EP2240677A1 - Procédé pour contrôler au moins une bougie-crayon de préchauffage d'un moteur à combustion interne et dispositif correspondant - Google Patents

Procédé pour contrôler au moins une bougie-crayon de préchauffage d'un moteur à combustion interne et dispositif correspondant

Info

Publication number
EP2240677A1
EP2240677A1 EP08872082A EP08872082A EP2240677A1 EP 2240677 A1 EP2240677 A1 EP 2240677A1 EP 08872082 A EP08872082 A EP 08872082A EP 08872082 A EP08872082 A EP 08872082A EP 2240677 A1 EP2240677 A1 EP 2240677A1
Authority
EP
European Patent Office
Prior art keywords
glow plug
time
derivative
monitoring
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08872082A
Other languages
German (de)
English (en)
Inventor
Hans-Peter Bauer
Rainer Moritz
Simon Schmittinger
Andreas Reissner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2240677A1 publication Critical patent/EP2240677A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P19/00Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition
    • F02P19/02Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs
    • F02P19/027Safety devices, e.g. for diagnosing the glow plugs or the related circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current

Definitions

  • the present invention relates to a method for monitoring at least one glow plug of an internal combustion engine according to claim 1, and a device for this according to claim 9.
  • glow plugs in internal combustion engines are monitored by comparing the current flowing through the glow plugs with a predetermined, fixed threshold value. If the current consumption through the glow plug is smaller than the threshold value, the glow plug is rated as faulty.
  • Analog circuits use comparators or differential amplifiers for this purpose.
  • Microcomputer-based Glühzeit tenuieri determine via an analog / digital converter to the current through the glow plug corresponding digital value and compare this with a stored digital threshold.
  • the problem is that the current profile of the glow plug after application of the supply voltage is highly time-dependent.
  • the monitoring of the glow plug based on a fixed current value therefore only allows a very rough rating.
  • FIG. 5 shows in a diagram a current profile of a current ⁇ K e rz e through a glow plug in relation to time for monitoring at least one glow plug, as used in the prior art for determining a faulty glow plug.
  • the current profile decreases with increasing defectiveness of the glow plug with time.
  • a lower threshold IU is known, which is determined based on a modeling of the glow plug or a computer model is taken. This lower threshold IU is a threshold for error detection. If the current curve falls below this lower threshold value IU, a fault in the glow plug is recognized in the prior art, whereupon the glow plug path is interrupted in order to prevent melting of the glow plug or of the heater in the case of metal cores. Melting the glow plug can cause a complete engine failure.
  • an upper threshold value can furthermore be determined, wherein, if the current profile exceeds this upper threshold value, a fault in the glow plug is detected.
  • the current profile assumes a strongly unsteady course with increasing decrease of the current value.
  • the current profile below a current value IB at a time t1 takes a sudden course and is at least strongly undulating. This current value IB is still above the lower threshold IU.
  • a possible course of the current is detected in the prior art. More precisely, the current profile can be predicted or modeled in this area. In the time domain of the current profile from tl, below the current value IB, the possible course can be contrasted do not take it exactly.
  • a method for monitoring at least one glow plug of an internal combustion engine in which a time-dependent variable which characterizes the current flowing through the at least one glow plug, for fault detection with at least one time-dependent minimum and / or maximum threshold value is compared, and on Error is detected when the time-dependent size is greater and / or less than the minimum and / or maximum threshold.
  • the method is characterized in that the first derivative of the time-dependent variable is compared with the first derivative of the maximum threshold value and the second derivative of the time-dependent quantity with the second derivative of the maximum threshold value, and is detected for errors if the first derivative of the time-dependent variable is less than the first derivative of the maximum threshold and the second derivative of the Time-dependent size is smaller than the second derivative of the maximum threshold.
  • An essential point of the method according to the invention is that it reliably detects errors in the glow plug.
  • the time-dependent variable which characterizes the current flowing through the at least one glow plug, is a resistance model of the glow plug.
  • the time-dependent threshold value preferably contains the characteristic temporal resistance profile of the corresponding glow plug. Also, the circuit complexity or the programming effort in the control unit can be significantly reduced and there is a simple and cost-effective solution available.
  • a Glühschkerzenpfad is turned off in an error detection.
  • a melting of the glow plug, in particular the heater in metal cores can be prevented.
  • a diagnostic message is sent when an error is detected.
  • an effective glow plug control can be ensured.
  • a glow plug control is changed in response to the diagnostic message.
  • the glow plug control can be updated to always new parameters.
  • the driver in response to the diagnostic message, the driver is notified of the condition of the glow plug.
  • the driver is always informed about the condition of the glow plug and can adjust his driving behavior if necessary.
  • the above object is further achieved by a device for monitoring at least one glow plug of a
  • the device for monitoring at least one glow plug of an internal combustion engine includes a rating unit, which
  • Comparative means which compares a time-dependent quantity characterizing the current flowing through the at least one glow plug for error detection with at least one time-dependent minimum and / or maximum threshold, and recognizes the evaluation unit for errors if the time-dependent variable is greater than and / or less than is the minimum and / or maximum threshold.
  • the device is characterized in that the evaluation unit further contains another comparison means which compares the first derivative of the time-dependent variable with the first derivative of the maximum threshold value and the second derivative of the time-dependent variable with the second derivative of the maximum threshold value, and the evaluation unit
  • Error detects when the first derivative of the time-dependent variable is smaller than the first derivative of the maximum threshold value and the second derivative of the time-dependent variable is smaller than the second derivative of the maximum threshold value. As a result, the effort in the context of the application of the control unit can be significantly reduced.
  • the comparison means preferably contain at least one
  • FIG. 1 shows an embodiment of a device for monitoring at least one glow plug of the prior art
  • FIG. 2 shows a representation of a replica of a glow plug of the prior art
  • FIG. 3 shows an embodiment according to the invention of a device for monitoring at least one glow plug
  • FIG. 4 shows a current profile through a glow plug in relation to time for monitoring at least one glow plug in one embodiment of the present invention
  • Figure 5 shows a current waveform through a glow plug in relation to the time for monitoring at least one glow plug, as known from the prior art.
  • Figure 1 shows an embodiment of a device for monitoring at least one glow plug of the prior art, as disclosed for example in the published patent application DE 10 2006 005 711 A.
  • a glow plug 100 is connected in series with a current measuring means 120 and a switching means 110 between the two terminals of a supply voltage.
  • a current measuring means 120 and a switching means 110 are provided for each glow plug.
  • a common switching means 110 and / or a common current measuring means 120 are provided for several glow plugs or all the glow plugs of an internal combustion engine.
  • each glow plug 100 is connected in series with a current measuring means 120 and a switching means 110 between the two terminals of a supply voltage.
  • a current measuring means 120 and a switching means 110 are provided for each glow plug.
  • a common switching means 110 and / or a common current measuring means 120 are provided for several glow plugs or all the glow plugs of an internal combustion engine.
  • Glow plug are associated with a current measuring means 120 and a switching means 110, offers the advantage that the glow plugs can be controlled individually and the current flowing through the respective glow plug candle current can be evaluated. If several glow plugs are combined into one group, or if all the glow plugs are actuated together and / or the current is evaluated together, this offers the advantage that more expensive elements, For example, the switching means can be saved and thus results in a significant cost savings.
  • a control unit 130 which, in addition to other components not shown, includes an evaluation 133, a control 135 and an error detection 137.
  • the driver 135 controls the switching means 110 to supply the glow plug with a desired energy.
  • the evaluation 133 evaluates the voltage drop across the current measuring means 120 in order to determine the current flowing through the glow plug.
  • the current measuring means 120 is preferably designed as an ohmic resistor.
  • the voltage drop at the current measuring means 120 is supplied to an amplifier 140, which provides its output signal to the evaluation 133. Furthermore, the output signal of the measuring amplifier 140 reaches a comparator 150, to the second input of which the output signal of a threshold value input 160 is applied.
  • FIG. 2 shows a representation of a replica of a glow plug of the prior art, as disclosed for example in the published patent application DE 10 2006 005 711 A.
  • the threshold value 160 is essentially formed by an RC circuit in this embodiment. This consists of a series connection of a resistor 201 and a capacitor 205, which between the ground terminal and the connection point between the
  • Resistors 202, 203 and 204 This series connection is arranged between the ground terminal and the connection point between the switching means 110 and the current measuring means 120, respectively.
  • the input signal for a comparator 150a is tapped.
  • the signal for a second comparator 150b is tapped.
  • the two comparators 150a and 150b correspond to the comparator 150 shown in FIG.
  • two comparators are provided so that a threshold value query with a lower and an upper threshold value is possible.
  • one of the two comparators and one of the three resistors 202, 203 or 204 can be omitted. In this embodiment, only a comparison with a threshold value is possible. It is essential that the voltage divider and the series circuit of capacitor 205 and resistor 201 are applied with the same voltage applied to the glow plug to be monitored. The voltage drop corresponding to the current flowing through the glow plug is compared with the voltage drop across the capacitor 205.
  • the voltage divider consisting of the resistors 202, 203 and 204
  • the circuit shown represents a simple replica of the glow plug.
  • the voltage across the capacitor depends on the charge of the capacitor.
  • the capacitor acts integrating and sums up the energy introduced into the glow plug. This is achieved by applying a voltage proportional to the voltage drop across the glow plug to the capacitor 205.
  • the state of charge, or the voltage across the capacitor 205 is a measure of the temperature or the resistance of the glow plug.
  • Resistors is achieved that the temporal behavior of the output voltage of the voltage divider, which is formed by the resistors 202, 203 and 204, corresponds to the temporal behavior of the fault-free current through the glow plug.
  • the lower and / or upper threshold values can be specified. It is disadvantageous that the current course assumes a strongly unsteady course with increasing decrease of the current value.
  • FIG. 3 shows an embodiment of a device according to the invention for monitoring at least one glow plug in a simplified circuit configuration.
  • a ratiometric or voltage-compensated current measurement is made.
  • the resistance R Ke rze is input to a judging unit 320.
  • the resistance value R Ke e is input directly to a first comparison unit 330, which contains, for example, two comparators.
  • the first comparison unit 330 is likewise each input a minimum resistance threshold value R min and maximum resistance threshold value R max from the glow plug.
  • the first comparison unit 330 compares the resistance R Ke rz e respectively with the minimum resistance threshold R min and maximum resistance threshold R max of the glow plug, as already described in the explanation of Figures 2 and 3.
  • the evaluation unit 320 further includes a first derivation unit 340, which calculates a first time derivative d / dt, which is also connected to the signal path for supplying the resistance value R Ke rz e .
  • the first discharge unit 340 performs this case a first time derivative of the resistance value R Ke rz e, and performs the result of a second comparison unit 350 to.
  • the second comparison unit 350 compares the result of the first derivative from the first derivative unit 340 with a value of a first derivative of the maximum resistance threshold value i? ma ⁇ of the glow plug.
  • the evaluation unit 320 further includes a second derivation unit 360, which is connected to the output of the first derivation unit 340.
  • the second derivation unit 360 performs a time derivation on the first derivative of the resistance value R Ke rz e and supplies the result, namely a two-fold derivative of the resistance value R Ke rze, to a third comparison unit 370.
  • the third comparison unit 370 compares the result of the second derivative of the resistance R Ke rz e from the second derivative unit 360 with a value of a second derivative of the maximum resistance threshold value R max of the glow plug.
  • the first comparison unit 330 of the evaluation unit 320 is designed such that in each case a signal is output, which indicates a fault of the glow plug when the resistance R Ke rz e is greater than the minimum resistance threshold R min or the resistance value R Ke e is smaller than the maximum resistance threshold R max .
  • the second comparison unit 350 of the evaluation unit 320 is designed such that a signal is output, which indicates a fault of the glow plug when the first time derivative of the resistance value of the glow plug is smaller than the first derivative of the maximum resistance threshold R ma ⁇ .
  • the third comparison unit 370 is formed by the evaluation unit 320 such that a signal indicative of a fault of the glow plug when the second time derivative of the
  • the output signals indicative of a fault of the glow plug are each input to a control unit 380 which, in response to only a single input signal, turns off the glow plug path and / or enters appropriate information in a fault memory 382 and / or via a transmitter 384 Diagnostic message sends out.
  • the error memory 382 and the transmitting device 384 can in this case be connected via an interface 386, which receives the input signals to the control unit 380 and in each case forwards them to the error memory 382 and the transmitting device 384.
  • Transmitter 384 is connected, optionally a change of a glow plug control can be effected. Further, in response to the transmitted diagnostic message, the driver may be notified via a display 410 of notification information about the state of the glow plug.
  • Figure 4 is a diagram showing a current waveform of a first derivative / K e rz e by a glow plug in an embodiment of the present invention.
  • Threshold IS exceeds, a faulty glow plug is detected. Up to a time tl this passes through the glow plug flowing current / candle below the threshold ZS. At time t 1, the course of the current Z Ke rz e flowing through the glow plug candle experiences a sudden increase, as can be explained by a sudden defect in the glow plug. The increase is such that the threshold value ZS is exceeded. As a result, a faulty glow plug is detected quickly and reliably. Thus, a defect of the glow plug can be detected in the engine control very quickly and reliably and possible engine damage can be avoided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Resistance Heating (AREA)

Abstract

L'invention concerne un procédé pour contrôler au moins une bougie-crayon de préchauffage (100) d'un moteur à combustion interne, selon lequel une variable dépendant du temps qui caractérise le courant circulant à travers la ou les bougies-crayons de préchauffage (100) est comparée avec au moins une valeur seuil minimale (Rmin) et/ou une valeur seuil maximale (Rmax) dépendant du temps pour détecter des erreurs, une erreur étant identifiée si cette variable dépendant du temps est supérieure et/ou inférieure à la valeur seuil minimale (Rmin) et/ou à la valeur seuil maximale (Rmax). Ce procédé se caractérise en ce que la dérivée première de la variable dépendant du temps est comparée avec la dérivée première de la valeur seuil maximale (formule (I)) et la dérivée seconde de la variable dépendant du temps est comparée avec la dérivée seconde de la valeur seuil maximale (formule (II)), une erreur étant identifiée si la dérivée première de la variable dépendant du temps est inférieure à la dérivée première de la valeur seuil maximale (formule (I)) et si la dérivée seconde de la variable dépendant du temps est inférieure à la dérivée seconde de la valeur seuil maximale (formule (II)).
EP08872082A 2008-02-04 2008-11-14 Procédé pour contrôler au moins une bougie-crayon de préchauffage d'un moteur à combustion interne et dispositif correspondant Withdrawn EP2240677A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008007397A DE102008007397A1 (de) 2008-02-04 2008-02-04 Verfahren zur Überwachung von wenigstens einer Glühstiftkerze eines Brennkraftmotors und Vorrichtung hierzu
PCT/EP2008/065550 WO2009097922A1 (fr) 2008-02-04 2008-11-14 Procédé pour contrôler au moins une bougie-crayon de préchauffage d'un moteur à combustion interne et dispositif correspondant

Publications (1)

Publication Number Publication Date
EP2240677A1 true EP2240677A1 (fr) 2010-10-20

Family

ID=40254374

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08872082A Withdrawn EP2240677A1 (fr) 2008-02-04 2008-11-14 Procédé pour contrôler au moins une bougie-crayon de préchauffage d'un moteur à combustion interne et dispositif correspondant

Country Status (6)

Country Link
US (1) US20100286895A1 (fr)
EP (1) EP2240677A1 (fr)
JP (1) JP2011511205A (fr)
CN (1) CN101932818A (fr)
DE (1) DE102008007397A1 (fr)
WO (1) WO2009097922A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009041749B4 (de) 2009-09-16 2013-02-07 Beru Ag Verfahren zum Betreiben eines Heizelements in einem Kraftfahrzeug durch Pulsweitenmodulation
JP5884390B2 (ja) * 2011-10-11 2016-03-15 株式会社デンソー 発熱装置
US20140052392A1 (en) * 2012-08-14 2014-02-20 Bar Ilan University Technique for monitoring structural health of a solder joint in no-leads packages
US9822755B2 (en) * 2012-12-27 2017-11-21 Bosch Corporation Glow plug diagnosis method and vehicle glow plug drive control apparatus
GB2529629B (en) * 2014-08-26 2021-05-12 Nicoventures Trading Ltd Electronic aerosol provision system
US11739693B2 (en) * 2020-11-18 2023-08-29 Pratt & Whitney Canada Corp. Method and system for glow plug operation

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7549412B2 (en) * 1999-12-17 2009-06-23 Satnarine Singh System and method for recovering wasted energy from an internal combustion engine
US7323159B2 (en) * 2003-02-14 2008-01-29 Uchicago Argonne, Llc Method for fast start of a fuel processor
DE10348391B3 (de) * 2003-10-17 2004-12-23 Beru Ag Verfahren zum Glühen einer Glühkerze für einen Dieselmotor
DE102005016125A1 (de) * 2005-04-08 2006-10-12 Robert Bosch Gmbh Zündsystem einer Brennkraftmaschine
DE102006010194B4 (de) * 2005-09-09 2011-06-09 Beru Ag Verfahren und Vorrichtung zum Betreiben der Glühkerzen einer selbstzündenden Brennkraftmaschine
DE102006005711A1 (de) 2006-02-08 2007-08-23 Robert Bosch Gmbh Verfahren und Vorrichtung zur Überwachung wenigstens einer Glühkerze eines Kraftfahrzeugs
DE102006025834B4 (de) * 2006-06-02 2010-05-12 Beru Ag Verfahren zum Steuern einer Glühkerze in einem Dieselmotor
US7992542B2 (en) * 2008-03-11 2011-08-09 Ford Global Technologies, Llc Multiple spark plug per cylinder engine with individual plug control

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009097922A1 *

Also Published As

Publication number Publication date
CN101932818A (zh) 2010-12-29
WO2009097922A1 (fr) 2009-08-13
DE102008007397A1 (de) 2009-08-06
JP2011511205A (ja) 2011-04-07
US20100286895A1 (en) 2010-11-11

Similar Documents

Publication Publication Date Title
DE19806821C2 (de) Störungsfeststellungseinrichtung zur Feststellung einer Störung in einem Magnetventil
DE102007046483A1 (de) Schaltungsanordnung zur Überwachung einer elektrischen Isolation
EP2240677A1 (fr) Procédé pour contrôler au moins une bougie-crayon de préchauffage d'un moteur à combustion interne et dispositif correspondant
DE102015218256B4 (de) Geschwindigkeitssensorschnittstelle mit Differenzverstärker
EP2553479B2 (fr) Procédé pour surveiller des lignes électriques par détermination de la résistance électrique
EP1745203B1 (fr) Procede de diagnostic d'un circuit de commande
WO2008000539A1 (fr) Procédé pour étendre la capacité de diagnostic de régulateurs d'intensité de courant
DE102011080603A1 (de) Verfahren zur Messung elektrischen Stroms, elektrische Schaltung, Batteriesystem und Kraftfahrzeug
DE112018000220B4 (de) Elektronische Steuervorrichtung und Anomalie/Normalzustands-Bestimmungsverfahren einer elektronischen Steuervorrichtung
DE102016202498A1 (de) Messwiderstandskalibriervorrichtung, Verfahren zum Kalibrieren eines Messwiderstands und Batteriesensor
DE10118189A1 (de) Verfahren und Vorrichtung zum Abfragen eines Schaltzustandes eines Schalters
EP2506436A2 (fr) Circuit d'entrée pour un composant d'entrée et procédé de fonctionnement d'un circuit d'entrée
EP2408569B2 (fr) Procédé de surveillance et dispositif de surveillance pour une installation de revêtement électrostatique
EP1134589A2 (fr) Méthode de détection d'une connection fautive de masse dans un circuit électrique, en particulier d'un véhicule
EP1818536A2 (fr) Procédé et dispositif de surveillance d'au moins une bougie de préchauffage d'un véhicule automobile
DE19611522B4 (de) Verfahren und Vorrichtung zur Fehlererkennung bei einer Endstufenschaltungsanordnung
DE102014219130A1 (de) Diagnoseschaltung und Verfahren zum Betreiben einer Diagnoseschaltung
DE19644181A1 (de) Schaltungsanordnung zur Leckstromüberwachung
EP1700177B1 (fr) Ensemble circuit destine a proteger un element chauffant contre la surchauffe, dispositif chauffant et procede pour proteger par fusibles ce dispositif chauffant
WO2021058302A1 (fr) Procédé et dispositif pour déterminer un élément d'information de température décrivant la température d'un détecteur de température de résistance, onduleur, véhicule et programme informatique
EP1032519B1 (fr) Cablage pour un composant de reglage, et procede de controle de ce cablage de composant de reglage
EP3433625B1 (fr) Procédé de détection d'une défaillance, dispositif de commande, capteur batterie et réseau de bord
DE102010041731A1 (de) Recover-Verfahren für ein Gerät mit einem analogen Stromausgang zur Ausgabe eines Messwertes oder eines Stellwertes
DE10343179A1 (de) Vorrichtung zur Strommessung
DE112018003803T5 (de) Anomaliediagnosevorrichtung für treiberschaltkreis

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100906

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160601