen zum "ausreichenden" Füllen des Spalts 9 mit Material 3' berechnet wird. Was "ausreichend" ist, hängt von dem Anwendungsfall und den Wünschen des Anwenders ab. Was der Anwender als "ausreichend" erachtet, kann er in Form von Parametern Par vorgeben.The measuring ranges of the sensors 32 are designated by the reference numeral 33. The measuring areas 33 comprise the gap 9 to be measured and are preferably arranged in front of the nozzle 5 (not shown) in the feed direction. The sensor signals are passed to a processing unit 34, which determines the dimensions of the gap 9. The result of the measurement of the gap 9 is forwarded to a further processing unit 35, where then the required volume of material for "sufficient" filling of the gap 9 with material 3 'is calculated. What is "sufficient" depends on the application and the wishes of the user. What the user considers "sufficient", he can specify in the form of parameters Par.

Das berechnete Materialvolumen wird dann an eine weitere Verarbeitungseinheit 36 weitergeleitet, wo in Abhängigkeit von dem berechneten erforderlichen Materialvolumen geeignete Ansteuersignale (z.B. Fördervolumen V oder Vorschubgeschwindigkeit v) für den Dosierer 2 ermittelt werden. Alternativ können auch Korrekturwerte für fest vorgegebene Werte für Fördervolumen V und/oder Vorschubgeschwindigkeit v ermittelt werden. Durch die gezielte Ansteuerung des Dosierers 2 wird genau die benötigte Materialmenge in den Spalt 9 eingebracht, um unabhängig von den tatsächlichen Abmessungen des Spalts 9 stets ein "ausreichendes" Verfüllen des Spalts 9 sicherzustellen.The calculated volume of material is then forwarded to a further processing unit 36, where suitable control signals (eg delivery volume V or feed rate v) for the doser 2 are determined as a function of the calculated required volume of material. Alternatively, correction values for fixed values for delivery volume V and / or feed rate v can also be determined. By the targeted control of the meter 2 is exactly the required amount of material introduced into the gap 9, regardless of the actual dimensions of the gap 9 always ensure a "sufficient" backfilling the gap 9.

Ergänzend kann noch eine Korrektur der Ansteuerung vorgesehen werden. Dazu wird die in den Spalt 9 eingebrachte bzw. auf einen Übergang aufgebrachte Materialmenge in einer Verarbeitungseinheit 37 gemessen. Das kann mittels geeigneter Sensoren erfolgen, die allerdings in Figur 2 nicht dargestellt sind. Insbesondere ist an den Einsatz von Lasertriangulationssensoren, Stereokameras oder Laserlaufzeitsensoren gedacht. Aus der Verarbeitungseinheit 36 steht das berechnete Materialvolumen und das Maß für ein "ausreichendes" Verfüllen des Spalts 9 zur Verfügung. Aus einem Vergleich der Werte für ein "ausreichendes" Verfüllen des Spalts 9 und die tatsächlich in den Spalt 9 eingebrachte Materialmenge können geeignete Korrekturwerte für die Ansteuerung des Dosierers 2 ermittelt werden. Die Korrekturwerte werden zurück an die Verarbeitungseinheit 35 geleitet, wo das berechnete Materialvolumen korrigiert wird, damit die tatsächlich eingebrachte Materialmenge auch wirklich ein "ausreichendes" Verfüllen des Spalts 9 erzielt. Alternativ könnten die Korrekturwerte auch direkt der Verarbeitungseinheit 36 zugeführt bei der Ansteuerung des Dosierers 2 berücksichtigt werden.In addition, a correction of the control can be provided. For this purpose, the amount of material introduced into the gap 9 or applied to a transition is measured in a processing unit 37. This can be done by means of suitable sensors, however, in FIG. 2 are not shown. In particular, the use of laser triangulation sensors, stereo cameras or laser transit time sensors is intended. From the processing unit 36, the calculated volume of material and the degree of "sufficient" filling of the gap 9 is available. From a comparison of the values for a "sufficient" filling of the gap 9 and the actually introduced into the gap 9 amount of material suitable correction values for the control of the metering device 2 can be determined. The correction values are passed back to the processing unit 35, where the calculated material volume is corrected, so that the actually introduced amount of material actually achieves a "sufficient" filling of the gap 9. Alternatively, the correction values could also be taken directly into the processing unit 36 when controlling the dosing device 2.

Zur Realisierung der Vorrichtung 1 zum Einbringen bzw. Auftragen des Materials 3 können mehrere oder sogar alle Verarbeitungseinheiten 34 bis 37 zusammengefasst sein. Die Verarbeitungseinheiten 34 bis 37 sind vorzugsweise als Software realisiert, die auf einem Rechengerät, insbesondere auf einem Mikroprozessor, ablauffähig ist.For realizing the device 1 for introducing or applying the material 3, several or even all the processing units 34 to 37 may be combined. The processing units 34 to 37 are preferably implemented as software which can run on a computing device, in particular on a microprocessor.

Bei der Ermittlung des erforderlichen Materialvolumens für ein "ausreichendes" Verfüllen des Spalts können auch beliebige Störgrößen S berücksichtigt werden, wie bspw. eine Veränderung der Abmessungen bzw. des Volumens des eingebrachten Materials 3' aufgrund einer Temperaturänderung des Materials 3'. Insbesondere wird eine Schrumpfung des Materials 3' infolge von Erkalten des im erwärmten Zustand eingebrachten Materials 3' berücksichtigt. Auch eine Erwärmung des eingebrachten Materials 3' zum Aushärten des Materials 3' oder zum Verbinden des Materials 3' mit der Oberfläche des Werkstücks 10 ist denkbar, was ebenfalls zu einer Veränderung der Abmessungen bzw. des Volumens des eingebrachten Materials 3' führen kann.In the determination of the required material volume for a "sufficient" filling of the gap and any disturbances S can be considered, such as, for example, a change the dimensions or the volume of the introduced material 3 'due to a change in temperature of the material 3'. In particular, a shrinkage of the material 3 'due to cooling of the introduced in the heated state material 3' is taken into account. A heating of the introduced material 3 'to cure the material 3' or to connect the material 3 'with the surface of the workpiece 10 is conceivable, which can also lead to a change in the dimensions or the volume of the introduced material 3'.

Das erfindungsgemäße Verfahren kann für jegliche Art von Nut, Spalt, Kanal, Fuge, Kante, Naht oder Übergang verwendet werden. Beispielhaft sind in den Figuren 4 bis 6 verschiedene Einsatzmöglichkeiten dargestellt. Ein Spalt oder eine Nut 9, die teilweise mit einem Material 3' verfüllt ist, ist in Figur 4 dargestellt. Ein Übergang zwischen zwei Werkstücken 10' und 10" ist in Figur 5 dargestellt. Die Innenkante 30 ist teilweise mit einem Material 3' beschichtet. An der Innenkante 30 kann auch eine Schweißnaht ausgebildet sein, die durch das Material 3' abgedeckt wird. In Figur 6 ist eine Schweißnaht 31 zwischen zwei stirnseitig aneinandergrenzenden Werkstücken 10' und 10" dargestellt. Die Schweißnaht 31 sowie die an die Naht 31 angrenzenden Oberflächenbereiche der Werkstücke 10', 10" sind teilweise mit Material 3' beschichtet.The inventive method can be used for any type of groove, gap, channel, joint, edge, seam or transition. Exemplary are in the FIGS. 4 to 6 presented various uses. A gap or groove 9, which is partially filled with a material 3 ', is in FIG. 4 shown. A transition between two workpieces 10 'and 10 "is in FIG. 5 shown. The inner edge 30 is partially coated with a material 3 '. At the inner edge 30 may also be formed a weld which is covered by the material 3 '. In FIG. 6 A weld seam 31 is shown between two end-to-end adjoining workpieces 10 'and 10 "The weld seam 31 and the surface regions of the workpieces 10', 10" adjoining the seam 31 are partially coated with material 3 '.

In Figur 7 ist eine Vorrichtung 1 zur Realisierung des erfindungsgemäßen Verfahrens gemäß der ersten bevorzugten Ausführungsform dargestellt. Die Sensoren 32 sind zusammen mit der Düse 5 an dem Arm des Industrieroboters 8 befestigt. Der noch mit Material 3' zu verfüllende Teil des Spalts 9 in Vorschubrichtung vor der Düse 5 liegt im Erfassungsbereich 33 der Sensoren 32. Die Messwerte der Sensoren 32 werden an eine Dosiersteuerung 38 geleitet, wo dann in Abhängigkeit der Messwerte die Abmessungen des Spalts 9 ermittelt, das erforderliche Materialvolumen für ein "ausreichendes" Verfüllen des Spalts 9 und Ansteuersignale 40, 41 (Fördervolumen V* und/oder Vorschubgeschwindigkeit v* oder alternativ Korrekturwerte für das Fördervolumen ΔV bzw. die Vorschubgeschwindigkeit Δv) für den Dosierer 2 ermittelt werden. Die Ansteuersignale 40, 41 werden dann an die Druckerzeugungseinrichtung 7 (zur Variation des Fördervolumens V) bzw. die Robotersteuerung 11 (zur Variation der Vorschubgeschwindigkeit v) übermittelt. Die Dosiersteuerung 38 umfasst also die Verarbeitungseinheiten 34 bis 37.In FIG. 7 is a device 1 for implementing the method according to the first preferred embodiment shown. The sensors 32 are fastened together with the nozzle 5 to the arm of the industrial robot 8. The part of the gap 9 still to be filled with material 3 'in the feed direction in front of the nozzle 5 lies in the detection area 33 of the sensors 32. The measured values of the sensors 32 are passed to a metering control 38 where the dimensions of the gap 9 are then determined as a function of the measured values , the required material volume for a "sufficient" filling of the gap 9 and drive signals 40, 41st (Delivery volume V * and / or feed rate v * or alternatively correction values for the delivery volume .DELTA.V or the feed rate .DELTA.v) are determined for the doser 2. The control signals 40, 41 are then transmitted to the pressure generating device 7 (for varying the delivery volume V) or the robot controller 11 (for varying the feed rate v). The dosing control 38 thus comprises the processing units 34 to 37.

Figur 3 zeigt eine weitere Ausführungsform des erfindungsgemäßen Verfahrens. Dabei erfolgt die Ansteuerung des Dosierers 2 mittels einer Regelung. Die Verarbeitungseinheiten 34 bis 37 entsprechen den Verarbeitungseinheiten 34 bis 37 aus Figur 2. Im Unterschied zu der Ausführungsform aus Figur 2 werden die Messwerte des in den Spalt 9 eingebrachten bzw. auf den Übergang aufgetragenen Materials 3' als Ist-Werte der Verarbeitungseinheit 35 zugeführt, welche dann aus einem Vergleich der Ist-Werte mit den anhand der Parameter Par vorgegebenen Soll-Werte eine Regeldifferenz ermittelt. Die Regeldifferenz wird einem Regler 39 zugeführt, der eine oder mehrere Signalgrößen zur Ansteuerung des Dosierers 2 in Verarbeitungseinheit 36 ermittelt. Somit ergibt sich ein geschlossener Regelkreis zum Einbringen und/oder Auftragen von Material 3' in einen Spalt 9 bzw. auf einen Übergang. FIG. 3 shows a further embodiment of the method according to the invention. In this case, the control of the dosing device 2 by means of a control. The processing units 34 to 37 correspond to the processing units 34 to 37 FIG. 2 , Unlike the embodiment of FIG. 2 the measured values of the material 3 'introduced into the gap 9 or applied to the transition are supplied as actual values to the processing unit 35, which then determines a control difference from a comparison of the actual values with the desired values predefined on the basis of the parameter Par. The control difference is fed to a controller 39, which determines one or more signal variables for controlling the metering unit 2 in the processing unit 36. Thus, a closed loop for introducing and / or applying material 3 'results in a gap 9 or on a transition.

In Figur 8 ist ein Teil einer Vorrichtung 1 zur Realisierung des erfindungsgemäßen Verfahrens gemäß der zweiten bevorzugten Ausführungsform dargestellt. Ein wesentlicher Unterschied zu der Ausführungsform aus Figur 7 besteht darin, dass am Roboterarm zusätzlich Sensoren 39 vorgesehen sind, welche mit ihren Messbereichen 42 einen Teil des Spalts 9 in Vorschubrichtung nach der Düse 5 erfassen. Die Sensoren 39 messen also das in den Spalt 9 eingebrachte Material 3' und leiten die Messwerte weiter an die Verarbeitungseinheit 37. Falls die eingebrachte Materialmenge 3' zu gering ist (weniger als durch die Parameter Par vorgegeben), verringert der Regler 39 die Vorschubgeschwindigkeit v und/oder erhöht das Fördervolumen V. Mit Hilfe des Reglers 39 bzw. des geschlossenen Regelkreises zur Ansteuerung des Dosierers 2 können die letzten geringfügigen Abweichungen zwischen Ist- und Soll-Wert des in den Spalt 9 eingebrachten Materials 3' kompensiert werden. Die entscheidende Verbesserung gegenüber dem Stand der Technik ergibt sich aber bereits daraus, dass vor dem Einbringen des Materials 3' die Abmessungen des Spalts 9 bzw. des Übergangs vermessen werden und die einzubringende Materialmenge durch entsprechende Ansteuerung des Dosierers 2 angepasst wird.In FIG. 8 is a part of a device 1 for implementing the method according to the second preferred embodiment shown. An essential difference to the embodiment FIG. 7 consists in that sensors 39 are additionally provided on the robot arm, which detect with their measuring areas 42 a part of the gap 9 in the feed direction after the nozzle 5. The sensors 39 thus measure the material 3 'introduced into the gap 9 and forward the measured values to the processing unit 37. If the amount of material 3' introduced is too small (less than specified by the parameters Par), the controller 39 reduces the value Feed rate v and / or increases the delivery volume V. With the help of the controller 39 and the closed loop to control the metering 2, the last minor differences between the actual and target value of the introduced into the gap 9 material 3 'can be compensated. The decisive improvement over the prior art, however, already results from the fact that before the introduction of the material 3 ', the dimensions of the gap 9 and the transition are measured and the amount of material to be introduced is adjusted by appropriate control of the dosing device 2.

Claims (12)

  1. Method for automatically introducing or applying viscous material (3) from a metering unit (2) into a groove, a gap (9), a channel, a joint or along an edge or a transition, wherein the groove, the gap (9), the channel, the joint, the edge or the transition is automatically measured, the required volume of material is determined, depending on the measured volume, and a delivery volume (V) of the metering unit (2) and/or an advancing rate (v) of the metering unit (2) at which the metering unit (2) is moved along the groove, the gap (9), the channel, the joint, the edge or the transition is controlled or regulated in such a way that the determined volume of material is automatically introduced or applied, characterised in that the volume of material (3') introduced or applied is measured and the delivery volume (V) and the advancing rate (v) of the metering unit (2) is regulated depending on the measured value.
  2. Method according to claim 1, characterised in that the groove, the gap (9), the channel, the joint, the edge or the transition is measured by means of laser triangulation sensors, stereoscopic cameras or laser transition time sensors.
  3. Method according to claim 1 or 2, characterised in that, during a first passage of the groove, the gap (9), the channel, the joint, the edge or the transition, the groove, the gap (9), the channel, the joint, the edge or the transition is measured and during a subsequent passage of the groove, the gap (9), the channel, the joint, the edge or the transition, the determined volume of material is introduced or applied.
  4. Method according to claim 1 or 2, characterised in that, during the same passage of the groove, the gap (9), the channel, the joint, the edge or the transition, the groove, the gap (9), the channel, the joint, the edge or the transition is measured and the determined volume of material is introduced or applied.
  5. Method according to one of the claims 1 to 4, characterised in that the required volume of material is determined, taking account of a volume change, in particular a volume reduction by a temperature change, in particular by a temperature fall, after the introduction or application of the material (3) is determined such that the introduced or applied volume of material (3') corresponds to a pre-settable target value.
  6. Method according to one of the claims 1 to 5, characterised in that the introduced or applied volume of material (3') is measured by means of laser triangulation sensors, stereoscopic cameras or laser transition time sensors.
  7. Method according to one of the claims 1 to 6, characterised in that the metering unit (2) is operated firstly at a pre-set advancing rate (v) and at a pre-set delivery volume (V) and that, by means of the method according to the invention, correction values for the advancing rate (Δv) and/or the delivery volume (ΔV) are determined and taken into account in the control or regulation of the metering unit (2).
  8. Method according to one of the claims 1 to 7, characterised in that the method is used in the production of motor vehicles.
  9. Method according to one of the claims 1 to 8, characterised in that the method is used for sealing, seam closing or foam filling.
  10. Method according to one of the claims 1 to 9, characterised in that, by means of sensors, a course of the groove, the gap (9), the channel, the joint, the edge or the transition is recorded and the movement of a nozzle (5) of the metering unit (2) along the recorded course is controlled or regulated at the advancing rate (v) determined.
  11. Method according to claim 10, characterised in that the groove, the gap (9), the channel, the joint, the edge or the transition is automatically measured by means of sensors (32), wherein at the same time, the course of the groove, the gap (9), the channel, the joint, the edge or the transition is also recorded by means of the sensors (32).
  12. Device for automatically introducing or applying viscous material (3) from a metering unit (2) into a groove, a gap (9), a channel a joint or along an edge or a transition, wherein the device comprises means (32, 34) for measuring the groove, the gap (9), the channel, the joint, the edge or the transition, a processing unit (35) for determining the required volume of material depending on the measured value, a processing unit (36) for determining a delivery volume (V) of the metering unit (2) and/or an advancing rate (v) of the metering unit (2) at which the metering unit (2) is moved along the groove, the gap (9), the channel, the joint, the edge or the transition, and means for controlled or regulated actuation of the metering unit (2) based on the determined delivery volume (V) or the determined advancing rate (v), so that the determined volume of material is automatically introduced or applied, characterised in that the device comprises means (37, 39) for measuring the introduced or applied volume of material (3') and means for controlling or regulating the delivery volume (V) or the advancing rate (v) of the metering unit (2) depending on the measured value.
EP09724219A 2008-03-27 2009-01-16 Method and device for automatically introducing or applying viscous material Not-in-force EP2254705B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008015834A DE102008015834A1 (en) 2008-03-27 2008-03-27 Method and device for the automatic introduction or application of viscous material
PCT/EP2009/000234 WO2009118072A1 (en) 2008-03-27 2009-01-16 Method and device for automatically introducing or applying viscous material

Publications (2)

Publication Number Publication Date
EP2254705A1 EP2254705A1 (en) 2010-12-01
EP2254705B1 true EP2254705B1 (en) 2012-11-14

Family

ID=40601452

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09724219A Not-in-force EP2254705B1 (en) 2008-03-27 2009-01-16 Method and device for automatically introducing or applying viscous material

Country Status (4)

Country Link
EP (1) EP2254705B1 (en)
CN (1) CN101977694B (en)
DE (1) DE102008015834A1 (en)
WO (1) WO2009118072A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2541547A (en) * 2015-08-18 2017-02-22 Boeing Co Sealant application tip

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009152330A1 (en) 2008-06-12 2009-12-17 Latitude 18, Inc Inorganic phosphate resins and method for their manufacture
CN102770583B (en) 2009-12-11 2015-08-05 18纬度有限公司 Inorganic phosphate erosion shield
WO2011072262A2 (en) 2009-12-11 2011-06-16 Latitude 18, Inc. Inorganic phosphate compositions and methods
US20130139930A1 (en) 2009-12-18 2013-06-06 Latitude 18, Inc. Inorganic phosphate corrosion resistant coatings
WO2011100288A2 (en) 2010-02-09 2011-08-18 Latitude 18, Inc. Phosphate bonded composites and methods
DE102011011545B4 (en) * 2011-02-17 2014-09-11 Yaskawa Europe Gmbh Method and device for introducing a fluid into a joint
ES2495165B1 (en) * 2013-02-13 2015-07-07 Ct Ingenieros Aai, S.L. FLUID METHOD AND DOSAGE SYSTEM
DE102013218611A1 (en) * 2013-09-17 2015-03-19 Peter Schiller Method and device for quality assurance in coating processes
US9952602B2 (en) * 2013-12-06 2018-04-24 Musashi Engineering, Inc. Liquid material application device
DE102014217892A1 (en) * 2014-09-08 2016-03-10 Volkswagen Aktiengesellschaft Method for the automated application of a viscous or liquid medium to components and metering device for carrying out the method
DE102015107667A1 (en) * 2015-05-15 2016-11-17 Marco Systemanalyse Und Entwicklung Gmbh metering
DE102016104134A1 (en) * 2015-11-10 2017-05-11 Polyplan-GmbH Polyurethan-Maschinen Method and arrangement for applying liquid or pasty substances
JP6465141B2 (en) * 2017-03-30 2019-02-06 マツダ株式会社 Coating method and coating apparatus
DE102017209894A1 (en) * 2017-06-12 2018-12-13 Volkswagen Aktiengesellschaft Method for connecting at least two components with self-regulating application of a medium
CN108205226B (en) * 2018-01-03 2022-04-08 京东方科技集团股份有限公司 Frame sealing glue coating device, frame sealing glue coating equipment and frame sealing glue replacing method
FR3078900B1 (en) * 2018-03-15 2020-09-18 Exel Ind APPLICATION DEVICE FOR A FLUID PRODUCT WHOSE DOSING RATE DEPENDS ON THE SPEED OF AN OUTLET OF THE SAID FLUID PRODUCT
JP6919607B2 (en) 2018-03-15 2021-08-18 オムロン株式会社 Robot system and robot control method
EP3539674B1 (en) 2018-03-15 2020-10-14 OMRON Corporation Robot system and control method of robot
DE102018107169A1 (en) * 2018-03-26 2019-09-26 Illinois Tool Works Inc. Apparatus and method for applying adhesive
US11173645B2 (en) * 2018-04-09 2021-11-16 The Boeing Company Apparatuses and methods for applying radius filler
CN111687010A (en) * 2019-03-15 2020-09-22 深圳市腾盛精密装备股份有限公司 Dispensing method and device
DE102021100542A1 (en) 2021-01-13 2022-07-14 Audi Aktiengesellschaft Gluing device and method for operating an automatic gluing process of a gluing device
US11826768B2 (en) 2021-03-11 2023-11-28 Ford Global Technologies, Llc Method and apparatus for adaptive control and real-time edge tracking of adhesive and sealer dispensing
CN117120175A (en) * 2021-04-01 2023-11-24 康茂股份公司 System and method for automatic sealant bead application in peripheral grooves
CN113345111A (en) * 2021-04-20 2021-09-03 梅卡曼德(北京)机器人科技有限公司 Robot-based object surface non-closed groove filling method, device and medium
CN112967307A (en) * 2021-04-20 2021-06-15 梅卡曼德(北京)机器人科技有限公司 Groove filling method and device based on robot moving speed control, electronic equipment and storage medium
CN113327260A (en) * 2021-04-20 2021-08-31 梅卡曼德(北京)机器人科技有限公司 Groove filling method, device and medium based on groove contour recognition
DE102021209299A1 (en) 2021-08-25 2023-03-02 Robert Bosch Gesellschaft mit beschränkter Haftung Method and computer program product for determining the shape of a dispensing path and a local application amount of a flowable filling material
CN114534976A (en) * 2022-02-28 2022-05-27 广船国际有限公司 Ship spraying system

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4734572A (en) * 1986-02-14 1988-03-29 Unimation Inc. Dual light source locating and tracking system
JP3023333B2 (en) 1997-06-30 2000-03-21 ニチハ株式会社 Building boards and their painting methods
DE10048749A1 (en) * 2000-09-29 2002-04-11 Josef Schucker Arrangement for applying adhesive to a workpiece
US6689219B2 (en) * 2001-03-15 2004-02-10 Michael Antoine Birmingham Apparatus and method for dispensing viscous liquid material
GB0125079D0 (en) * 2001-10-18 2001-12-12 Cimac Automation Ltd Auto motion:robot guidance for manufacturing
US6755339B2 (en) * 2002-06-21 2004-06-29 Delphi Technologies, Inc. Fluxing apparatus for applying powdered flux
DE10257567B4 (en) * 2002-12-10 2015-10-08 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Method and computer program and computer-readable medium for computer-controlled application of adhesive beads to a component
ATE535312T1 (en) * 2003-08-21 2011-12-15 Bae Systems Plc IMPROVEMENTS IN OR RELATING TO SPRAY COATING
EP1591169A3 (en) * 2004-04-29 2009-01-28 Nordson Corporation Automatic tolerance determination system for material application inspection operation
DE102004021573A1 (en) * 2004-05-03 2005-12-01 Adam Opel Ag Inline gluing monitoring system for monitoring of automatic application of glue bead onto workpiece has sensor fitted on glue application device and behind it with regard to direction of application device's direction of movement
ITMI20050627A1 (en) * 2005-04-13 2006-10-14 Abb Service Srl METHOD FOR PAINTING AN OBJECT AND ITS PAINTING SYSTEM
DE102005047489A1 (en) * 2005-10-04 2007-04-05 Ford Global Technologies, LLC, Dearborn Robot`s operation sequence and motion sequence programming method for motor vehicle manufacturing industry, involves additionally representing point corresponding to currently represented operation and motion conditions of robot in program
DE102006018558B4 (en) * 2006-04-21 2022-10-06 QUISS Qualitäts-Inspektionssysteme und Service GmbH Method for automatically applying or creating and monitoring a structure applied to a substrate with determination of geometric dimensions
DE202006008005U1 (en) 2006-05-17 2006-08-03 Robert Bürkle GmbH Glue application device for coating foil-covered surfaces of workpiece has sampling device acting outside topography of workpiece and detecting topography data

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2541547A (en) * 2015-08-18 2017-02-22 Boeing Co Sealant application tip
GB2541547B (en) * 2015-08-18 2020-01-01 Boeing Co Sealant application tip
GB2576658A (en) * 2015-08-18 2020-02-26 Boeing Co Sealant application tip
GB2576658B (en) * 2015-08-18 2020-06-17 Boeing Co Sealant application tip
US10987693B2 (en) 2015-08-18 2021-04-27 The Boeing Company Sealant application tip

Also Published As

Publication number Publication date
CN101977694A (en) 2011-02-16
DE102008015834A1 (en) 2009-10-01
CN101977694B (en) 2013-07-31
EP2254705A1 (en) 2010-12-01
WO2009118072A1 (en) 2009-10-01

Similar Documents

Publication Publication Date Title
EP2254705B1 (en) Method and device for automatically introducing or applying viscous material
DE102011011545B4 (en) Method and device for introducing a fluid into a joint
EP1929253B1 (en) Method for controlling a dosing apparatus for liquid or pasty media
DE102013006866B4 (en) Robot coating process
EP2460761B1 (en) Method and device for filling containers
EP1641586B1 (en) Method and device for pressure welding, which takes into account deviations in the length of workpieces
EP2998029B1 (en) Method for the automated application of a viscous or fluid medium onto components and dosing device for carrying out the method
DE102013015313A1 (en) Application system and corresponding application method
DE102014013956A1 (en) Injection molding machine with viscosity measurement and method for measuring viscosity with an injection molding machine
DE19612797C2 (en) Dosing system
EP1885510A1 (en) Method and device for applying beads of a pasty mass
DE102005049368A1 (en) Method and arrangement for braking on surface creating different levels of friction for left and right wheels, comprise use of information about steering angle to be expected
EP3386643B1 (en) Spreading unit
WO2010007058A1 (en) Method and device for automated dispensing of an adhesive
DE102009038924B3 (en) Method for filling fluid over component surface, involves leading fluid to regulating valve through conductor, where regulating valve is led to outlet opening
EP2962767B1 (en) System and method for determining process parameters for the robotic spray application of viscous fluids
DE102015118288A1 (en) sealing process
AT510879B1 (en) CONTROL AND / OR CONTROL DEVICE FOR CONTROLLING AND / OR REGULATING AN INJECTION PUNCH OF AN INJECTION MOLDING MACHINE
DE10143472B4 (en) Method for regulating the back pressure in a device for plasticizing and metering plastic
DE102005033292B4 (en) Device for applying adhesives or sealants
EP3911471B1 (en) Method for scanning the surface of metallic workpieces
DE102017219948A1 (en) Device for sealing a packaging
DE102018214070B4 (en) Method and device for applying medium to high viscosity materials
DE102019126238A1 (en) Injection molding machine and screw control method for the injection molding machine
DE102005033786B3 (en) Device for controlling the flow of a pressure device comprises a pressure regulating valve to control the flow of the pressure device and having a working pressure side and a pressure sensor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100818

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 583660

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121115

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009005374

Country of ref document: DE

Effective date: 20130110

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20121114

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130225

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130214

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130314

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130215

BERE Be: lapsed

Owner name: INOS AUTOMATIONSSOFTWARE G.M.B.H.

Effective date: 20130131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130214

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130815

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009005374

Country of ref document: DE

Effective date: 20130815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 583660

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090116

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130116

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170323

Year of fee payment: 9

Ref country code: FR

Payment date: 20170124

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170120

Year of fee payment: 9

Ref country code: CZ

Payment date: 20170112

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009005374

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180116

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180116