EP2235139A2 - Procede de production de distillats moyens par hydroisomerisation et hydrocraquage de charges issues du procede fischer-tropsch - Google Patents

Procede de production de distillats moyens par hydroisomerisation et hydrocraquage de charges issues du procede fischer-tropsch

Info

Publication number
EP2235139A2
EP2235139A2 EP08872965A EP08872965A EP2235139A2 EP 2235139 A2 EP2235139 A2 EP 2235139A2 EP 08872965 A EP08872965 A EP 08872965A EP 08872965 A EP08872965 A EP 08872965A EP 2235139 A2 EP2235139 A2 EP 2235139A2
Authority
EP
European Patent Office
Prior art keywords
fraction
catalyst
weight
zeolite
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08872965A
Other languages
German (de)
English (en)
Inventor
Emmanuelle Guillon
Christophe Bouchy
Johan Martens
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Eni SpA
Original Assignee
IFP Energies Nouvelles IFPEN
Eni SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN, Eni SpA filed Critical IFP Energies Nouvelles IFPEN
Publication of EP2235139A2 publication Critical patent/EP2235139A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • C10G45/64Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/076Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • C10G45/62Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • C10G47/18Crystalline alumino-silicate carriers the catalyst containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • C10G47/20Crystalline alumino-silicate carriers the catalyst containing other metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/02Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used
    • C10G49/04Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used containing nickel, cobalt, chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/02Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used
    • C10G49/06Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/02Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used
    • C10G49/08Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/20After treatment, characterised by the effect to be obtained to introduce other elements in the catalyst composition comprising the molecular sieve, but not specially in or on the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1022Fischer-Tropsch products

Definitions

  • the present invention relates to a process for producing middle distillates from a paraffinic feedstock produced by Fischer-Tropsch synthesis, using a hydrocracking / hydroisomerization catalyst comprising at least at least one hydro-dehydrogenating metal chosen from the group formed.
  • zeolites of structural type TON, FER, MTT, zeolites ZBM- 30, ZSM-48 and COK-7 taken alone or in a mixture, said process operating at a temperature of between 270 and 400 ° C., a pressure of between 1 and 9 MPa, a space velocity of between 0.5 and 5 h. 1, a flow rate of hydrogen adjusted to obtain a ratio of 400 to 1500 normal liters of hydrogen per liter of charge.
  • the synthesis gas (CO + H 2 ) is catalytically converted into oxygenates and substantially linear hydrocarbons in gaseous, liquid or solid form.
  • These products are generally free of heteroatomic impurities such as, for example, sulfur, nitrogen or metals. They also contain practically little or no aromatics, naphthenes and more generally cycles especially in the case of cobalt catalysts.
  • they may have a significant content of oxygenated products which, expressed by weight of oxygen, is generally less than about 5% by weight and also an unsaturated content (olefinic products in general) generally less than 10% by weight.
  • All catalysts currently used in hydroisomerization / hydrocracking are of the bifunctional type associating an acid function with a hydrogenating function.
  • the acid function is provided by supports of large surfaces (150 to 800 m2.g-1 generally) having a superficial acidity, such as halogenated aluminas (chlorinated or fluorinated, in particular), phosphorus aluminas, combinations of boron and aluminum oxides, and silica-aluminas.
  • the hydrogenating function is provided either by one or more metals of group VIII of the periodic table of the elements, such as iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium and platinum, or by a combination of at least one Group VI metal such as chromium, molybdenum and tungsten and at least one Group VIII metal.
  • group VIII of the periodic table of the elements such as iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium and platinum, or by a combination of at least one Group VI metal such as chromium, molybdenum and tungsten and at least one Group VIII metal.
  • the equilibrium between the two acid and hydrogenating functions is one of the parameters that govern the activity and the selectivity of the catalyst.
  • a weak acidic function and a strong hydrogenating function give catalysts which are not very active and selective towards isomerization whereas a strong acid function and a low hydrogenating function give very active and cracking-selective catalysts.
  • a third possibility is to use a strong acid function and a strong hydrogenating function to obtain a very active catalyst but also very selective towards isomerization. It is therefore possible, by judiciously choosing each of the functions to adjust the activity / selectivity couple of the catalyst.
  • catalysts for catalytic hydrocracking are for the most part constituted by weakly acidic supports, such as silica-aluminas, for example. These systems are more particularly used to produce middle distillates of very good quality. In low acid carriers, there is the family of silica-aluminas. Many of the hydrocracking market catalysts are based on Group VIII metal silica-alumina. These systems have a very good selectivity in middle distillates, and the products formed are of good quality (US6733657). The disadvantage of all these silica-alumina catalyst systems is, as mentioned, their low activity. .
  • catalytic systems based on zeolite are very active for the hydrocracking reaction but are not very selective.
  • the present invention thus relates to a process for the production of middle distillates.
  • This process makes it possible to increase the amount of average distillates available by hydrocracking the heavier paraffinic compounds present in the outlet effluent of the Fischer-Tropsch unit, and which have boiling points higher than those of the kerosene cuts. and diesel, for example the fraction 370 0 C + .
  • the invention relates to a method for producing middle distillates from a paraffinic feedstock produced by Fischer-Tropsch synthesis using a particular catalyst as defined in the description which follows.
  • the present invention relates to a method for producing middle distillates from a paraffinic feedstock produced by Fischer-Tropsch synthesis, using a hydrocracking / hydroisomerization catalyst comprising at least at least one hydro-dehydrogenating metal chosen from the group formed.
  • zeolites of structural type TON, FER, MTT, zeolites ZBM- 30, ZSM-48 and COK-7 taken alone or in a mixture, said process operating at a temperature of between 270 and 400 ° C., a pressure of between 1 and 9 MPa, a space velocity of between 0.5 and 5 h. 1, a flow rate of hydrogen adjusted to obtain a ratio of 400 to 1500 normal liters of hydrogen per liter of charge.
  • the present invention makes it possible to improve the performance of the middle distillate production process by optimizing the operating conditions used in the process according to the invention.
  • the selection of particular operating conditions and specific catalysts makes it possible to obtain high average distillate yields.
  • the present invention relates to a method for producing middle distillates from a paraffinic feedstock produced by Fischer-Tropsch synthesis, using a hydrocracking / hydroisomerization catalyst comprising at least at least one hydro-dehydrogenating metal chosen from the group formed.
  • a hydrocracking / hydroisomerization catalyst comprising at least at least one hydro-dehydrogenating metal chosen from the group formed.
  • Group VIB and Group metals VIII of the Periodic Table and a support comprising at least one silica-alumina and at least one zeolite selected from the group consisting of zeolites of structural type TON, FER, MTT, zeolites ZBM-30, ZSM-48 and COK-7 , taken alone or as a mixture, said process operating at a temperature of between 270 and 400 ° C.
  • said hydrocracking / hydroisomerization catalyst comprises,
  • 0.1 to 60% preferably 0.1 to 50% and even more preferably 0.1 to 40% of at least one hydro-dehydrogenating metal selected from the group consisting of Group VIB metals and Group VIII, and preferably from 40 to 99.9% of a support comprising: 0 to 99% and preferably 2 to 98%, preferably 5 to 95% of at least one amorphous porous inorganic binder or poorly crystallized oxide type (excluding silica-alumina)
  • zeolites 0.1 to 40%, preferably 0.2 to 38%, preferably 0.5 to 35% and most preferably 1 to 30% of at least one zeolite selected from the group formed by the zeolites of structural type TON, FER, MTT, zeolites ZBM-30, ZSM-48 and COK-7, taken alone or as a mixture,
  • silica -alumina from 60 to 95% of silica -alumina, preferably from 70 to 95% and very preferably from 80 to 95%, the percentages being expressed as a percentage by weight relative to the total mass of the catalyst.
  • said catalyst also contains:
  • doping element means an element introduced after the preparation of the zeolite / silica-alumina / binder support.
  • the catalyst comprises at least one hydrodehydrogenating metal selected from the group consisting of Group VII metals and Group VIB metals, taken alone or in admixture.
  • the group VIII elements are chosen from iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium or platinum, taken alone or as a mixture.
  • the elements of group VIII are chosen from the noble metals of group VII, the elements of group VIII are advantageously chosen from platinum and palladium.
  • the elements of group VIlI are chosen from non-noble metals of group VIlI
  • the elements of group VIII are advantageously chosen from iron, cobalt and nickel.
  • the group VIB elements of the catalyst according to the present invention are selected from tungsten and molybdenum.
  • the hydrogenating function comprises a group VIII element and a group VIB element
  • the following metal combinations are preferred: nickel-molybdenum, cobalt-molybdenum, iron-molybdenum, iron-tungsten, nickel-tungsten, cobalt- tungsten, and very preferably: nickel-molybdenum, cobalt-molybdenum, nickel-tungsten. It is also possible to use combinations of three metals such as for example nickel-cobalt-molybdenum.
  • the content of the hydro-dehydrogenating element of said catalyst according to the present invention chosen from the group formed by the metals of group VIB and of group VIII is between 0.1 and 60% by weight relative to the total mass of said catalyst, preferably between 0 , 1 to 50% by weight and very preferably between 0.1 to 40% by weight.
  • the hydro-dehydrogenating element is a noble metal of group VIII
  • the catalyst preferably contains a noble metal content of between 0.05 and 10% by weight, even more preferably from 0.1 to 5% by weight relative to to the total mass of said catalyst.
  • the support of the catalyst according to the present invention comprises at least one zeolite chosen from the group formed by zeolites of structural type TON, FER, MTT, zeolites ZBM-30, ZSM-48 and COK-7, taken alone or as a mixture,
  • said support comprises zeolite ZBM-30 or zeolite COK-7 and very preferably, said support comprises zeolite ZBM-30.
  • Zeolite ZBM-30 is described in patent EP-A-46 504, and zeolite COK-7 is described in patent applications EP 1 702 888 A1 or FR 2 882 744 A1.
  • the COK-7 zeolite used in the catalyst according to the present invention is synthesized in the presence of the organic triethylenetetramine structurant.
  • the ZBM-30 zeolite used in the catalyst according to the present invention is synthesized in the presence of the organic triethylenetetramine structurant.
  • the support of the catalyst according to the present invention comprises the COK-7 zeolite, synthesized in the presence of the organic triethylenetetramine structurant, in a mixture with zeolite ZBM-30 synthesized in the presence of the organic triethylenetetramine structurant.
  • Zeolites of TON structural type are described in "Atlas of Zeolite Structure Types", W. M. Meier, D.H. Oison and Ch. Baerlocher, 5th Revised Edition, 2001, Elsevier.
  • the zeolite of structural type TON which can also be used in the composition of the support of the catalyst according to the present invention is advantageously chosen from the group formed by the zeolites Theta-1, ISI-1, NU-10, KZ-2 and ZSM-22 described. in the "Atlas of Zeolite Structure Types", cited above, and in the case of zeolite ZSM-22, in US Pat. Nos. 4,566,477 and 4,902,406, and in the case of zeolite NU-10, in EP-65400 and EP-77624.
  • the zeolite of structural type FER which can also enter the composition of the support of the catalyst according to the present invention is advantageously chosen from the group formed by zeolites ZSM-35, ferrierite, FU-9 and ISI-6, described in the book " Atlas of Zeolite Structure Types ", cited above.
  • the MTT structural type zeolite which can also be used in the composition of the catalyst support according to the present invention is advantageously chosen from the group formed by zeolites ZSM-23, EU-13, ISI-4 and KZ-1 described in the book. "Atlas of Zeolite Structure Types", cited above, as well as in US Pat. No. 4,076,842 for zeolite ZSM-23.
  • zeolites of structural type TON which can also be used in the composition of the catalyst support according to the present invention, zeolites ZSM-22 and NU-10 are preferred.
  • zeolites of FER structural type that can also be included in the composition of the catalyst support according to the present invention, zeolites ZSM-35 and ferrierite are preferred.
  • the support of the catalyst according to the invention contains a mixture of two zeolites and, preferably, a mixture of the COK-7 zeolite with the zeolite ZSM-22 or the zeolite NU-10, or a mixture of the zeolite ZBM-30 with zeolite ZSM-22 or zeolite NlM 0.
  • the proportion of each of the zeolites in the mixture of the two zeolites is advantageously between 20 and 80% by weight relative to the total weight of the mixture of the two zeolites, and preferably the proportion of each of the zeolites in the mixture of the two zeolites is 50% by weight relative to the total weight of the mixture of the two zeolites.
  • the zeolites present in the support of the catalyst according to the invention advantageously comprise silicon and at least one element T chosen from the group formed by aluminum, iron, gallium, phosphorus and boron, and preferably said element T is aluminum
  • the overall Si / Al ratio of the zeolites used in the composition of the catalyst support according to the invention as well as the chemical composition of the samples are determined by X-ray fluorescence and atomic absorption.
  • the Si / Al ratios of the zeolites described above are advantageously those obtained in the synthesis according to the procedures described in the various documents cited or obtained after post-synthesis dealumination treatments well known to those skilled in the art. such as and not limited to hydrothermal treatments followed or not acid attacks or even direct acid attacks by solutions of mineral or organic acids.
  • the zeolites used in the composition of the support of the catalyst according to the invention are advantageously calcined and exchanged by at least one treatment with a solution of at least one ammonium salt so as to obtain the ammonium form of the zeolites which, once calcined, leads to to the hydrogen form of said zeolites.
  • the zeolites used in the composition of the support of the catalyst according to the invention are advantageously at least partly, preferably almost completely, in acid form, that is to say in acid form (H +).
  • the atomic ratio Na / T is generally advantageously less than 0.1 and preferably less than 0.05 and even more preferably less than 0.01.
  • the support of the catalyst according to the invention also comprises at least one silica-alumina.
  • the silica-alumina contained in the catalyst according to the invention is a non-zeolitic support with a silica mass (SiO 2 ) content greater than 5% by weight and less than or equal to 95% by weight,
  • the silica-alumina is homogeneous on a micrometer scale and contains an amount greater than 5% by weight and less than or equal to 95% by weight of silica (SiO 2 ), preferably between 10 and 80 % weight, preferably a silica content greater than 20% by weight and less than 80% by weight and even more preferably greater than 25% by weight and less than 75% by weight, the silica content is advantageously between 10 and 50 weight, said silica - alumina having the following characteristics:
  • a porous volume measured by mercury porosimetry, included in pores with a diameter greater than 200 ⁇ , less than 0.1 ml / g,
  • a porous volume measured by mercury porosimetry, included in pores with diameters greater than 500 ⁇ less than 0.1 ml / g.
  • an X-ray diffraction diagram which contains at least the principal characteristic lines of at least one of the transition aluminas included in the group composed of alpha, rho, chi, eta, gamma, kappa, theta and delta aluminas.
  • said silica-alumina contains: a content of cationic impurities (for example Na + ) of less than 0.1% by weight, preferably less than 0.05% by weight and even more preferably less than 0.025% by weight.
  • the content of cationic impurities means the total content of alkali and alkaline earth.
  • an anionic impurities content e.g. SO 4 2- ", Cl
  • an anionic impurities content e.g. SO 4 2- ", Cl
  • the catalysts used in the process according to the invention can advantageously be prepared according to all the methods well known to those skilled in the art, starting from the support based on silico-aluminum matrix and based on at least one selected zeolite. in the group formed by the zeolites of structural type TON, FER, MTT, zeolites ZBM-30, ZSM-48 and COK-7, taken alone or as a mixture.
  • the cationic impurities for example Na +
  • the anionic impurities for example SO 4 2 " , CI "
  • partially soluble in acidic medium the applicant understands that bringing the alumina compound into contact before any addition of the totally soluble silica compound or the combination with an acidic solution, for example of nitric acid or sulfuric acid, causes them to react. partial dissolution.
  • the silica compounds used according to the invention may advantageously have been chosen from the group formed by silicic acid, silicic acid sols, water-soluble alkali silicates, cationic silicon salts, for example sodium metasilicate hydrate, Ludox® in ammoniacal form or in alkaline form, quaternary ammonium silicates.
  • the silica sol can be prepared according to one of the methods known to those skilled in the art.
  • a solution of decationized orthosilicic acid is prepared from a water-soluble alkali silicate by ion exchange on a resin.
  • the totally soluble hydrous silica-aluminas advantageously used according to the invention can be prepared by true coprecipitation under controlled stationary operating conditions (pH, concentration, temperature, average residence time) by reaction of a basic solution containing the silicon, for example under sodium silicate form, optionally aluminum, for example in the form of sodium aluminate with an acid solution containing at least one aluminum salt, for example aluminum sulphate. At least one carbonate or CO 2 may optionally be added to the reaction medium.
  • a basic solution containing the silicon for example under sodium silicate form, optionally aluminum, for example in the form of sodium aluminate
  • an acid solution containing at least one aluminum salt for example aluminum sulphate.
  • At least one carbonate or CO 2 may optionally be added to the reaction medium.
  • the applicant intends a process by which at least one fully soluble aluminum compound in basic or acid medium as described below, at least one silicon compound as described below are contacted, simultaneously or sequentially in the presence of at least one precipitant and / or coprecipitant compound so as to obtain a mixed phase consisting essentially of silica-hydrated alumina which is optionally homogenized by intense stirring, shearing, colloid milling or by combination of these unit operations.
  • the alumina compounds advantageously used according to the invention are partially soluble in acid medium. They are selected in whole or in part from the group of alumina compounds of general formula AI 2 O 3 , nH 2 O.
  • hydrated alumina compounds may be used such as: hydrargillite, gibbsite, bayerite , boehmite, pseudo-boehmite and amorphous or essentially amorphous alumina gels. It is also advantageous to use the dehydrated forms of these compounds which consist of transition aluminas and which comprise at least one of the phases taken from the group: rho, chi, eta, gamma, kappa, theta, and delta, which are essentially differentiated by the organization of their crystalline structure.
  • the alpha alumina commonly called corundum can advantageously be incorporated in a small proportion in the support according to the invention.
  • Aluminum hydrate AI 2 O 3 , nH 2 O used more preferably is advantageously boehmite, pseudo-boehmite and amorphous or essentially amorphous alumina gels. A mixture of these products under any combination may be used as well.
  • Boehmite is generally described as an aluminum monohydrate of formula AI 2 O 3 , nH 2 O which in fact encompasses a wide continuum of materials of variable degree of hydration and organization with more or less well defined boundaries: most hydrated gelatinous boehmite, with n being greater than 2, pseudo-boehmite or microcrystalline boehmite with n between 1 and 2, then crystalline boehmite and finally well crystallized boehmite in large crystals with n close to 1
  • the morphology of aluminum monohydrate can advantageously vary within wide limits between these two acicular or prismatic extreme forms. A whole set of variable shapes can be used between these two forms: chain, boats, interwoven plates.
  • Relatively pure aluminum hydrates can advantageously be used in powder form, amorphous or crystallized or crystallized containing an amorphous part.
  • the aluminum hydrate can also advantageously be introduced in the form of aqueous suspensions or dispersions.
  • the aqueous suspensions or dispersions of aluminum hydrate used according to the invention may advantageously be gelable or coagulable.
  • the aqueous dispersions or suspensions may also advantageously be obtained as is well known to those skilled in the art by peptization in water or acidulated water of aluminum hydrates.
  • the aluminum hydrate dispersion may advantageously be carried out by any method known to those skilled in the art: in a "batch" reactor, a continuous mixer, a kneader, a colloid mill. Such a mixture may advantageously also be carried out in a plug flow reactor and, in particular, in a static mixer. Lightnin reactors can be mentioned.
  • aqueous dispersions or suspensions of alumina which may be used include aqueous suspensions or dispersions of fine or ultra-fine boehmites which are composed of particles advantageously having dimensions in the colloidal domain.
  • aqueous suspensions or dispersions obtained from pseudo-boehmite, amorphous alumina gels, aluminum hydroxide gels or ultra-fine hydrargillite can advantageously be purchased from a variety of commercial sources of alumina such as in particular PURAL®, CATAPAL®, DISPERAL®, DISPAL® sold by the company SASOL or HIQ® marketed by ALCOA, or according to the methods Known to those skilled in the art: it can advantageously be prepared by partial dehydration of aluminum trihydrate by conventional methods or it can advantageously be prepared by precipitation. When these aluminas are in the form of a gel, they are advantageously peptized with water or an acidulated solution.
  • the acid source may advantageously be for example chosen from at least one of the following compounds: aluminum chloride, aluminum sulphate, aluminum nitrate.
  • the basic aluminum source may be selected from basic aluminum salts such as sodium aluminate and potassium aluminate.
  • the zeolites used in the catalyst according to the invention are advantageously commercial zeolites or zeolites synthesized according to the procedures described in the patents mentioned above.
  • the zeolites used in the composition of the catalyst according to the invention are advantageously at least partly, preferably almost completely, in acid form, that is to say in hydrogen (H + ) form.
  • the matrix according to the invention may advantageously be prepared according to all methods well known to those skilled in the art from the supports prepared as described above.
  • the zeolite can advantageously be introduced according to any method known to those skilled in the art and at any stage of the preparation of the support or catalyst.
  • the zeolite may advantageously be introduced during the synthesis of the precursors of the silica-alumina.
  • the zeolite may be, without limitation, for example in the form of powder, ground powder, suspension, suspension having undergone deagglomeration treatment.
  • the zeolite can advantageously be slurried acidulated or not at a concentration adjusted to the final zeolite content referred to the support.
  • This suspension commonly known as a slurry, is then mixed with the precursors of the silica-alumina at any stage of its synthesis as described above.
  • the zeolite can advantageously also be introduced during the shaping of the support with the elements which constitute the matrix with possibly at least one binder.
  • the zeolite may advantageously be, without being limited to, in the form of a powder, ground powder, suspension or suspension having undergone deagglomeration treatment.
  • the preparation and treatment (s) and the shaping of the zeolite can thus advantageously constitute a step in the preparation of these catalysts.
  • the zeolite / silica-alumina matrix is obtained by mixing the silica-alumina and the zeolite, and the mixture is then shaped.
  • the zeolite / silica-alumina matrix may advantageously be shaped by any technique known to those skilled in the art.
  • the shaping can advantageously be carried out for example by extrusion, by pelletization, by the method of drop coagulation ("oil-drop"), by rotating plate granulation or by any other method well known to those skilled in the art. .
  • the shaping can advantageously also be carried out in the presence of the various constituents of the catalyst and extrusion of the obtained mineral paste, by pelletizing, shaped into beads at the rotating bezel or drum, drop coagulation, "oil-drop” , "oil-up”, or any other known method of agglomeration of a powder containing alumina and optionally other ingredients selected from those mentioned above.
  • the catalysts used in the process according to the invention are in the form of spheres or extrudates. It is however advantageous that the catalyst is in the form of extrudates with a diameter of between 0.5 and 5 mm and more particularly between 0.7 and 2.5 mm.
  • the shapes are cylindrical (which can be hollow or not), cylindrical twisted, multilobed (2, 3, 4 or 5 lobes for example), rings.
  • the cylindrical shape is preferably used in a preferred manner, but any other form may advantageously be used.
  • these supports implemented according to the present invention may advantageously have been treated as is well known to those skilled in the art by additives to facilitate the shaping and / or improve the final mechanical properties of the supports to base of silico-aluminum matrices.
  • additives there may be mentioned in particular cellulose, carboxymethylcellulose, carboxy-ethylcellulose, tall oil, xanthan gums, surfactants, flocculating agents such as polyacrylamides, carbon black, starches, stearic acid, polyacrylic alcohol, polyvinyl alcohol, biopolymers, glucose, polyethylene glycols, etc.
  • the shaping may advantageously be carried out using the catalyst shaping techniques known to those skilled in the art, such as, for example: extrusion, coating, spray drying or tabletting. Water may be advantageously added or removed to adjust the viscosity of the paste to be extruded. This step can be performed at any stage of the kneading step.
  • a predominantly solid compound and preferably an oxide or a hydrate.
  • a hydrate is preferably used and even more preferably an aluminum hydrate. The loss on ignition of this hydrate is advantageously greater than 15%.
  • the acid content added to the kneading before shaping is less than 30%, preferably between 0.5 and 20% by weight of the anhydrous mass of silica and alumina involved in the synthesis.
  • Extrusion can advantageously be performed by any conventional tool, commercially available.
  • the paste resulting from the mixing is advantageously extruded through a die, for example by means of a piston or a single screw or twin extrusion screw. This extrusion step may advantageously be carried out by any method known to those skilled in the art.
  • the support extrusions according to the invention advantageously have generally a crush strength of at least 70 N / cm and preferably greater than or equal to 100 N / cm.
  • Drying is advantageously carried out by any technique known to those skilled in the art.
  • calcine preferably in the presence of molecular oxygen, for example by conducting a sweep of air, at a temperature of less than or equal to 1100 ° C.
  • At least one calcination can advantageously be performed after any of the steps of the preparation.
  • This treatment for example, can be carried out in crossed bed, in a licked bed or in a static atmosphere.
  • the furnace used may advantageously be a rotating rotary kiln or be a vertical kiln with radial traversed layers.
  • the calcination conditions temperature and time depend mainly on the maximum temperature of use of the catalyst.
  • the preferred calcining conditions are advantageously between more than one hour at 200 ° C.
  • the calcination can advantageously be carried out in the presence of water vapor.
  • the final calcination may optionally be carried out in the presence of an acidic or basic vapor.
  • the calcination can advantageously be carried out under partial pressure of ammonia.
  • Post-synthesis treatments can be advantageously carried out so as to improve the properties of the catalyst.
  • the zeolite / silica-alumina support can thus be optionally subjected to a hydrothermal treatment in a confined atmosphere.
  • hydrothermal treatment in a confined atmosphere is meant a treatment by autoclaving in the presence of water at a temperature above room temperature.
  • the support can advantageously be treated.
  • the support can advantageously be impregnated, prior to its autoclaving, the autoclaving being done either in the vapor phase or in the liquid phase, this vapor or liquid phase of the autoclave possibly being acidic or not. This impregnation, prior to autoclaving, may advantageously be acidic or not.
  • This impregnation, prior to autoclaving may advantageously be carried out dry or by immersion of the support in an acidic aqueous solution.
  • Dry impregnation means contacting the support with a solution volume less than or equal to the total pore volume of the support.
  • the impregnation is carried out dry.
  • the autoclave is preferably a rotary basket autoclave such as that defined in patent application EP-A-0 387 109.
  • the temperature during autoclaving can be between 100 and 250 0 C for a period of time between 30 minutes and 3 hours.
  • the hydro-dehydrogenating element may advantageously be introduced at any stage of the preparation, very preferably after forming the zeolite / silica-alumina support.
  • the shaping is advantageously followed by calcination, the hydrogenating element can also advantageously be introduced before or after this calcination.
  • the preparation generally ends with a calcination at a temperature of 250 to 600 ° C.
  • Another of the preferred methods according to the present invention advantageously consists in shaping the zeolite / silica-alumina support after mixing the latter, then the dough thus obtained through a die to form extrudates with a diameter of between 0.4 and 4 mm.
  • the hydrogenating function can advantageously be then introduced in part only or in full, at the time of mixing.
  • the support is impregnated with an aqueous solution.
  • the impregnation of the support is preferably carried out by the so-called impregnation method.
  • the impregnation may advantageously be carried out in a single step by a solution containing all the constitutive elements of the final catalyst.
  • the hydrogenating function may advantageously be introduced by one or more impregnation operations of the shaped and calcined support, with a solution containing at least one precursor of at least one oxide of at least one metal chosen from the group formed by the Group VIII metals and Group VIB metals, the precursor (s) of at least one oxide of at least one Group VIII metal being preferably introduced after those of group VIB or at the same time the latter, if the catalyst contains at least one Group VIB metal and at least one Group VIII metal.
  • the catalyst advantageously contains at least one element of group VIB, for example molybdenum
  • the catalyst it is for example possible to impregnate the catalyst with a solution containing at least one element of group VIB, to dry, to calcine.
  • the impregnation of molybdenum may advantageously be facilitated by the addition of phosphoric acid in the ammonium paramolybdate solutions, which also makes it possible to introduce the phosphorus so as to promote the catalytic activity.
  • boron and / or silicon and / or phosphorus can be introduced into the catalyst at any level of the preparation and according to any technique known to those skilled in the art.
  • a preferred method according to the invention consists in depositing the selected promoter element or elements, for example the boron-silicon pair, on the calcined or non calcined zeolite / silica-alumina support, preferably calcined.
  • an aqueous solution of at least one boron salt such as ammonium biborate or ammonium pentaborate, is prepared in an alkaline medium and in the presence of hydrogen peroxide, and a so-called dry impregnation is carried out in which the pore volume of the precursor is filled with the solution containing, for example, boron.
  • silicon is also deposited, for example a solution of a silicon-type silicon compound or a silicone oil emulsion is used.
  • the element (s) promoters) chosen (s) in the group formed by silicon, boron and phosphorus can advantageously be introduced by one or more impregnation operations with excess solution on the calcined precursor.
  • the boron source may advantageously be boric acid, preferably orthoboric acid H3BO3, ammonium biborate or pentaborate, boron oxide, boric esters.
  • Boron may for example be introduced in the form of a mixture of boric acid, hydrogen peroxide and a basic organic compound containing nitrogen such as ammonia, primary and secondary amines, cyclic amines, compounds of the family of pyridine and quinolines and compounds of the pyrrole family. Boron may be introduced for example by a boric acid solution in a water / alcohol mixture.
  • the preferred phosphorus source is orthophosphoric acid H 3 PO 4, but its salts and esters such as ammonium phosphates are also suitable.
  • the phosphorus may for example be introduced in the form of a mixture of phosphoric acid and a basic organic compound containing nitrogen such as ammonia, primary and secondary amines, cyclic amines, compounds of the family of pyridine and quinolines and compounds of the pyrrole family.
  • ethyl orthosilicate Si (OEt) 4 siloxanes, polysiloxanes, silicones, silicone emulsions, halide silicates, such as ammonium fluorosilicate (NH4) 2SiF6 or fluorosilicate. sodium Na2SiF6.
  • Silicomolybdic acid and its salts, silicotungstic acid and its salts can also be advantageously employed.
  • Silicon may advantageously be added for example by impregnation of ethyl silicate in solution in a water / alcohol mixture. Silicon can be added, for example, by impregnating a silicon-type silicon compound or silicic acid suspended in water.
  • the noble group VIII metals of the catalyst of the present invention may advantageously be present in whole or in part in metallic and / or oxide form.
  • the noble element sources of group VIII which can advantageously be used are well known to those skilled in the art.
  • the noble metals halides are used, for example chlorides, nitrates, acids such as chloroplatinic acid, hydroxides, oxychlorides such as ruthenium ammoniacal oxychloride. It is also advantageous to use cationic complexes such as ammonium salts when it is desired to deposit the platinum on the zeolite by cation exchange.
  • Embodiment 1 the process comprises the following steps from a feed resulting from FT synthesis: a) separation of a single so-called heavy fraction with an initial boiling point of between 120-200 0 C 1 b) hydrotreatment of at least a part of said heavy fraction, c) fractionation into at least 3 fractions:
  • the effluent from the Fischer-Tropsch synthesis unit arriving via line 1 is fractionated (for example by distillation) in a separation means (2) into at least two fractions: at least a light fraction and a heavy fraction at least initial boiling point equal to a temperature between 120 and 200 ° C and preferably between 130 and 180 ° C and even more preferably at a temperature of about 15O 0 C, in other words the cutting point is located between 120 and 200 0 C.
  • the light fraction of Figure 1 out through the pipe (3) and the heavy fraction through the pipe (4).
  • This fractionation can be carried out by methods well known to those skilled in the art such as flash, distillation, etc.
  • the effluent from the Fischer-Tropsch synthesis unit will be flashed. , decantation to remove water and distillation to obtain at least the 2 fractions described above.
  • the light fraction is not treated according to the process of the invention but may for example constitute a good load for petrochemicals and more particularly for a steam cracking unit (5).
  • the heavy fraction previously described is treated according to the process of the invention.
  • At least a portion of said heavy fraction (step a) is allowed in the presence of hydrogen (line 6) in a zone (7) containing a hydrotreatment catalyst which aims to reduce the content of olefinic and unsaturated compounds and that possibly to decompose the oxygenated compounds present in the fraction, as well as possibly to break down any traces of sulfur and nitrogen compounds present in the heavy fraction.
  • This hydrotreating step is non-converting, i.e. the conversion of the fraction 370 0 C. + fraction 370 ° C "is preferably less than 20% by weight, preferably less than 10% by weight and very preferably less than 5% by weight.
  • the catalysts used in this step (b) are hydrotreating catalysts that are non-crunchy or slightly cracking and comprise at least one metal of group VIII and / or group VI of the periodic table of elements.
  • the catalyst comprises at least one metal of the metal group formed by nickel, molybdenum, tungsten, cobalt, ruthenium, indium, palladium and platinum and comprising at least one support.
  • the catalyst is then preferably used in a sulfurous form.
  • at least one element selected from P, B, Si is deposited on the support.
  • This catalyst may advantageously contain phosphorus; indeed, this compound provides two advantages to hydrotreatment catalysts: an ease of preparation, particularly in the impregnation of nickel and molybdenum solutions, and a better hydrogenation activity.
  • the total concentration of metals of VI group and VIII 1 expressed as the metal oxides is between 5 and 40% by weight and preferably between 7 and 30% by weight and the weight expressed as metal oxide to (or metals) of group VI on metal (or metals) of group VIII is between 1, 25 and 20 and preferably between 2 and 10.
  • the concentration of phosphorus oxide P 2 O 5 is less than 15% by weight and preferably less than 10% by weight.
  • boron and phosphorus are promoter elements deposited on the support, and for example the catalyst according to patent EP297949.
  • the sum of the amounts of boron and phosphorus, expressed respectively by weight of boron trioxide and phosphorus pentoxide, relative to the weight of support, is about 5 to 15% and the atomic ratio boron on phosphorus is about 1 1 to 2: 1 and at least 40% of the total pore volume of the finished catalyst is contained in pores with an average diameter greater than 13 nanometers.
  • the amount of Group VI metal such as molybdenum or tungsten, is such that the atomic phosphorus to metal ratio of Group VIB is about 0.5: 1 to 1.5: 1; the quantities of metal and Group VIB metal of group VIII 1 such as nickel or cobalt, are such that the atomic ratio of the group VIII metal of group VIB is about 0.3: 1 to 0.7: 1.
  • the amounts of Group VIB metal expressed in weight of metal relative to the weight of finished catalyst is about 2 to 30% and the amount of Group VIII metal expressed as weight of metal relative to the weight of finished catalyst is about 0.01 to 15%.
  • Another particularly advantageous catalyst contains promoter silicon deposited on the support.
  • An interesting catalyst contains BSi or PSi.
  • Ni-sulfide catalysts on alumina, NiMo on alumina, NiMo on alumina doped with boron and phosphorus and NiMo on silica-alumina are also preferred.
  • eta or gamma alumina will be chosen as support.
  • the metal content is between 0.05 and 3% by weight relative to the finished catalyst and preferably between 0.1 and 2% by weight of the finished catalyst.
  • the noble metal is preferably used in its reduced and non-sulphurized form. It is also possible to use a reduced, non-sulfurized nickel catalyst.
  • the metal content in its oxide form is between 0.5 and 25% by weight relative to the finished catalyst.
  • the catalyst also contains a group IB metal such as copper, in proportions such that the mass ratio of the group IB metal and nickel on the catalyst is between 1 and 1:30.
  • These metals are deposited on a support which is preferably an alumina, but which may also be boron oxide, magnesia, zirconia, titanium oxide, a clay or a combination of these oxides.
  • a support which is preferably an alumina, but which may also be boron oxide, magnesia, zirconia, titanium oxide, a clay or a combination of these oxides.
  • These catalysts can be prepared by any method known to those skilled in the art or can be acquired from companies specializing in the manufacture and sale of catalysts.
  • the feedstock is brought into contact in the presence of hydrogen and the catalyst at operating temperatures and pressures which make it possible to hydrogenate the olefins present in the feedstock.
  • the catalyst and the operating conditions chosen will also make it possible to carry out the hydrodeoxygenation, that is to say the decomposition of the oxygenated compounds (mainly alcohols) and / or the hydrodesulphurisation or hydrodéazotation of the possible traces of sulfur compounds and / or or nitrogen present in the charge.
  • the reaction temperatures used in the hydrotreating reactor are between 100 and 400 ° C., preferably between 150 and 35 ° C., more preferably between 150 and 300 ° C.
  • the total pressure range used varies from 5 to 150 bar, preferably between 10 and 100 bar and even more preferably between 10 and 90 bar.
  • the hydrogen which feeds the hydrotreatment reactor is introduced at a rate such that the volume ratio hydrogen / hydrocarbons is between 50 to 3000 normal liters per liter, preferably between 100 and 2000 normal liters per liter and even more preferably between 150 and 1500 normal liters per liter.
  • the charge rate is such that the hourly volume velocity is between 0.1 and 10 h -1 , preferably between 0.2 and 5 h -1 and even more preferably between 0.2 and 3 h -1 .
  • the hydrotreating step is conducted under conditions such that the conversion to products having boiling points greater than or equal to 370 ° C. in products having boiling points below 370 ° C. is limited to 20% by weight, of Preferably, it is less than 10% by weight and even more preferably less than 5% by weight.
  • the effluent from the hydrotreatment reactor is fed via a pipe (8) into a fractionation zone (9) where it is fractionated into at least three fractions:
  • the constituent compounds have boiling points below a temperature T1 between 120 and 200 0 C, preferably between 130 and 180 c C, and still more preferred at a temperature of about 150 ° C. In other words the cutting point is between 120 and 200 ° C.
  • At least one intermediate fraction comprising the compounds whose boiling points are between the cutting point T1, previously defined, and a temperature T2 greater than 300 ° C., still more preferably greater than 35 ° C. C and less than 410 0 C or better at 370 ° C.
  • line 12 At least one so-called heavy fraction (line 12) comprising the compounds having boiling points higher than the previously defined cutting point T2.
  • At least a portion of said intermediate fraction is then introduced (line 11), as well as possibly a stream of hydrogen (line 13) into the zone (14) containing a hydroisomerization catalyst.
  • the pressure is maintained between 2 and 150 bar and preferably between 5 and 100 bar and preferably from 10 to 90 bar, the space velocity is between 0.1 hr "1 to 10 h" 1, and preferably between 0.2 and 7 h -1 is advantageously between 0.5 and 5.0 h -1 .
  • the hydrogen flow rate is adjusted to obtain a ratio of 100 to 2000 normal liters of hydrogen per liter of feedstock and preferably between 150 and 1500 liters of hydrogen per liter of feedstock.
  • the temperature used in this step is between 200 and 450 ° C. and preferably from 250 ° C. to 450 ° C., advantageously from 300 to 45 ° C., and even more advantageously above 320 ° C. or for example between 320 and 420 ° C. 5
  • the hydroisomerization step (d) is advantageously carried out under conditions such that the pass conversion into products with boiling points greater than or equal to 150 ° C. into products having boiling points below 150 ° C. the lowest possible, preferably less than 50%, more preferably less than 30%, and most preferably less than 15% by weight, and allows to obtain middle distillates (gas oil and kerosene) having cold properties (pour point and freezing point) sufficiently good to meet the specifications in force for this type of fuel.
  • middle distillates gas oil and kerosene
  • pour point and freezing point cold properties
  • the hydro / dehydrogenating function is generally provided either by noble metals (Pt and / or Pd) active in their reduced form or by non-noble metals of group VI (especially molybdenum and tugnstene) in combination with non-noble metals Group VIII (particularly nickel and cobalt), preferably used in their sulfurized form.
  • the hydroisomerizing function is provided by acidic solids, such as zeolites, halogenated alumina, agile with a pillar, heteropolyacids or sulphated zirconia.
  • An alumina binder may also be used during the catalyst shaping step.
  • the metal function can be introduced onto the catalyst by any method known to those skilled in the art, such as, for example, comalaxing, dry impregnation, exchange impregnation.
  • the noble metal content of the first hydroisomerization catalyst used in step b) of the process according to the invention is advantageously between 0.degree. , 01 and 5% by weight relative to the finished catalyst, preferably between 0.1 and 4% by weight and very preferably between 0.2 and 2% by weight.
  • hydroisomerization catalyst comprises at least one group VI metal
  • the group VI metal content of the hydroisomerization catalyst is advantageously included, in equivalent oxide, between 5 and 40% by weight relative to the finished catalyst, preferably between 10 and 35% by weight and very preferably between 15 and 30% by weight and the group VIII metal content of said catalyst is advantageously included , in oxide equivalent, between 0.5 and 10% by weight relative to the finished catalyst, preferably between 1 and 8% by weight and very preferably between 1, 5 and 6% by weight.
  • the hydro / dehydrogenating metal function can advantageously be introduced on said catalyst by any method known to those skilled in the art, such as, for example, comalaxing, dry impregnation, exchange impregnation.
  • the hydroisomerisation catalyst comprises at least one molecular sieve, preferably at least one zeolite molecular sieve and more preferably at least one zeolite molecular sieve.
  • One-dimensional MR as a hydroisomerizing function.
  • the zeolite molecular sieves are defined in the "Atlas of Zeolite Structure Types" classification, W. M Meier, DH Oison and Ch. Baerlocher, 5th revised edition, 2001, Elsevier also referred to herein. Zeolites are classified according to the size of their pore openings or channels.
  • One-dimensional 10 MR zeolite molecular sieves have pores or channels whose opening is defined by a ring of 10 oxygen atoms (10MR aperture).
  • the zeolite molecular sieve channels having a 10 MR aperture are advantageously unidirectional one-dimensional channels that open directly to the outside of said zeolite.
  • the one-dimensional 10 MR zeolite molecular sieves present in said hydroisomerization catalyst advantageously comprise silicon and at least one element T selected from the group formed by aluminum, iron, gallium, phosphorus and boron, preferably aluminum.
  • the Si / Al ratios of the zeolites described above are advantageously those obtained in the synthesis or else obtained after post-synthesis dealumination treatments well known to those skilled in the art, such as and not limited to hydrothermal treatments. followed or not by acid attacks or even direct acid attacks by solutions of mineral or organic acids. They are preferably substantially completely in acid form, that is to say that the atomic ratio between the monovalent compensation cation (for example sodium) and the element T inserted in the network.
  • the crystalline solid is preferably less than 0.1, preferably less than 0.05, and most preferably less than 0.01.
  • the zeolites used in the composition of said selective hydroisomerization catalyst are advantageously calcined and exchanged by at least one treatment with a solution of at least one ammonium salt so as to obtain the ammonium form of the zeolites which, once calcined, lead to to the acid form of said zeolites.
  • the said one-dimensional 10MR zeolite molecular sieve of said hydroisomerization catalyst is advantageously chosen from zeolite molecular sieves of structure type TON (chosen from ZSM-22 and NU-10, taken alone or as a mixture), FER (chosen from ZSM-2). And ferrierite, alone or in admixture), EUO (selected from EU-1 and ZSM-50, alone or in admixture), SAPO-11 or zeolitic molecular sieves ZBM-30 or ZSM 48, taken alone or in mixture.
  • said one-dimensional 10MR zeolite molecular sieve is chosen from zeolitic molecular sieves ZBM-30, NU-10 and ZSM-22, taken alone or as a mixture.
  • said one-dimensional 10MR zeolite molecular sieve is ZBM-30 synthesized with the organic template triethylenetetramine.
  • ZBM 30 produces much better results in terms of yield and activity than the other zeolites and in particular that the ZSM 48.
  • the one-dimensional 10MR zeolite molecular sieve content is advantageously between 5 and 95% by weight, preferably between 10 and 90% by weight, more preferably between 15 and 85% by weight and very preferably between 20 and 80% by weight relative to to the finished catalyst.
  • the catalysts obtained are shaped in the form of grains of different shapes and sizes. They are generally used in the form of cylindrical or multi-lobed extrusions such as bilobed, trilobed, straight-lobed or twisted, but may optionally be manufactured and used in the form of crushed powders, tablets, rings, beads. , wheels.
  • the shaping can be carried out with other matrices than alumina, such as, for example, magnesia, amorphous silica-aluminas, natural clays (kaolin, bentonite, sepiolite, attapulgite), silica, titanium, boron oxide, zirconia, aluminum phosphates, titanium phosphates, zirconium phosphates, coal and mixtures thereof. It is preferred to use matrices containing alumina, in all its forms known to those skilled in the art, and even more preferably aluminas, for example alumina. gamma. Other techniques than extrusion, such as pelletizing or coating, can be used.
  • the metal contained in the catalyst Before use in the reaction, the metal contained in the catalyst must be reduced.
  • One of the preferred methods for conducting the reduction of the metal is the treatment in hydrogen at a temperature of between 150 ° C. and 650 ° C. and a total pressure of between 1 and 250 bar.
  • a reduction consists of a stage at 150 ° C. for two hours and then a rise in temperature up to 450 ° C. at a rate of 1 ° C./min and then a two-hour stage at 45 ° C.; throughout this reduction step, the hydrogen flow rate is 1000 normal liters of hydrogen / liter catalyst and the total pressure kept constant at 1 bar. Note also that any ex-situ reduction method is suitable.
  • At least part of said heavy fraction is introduced via line (12) into a zone (15) where it is placed in the presence of hydrogen (25) in contact with a catalyst used in the process according to the present invention and under the operating conditions of the process of the present invention to produce a middle distillate cut (kerosene + gas oil) having good cold properties.
  • the catalyst used in the zone (15) of step (e) to carry out the hydrocracking and hydroisomerization reactions of the heavy fraction, defined according to the invention, is of the same type as that present in the reactor (14). ), i.e. a bifunctional catalyst as defined above in the first part of the patent application. It should be noted that the catalysts used in the reactors (14) and (15) may be strictly identical or different (for example, by varying the proportion of the zeolite in the catalyst, the nature of the binder or the quantity and nature of the hydrogenating phase).
  • step (e) the fraction entering the reactor undergoes in contact with the catalyst and in the presence of hydrogen essentially hydrocracking reactions which, accompanied by hydroisomerization reactions of n-paraffins, will allow to improve the quality of the formed products and more particularly the cold properties of kerosene and diesel, and also to obtain very good distillate yields.
  • Conversion to products with boiling points greater than or equal to 370 ° C in products with boiling points below 370 0 C is greater than 80% by weight, often at least 85% and preferably greater than or equal to 88%.
  • the effluents leaving the reactors (14) and (15) are sent via the lines (16) and (17) to a distillation train, which incorporates an atmospheric distillation and optionally a vacuum distillation, and which is intended to separate on the one hand the light products inevitably formed during steps (d) and (e) for example gases (C 1 -C 4 ) (line 18) and a gasoline section (line 19), and distilling at least one section diesel (line 21) and kerosene (line 20).
  • gases C 1 -C 4
  • line 18 gases
  • gasoline section line 19
  • distilling at least one section diesel line 21
  • kerosene line 20
  • the gas oil and kerosene fractions can be recycled (line 23) partly, jointly or separately, at the top of the hydroisomerization / hydrocracking reactor (14) step (d).
  • This fraction is also distilled a fraction (line 22) boiling over the diesel fuel, that is to say whose compounds which constitute it have boiling points higher than those of middle distillates (kerosene + diesel).
  • This fraction called the residual fraction, generally has an initial boiling point of at least 350 ° C., preferably greater than 370 ° C.
  • This fraction is advantageously recycled to the top of the reactor (15) via the hydroisomerization / hydrocracking line (22) of the heavy fraction (step e).
  • step (d), step (e) or both may also be advantageous to recycle a portion of the kerosene and / or diesel in step (d), step (e) or both.
  • at least one of the kerosene and / or diesel fractions is partially recycled in step (d) (zone 14). It has been found that it is advantageous to recycle a portion of the kerosene to improve its cold properties.
  • the non-hydrocracked fraction is partially recycled in step (e) (zone 15).
  • FIG 1 there is shown a distillation column (24), but two columns can be used to separately treat the sections from areas (14) and (15).
  • Figure 1 there is shown only the recycling of kerosene on the reactor catalyst (14). It goes without saying that one can also recycle a portion of the gas oil (separately or with kerosene) and preferably on the same catalyst as kerosene.
  • Another embodiment of the invention comprises the following steps: a) separation of at least a light fraction of the feedstock so as to obtain a single so-called heavy fraction with an initial boiling point of between 120-200 ° C., b) optional hydrotreatment of said heavy fraction, optionally followed by a step c) removal of at least a portion of the water and optionally CO, CO 2 , NH 3 , H 2 S, d) passing through the process according to the invention of at least a part of said optionally hydrotreated fraction, the conversion on the catalyst according to the invention above describes products with boiling points greater than or equal to 370 0 C in products with boiling points less than 37O 0 C is greater than 40% by weight, e) distillation of the hydrocracked / hydroisomerized fraction to obtain middle distillates, and recycling in step d) of the residual fraction boiling above said middle distillates.
  • the description of this embodiment will be made with reference to Figure 2 without Figure 2 limiting the interpretation.
  • the effluent from the Fischer-Tropsch synthesis unit arriving via line 1 is fractionated (for example by distillation) in a separation means (2) into at least two fractions: at least a light fraction and a heavy fraction at least initial boiling point equal to a temperature between 120 and 200 0 C and preferably between 130 and 18O 0 C and even more preferably at a temperature of about 15O 0 C, in other words the point of cut is located between 120 and 200 0 C.
  • the light fraction of Figure 1 out through the pipe (3) and the heavy fraction through the pipe (4).
  • This fractionation can be carried out by methods well known to those skilled in the art such as flash, distillation etc.
  • the effluent from the Fischer-Tropsch synthesis unit will be subject to flash, decantation to remove water and distillation to obtain at least the two fractions described above.
  • the light fraction is not treated according to the process of the invention but may for example constitute a good load for petrochemicals and more particularly for a steam cracking unit (5).
  • the heavy fraction previously described is treated according to the process of the invention.
  • this fraction is admitted in the presence of hydrogen (line 6) in a zone (7) containing a hydrotreatment catalyst which has the objective of reducing the content of olefinic and unsaturated compounds as well as possibly decomposing the oxygenated compounds ( mainly alcohols) present in the heavy fraction described above, as well as possibly breaking down any traces of sulfur and nitrogen compounds present in the heavy fraction.
  • This hydrotreating step is non-converting, i.e. the conversion of the fraction 370 0 C. + fraction 370 0 C "is preferably less than 20% by weight, preferably less than 10% by weight and very preferably less than 5% by weight.
  • the catalysts used in this step (b) are hydrotreatment catalysts described in step b) of Embodiment 1.
  • the feedstock is brought into contact in the presence of hydrogen and the catalyst at operating temperatures and pressures which make it possible to hydrogenate the olefins present in the feedstock.
  • the catalyst and the operating conditions chosen will also make it possible to carry out the hydrodeoxygenation, ie the decomposition of the oxygenated compounds (mainly alcohols) and / or the hydrodesulfurization or hydrodenitrogenation of the possible traces of sulfur compounds. and / or nitrogen present in the charge.
  • the reaction temperatures used in the hydrotreatment reactor are between 100 and 400 ° C., preferably between 150 and 350 ° C., even more preferably between 150 and 300 ° C.
  • the total pressure range used varies from 5 to 150 bar, preferably between 10 and 100 bar and even more preferably between 10 and 90 bar.
  • the hydrogen that feeds the hydrotreatment reactor is introduced at a rate such that the volume ratio hydrogen / hydrocarbons is between 50 to 3000 normal liters per liter, preferably between 100 and 2000 normal liters per liter and even more preferably between 150 and 1500 normal liters per liter.
  • the charge rate is such that the hourly volume velocity is between 0.1 and 10 h -1 , preferably between 0.2 and 5 h -1 and even more preferably between 0.2 and 3 h -1 .
  • the hydrotreating step is conducted under conditions such that the conversion to products having boiling points greater than or equal to 370 ° C. in products having boiling points below 370 ° C. is limited to 20% by weight, preferably less than 10% by weight, and so even more preferred is less than 5% by weight.
  • the effluent (line 8) from the hydrotreatment reactor (7) is optionally introduced into a water removal zone (9), the purpose of which is to eliminate at least partly the water produced during the reaction reactions. hydrotreating.
  • This removal of water can be carried out with or without eliminating the C 4 less gas fraction which is generally produced during the hydrotreating step.
  • the elimination of water is understood to mean the elimination of the water produced by the oxygenation hydrodeoxygenation reactions, but it may also include the elimination at least partly of the water of saturation of the hydrocarbons.
  • the elimination of water can be carried out by all the methods and techniques known to those skilled in the art, for example by drying, passage on a desiccant, flash, decantation ...
  • Step (d) The heavy fraction (optionally hydrotreated) thus dried is then introduced (line 10) as well as optionally a stream of hydrogen (line 11) into the zone (12) containing the catalyst used in the process according to the invention and under the operating conditions of the process of the present invention.
  • Another possibility of the process also according to the invention consists in sending all the effluent leaving the hydrotreating reactor (without drying) into the reactor containing the catalyst according to the invention and preferably at the same time as a stream of 'hydrogen.
  • the metal contained in the catalyst must be reduced.
  • One of the preferred methods for conducting the reduction of the metal is the treatment in hydrogen at a temperature of between 150 ° C. and 650 ° C. and a total pressure of between 1 and 250 bar. For example, a reduction consists of a plateau at 150 ° C. for 2 hours and then a rise in temperature up to 450 ° C. at a rate of 1 ° C./min and then a plateau of 2 hours at 450 ° C. throughout this reduction step, the hydrogen flow rate is 1000 normal liters hydrogen / liter catalyst. Note also that any ex-situ reduction method is suitable.
  • the operating conditions under which this step (d) is carried out are the operating conditions described according to the process according to the invention.
  • the hydroisomerization and hydrocracking step is carried out under conditions such that the pass conversion into products with boiling points greater than or equal to 370 ° C. into products having boiling points below 370 ° C. greater than 40% by weight, and even more preferably at least 50%, preferably greater than 60%, so as to obtain middle distillates (gas oil and kerosene) having sufficiently good cold properties (pour point , freezing point) to meet the applicable specifications for this type of fuel.
  • the effluent (so-called hydrocracked / hydroisomerized fraction) at the outlet of the reactor (12), step (d), is sent to a distillation train (13), which incorporates atmospheric distillation and optionally vacuum distillation, the purpose of which is to separate the conversion products having a boiling point of less than 340 ° C. and preferably less than 370 ° C. and including especially those formed during step (d) in the reactor (12), and of separating the residual fraction whose initial boiling point is generally greater than at least 340 ° C. and preferably greater than or equal to at least 37 ° C.
  • the conversion and hydroisomerized products it is separated in addition to the light CrC 4 gases (line 14).
  • At least one gasoline fraction (line 15), and at least one middle distillates fraction kerosene (line 16) and diesel (line 17).
  • the residual fraction whose initial boiling point is generally greater than at least 350 ° C. and preferably greater than or equal to at least 370 ° C. is recycled (line 18) at the top of the hydroisomerisation reactor (12) and hydrocracking.
  • Another embodiment of the invention comprises the following steps: a) Fractionation (step a) of the feedstock in at least 3 fractions: at least one intermediate fraction having an initial boiling point T1 between
  • the effluent from the Fischer-Tropsch synthesis unit comprises mainly paraffins, but also contains olefins and oxygenated compounds such as alcohols.
  • the effluent from the Fischer-Tropsch synthesis unit arriving via line (1) is fractionated in a fractionation zone (2) in at least three fractions: at least one light fraction (leaving via line 3), the constituent compounds of which have boiling points below a temperature T1 of between 120 and 200 ° C., and preferably between 130 and 180 ° C., and even more preferred at a temperature of about 150 ° C. In other words the cutting point is between 120 and 200 ° C.
  • At least one intermediate fraction comprising compounds whose boiling points are between the cut point T1, previously defined, and a temperature T2 greater than 300 ° C., more preferably still greater than 350 ° C. and less than 410 ° C or better at 370 ° C.
  • line 5 at least one so-called heavy fraction (line 5) comprising compounds having boiling points above the previously defined cutting point T2.
  • Cutting at 37O 0 C makes it possible to separate at least 90% by weight of oxygenates and olefins, and most often at least 95% by weight.
  • the heavy cut to be treated is then purified and removal of the heteroatoms or unsaturated by hydrotreating is then not necessary.
  • Fractionation is obtained here by distillation, but it can be carried out in one or more steps and by other means than distillation.
  • This fractionation can be carried out by methods well known to those skilled in the art such as flash, distillation etc.
  • the effluent from the Fischer-Tropsch synthesis unit will be subject to flash, decantation to remove water and distillation to obtain at least the two fractions described above.
  • the light fraction is not treated according to the process of the invention but may for example constitute a good load for a petrochemical unit and more particularly for a steam cracker (steam cracking unit 6).
  • Said intermediate fraction is admitted via line (4), in the presence of hydrogen supplied by the pipe (7), into a hydrotreatment zone (8) containing a hydrotreatment catalyst, which aims to reduce the olefinic and unsaturated compounds as well as possibly decompose the oxygenated compounds (mainly alcohols) present in the heavy fraction described above, as well as possibly decompose any traces of sulfur and nitrogen compounds present in the heavy fraction.
  • This hydrotreating step is non-converting, that is to say that the conversion of the 150 0 C + fraction to 150 0 C " fraction is preferably less than 20% by weight, preferably less than 10% by weight and very preferably less than 5% by weight.
  • the catalysts used in this step (b) are hydrotreatment catalysts described in step b) of Embodiment 1,
  • the feedstock is brought into contact in the presence of hydrogen and the catalyst at operating temperatures and pressures which make it possible to hydrogenate the olefins present in the feedstock.
  • the catalyst and the operating conditions chosen will also make it possible to carry out the hydrodeoxygenation, ie the decomposition of the oxygenated compounds (mainly alcohols) and / or the hydrodesulfurization or hydrodenitrogenation of the possible traces of sulfur compounds. and / or nitrogen present in the charge.
  • the reaction temperatures used in the hydrotreatment reactor are between 100 and 400 ° C., preferably between 150 and 350 ° C., more preferably between 150 and 300 ° C.
  • the total pressure range used varies from 5 to 150 bar, preferably from 10 to 100 bar and even more preferably from 10 to 90 bar.
  • the hydrogen which feeds the hydrotreatment reactor is introduced at a rate such that the volume ratio hydrogen / hydrocarbons is between 50 to 3000 normal liters per liter, preferably between 100 and 2000 normal liters per liter and even more preferably between 150 and 1500 normal liters per liter.
  • the charge rate is such that the hourly volume velocity is between 0.1 and 10 h -1 , preferably between 0.2 and 5 h -1 and even more preferably between 0.2 and 3 h -1 . Under these conditions, the content of unsaturated and oxygenated molecules is reduced to less than 0.5% by weight and to less than 0.1% by weight in general.
  • the hydrotreating step is carried out under conditions such that the conversion to products having boiling points greater than or equal to 150 ° C. to products having boiling points below 150 ° C. is limited to 20% by weight. pds, of Preferably, it is less than 10% by weight and even more preferably less than 5% by weight.
  • the effluent from the hydrotreatment reactor is optionally introduced into a zone (9) of water removal which aims to remove at least a portion of the water produced during the hydrotreatment reactions.
  • This removal of water can be performed with or without removal of the gaseous fraction C 4 less which is generally produced during the hydrotreatment step.
  • the elimination of water is understood to mean the elimination of the water produced by the oxygenation hydrodeoxygenation reactions, but it may also include the elimination at least partly of the saturation water of the hydrocarbons.
  • the removal of water can be carried out by all the methods and techniques known to those skilled in the art, for example by drying, passage on a desiccant, flash, decantation ....
  • the fraction thus possibly dried is then introduced (line 10), as well as possibly a stream of hydrogen (line 11) into the zone (12) containing a hydroisomerizing catalyst.
  • Another possibility of the process also according to the invention consists in sending all of the effluent leaving the hydrotreating reactor (without drying) into the reactor containing the hydroisomerizing catalyst and preferably at the same time as a stream of hydrogen.
  • the hydroisomerizing catalysts are as described in step d) of Embodiment 1).
  • the operating conditions in which this step (d) is carried out are:
  • the pressure is maintained between 2 and 150 bar and preferably between 5 and 100 bar and advantageously from 10 to 90 bar, the space velocity is between 0.1 h -1 and 10 h -1 and preferably between 0.2 and 7h "1 is advantageously between 0.5 and 5, Oh " 1 .
  • the hydrogen flow rate is adjusted to obtain a ratio of 100 to 2000 normal liters of hydrogen per liter of feedstock and preferably between 150 and 1500 liters of hydrogen per liter of feedstock.
  • the temperature used in this step is between 200 and 45O 0 C and preferably from 250 ° C. to 450 ° C., advantageously from 300 to 450 ° C., and even more advantageously above 320 ° C. or for example between 320 and 420 ° C.
  • the hydroisomerization and hydrocracking step (d) is advantageously carried out under conditions such that the pass conversion into products with boiling points greater than or equal to 150 ° C. in products having boiling points below 150 ° C is the lowest possible, preferably less than 50%, even more preferably less than
  • middle distillates diesel and kerosene
  • cold properties pour point and freezing
  • step (d) it is sought to promote hydroisomerization rather than hydrocracking.
  • Said heavy fraction whose boiling points are higher than the previously defined cutting point T2 is introduced via line (5) into a zone (13) where it is placed, in the presence of hydrogen (26), in contact with a catalyst according to the invention and under the operating conditions of the process of the present invention to produce a cut middle distillates (kerosene + gas oil) with good properties cold.
  • the catalyst used in the zone (13) of step (f) to carry out the hydrocracking and hydroisomerization reactions of the heavy fraction, defined according to the invention, is of the same type as that present in the reactor (12). ), that is to say as defined above in the first part of the patent application. It should be noted that the catalysts used in the reactors (12) and (13) may be strictly identical or different (for example, by varying the proportion of the zeolite in the catalyst, the nature of the binder or the quantity and nature of the hydrogenating phase as well as the nature of the acidic solid).
  • step (f) the fraction entering the reactor undergoes in contact with the catalyst and in the presence of hydrogen essentially hydrocracking reactions which, accompanied by hydroisomerization reactions of n-paraffins, will allow to improve the quality of the formed products and more particularly the cold properties of kerosene and diesel, and also to obtain very good yields of middle distillates.
  • Conversion to products having boiling points greater than or equal to 370 ° C. in point products boiling below 37O 0 C is greater than 40% by weight, often at least 50% and preferably greater than or equal to 60%.
  • step (f) it will therefore seek to promote hydrocracking, but preferably by limiting the cracking of diesel fuel.
  • the choice of operating conditions makes it possible to finely adjust the quality of products (diesel, kerosene) and in particular the cold properties of kerosene, while maintaining a good yield of diesel and / or kerosene.
  • the method according to the invention makes it quite interesting to produce both kerosene and diesel fuel, which are of good quality while minimizing the production of lighter, unwanted cuts (naphtha, LPG).
  • the effluent at the outlet of the reactor (12), step (d), is sent to a distillation train, which incorporates an atmospheric distillation and optionally a vacuum distillation, and whose purpose is to separate, on the one hand, the light products inevitably formed during step (d), for example the gases (C r C 4 ) (line 14) and a petrol section (line 19), and distilling at least one gasoil section (line 17) and kerosene (line 16) .
  • the gas oil and kerosene fractions can be recycled (line 25) partly, jointly or separately, at the top of the hydroisomerization reactor (12) of step (d).
  • the effluent leaving step (f) is subjected to a separation step in a distillation train so as to separate, on the one hand, the light products inevitably formed during step (f), for example the gases (C 1 -C 4 ) (line 18) and a petrol cut (line 19), to distil a diesel cut (line 21) and kerosene (line 20) and to distil the fraction (line 22) boiling over diesel fuel that is, the compounds which constitute it have boiling points higher than those of middle distillates (kerosene + gas oil).
  • This fraction, called the residual fraction generally has an initial boiling point of at least 350 ° C., preferably greater than 37 ° C.
  • This non-hydrocracked fraction is advantageously recycled to the top of the hydroisomerization / hydrocracking reactor (13). step (f).
  • step (d), step (f) or both may also be advantageous to recycle a portion of the kerosene and / or diesel in step (d), step (f) or both.
  • at least one of the kerosene and / or diesel fractions is recycled in part (line 25) in step (d) (zone 12).
  • the non-hydrocracked fraction is partially recycled in step (f) (zone 13).
  • Embodiment 4 Another embodiment of the invention comprises the following steps:
  • step c) optionally fractionation of the feedstock into at least one heavy fraction with initial boiling point of between 120 and 200 ° C., and at least one light fraction boiling below said heavy fraction
  • step c) optional hydrotreatment of a part at least one of the feed or of the heavy fraction, optionally followed (step c) of removing at least part of the water
  • step d) passing of at least a portion of the effluent or the fraction possibly hydrotreated in the process according to the invention on a first catalyst according to the invention
  • e) distillation of the hydroisomerized / hydrocracked effluent to obtain middle distillates (kerosene, gas oil) and a residual fraction boiling over middle distillates
  • f) passage at least a portion of said residual heavy fraction and / or a part of said middle distillates in the process according to the invention on a second catalyst according to the invention, and distillation of the resulting effluent to obtain middle distillates.
  • the effluent from the Fischer-Tropsch synthesis unit is fractionated (for example by distillation) into at least two fractions: at least one light fraction and at least one heavy fraction with initial boiling point. equal to a temperature between 120 and 200 0 C and preferably between 130 and 180 0 C and even more preferably at a temperature of about 15O 0 C, in other words the cutting point is between 120 and 200 0 C.
  • the heavy fraction generally has paraffin contents of at least 50% by weight.
  • This fractionation can be carried out by methods well known to those skilled in the art such as flash, distillation etc.
  • the effluent from the Fischer-Tropsch synthesis unit will be subject to flash, decantation to remove water and distillation to obtain at least the two fractions described above.
  • the light fraction is not treated according to the process of the invention but may for example constitute a good load for petrochemicals and more particularly for a steam cracking unit. At least one heavy fraction previously described is treated according to the method of the invention.
  • this fraction or at least part of the initial charge is admitted via line (1) in the presence of hydrogen (supplied via line (2)) to an area (3) containing a hydrotreatment catalyst which has for the purpose of reducing the content of olefinic and unsaturated compounds as well as possibly decomposing the oxygenated compounds (mainly alcohols) present in the heavy fraction described above, as well as possibly decomposing possible traces of sulfur and nitrogen compounds present in the heavy fraction.
  • This hydrotreating step is non-converting, i.e. the conversion of the fraction 370 0 C. + fraction 370 0 C "is preferably less than 20% by weight, preferably less than 10% by weight and very preferably less than 5% by weight.
  • the catalysts used in this step (b) are described in step b) of Embodiment 1.
  • the feedstock is brought into contact in the presence of hydrogen and the catalyst at operating temperatures and pressures for carrying out the hydrogenation of the olefins present in the feedstock.
  • the catalyst and the operating conditions chosen will also make it possible to carry out the hydrodeoxygenation, ie the decomposition of the oxygenated compounds (mainly alcohols) and / or the hydrodesulfurization or hydrodenitrogenation of the possible traces of sulfur compounds. and / or nitrogen present in the charge.
  • the reaction temperatures used in the hydrotreatment reactor are between 100 and 400 ° C., preferably between 150 and 350 ° C., more preferably between 150 and 300 ° C.
  • the total pressure range used varies from 5 to 150 bar, preferably between 10 and 100 bar and even more preferably between 10 and 90 bar.
  • the hydrogen which feeds the hydrotreatment reactor is introduced at a rate such that the volume ratio hydrogen / hydrocarbons is between 50 to 3000 normal liters per liter, preferably between 100 and 2000 normal liters per liter and even more preferably between 150 and 1500 normal liters per liter.
  • the charge rate is such that the hourly volume velocity is between 0.1 and 10 h -1 , preferably between 0.2 and 5 h -1 and even more preferably between 0.2 and 3 h -1 .
  • the hydrotreating step is conducted under conditions such that the conversion to products having boiling points greater than or equal to 37O 0 C in products having boiling points below 370 ° C is limited to 20% by weight, preferably less than 10% by weight and so even more preferred is less than 5% by weight.
  • the effluent (line 4) from the hydrotreatment reactor (3) is optionally introduced into a zone (5) for removing water, the purpose of which is to eliminate at least part of the water produced during the reaction reactions. hydrotreating.
  • This removal of water can be carried out with or without eliminating the C 4 less gas fraction which is generally produced during the hydrotreating step.
  • the elimination of water is understood to mean the elimination of the water produced by the oxygenated hydrodeoxygenation reactions, but it may also include the elimination of at least a part of the hydrocarbon saturation water.
  • the removal of water can be carried out by all the methods and techniques known to those skilled in the art, for example by drying, passage on a desiccant, flash, decantation .... Step d)
  • At least part and preferably all of the hydrocarbon fraction (at least part of the feed or at least part of the heavy fraction of step a) or at least part of the hydrotreated fraction or feed and optionally dried) is then introduced (line 6) and optionally a stream of hydrogen (line 7) into the zone (8) containing the catalyst according to the invention.
  • Another possibility of the process also according to the invention consists in sending part or all of the effluent flowing out of the hydrotreating reactor (without drying) into the reactor containing the catalyst according to the invention and preferably at the same time as a stream hydrogen.
  • the metal contained in the catalyst must be reduced.
  • One of the preferred methods for conducting the reduction of the metal is the treatment in hydrogen at a temperature of between 150 ° C. and 650 ° C. and a total pressure of between 1 and 250 bar. For example, a reduction consists of a plateau at 150 ° C. for 2 hours and then a rise in temperature up to 450 ° C. at the rate of 1 ° C./min and then a plateau of 2 hours at 450 ° C. during this whole stage of. reduction, the hydrogen flow rate is 1000 liters hydrogen / liter catalyst. Note also that any ex-situ reduction method is suitable.
  • the hydroisomerized / hydrocracked effluent leaving the reactor (8), step (d), is sent to a distillation train (9) which incorporates an atmospheric distillation and optionally a vacuum distillation which is intended to separate the conversion products. of boiling point below 340 0 C and preferably below 370 0 C and including including those formed in step (d) in the reactor (8), and to separate the residual fraction whose initial point of boiling is generally greater than at least 34O 0 C and preferably greater than or equal to at least 37O 0 C.
  • a distillation train (9) which incorporates an atmospheric distillation and optionally a vacuum distillation which is intended to separate the conversion products.
  • a distillation train (9) which incorporates an atmospheric distillation and optionally a vacuum distillation which is intended to separate the conversion products.
  • a vacuum distillation which is intended to separate the conversion products.
  • of boiling point below 340 0 C and preferably below 370 0 C and including including those formed in step (d) in the reactor (8) and to separate the
  • Step fl The process according to the invention uses a second zone (16) containing a hydroisomerization / hydrocracking catalyst according to the invention. It passes on this catalyst, in the presence of hydrogen (line 15) an effluent selected from a portion of the product kerosene (line 12), a portion of the gas oil (line 13) and the residual fraction and preferably the residual fraction of which the initial boiling point is generally greater than at least 370 ° C.
  • the fraction entering the reactor (16) undergoes, in the presence of hydrogen, hydroisomerization and / or hydrocracking reactions in the reactor, which will make it possible to improve the quality of the products formed and more particularly the properties cold kerosene and diesel, and obtain distillate yields improved over the prior art.
  • the operating conditions in which this step (f) is carried out are the operating conditions in accordance with the process according to the invention.
  • the operator will adjust the operating conditions on the first and second hydrocracking / hydroisomerization catalyst so as to obtain the desired product qualities and yields.
  • the pass conversion to products with boiling points greater than or equal to 150 ° C. in products with boiling points below 150 ° C. is less than 50% by weight, preferably less than 30% by weight.
  • the conversion per pass to products with boiling points greater than or equal to 370 ° C. in products with boiling points below 37 ° C. is superior. at 40% by weight, preferably above 50% by weight, or better at 60% by weight. It can even be advantageous to have conversions of at least 80% weight.
  • the pass conversion to products with boiling points greater than or equal to 150 ° C. in products with boiling points below 150 ° C. is less than 50% by weight, preferably less than 30% by weight.
  • the operating conditions applied in the reactors (8) and (16) may be different or identical.
  • the operating conditions used in the 2 hydroisomerization / hydrocracking reactors are chosen to be different in terms of operating pressure, temperature, contact time (vvh) and H 2 / feed ratio. This embodiment allows the operator to adjust the qualities and / or yields of kerosene and diesel.
  • the effluent from the reactor (16) is then sent via line (17) in the distillation train so as to separate the conversion products, gasoline, kerosene and diesel.
  • FIG. 4 there is shown an embodiment with the residual fraction (line 14) passing through the hydroisomerization / hydrocracking zone (16) (step f), the effluent obtained being sent (line 17) into the zone (9) separation.
  • the kerosene and / or the diesel can be partly recycled (line 18) in the zone (8) of hydroisomerization / hydrocracking (step d) on the first catalyst.
  • a portion of the kerosene and / or diesel fuel produced passes into the hydroisomerization / hydrocracking zone (16) (step f), the effluent obtained being sent (line 17) to the separation zone (9). .
  • the gas oil (s) obtained have a pour point of at most 0 ° C., generally below -10 ° C. and often below -15 ° C.
  • the cetane number is greater than 60, generally greater than 65, often greater than 70.
  • the kerosene (s) obtained have a freezing point of not more than -35 ° C., generally less than -40 ° C.
  • the smoke point is greater than 25 mm, generally greater than 30 mm.
  • the yield of gasoline will always be less than 50% by weight, preferably less than 40% by weight, advantageously less than 30% by weight, or even 20% by weight or even 15% by weight.
  • a silica-alumina precursor SA1 is prepared in the following manner: An alumina hydrate is prepared according to the teachings of US-A-3,124,418. After filtration, the precipitate of freshly prepared P1 is mixed with a solution of silicic acid prepared by exchange on decationizing resin. The proportions of the two solutions are adjusted so as to reach a composition of 70% Al 2 O 3 - 30% SiO 2 on the final support. This mixture is rapidly homogenized in a commercial colloid mill in the presence of nitric acid so that the nitric acid content of the suspension at the mill outlet is 8% based on the mixed silica-alumina solid. Then, the suspension (P2) is conventionally dried in an atomizer in a conventional manner from 300 ° C.
  • the powder thus prepared is shaped in a Z-shaped arm in the presence of 8% of nitric acid with respect to anhydrous product.
  • the extrusion is carried out by passing the paste through a die provided with orifices of diameter 1, 4 mm.
  • the extrudates S1 containing 100% silica-alumina thus obtained are dried at 150 ° C. and then calcined at 550 ° C.
  • the catalyst C1 is obtained by dry impregnation of the support S1 (in the form of extrudates) with a hexachloroplatinic acid solution H 2 PtCl 6 dissolved in a volume of solution corresponding to the total pore volume to be impregnated.
  • the impregnated extrudates are then calcined at 55 ° C. under air for 4 hours.
  • the platinum content is 0.48% by weight and its dispersion measured by H 2 -O 2 titration is 86% and its distribution is uniform in the extrudates.
  • Example 2 Preparation of a Catalyst According to the Invention (C2)
  • the zeolite ZBM-30 is synthesized according to the patent BASF EP-A-46504 with the organic structuring triethylenetetramine. Then it is calcined at 550 ° C. under a stream of dry air for 12 hours.
  • the zeolite H-ZBM-30 (acid form) thus obtained has an Si / Al ratio of 45 and an Na / Al ratio of less than 0.001.
  • zeolite ZBM-30 and 15 g of the precursor of the silica-alumina P2 described in Example 1 are then mixed. This mixture is made before introduction into the extruder.
  • the zeolite powder is first wetted and added to the matrix suspension in the presence of 66% nitric acid (7% by weight of acid per gram of dry gel) and then kneaded for 15 minutes. At the end of this mixing, the paste obtained is passed through a die having cylindrical orifices of diameter equal to 1.4 mm.
  • the extrudates are then dried overnight at 120 ° C. in air and then calcined at 550 ° C. under air.
  • the extrudates S2 contain 20% by weight ZBM-30 zeolite and 80% silica-alumina.
  • the catalyst C2 is obtained by dry impregnation of the support S2 (in the form of extrudates) with a hexachloroplatinic acid solution H 2 PtCl 6 dissolved in a volume of solution corresponding to the total pore volume to be impregnated.
  • the impregnated extrudates are then calcined at 550 ° C. under air for 4 hours.
  • the platinum content is 0.47% by weight and its dispersion measured by H 2 -O 2 titration is 88% and its distribution is uniform in the extrudates.
  • the COK-7 zeolite is synthesized according to patent application FR 2 882 744. It is then subjected to calcination at 550 ° C. under a stream of dry air for 12 hours.
  • the zeolite H-COK-7 (acid form) thus obtained has an Si / Al ratio of 37 and an Na / Al ratio of less than 0.003.
  • the catalyst C3 is obtained by dry impregnation of the support S2 (in the form of extrudates) with a solution of hexachloroplatinic acid H 2 PtCl 6 dissolved in a volume of solution corresponding to the total pore volume to be impregnated.
  • the impregnated extrudates are then calcined at 550 ° C. under air for 4 hours.
  • the platinum content is 0.47% by weight and its dispersion measured by H 2 -O 2 titration is 88% and its distribution is uniform in the extrudates.
  • the paste obtained is passed through a die having cylindrical orifices with a diameter of 1.4 mm
  • the extrudates are then dried overnight at 120 ° C. under air and then calcined at 550 ° C. under air
  • the extrusions S4 contain 6% by weight of COK-7 zeolite, 9% by weight of ZBM-30 and 85% of silica-alumina
  • the catalyst C4 is obtained by dry impregnation of the support S4 (in the form of extrudates) with a hexachloroplatinic acid solution H 2 PtCl 6 dissolved in a volume of solution corresponding to the total pore volume to be impregnated.
  • the impregnated extrudates are then calcined at 550 ° C. in air for 4 hours.
  • the platinum content is 0.47% by weight and its dispersion measured by H 2 -O 2 titration is 88% and its distribution is uniform in the extrudates.
  • a feed from the Fischer Tropsch synthesis on a cobalt catalyst is separated into two fractions, the heaviest fraction having the following characteristics (Table 1).
  • This heavy fraction is treated in a hydrogen traversed bed lost on the above hydrotreatment catalyst under operating conditions that allow the elimination of olefinic and oxygen compounds and traces of nitrogen.
  • the operating conditions selected are the following:
  • Table 2 Characteristics of the heavy fraction after hydrotreatment.
  • the hydrotreated effluent constitutes the hydrocracking feedstock sent onto the catalysts C1 (non-compliant) and C2, C3 and C4 (in accordance with the invention).
  • each catalyst undergoes a reduction step under the following operating conditions:
  • Hydrogen flow rate 1600 normal liters per hour and per liter of catalyst.
  • One hour at 120 ° C. Increase from 120 ° to 450 ° C. at 5 ° C. min
  • % 370 0 C 'eff iu e nt s weight content of compounds having boiling points below 370 0 C in the effluent
  • the hydrocracking step is composed of two reaction stages on two different catalysts C1 and C2.
  • Example 5 The hydrotreated effluent of Example 5 (Table 2) is converted to the catalyst C1 and then to the catalyst according to the invention C2, based on ZBM-30. Both catalysts are placed in two reactors in series. Before testing, the catalysts undergo a reduction step identical to that of Example 5.
  • the hydrotreated effluent is sent to the catalyst C1 (platinum / silica-alumina) under the following operating conditions:
  • the temperature of the reactor is adjusted so as to obtain a conversion of the 37O 0 C + fraction of 70% by weight.
  • the effluent is brought into contact with the selective catalyst C2 (platinum / ZBM-30) under the operating conditions below:
  • Example 2 Compared to Example 2 according to the invention, the successive conversion of the feedstock (see Table 2) on two catalysts C1 and then C2 leads, at close total conversion (around 72%), has a lower average distillate yield. to that obtained in Example 5, that is to say the use of a catalyst comprising zeolite ZBM-30 and silica-alumina.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

L'invention concerne un procédé de production de distillais moyens à partir d'une charge paraffinique produite par synthèse Fischer-Tropsch, mettant en oevre un catalyseur d'hydrocraquage/hydroisomérisation comprenant au moins au moins un métal hydro-déshydrogénant choisi dans le groupe formé par les métaux du groupe VIB et du groupe VIII de la classification périodique et un support comprenant au moins une silice-alumine et au moins une zéolithe choisie dans le groupe formé par les zéolithes de type structural TON, FER, MTT, les zéolithes ZBM-30, ZSM-48 et COK-7, prises seules ou en mélange, ledit procédé opérant à une température comprise entre 270 et 4000C, une pression comprise entre 1 et 9 MPa, une vitesse spatiale comprise entre 0,5 et 5 h-1, un débit d'hydrogène ajusté pour obtenir un rapport de 400 à 1500 Normaux litres d'hydrogène par litre de charge.

Description

PROCÉDÉ DE PRODUCTION DE DISTILLATS MOYENS PAR HYDROISOMERISATION ET HYDROCRAQUAGE DE CHARGES ISSUES DU PROCÉDÉ RSCHER-TROPSCH
La présente invention concerne un procédé de production de distillais moyens à partir d'une charge paraffinique produite par synthèse Fischer-Tropsch, mettant en oeuvre un catalyseur d'hydrocraquage/hydroisomérisation comprenant au moins au moins un métal hydro- déshydrogénant choisi dans le groupe formé par les métaux du groupe VIB et du groupe VIII de la classification périodique et un support comprenant au moins une silice-alumine et au moins une zéolithe choisie dans le groupe formé par les zéolithes de type structural TON, FER, MTT, les zéolithes ZBM-30, ZSM-48 et COK-7, prises seules ou en mélange ledit procédé opérant à une température comprise entre 270 et 4000C , une pression comprise entre 1 et 9 MPa, une vitesse spatiale comprise entre 0,5 et 5 h-1 , un débit d'hydrogène ajusté pour obtenir un rapport de 400 à 1500 Normaux litres d'hydrogène par litre de charge.
Art antérieur
Dans le procédé Fischer-Tropsch, le gaz de synthèse (CO+H2) est transformé catalytiquement en produits oxygénés et en hydrocarbures essentiellement linéaires sous forme gazeuse, liquide ou solide. Ces produits sont généralement exempts d'impuretés hétéroatomiques telles que, par exemple, le soufre, l'azote ou des métaux. Ils ne contiennent également pratiquement peu ou pas d'aromatiques, de naphtènes et plus généralement de cycles en particulier dans le cas de catalyseurs au cobalt. Par contre, ils peuvent présenter une teneur non négligeable en produits oxygénés qui, exprimée en poids d'oxygène, est généralement inférieure à 5% poids environ et également une teneur en insaturés (produits oléfiniques en général) généralement inférieure à 10% en poids. Cependant, ces produits, principalement constitués de normales paraffines, ne peuvent être utilisés tels quels, notamment à cause de leurs propriétés de tenue à froid peu compatibles avec les utilisations habituelles des coupes pétrolières. Par exemple, le point d'écoulement d'un hydrocarbure linéaire contenant 20 atomes de carbone par molécule (température d'ébullition égale à 340°C environ c'est à dire souvent comprise dans la coupe distillats moyens) est de +370C environ ce qui rend son utilisation impossible, la spécification étant de -15°C pour le gazole. Les hydrocarbures issus du procédé Fischer-Tropsch comprenant majoritairement des n-paraffines doivent être transformés en produits plus valorisâmes tels que par exemple le gazole, kérosène, qui sont obtenus, par exemple, après des réactions catalytiques d'hydroisomérisation.
Tous les catalyseurs utilisés actuellement en hydroisomérisation/hydrocraquage sont du type bifonctionnels associant une fonction acide à une fonction hydrogénante. La fonction acide est apportée par des supports de grandes surfaces (150 à 800 m2.g-1 généralement) présentant une acidité superficielle, telles que les alumines halogénées (chlorées ou fluorées notamment), les alumines phosphorées, les combinaisons d'oxydes de bore et d'aluminium, et les silice-alumines. La fonction hydrogénante est apportée soit par un ou plusieurs métaux du groupe VIII de la classification périodique des éléments, tels que fer, cobalt, nickel, ruthénium, rhodium, palladium, osmium, iridium et platine, soit par une association d'au moins un métal du groupe Vl tels que chrome, molybdène et tungstène et au moins un métal du groupe VIII.
L'équilibre entre les deux fonctions acide et hydrogénante est l'un des paramètres qui régissent l'activité et la sélectivité du catalyseur. Une fonction acide faible et une fonction hydrogénante forte donnent des catalyseurs peu actifs et sélectifs envers l'isomérisation alors qu'une fonction acide forte et une fonction hydrogénante faible donnent des catalyseurs très actifs et sélectifs envers le craquage. Une troisième possibilité est d'utiliser une fonction acide forte et une fonction hydrogénante forte afin d'obtenir un catalyseur très actif mais également très sélectif envers l'isomérisation. Il est donc possible, en choisissant judicieusement chacune des fonctions d'ajuster le couple activité/sélectivité du catalyseur.
Les catalyseurs conventionnels de l'hydrocraquage catalytique sont, pour leur grande majorité, constitués de supports faiblement acides, tels les silice-alumines par exemple. Ces systèmes sont plus particulièrement utilisés pour produire des distillats moyens de très bonne qualité. Dans les supports peu acides, on trouve la famille des silices-alumines. Beaucoup de catalyseurs du marché de l'hydrocraquage sont à base de silice-alumine associée à un métal du groupe VIII . Ces systèmes ont une très bonne sélectivité en distillats moyens, et les produits formés sont de bonne qualité (US6733657). L'inconvénient de tous ces systèmes catalytiques à base de silice-alumine est, comme on l'a dit, leur faible activité. .
En revanche, les systèmes catalytiques à base de zéolithe (en particulier zéolithe USY ou beta) sont très actifs pour la réaction d'hydrocraquage mais peu sélectifs.
En tentant des développer des catalyseurs à la fois actifs en hydrocraquage et sélectifs en distillats moyens, la demanderesse a découvert que l'utilisation de catalyseurs d'hydrocraquage particuliers à base de silice-alumine et comprenant au moins une zéolithe particulière choisie dans le groupe formé par les zéolithes de type structural TON, FER, MTT, les zéolithes ZBM-30, ZSM-48, et COK-7, prises seules ou en mélange, engendre des performances catalytiques améliorées dans les procédés d'hydrocraquage et d'hydroisomérisation de paraffines issues d'un procédé de synthèse Fischer-Tropsch, notamment un rendement en distillats moyens amélioré par rapport aux catalyseurs à base de silice-alumine.
Objet de l'invention La présente invention concerne donc un procédé pour la production de distillats moyens. Ce procédé permet d'augmenter la quantité de distillats moyens disponibles par hydrocraquage des composés paraffiniques les plus lourds, présents dans l'effluent de sortie de l'unité Fischer-Tropsch, et qui ont des points d'ébullition supérieurs à ceux des coupes kérosène et gazole, par exemple la fraction 3700C+.
Plus précisément l'invention concerne un procédé de production de distillats moyens à partir d'une charge paraffinique produite par synthèse Fischer-Tropsch mettant en œuvre un catalyseur particulier tel que défini dans la description qui suit.
La présente invention concerne un procédé de production de distillats moyens à partir d'une charge paraffinique produite par synthèse Fischer-Tropsch, mettant en œuvre un catalyseur d'hydrocraquage/hydroisomérisation comprenant au moins au moins un métal hydro- déshydrogénant choisi dans le groupe formé par les métaux du groupe VIB et du groupe VIII de la classification périodique et un support comprenant au moins une silice-alumine et au moins une zéolithe choisie dans le groupe formé par les zéolithes de type structural TON, FER, MTT, les zéolithes ZBM-30, ZSM-48 et COK-7, prises seules ou en mélange ledit procédé opérant à une température comprise entre 270 et 4000C , une pression comprise entre 1 et 9 MPa , une vitesse spatiale comprise entre 0,5 et 5 h-1 , un débit d'hydrogène ajusté pour obtenir un rapport de 400 à 1500 Normaux litres d'hydrogène par litre de charge.
La présente invention permet l'amélioration des performances du procédé de production de distillât moyen par l'optimisation des conditions opératoires mises en oeuvre dans le procédé selon l'invention. Ainsi, la sélection de conditions opératoires particulières et de catalyseurs spécifiques permet l'obtention de rendements en distillât moyen élevé.
Description détaillée de l'invention
La présente invention concerne un procédé de production de distillats moyens à partir d'une charge paraffinique produite par synthèse Fischer-Tropsch, mettant en œuvre un catalyseur d'hydrocraquage/hydroisomérisation comprenant au moins au moins un métal hydro- déshydrogénant choisi dans le groupe formé par les métaux du groupe VIB et du groupe VIII de la classification périodique et un support comprenant au moins une silice-alumine et au moins une zéolithe choisie dans le groupe formé par les zéolithes de type structural TON, FER, MTT, les zéolithes ZBM-30, ZSM-48 et COK-7, prises seules ou en mélange, ledit procédé opérant à une température comprise entre 270 et 4000C et de préférence entre 300 et 390 0C, une pression comprise entre 1 et 9 MPa et de préférence comprise entre 2 et 8 MPa, une vitesse spatiale comprise entre 0,5 et 5 h-1 et de préférence comprise entre 0,8 et 3 h-1 , un débit d'hydrogène ajusté pour obtenir un rapport de 400 à 1500 Normaux litres d'hydrogène par litre de charge et de préférence un rapport de 600 et 1300 Normaux litres d'hydrogène par litre de charge.
De préférence, ledit catalyseur d'hydrocraquage/hydroisomérisation comprend,
- 0,1 à 60 %, de préférence de 0,1 à 50 % et de manière encore plus préférée de 0,1 à 40 % d'au moins un métal hydro-déshydrogénant choisi dans le groupe formé par les métaux du groupe VIB et du groupe VIII, et de préférence de 40 à 99,9 % d'un support comprenant : - 0 à 99 % et de préférence 2 à 98 %, de préférence de 5 à 95 % d'au moins un liant minéral poreux amorphe ou mal cristallisé de type oxyde (hors silice-alumine)
- 0,1 à 40 %, de préférence de 0,2 à 38 %, de manière préférée, de 0,5 à 35% et de manière très préférée, de 1 à 30% d'au moins une zéolithe choisie dans le groupe formé par les zéolithes de type structural TON, FER, MTT, les zéolithes ZBM-30, ZSM-48 et COK-7, prises seules ou en mélange,
- de 60 à 95% de silice -alumine, de préférence de 70 à 95% et de manière très préférée, de 80 à 95%, les pourcentages étant exprimés en pourcentage poids par rapport à la masse totale du catalyseur.
Avantageusement, ledit catalyseur renferme également :
- au moins un élément dopant choisi dans le groupe formé par le phosphore, le bore et le silicium. Les teneurs massiques en bore, silicium, phosphore, sont comprises entre 0,1 et 15%, de préférence entre 0,1 et 10%, et encore plus avantageusement entre 0,1 et 5% poids par rapport à la masse totale du catalyseur. On entend par élément dopant un élément introduit après la préparation du support zéolithe/silice-alumine/liant.
Conformément à l'invention, le catalyseur comprend au moins un métal hydro- déshydrogénant choisi dans le groupe formé par les métaux du groupe VIIl et les métaux du groupe VIB, pris seuls ou en mélange. De préférence, les éléments du groupe VIII sont choisis parmi le fer, le cobalt, le nickel, le ruthénium, le rhodium, le palladium, l'osmium, l'iridium ou le platine, pris seuls ou en mélange.
Dans le cas où les éléments du groupe VIII sont choisis parmi les métaux nobles du groupe VIIl, les éléments du groupe VIII sont avantageusement choisis parmi le platine et le palladium.
Dans le cas où les éléments du groupe VIlI sont choisis parmi les métaux non nobles du groupe VIlI, les éléments du groupe VIII sont avantageusement choisis parmi le fer, le cobalt et le nickel. De préférence, les éléments du groupe VlB du catalyseur selon la présente invention sont choisis parmi le tungstène et le molybdène.
Dans le cas où la fonction hydrogénante comprend un élément du groupe VIII et un élément du groupe VIB, les associations de métaux suivants sont préférées : nickel- molybdène, cobalt-molybdène, fer-molybdène, fer-tungstène, nickel-tungstène, cobalt- tungstène, et de manière très préférée : nickel-molybdène, cobalt-molybdène, nickel- tungstène. Il est également possible d'utiliser des associations de trois métaux tel que par exemple nickel-cobalt-molybdène.
La teneur en élément hydro-déshydrogénant dudit catalyseur selon la présente invention choisi dans le groupe formé par les métaux du groupe VIB et du groupe VIII est comprise entre 0,1 et 60 % poids par rapport à la masse totale dudit catalyseur de préférence entre 0,1 à 50 % poids et de manière très préférée entre 0,1 à 40 % poids. Lorsque l'élément hydro-déshydrogénant est un métal noble du groupe VIII, le catalyseur renferme de préférence une teneur en métal noble comprise entre 0,05 et 10% poids, de manière encore plus préférée de 0,1 à 5 % poids par rapport à la masse totale dudit catalyseur .
Les zéolithes
Conformément à l'invention, le support du catalyseur selon la présente invention comprend au moins une zéolithe choisie dans le groupe formé par les zéolithes de type structural TON, FER, MTT, les zéolithes ZBM-30, ZSM-48 et COK-7, prises seules ou en mélange,
De manière préférée, ledit support comprend la zéolithe ZBM-30 ou la zéolithe COK-7 et de manière très préférée, ledit support comprend la zéolithe ZBM-30.
La zéolithe ZBM-30 est décrite dans le brevet EP-A-46 504, et la zéolithe COK-7 est décrite dans les demandes de brevet EP 1 702 888 A1 ou FR 2 882 744 A1. De préférence, la zéolithe COK-7 utilisée dans Ie catalyseur selon la présente invention est synthétisée en présence du structurant organique triethylènetétramine. De manière préférée, la zéolithe ZBM-30 utilisée dans le catalyseur selon la présente invention est synthétisée en présence du structurant organique triethylènetétramine.
De manière plus préférée, le support du catalyseur selon la présente invention comprend la zéolithe COK-7, synthétisée en présence du structurant organique triethylènetétramine, en mélange avec la zéolithe ZBM-30 synthétisée en présence du structurant organique triethylènetétramine.
Les zéolithes de type structural TON sont décrites dans l'ouvrage "Atlas of Zéolithe Structure Types", W.M. Meier, D.H. Oison and Ch. Baerlocher, 5th Revised édition, 2001, Elsevier. La zéolithe de type structural TON pouvant également entrer dans la composition du support du catalyseur selon la présente invention est avantageusement choisie dans le groupe formé par les zéolithes Theta-1, ISI-1 , NU-10, KZ-2 et ZSM-22 décrites dans l'ouvrage "Atlas of Zéolithe Structure Types", ci-dessus cité ainsi que, en ce qui concerne la zéolithe ZSM-22, dans les brevets US 456477 et US 4 902 406 et en ce qui concerne la zéolithe NU-10, dans les brevets EP-65400 et EP-77624.
La zéolithe de type structural FER pouvant également entrer dans la composition du support du catalyseur selon la présente invention est avantageusement choisie dans le groupe formé par les zéolithes ZSM-35, ferrierite, FU-9 et ISI-6, décrites dans l'ouvrage "Atlas of Zéolithe Structure Types", ci-dessus cité. La zéolithe de type structural MTT pouvant également entrer dans la composition du support du catalyseur selon la présente invention est avantageusement choisie dans le groupe formé par les zéolithes ZSM-23, EU-13, ISI-4 et KZ-1 décrites dans l'ouvrage "Atlas of Zéolithe Structure Types", ci-dessus cité ainsi que dans le brevet US 4 076 842 en ce qui concerne la zéolithe ZSM-23. Parmi les zéolithes de type structural TON pouvant également entrer dans la composition du support du catalyseur selon la présente invention, les zéolithes ZSM-22 et NU-10 sont préférées.
Parmi les zéolithes de type structural FER pouvant également entrer dans la composition du support du catalyseur selon la présente invention, les zéolithes ZSM-35 et ferrierite sont préférées.
Parmi les zéolithes de type structural MTT pouvant également entrer dans la composition du support du catalyseur selon la présente invention la zéolithe ZSM-23 est préférée. De préférence, le support du catalyseur selon l'invention contient un mélange de deux zéolithes et de manière préférée, un mélange de la zéolithe COK-7 avec la zéolithe ZSM-22 ou Ia zéolithe NU-10, ou encore un mélange de la zéolithe ZBM-30 avec la zéolithe ZSM-22 ou la zéolithe NlM 0. La proportion de chacune des zéolithes dans le mélange des deux zéolithes est avantageusement compris entre 20 et 80% poids par rapport au poids total du mélange des deux zéolithes, et de préférence la proportion de chacune des zéolithes dans le mélange des deux zéolithes est de 50% poids par rapport au poids total du mélange des deux zéolithes. Les zéolithes présentes dans le support du catalyseur selon l'invention comprennent avantageusement du silicium et au moins un élément T choisi dans le groupe formé par l'aluminium, le fer, le gallium, le phosphore et le bore, et de préférence ledit élément T est l'aluminium
Le rapport Si/Ai global des zéolithes entrant dans la composition du support des catalyseurs selon l'invention ainsi que la composition chimique des échantillons sont déterminés par fluorescence X et absorption atomique.
Les rapports Si/Ai des zéolithes décrites ci-dessus sont avantageusement ceux obtenus à la synthèse selon les modes opératoires décrits dans les différents documents cités ou bien obtenus après des traitements de désalumination post-synthèse bien connus de l'homme de l'art, tels que et à titre non exhaustif les traitements hydrothermiques suivis ou non d'attaques acides ou bien encore les attaques acides directes par des solutions d'acides minéraux ou organiques.
Les zéolithes entrant dans la composition du support du catalyseur selon l'invention sont avantageusement calcinées et échangées par au moins un traitement par une solution d'au moins un sel d'ammonium de manière à obtenir la forme ammonium des zéolithes qui une fois calcinée conduit à la forme hydrogène des dites zéolithes.
Les zéolithes entrant dans la composition du support du catalyseur selon l'invention sont avantageusement au moins en partie, de préférence pratiquement totalement, sous forme acide, c'est-à-dire sous forme acide (H+). Le rapport atomique Na/T est généralement avantageusement inférieur à 0,1 et de préférence inférieur à 0,05 et de manière encore plus préférée inférieur à 0,01. La silice-alumine
Conformément à l'invention, le support du catalyseur selon l'invention comporte également au moins une silice alumine.
Toute silice-alumine connue de l'homme de l'art convient pour l'invention.
La silice-alumine contenue dans le catalyseur selon l'invention est un support non zéolitique de teneur massique en silice (SiO2) supérieure à 5% poids et inférieure ou égale à 95% poids,
Selon un mode de réalisation préféré, la silice-alumine est homogène à l'échelle du micromètre et contient une quantité supérieure à 5% poids et inférieure ou égale à 95% poids de silice (SiO2), de préférence comprise entre 10 et 80% poids, de manière préférée une teneur en silice supérieure à 20% poids et inférieure à 80% poids et de manière encore plus préférée supérieure à 25% poids et inférieure à 75% poids, la teneur en silice est avantageusement comprise entre 10 et 50 % poids, ladite silice - alumine présentant les caractéristiques suivantes :
- un diamètre moyen poreux, mesuré par porosimétrie au mercure, compris entre 20 et 140 Â,
- un volume poreux total, mesuré par porosimétrie au mercure, compris entre 0,1 ml/g et 0,5 ml/g, - un volume poreux total, mesuré par porosimétrie azote, compris entre 0,1 ml/g et 0,5 ml/g,
- une surface spécifique BET comprise entre 100 et 550 m2/g,
- un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à 140 Λ inférieur à 0,1 ml/g , - un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à 160 Λ inférieur à 0,1 ml/g,
- un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 200 Λ, inférieur à 0, 1 ml/g,
- un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 500 Λ inférieur à 0,1 ml/g.
- un diagramme de diffraction X qui contient au moins les raies principales caractéristiques d'au moins une des alumines de transition comprise dans le groupe composé par les alumines alpha, rhô, chi, eta, gamma, kappa, thêta et delta.
De préférence, ladite silice-alumine contient : - une teneur en impuretés cationiques (par exemple Na+) inférieure à 0,1%poids, de manière préférée inférieure à 0,05% poids et de manière encore plus préférée inférieure à 0,025% poids. On entend par teneur en impuretés cationiques la teneur totale en alcalins et alcalino-terreux.
- une teneur en impuretés anioniques (par exemple SO4 2", CI") inférieure à 1% poids, de manière préférée inférieure à 0,5% poids et de manière encore plus préférée inférieure à 0,1% poids.
Procédés de préparation
Les catalyseurs mis en oeuvre dans le procédé selon l'invention peuvent avantageusement être préparés selon toutes les méthodes bien connues de l'homme du métier, à partir du support à base de matrice silico-aluminique et à base d'au moins une zéolithe choisie dans le groupe formé par les zéolithes de type structural TON, FER, MTT, les zéolithes ZBM-30, ZSM-48 et COK-7, prises seules ou en mélange.
a) Préparation de la silice-alumine
Tout procédé de synthèse de silice-alumine connu de l'homme du métier conduisant à une silice-alumine homogène à l'échelle du micromètre et dans lequel les impuretés cationiques (par exemple Na+) peuvent avantageusement être ramenées à moins de 0,1 %, de manière préférée à une teneur inférieure à 0,05 % poids et de manière encore plus préférée inférieure à 0,025 % poids et dans lequel les impuretés anioniques (par exemple SO4 2", CI") peuvent avantageusement être ramenées à moins de 1 % et de manière plus préférée inférieure à 0,05 % poids convient pour préparer les supports utilisables dans le procédé selon l'invention.
Les matrices silico-aluminiques obtenues à partir d'un mélange à quelque étape que ce soit d'un composé d'alumine partiellement soluble en milieu acide avec un composé de silice totalement soluble ou avec une combinaison totalement soluble d'alumine et de silice hydratées, mise en forme suivie d'un traitement hydrothermal ou thermique afin de l'homogénéiser à l'échelle micrométrique, voire à l'échelle nanométrique, permettaient d'obtenir un catalyseur particulièrement actif. Par partiellement soluble en milieu acide, le demandeur entend que la mise en contact du composé d'alumine avant toute addition du composé de silice totalement soluble ou de la combinaison avec une solution acide par exemple d'acide nitrique ou d'acide sulfurique provoque leur dissolution partielle. Sources de silice
Les composés de silice utilisés selon l'invention peuvent avantageusement avoir été choisis dans le groupe formé par l'acide silicique, les sols d'acide silicique, les silicates alcalins hydrosolubles, les sels cationiques de silicium, par exemple le métasilicate de sodium hydraté, le Ludox® sous forme ammoniacale ou sous forme alcaline, les silicates d'ammonium quaternaire. Le sol de silice peut être préparé selon l'une des méthodes connues de l'homme du métier. De manière préférée, une solution d'acide orthosilicique décationisée est préparée à partir d'un silicate alcalin hydrosoluble par échange ionique sur une résine. Sources de silices-alumines totalement solubles
Les silices-alumines hydratées totalement solubles avantageusement utilisées selon l'invention peuvent être préparées par coprécipitation vraie en conditions opératoires stationnaires maîtrisées (pH, concentration, température, temps de séjour moyen) par réaction d'une solution basique contenant le silicium, par exemple sous forme de silicate de sodium, optionnellement de l'aluminium par exemple sous forme d'aluminate de sodium avec une solution acide contenant au moins un sel d'aluminium par exemple le sulfate d'aluminium. Au moins un carbonate ou encore du CO2 peut éventuellement être rajouté au milieu réactionnel.
Par coprécipitation vraie, le demandeur entend un procédé par lequel au moins un composé d'aluminium totalement soluble en milieu basique ou acide comme décrit ci-après, au moins un composé de silicium comme décrit ci-après sont mis en contact, simultanément ou séquentiellement, en présence d'au moins un composé précipitant et/ou coprécipitant de façon à obtenir une phase mixte essentiellement constituée de silice-alumine hydratée laquelle est éventuellement homogénéisée par agitation intense, cisaillement, broyage colloïdal ou encore par combinaison de ces opérations unitaires.
Sources d'alumine
Les composés d'alumine avantageusement utilisés selon l'invention sont partiellement solubles en milieu acide. Ils sont choisis tout ou en partie dans le groupe des composés d'alumine de formule générale AI2O3, nH2O. On peut en particulier utiliser des composés hydratés d'alumine tels que : l'hydrargillite, la gibbsite, la bayerite, la boehmite, la pseudo-boehmite et les gels d'alumine amorphe ou essentiellement amorphe. On peut avantageusement également mettre en œuvre les formes déshydratées de ces composés qui sont constitués d'alumines de transition et qui comportent au moins une des phases prises dans le groupe : rhô, khi, êta, gamma, kappa, thêta, et delta, qui se différencient essentiellement par l'organisation de leur structure cristalline. L'alumine alpha appelée communément corindon peut avantageusement être incorporée dans une faible proportion dans le support selon l'invention.
L'hydrate d'aluminium AI2O3, nH20 utilisé de manière plus préférentielle est avantageusement la boehmite, la pseudo-boehmite et les gels d'alumine amorphe ou essentiellement amorphe. Un mélange de ces produits sous quelque combinaison que ce soit peut être également utilisé. La boehmite est généralement décrite comme un monohydrate d'aluminium de formule AI2O3, nH2O qui englobe en réalité un large continuum de matériaux de degré d'hydratation et d'organisation variables avec des frontières plus ou moins bien définies : la boehmite gélatineuse la plus hydratée, avec n pouvant être supérieur à 2, la pseudo- boehmite ou la boehmite micro-cristalline avec n compris entre 1 et 2, puis la boehmite cristalline et enfin la boehmite bien cristallisée en gros cristaux avec n voisin de 1. La morphologie du monohydrate d'aluminium peut avantageusement varier dans de larges limites entre ces deux formes extrêmes aciculaire ou prismatique. Tout un ensemble de formes variables peut être utilisé entre ces deux formes : chaîne, bateaux, plaquettes entrelacées. Des hydrates d'aluminium relativement purs peuvent avantageusement être utilisés sous forme de poudre, amorphes ou cristallisés ou cristallisés contenant une partie amorphe. L'hydrate d'aluminium peut également avantageusement être introduit sous forme de suspensions ou dispersions aqueuses. Les suspensions ou dispersions aqueuses d'hydrate d'aluminium mises en œuvre selon l'invention peuvent avantageusement être gélifiables ou coagulables. Les dispersions ou suspensions aqueuses peuvent également avantageusement être obtenues ainsi qu'il est bien connu de l'homme du métier par peptisation dans l'eau ou l'eau acidulée d'hydrates d'aluminium.
La dispersion d'hydrate d'aluminium peut avantageusement être réalisée par tout procédé connu de l'homme du métier : dans un réacteur en "batch", un mélangeur en continu, un malaxeur, un broyeur colloïdal. Un tel mélange peut avantageusement être également réalisé dans un réacteur à écoulement piston et, notamment dans un mélangeur statique. On peut citer les réacteurs Lightnin.
En outre, on peut également avantageusement mettre en œuvre comme source d'alumine une alumine ayant été soumise au préalable à un traitement susceptible d'améliorer son degré de dispersion. A titre d'exemple, on pourra améliorer la dispersion de la source d'alumine par un traitement d'homogénéisation préliminaire. Par homogénéisation, on peut avantageusement utiliser au moins un des traitements d'homogénéisation décrit dans le texte qui suit. Les dispersions ou suspensions aqueuses d'alumine que l'on peut mettre en œuvre sont notamment les suspensions ou dispersions aqueuses de boehmites fines ou ultra-fines qui sont composés de particules ayant avantageusement des dimensions dans le domaine colloïdal.
Les boehmites fines ou ultra-fines avantageusement mises en œuvre selon la présente invention peuvent notamment avoir été obtenues selon le brevet français FR-B-
1 261 182 et FR-B-1 381 282 ou dans la demande de brevet européen EP-A-15 196.
On peut avantageusement mettre en œuvre également les suspensions ou dispersions aqueuses obtenues à partir de pseudo-boehmite, de gels d'alumine amorphe, de gels d'hydroxyde d'aluminium ou d'hydrargillite ultra-fine. Le monohydrate d'aluminium peut avantageusement être acheté parmi une variété de sources commerciales d'alumine telle que notamment les PURAL®, CATAPAL®, DISPERAL®, DISPAL® commercialisée par la société SASOL ou encore HIQ® commercialisée par ALCOA, ou selon les méthodes connues de l'homme du métier : elle peut avantageusement être préparée par déshydratation partielle de trihydrate d'aluminium par des méthodes conventionnelles ou elle peut avantageusement être préparée par précipitation. Lorsque ces alumines se présentent sous forme d'un gel, elles sont avantageusement peptisées par l'eau ou une solution acidulée. Dans la précipitation, la source acide peut avantageusement être par exemple choisie parmi au moins un des composés suivants : le chlorure d'aluminium, le sulfate d'aluminium, le nitrate d'aluminium. La source basique d'aluminium peut être choisie parmi les sels basiques d'aluminium tels que l'aluminate de sodium et l'aluminate de potassium.
b) Préparation de la zéolithe
Les zéolithes utilisées dans le catalyseur selon l'invention sont avantageusement des zéolithes commerciales ou bien des zéolithes synthétisées selon les procédures décrites dans les brevets cités précédemment. Les zéolithes entrant dans la composition du catalyseur selon l'invention sont avantageusement au moins en partie, de préférence pratiquement totalement, sous forme acide, c'est-à-dire sous forme hydrogène (H+). c) Préparation de la matrice zéolithe - silice-alumine
La matrice selon l'invention peut avantageusement être préparée selon toutes les méthodes bien connues de l'homme du métier à partir des supports préparés comme décrit plus haut.
La zéolithe peut avantageusement être introduite selon toute méthode connue de l'homme du métier et ce à tout stade de la préparation du support ou du catalyseur.
Un procédé préféré de préparation du catalyseur selon la présente invention comprend avantageusement les étapes suivantes :
Selon un mode de préparation préféré, la zéolithe peut avantageusement être introduite au cours de la synthèse des précurseurs de la silice-alumine. La zéolithe peut être, sans que cela soit limitatif, par exemple sous forme de poudre, poudre broyée, suspension, suspension ayant subi un traitement de désagglomération. Ainsi, par exemple, la zéolithe peut avantageusement être mise en suspension acidulée ou non à une concentration ajustée à la teneur finale en zéolithe visée sur le support. Cette suspension appelée couramment une barbotine est alors mélangée avec les précurseurs de la silice-alumine à un stade quelconque de sa synthèse comme décrite plus haut.
Selon un autre mode de préparation préféré, la zéolithe peut avantageusement être introduite également lors de la mise en forme du support avec les éléments qui constituent la matrice avec éventuellement au moins un liant. La zéolithe peut avantageusement être, sans que cela soit limitatif, sous forme de poudre, poudre broyée, suspension, suspension ayant subi un traitement de désagglomération.
La préparation et le ou les traitements ainsi que la mise en forme de la zéolithe peuvent avantageusement ainsi constituer une étape de la préparation de ces catalyseurs. Avantageusement, la matrice zéolithe / silice-alumine est obtenue par mélange de la silice- alumine et de la zéolithe puis le mélange est mis en forme.
Mise en forme des supports et catalyseurs
La matrice zéolithe/ silice-alumine peut avantageusement être mise en forme par toute technique connue de l'homme du métier. La mise en forme peut avantageusement être réalisée par exemple par extrusion, par pastillage, par la méthode de la coagulation en goutte ("oil-drop"), par granulation au plateau tournant ou par toute autre méthode bien connue de l'homme du métier. La mise en forme peut avantageusement également être réalisée en présence des différents constituants du catalyseur et extrusion de la pâte minérale obtenue, par pastillage, mise en forme sous forme de billes au drageoir tournant ou au tambour, coagulation en goutte, "oil-drop", "oil-up", ou tout autre procédé connu d'agglomération d'une poudre contenant de l'alumine et éventuellement d'autres ingrédients choisis parmi ceux mentionnés plus haut.
Les catalyseurs mis en oeuvre dans me procédé selon l'invention ont la forme de sphères ou d'extrudés. Il est toutefois avantageux que le catalyseur se présente sous forme d'extrudés d'un diamètre compris entre 0,5 et 5 mm et plus particulièrement entre 0,7 et 2,5 mm. Les formes sont cylindriques (qui peuvent être creuses ou non), cylindriques torsadés, multilobées (2, 3, 4 ou 5 lobes par exemple), anneaux. La forme cylindrique est avantageusement utilisée de manière préférée, mais toute autre forme peut avantageusement être utilisée. Par ailleurs, ces supports mis en œuvre selon la présente invention peuvent avantageusement avoir été traités ainsi qu'il est bien connu de l'homme du métier par des additifs pour faciliter la mise en forme et/ou améliorer les propriétés mécaniques finales des supports à base de matrices silico-aluminiques. A titre d'exemple d'additifs, on peut citer notamment la cellulose, la carboxyméthyl-cellulose, la carboxy-ethyl-cellulose, du tall-oil, les gommes xanthaniques, des agents tensio-actifs, des agents floculants comme les polyacrylamides, le noir de carbone, les amidons, l'acide stéarique, l'alcool polyacrylique, l'alcool polyvinylique, des biopolymères, le glucose, les polyéthylènes glycols, etc.
La mise en forme peut avantageusement être réalisée en utilisant les techniques de mise en forme des catalyseurs, connues de l'homme du métier, telles que par exemple : extrusion, dragéification, séchage par atomisation ou encore pastillage. On peut avantageusement ajouter ou retirer de l'eau pour ajuster la viscosité de la pâte à extruder. Cette étape peut être réalisée à tout stade de l'étape de malaxage.
Pour ajuster la teneur en matière solide de la pâte à extruder afin de la rendre extrudable, on peut avantageusement également ajouter un composé majoritairement solide et de préférence un oxyde ou un hydrate. On utilise de manière préférée un hydrate et de manière encore plus préférée un hydrate d'aluminium. La perte au feu de cet hydrate est avantageusement supérieure à 15 %.
La teneur en acide ajouté au malaxage avant la mise en forme est inférieure à 30 %, de préférence comprise entre 0,5 et 20 % poids de la masse anhydre en silice et alumine engagée dans la synthèse. L'extrusion peut avantageusement être réalisée par n'importe quel outil conventionnel, disponible commercialement. La pâte issue du malaxage est avantageusement extrudée à travers une filière, par exemple à l'aide d'un piston ou d'une mono-vis ou double vis d'extrusion. Cette étape d'extrusion peut avantageusement être réalisée par toute méthode connue de l'homme de métier.
Les extrudés de support selon l'invention ont avantageusement généralement une résistance à l'écrasement d'au moins 70 N/cm et de manière préférée supérieure ou égale à 100 N/cm.
Calcination du support zéolithe/ silice-alumine
Le séchage est avantageusement effectué par toute technique connue de l'homme du métier.
Pour obtenir le support de la présente invention, il est préférable de calciner de préférence en présence d'oxygène moléculaire, par exemple en effectuant un balayage d'air, à une température inférieure ou égale à 11000C. Au moins une calcination peut avantageusement être effectuée après l'une quelconque des étapes de la préparation. Ce traitement par exemple peut être effectué en lit traversé, en lit léché ou en atmosphère statique. Par exemple, le four utilisé peut avantageusement être un four rotatif tournant ou être un four vertical à couches traversées radiales. Les conditions de calcination : température et durée dépendent principalement de la température maximale d'utilisation du catalyseur. Les conditions préférées de calcination se situent avantageusement entre plus d'une heure à 2000C à moins d'une heure à 11000C. La calcination peut avantageusement être opérée en présence de vapeur d'eau. La calcination finale peut être éventuellement effectuée en présence d'une vapeur acide ou basique. Par exemple, la calcination peut avantageusement être réalisée sous pression partielle d'ammoniaque.
Traitements post-svnthèse Des traitements post-synthèse peuvent avantageusement être effectués, de manière à améliorer les propriétés du catalyseur.
Selon l'invention, le support zéolithe/ silice-alumine peut ainsi être éventuellement soumis à un traitement hydrothermal en atmosphère confinée. On entend par traitement hydrothermal en atmosphère confinée un traitement par passage à l'autoclave en présence d'eau 0 une température supérieure à la température ambiante. Au cours de ce traitement hydrothermal, on peut avantageusement traiter le support. Ainsi, on peut avantageusement imprégner le support, préalablement à son passage à l'autoclave, l'autoclavage étant fait soit en phase vapeur, soit en phase liquide, cette phase vapeur ou liquide de l'autoclave pouvant être acide ou non. Cette imprégnation, préalable à l'autoclavage, peut avantageusement être acide ou non. Cette imprégnation, préalable à l'autoclavage peut avantageusement être effectuée à sec ou par immersion du support dans une solution aqueuse acide. Par imprégnation à sec, on entend mise en contact du support avec un volume de solution inférieur ou égal au volume poreux total du support. De préférence, l'imprégnation est réalisée à sec. L'autoclave est de préférence un autoclave à panier rotatif tel que celui défini dans la demande brevet EP-A-O 387 109.
La température pendant l'autoclavage peut être comprise entre 100 et 2500C pendant une période de temps comprise entre 30 minutes et 3 heures.
d) Dépôt des métaux
L'élément hydro-déshydrogénant peut avantageusement être introduit à toute étape de la préparation, de manière très préférée après mise en forme du support zéolithe/silice- alumine. La mise en forme est avantageusement suivie d'une calcination, l'élément hydrogénant peut également avantageusement être introduit avant ou après cette calcination. La préparation se termine généralement par une calcination à une température de 250 à 6000C. Une autre des méthodes préférées selon la présente invention consiste avantageusement à mettre en forme le support zéolithe/silice-alumine après un malaxage de ce dernier, puis passage de la pâte ainsi obtenue au travers d'une filière pour former des extrudés de diamètre compris entre 0,4 et 4 mm. La fonction hydrogénante peut avantageusement être alors introduite en partie seulement ou en totalité, au moment du malaxage. Elle peut également avantageusement être introduite par une ou plusieurs opérations d'échange ionique sur le support calciné constitué d'au moins une silice-alumine, au moins une zéolithe choisie dans le groupe formé par les zéolithes de type structural TON, FER, MTT, les zéolithes ZBM-30, ZSM-48 et COK-7, prises seules ou en mélange, et éventuellement mise en forme avec un liant, à l'aide de solutions contenant les sels précurseurs des métaux choisis.
D'une façon préférée, le support est imprégné par une solution aqueuse. L'imprégnation du support est de préférence effectuée par la méthode d'imprégnation dite "à sec" bien connue de l'homme du métier. L'imprégnation peut avantageusement être effectuée en une seule étape par une solution contenant l'ensemble des éléments constitutifs du catalyseur final.
La fonction hydrogénante peut avantageusement être introduite par une ou plusieurs opérations d'imprégnation du support mis en forme et calciné, par une solution contenant au moins un précurseur d'au moins un oxyde d'au moins un métal choisi dans le groupe formé par les métaux du groupes VlII et les métaux du groupe VIB, le(s) précurseur(s) d'au moins un oxyde d'au moins un métal du groupe VIII étant de préférence introduit(s) après ceux du groupe VlB ou en même temps que ces derniers, si le catalyseur contient au moins un métal du groupe VIB et au moins un métal du groupe VIII.
Dans le cas où le catalyseur contient avantageusement au moins un élément du groupe VIB par exemple le molybdène, il est par exemple possible d'imprégner le catalyseur avec une solution contenant au moins un élément du groupe VIB, de sécher, de calciner. L'imprégnation du molybdène peut avantageusement être facilitée par ajout d'acide phosphorique dans les solutions de paramolybdate d'ammonium, ce qui permet d'introduire aussi le phosphore de façon à promouvoir l'activité catalytique.
Les éléments suivants : bore et/ou silicium et/ou phosphore peuvent être introduits dans le catalyseur à tout niveau de la préparation et selon toute technique connue de l'homme du métier.
Une méthode préférée selon l'invention consiste à déposer le ou les éléments promoteurs choisis, par exemple le couple bore-silicium, sur le support zéolithe/silice- alumine calciné ou non, de préférence calciné. Pour cela on prépare une solution aqueuse d'au moins un sel de bore tel que le biborate d'ammonium ou le pentaborate d'ammonium en milieu alcalin et en présence d'eau oxygénée et on procède à une imprégnation dite à sec, dans laquelle on remplit le volume des pores du précurseur par la solution contenant par exemple le bore. Dans le cas où l'on dépose par exemple également du silicium, on utilise par exemple une solution d'un composé du silicium de type silicone ou émulsion d'huile silicone.
Le ou les élément(s) promoteurs) choisi(s) dans le groupe formé par le silicium, le bore et le phosphore peuvent avantageusement être introduits par une ou plusieurs opérations d'imprégnation avec excès de solution sur le précurseur calciné. La source de bore peut avantageusement être l'acide borique, de préférence l'acide orthoborique H3BO3, le biborate ou le pentaborate d'ammonium, l'oxyde de bore, les esters boriques. Le bore peut par exemple être introduit sous la forme d'un mélange d'acide borique, d'eau oxygénée et un composé organique basique contenant de l'azote tels que l'ammoniaque, les aminés primaires et secondaires, les aminés cycliques, les composés de la famille de la pyridine et des quinoléines et les composés de la famille du pyrrole. Le bore peut être introduit par exemple par une solution d'acide borique dans un mélange eau/alcool.
La source de phosphore préférée est l'acide orthophosphorique H3PO4, mais ses sels et esters comme les phosphates d'ammonium conviennent également. Le phosphore peut par exemple être introduit sous la forme d'un mélange d'acide phosphorique et un composé organique basique contenant de l'azote tels que l'ammoniaque, les aminés primaires et secondaires, les aminés cycliques, les composés de la famille de la pyridine et des quinoléines et les composés de la famille du pyrrole.
De nombreuses sources de silicium peuvent avantageusement être employées. Ainsi, on peut utiliser l'orthosilicate d'éthyle Si(0Et)4, les siloxanes, les polysiloxanes, les silicones, les émulsions de silicones, les silicates d'halogénures comme le fluorosilicate d'ammonium (NH4)2SiF6 ou le fluorosilicate de sodium Na2SiF6. L'acide silicomolybdique et ses sels, l'acide silicotungstique et ses sels peuvent également être avantageusement employés. Le silicium peut avantageusement être ajouté par exemple par imprégnation de silicate d'éthyle en solution dans un mélange eau/alcool. Le silicium peut être ajouté par exemple par imprégnation d'un composé du silicium de type silicone ou l'acide silicique mis en suspension dans l'eau.
Les métaux du groupe VIII noble du catalyseur de la présente invention peuvent avantageusement être présents en totalité ou partiellement sous forme métallique et/ou oxyde.
Les sources d'éléments nobles du groupe VIII qui peuvent avantageusement être utilisées sont bien connues de l'homme du métier. Pour les métaux nobles on utilise les halogénures, par exemple les chlorures, les nitrates, les acides tels que l'acide chloroplatinique, les hydroxydes, les oxychlorures tels que l'oxychlorure ammoniacal de ruthénium. On peut également avantageusement utiliser les complexes cationiques tels que les sels d'ammonium lorsque l'on souhaite déposer le platine sur la zéolithe par échange cationique.
Mode de réalisation 1 Selon un mode de réalisation préféré de l'invention, le procédé comprend les étapes suivantes à partir d'une charge issue de la synthèse FT : a) séparation d'une seule fraction dite lourde à point d'ébullition initial compris entre 120- 2000C1 b) hydrotraitement d'une partie au moins de ladite fraction lourde, c) fractionnement en au moins 3 fractions :
- au moins une fraction intermédiaire ayant un point d'ébullition initial T1 compris entre 120 et 2000C, et un point d'ébullition final T2 supérieur à 3000C et inférieur à 4100C1 - au moins une fraction légère bouillant au-dessous de la fraction intermédiaire,
- au moins une fraction lourde bouillant au-dessus de la fraction intermédiaire. d) passage d'une partie au moins de ladite fraction intermédiaire sur un catalyseur hydroisomérisant, e) passage d'une partie au moins de ladite fraction lourde dans le procédé selon l'invention f) distillation des fractions hydrocraquées / hydroisomérisées pour obtenir des distillats moyens, et recyclage de la fraction résiduelle bouillant au-dessus desdits distillats moyens dans l'étape (e) sur le catalyseur selon l'invention traitant la fraction lourde.
La description de ce mode de réalisation sera faite en se référant à la figure 1 sans que la figure 1 limite l'interprétation.
Etape (a)
L'effluent issu de l'unité de synthèse Fischer-Tropsch arrivant par la conduite 1 est fractionné (par exemple par distillation) dans un moyen de séparation (2) en au moins deux fractions : au moins une fraction légère et une fraction lourde à point d'ébullition initial égal à une température comprise entre 120 et 200°C et de préférence entre 130 et 18O0C et de manière encore plus préférée à une température d'environ 15O0C, en d'autres termes le point de coupe est situé entre 120 et 2000C. La fraction légère de la figure 1 sort par la conduite (3) et la fraction lourde par la conduite (4). Ce fractionnement peut être réalisé par des méthodes bien connues de l'homme du métier telles que le flash, la distillation etc.. A titre d'exemple non limitatif, Peffluent issu de l'unité de synthèse Fischer-Tropsch sera soumis à un flash, une décantation pour éliminer l'eau et une distillation afin d'obtenir au moins les 2 fractions décrites ci-dessus.
La fraction légère n'est pas traitée selon le procédé de l'invention mais peut par exemple constituer une bonne charge pour la pétrochimie et plus particulièrement pour une unité (5) de vapocraquage. La fraction lourde précédemment décrite est traitée selon le procédé de l'invention.
Etape (b)
Au moins une partie de la dite fraction lourde (étape a) est admise en présence d'hydrogène (conduite 6) dans une zone (7) contenant un catalyseur d'hydrotraitement qui a pour objectif de réduire la teneur en composés oléfiniques et insaturés ainsi que d'éventuellement décomposer les composés oxygénés présents dans la fraction, ainsi que d'éventuellement décomposer d'éventuelles traces de composés soufrés et azotés présentes dans la fraction lourde. Cette étape d'hydrotraitement est non convertissante, c'est à dire que la conversion de la fraction 3700C+ en fraction 370°C" est de préférence inférieure à 20% en poids, de manière préférée inférieure à 10% en poids et de manière très préférée inférieure à 5% en poids.
Les catalyseurs utilisés dans cette étape (b) sont des catalyseurs d'hydrotraitement non craquants ou peu craquants comportant au moins un métal du groupe VIII et/ou du groupe Vl de la classification périodique des éléments. De préférence le catalyseur comprend au moins un métal du groupe de métaux formé par le nickel, le molybdène, le tungstène, le cobalt, le ruthénium, l'indium, le palladium et le platine et comportant au moins un support.
On peut utiliser une combinaison d'au moins un métal du groupe Vl (notamment le molybdène ou le tungstène) et d'au moins un métal du groupe VIIl (notamment cobalt et le nickel) de la classification périodique des éléments. La concentration en métal du groupe VIII non noble, lorsque celui-ci est utilisé, est de 0.01 à 15% en poids d'équivalent par rapport au catalyseur fini et celle du métal du groupe Vl (notamment le molybdène ou le tungstène) est de 5% à 30% en poids d'équivalent oxyde par rapport au catalyseur fini. Lorsqu'une combinaison de métaux du groupe Vl et du groupe VIII est utilisée, le catalyseur est alors préférentiellement utilisé sous une forme sulfurée. Avantageusement, au moins un élément choisi parmi P, B, Si est déposé sur le support. Ce catalyseur pourra contenir avantageusement du phosphore; en effet, ce composé apporte deux avantages aux catalyseurs d'hydrotraitement : une facilité de préparation lors notamment de l'imprégnation des solutions de nickel et de molybdène, et une meilleure activité d'hydrogénation.
Dans un catalyseur préféré, la concentration totale en métaux des groupes Vl et VIII1 exprimée en oxydes de métaux, est comprise entre 5 et 40% en poids et de préférence entre 7 et 30% en poids et le rapport pondéral exprimé en oxyde de métal (ou de métaux) du groupe Vl sur métal (ou métaux) du groupe VIII est compris entre 1 ,25 et 20 et de préférence entre 2 et 10. Avantageusement, s'il y a du phosphore, la concentration en oxyde de phosphore P2O5 sera inférieure à 15% en poids et de préférence inférieure à 10% en poids.
On peut utiliser également un catalyseur contenant du bore et du phosphore avantageusement le bore et le phosphore sont des éléments promoteurs déposés sur le support, et par exemple le catalyseur selon le brevet EP297949. La somme des quantités de bore et de phosphore, exprimées respectivement en poids de trioxyde de bore et pentoxyde de phosphore, par rapport au poids de support, est d'environ 5 à 15% et le rapport atomique bore sur phosphore est d'environ 1:1 à 2:1 et au moins 40% du volume poreux total du catalyseur fini est contenu dans des pores de diamètre moyen supérieur à 13 nanomètres. De façon préférée, la quantité de métal du groupe Vl tel que le molybdène ou le tungstène, est telle que le rapport atomique phosphore sur métal du groupe VIB est d'environ 0.5:1 à 1.5:1; les quantités de métal du groupe VIB et de métal du groupe VIII1 tel que le nickel ou le cobalt, sont telles que le rapport atomique métal du groupe VIII sur métal du groupe VIB est d'environ 0.3:1 à 0.7:1. Les quantités de métal du groupe VIB exprimées en poids de métal par rapport au poids de catalyseur fini est d'environ 2 à 30% et la quantité de métal du groupe VIII exprimée en poids de métal par rapport au poids de catalyseur fini est d'environ 0.01 à 15%.
Un autre catalyseur particulièrement avantageux contient du silicium promoteur déposé sur le support. Un catalyseur intéressant contient BSi ou PSi.
Les catalyseurs sulfurés Ni sur alumine, NiMo sur alumine, NiMo sur alumine dopée avec du bore et du phosphore et NiMo sur silice-alumine sont également préférés. Avantageusement, on choisira de l'alumine éta ou gamma comme support. Dans le cas de l'emploi de métaux nobles (platine et/ou palladium) de préférence, la teneur en métal est comprise entre 0.05 et 3% poids par rapport au catalyseur fini et de préférence entre 0.1 et 2% poids du catalyseur fini. Le métal noble est de préférence utilisé sous sa forme réduite et non sulfurée. Il est également possible d'employer un catalyseur à base de nickel réduit et non sulfuré. Dans ce cas la teneur en métal sous sa forme oxyde est comprise entre 0,5 et 25% en poids par rapport au catalyseur fini. De manière préférée le catalyseur contient également un métal du groupe IB tel que le cuivre, dans des proportions telles que le rapport massique du métal du groupe IB et du nickel sur le catalyseur soit compris entre 1 et 1 :30.
Ces métaux sont déposés sur un support qui est de préférence une alumine, mais qui peut aussi être de l'oxyde de Bore, de la magnésie, de la zircone, de l'oxyde de titane, une argile ou une combinaison de ces oxydes. Ces catalyseurs peuvent être préparés par toutes les méthodes connues de l'homme de l'art ou bien peuvent être acquis auprès de sociétés spécialisées dans la fabrication et la vente de catalyseurs.
Dans le réacteur d'hydrotraitement (7), la charge est mise en contact en présence d'hydrogène et du catalyseur à des températures et des pressions opératoires permettant de réaliser l'hydrogénation des oléfines présents dans la charge. De manière préférée, le catalyseur et les conditions opératoires choisies permettront également d'effectuer l'hydrodeoxygénation c'est à dire la décomposition des composés oxygénés (principalement des alcools) et/ou l'hydrodésulfuration ou Phydrodéazotation des traces éventuelles de composés soufrés et/ou azotés présents dans la charge. Les températures réactionnelies utilisées dans le réacteur d'hydrotraitement sont comprises entre 100 et 4000C, de préférence entre 150 et 35O0C, de façon encore plus préférée entre 150 et 3000C. La gamme de pression totale utilisée varie de 5 à 150 bar, de préférence entre 10 et 100 bar et de manière encore plus préférée entre 10 et 90 bar. L'hydrogène qui alimente le réacteur d'hydrotraitement est introduit à un débit tel que le rapport volumique hydrogène/hydrocarbures soit compris entre 50 à 3000 normaux litres par litre, de préférence entre 100 et 2000 normaux litres par litre et de façon encore plus préférée entre 150 et 1500 normaux litres par litre. Le débit de charge est tel que la vitesse volumique horaire est comprises entre 0,1 et 10 h"1, de préférence entre 0,2 et 5 h"1 et de manière encore plus préférée entre 0,2 et 3 h"1. Dans ces conditions, la teneur en molécules insaturées et oxygénées est réduite à moins de 0,5% en poids et à environ moins de 0,1% en poids en général. L'étape d'hydrotraitement est conduite dans des conditions telles que la conversion en produits ayant des points d'ébullition supérieurs ou égaux à 3700C en des produits ayant des points d'ébullition inférieurs à 3700C est limitée à 20% en pds, de préférence est inférieure à 10% en poids et de façon encore plus préférée est inférieure à 5% en poids.
Étape ( c)
L'effluent issu du réacteur d'hydrotraitement est amené par une conduite (8) dans une zone de fractionnement (9) où il est fractionné en au moins trois fractions :
- au moins une fraction légère (sortant par la conduite 10) dont les composés constituants ont des points d'ébullition inférieurs à une température T1 comprise entre 120 et 2000C, et de préférence entre 130 et 180cC et de manière encore plus préférée à une température d'environ 1500C. En d'autres termes le point de coupe est situé entre 120 et 2000C.
- au moins une fraction intermédiaire (conduite 11) comportant les composés dont les points d'ébullition sont compris entre le point de coupe T1, précédemment défini, et une température T2 supérieure à 3000C, de manière encore plus préférée supérieure à 35O0C et inférieure à 4100C ou mieux à 370°C.
- au moins une fraction dite lourde (conduite 12) comportant les composés ayant des points d'ébullition supérieurs au point de coupe T2 précédemment défini.
Étape (d)
Une partie au moins de ladite fraction intermédiaire est alors introduite (conduite 11 ), ainsi qu'éventuellement un flux d'hydrogène, (conduite 13) dans la zone (14) contenant un catalyseur d'hydroisomérisation.
Les conditions opératoires dans lesquelles est effectuée cette étape (d) sont :
La pression est maintenue entre 2 et 150 bar et de préférence entre 5 et 100 bar et avantageusement de 10 à 90 bar, la vitesse spatiale est comprise entre 0,1 h"1 et 10 h"1 et de préférence entre 0,2 et 7 h"1 est avantageusement entre 0,5 et 5,0 h"1. Le débit d'hydrogène est ajusté pour obtenir un rapport de 100 à 2000 Normaux litres d'hydrogène par litre de charge et préférentiellement entre 150 et 1500 litres d'hydrogène par litre de charge La température utilisée dans cette étape est comprise entre 200 et 4500C et préférentiellement de 25O0C à 4500C avantageusement de 300 à 45O0C, et encore plus avantageusement supérieure à 320°C ou par exemple entre 320 et 4200C. 5
L'étape (d) d'hydroisomérisation est avantageusement conduite dans des conditions telles que la conversion par passe en produits à points d'ébullition supérieurs ou égaux à 1500C en des produits ayant des points d'ébullition inférieurs à 1500C est la plus faible possible, de préférence inférieure à 50%, de manière encore plus préférée inférieure à 30%, et de 0 manière très préférée inférieure à 15% en poids, et permet d'obtenir des distillats moyens (gazole et kérosène) ayant des propriétés à froid (point d'écoulement et de congélation) suffisamment bonnes pour satisfaire aux spécifications en vigueur pour ce type de carburant. 5 Ainsi dans cette étape (d), on cherche à favoriser l'hydroisomérisation plutôt que l'hydrocraquage. Les catalyseurs utilisés sont de type bifonctionnels, c'est-à-dire qu'ils possèdent une fonction hydro/déshydrogénante et une fonction hydroisomérisante. La fonction hydro/déshydrogénante est généralement fournie soit par des métaux nobles (Pt et/ou Pd) actifs sous leur forme réduite soit par des métaux non nobles du groupe Vl 0 (particulièrement le molybdène et le tugnstène) en combinaison avec des métaux non nobles du groupe VIlI (particulièrement le nickel et le cobalt), utilisés de préférence sous leur forme sulfurée. La fonction hydroisomérisante est assurée par des solides acides, de type zéolithes, alumines halogénées, agiles à pilier, hétéropolyacides ou zircone sulfatée. Un liant de type alumine peut également être utilisé durant l'étape de mise en forme du catalyseur.
25 La fonction métallique peut être introduite sur le catalyseur par toute méthode connue de l'homme du métier, comme par exemple le comalaxage, l'imprégnation à sec, l'imprégnation par échange.
Dans le cas où le catalyseur d'hydroisomérisation comprend au moins un métal noble du 30 groupe VIII1 la teneur en métal noble du premier catalyseur d'hydroisomérisation utilisé dans l'étape b) du procédé selon l'invention, est avantageusement comprise entre 0,01 et 5% en poids par rapport au catalyseur fini, de manière préférée entre 0,1 et 4% en poids et de manière très préférée entre 0,2 et 2% en poids.
Dans le cas où le catalyseur d'hydroisomérisation comprend au moins un métal du groupe Vl
35. en combinaison avec au moins un métal non noble du groupe VIlI, la teneur en métal du groupe Vl du catalyseur d'hydroisomérisation, est avantageusement comprise, en équivalent oxyde, entre 5 et 40 % en poids par rapport au catalyseur fini, de manière préférée entre 10 et 35 % en poids et de manière très préférée entre 15 et 30 % en poids et la teneur en métal du groupe VIII dudit catalyseur est avantageusement comprise, en équivalent oxyde, entre 0,5 et 10 % en poids par rapport au catalyseur fini, de manière préférée entre 1 et 8 % en poids et de manière très préférée entre 1 ,5 et 6% en poids.
La fonction hydro/déshydrogénante métallique peut avantageusement être introduite sur ledit catalyseur par toute méthode connue de l'homme du métier, comme par exemple le comalaxage, l'imprégnation à sec, l'imprégnation par échange.
Conformément à l'étape d) d'hydroisomérisation du procédé selon l'invention, le catalyseur d'hydroisomérisation comprend au moins un tamis moléculaire, de préférence au moins un tamis moléculaire zéolithique et de manière plus préférée, au moins un tamis moléculaire zéolithique 10 MR monodimensionnel en tant que fonction hydroisomérisante.
Les tamis moléculaires zéolithiques sont définies dans la classification "Atlas of Zeolite Structure Types", W. M Meier, D. H. Oison and Ch. Baerlocher, 5th revised édition, 2001, Elsevier auquel se réfère également la présente demande. Les zéolithes y sont classées selon la taille de leurs ouvertures de pores ou canaux. Les tamis moléculaires zéolithiques 10 MR monodimensionnel présentent des pores ou canaux dont l'ouverture est définie par un anneau à 10 atomes d'oxygène (ouverture à 10MR). Les canaux du tamis moléculaire zéolithique ayant une ouverture à 10 MR sont avantageusement des canaux monodimensionnels non interconnectés qui débouchent directement sur l'extérieur de ladite zéolithe. Les tamis moléculaires zéolithiques 10 MR monodimensionnels présents dans ledit catalyseur d'hydroisomérisation comprennent avantageusement du silicium et au moins un élément T choisi dans le groupe formé par l'aluminium, le fer, le gallium, le phosphore et le bore, de préférence l'aluminium. Les rapports Si/Ai des zéolithes décrites ci-dessus sont avantageusement ceux obtenus à la synthèse ou bien obtenus après des traitements de désalumination post-synthèse bien connus de l'homme de l'art, tels que et à titre non exhaustif les traitements hydrothermiques suivis ou non d'attaques acides ou bien encore les attaques acides directes par des solutions d'acides minéraux ou organiques. Elles sont, de préférence, pratiquement totalement, sous forme acide, c'est-à-dire que le rapport atomique entre le cation de compensation monovalent (par exemple le sodium) et l'élément T inséré dans le réseau cristallin du solide est avantageusement inférieur à 0,1, de préférence inférieur à 0,05 et de manière très préférée inférieur à 0,01. Ainsi, les zéolithes entrant dans la composition dudit catalyseur sélectif d'hydroisomérisation sont avantageusement calcinées et échangées par au moins un traitement par une solution d'au moins un sel d'ammonium de manière à obtenir la forme ammonium des zéolithes qui une fois calcinée conduisent à la forme acide desdites zéolithes.
Ledit tamis moléculaire zéolithique 10MR monodimensionnel dudit catalyseur d'hydroisomérisation est avantageusement choisi parmi les tamis moléculaires zéolithiques de type structural TON (choisis parmi la ZSM-22 et la NU-10, pris seul ou en mélange), FER (choisis parmi la ZSM-35 et la ferrierite, pris seul ou en mélange), EUO (choisis parmi la EU- 1 et la ZSM-50, pris seul ou en mélange), la SAPO-11 ou les tamis moléculaires zéolithique ZBM-30 ou ZSM 48, pris seul ou en mélange. De préférence, ledit tamis moléculaire zéolithique 10MR monodimensionnel est choisi parmi les tamis moléculaires zéolithiques ZBM-30, NU-10 et ZSM-22, pris seul ou en mélange. De manière très préférée, ledit tamis moléculaire zéolithique 10MR monodimensionnel est la ZBM-30 synthétisée avec le structurant organique triéthylènetétramine. En effet, l'utilisation de ladite ZBM 30 produit de bien meilleurs résultats en terme de rendement et d'activité que les autres zéolithes et notamment que la ZSM 48.
La teneur en tamis moléculaire zéolithique 10MR monodimensionnel est avantageusement comprise entre 5 et 95% poids, de préférence entre 10 et 90% poids, de manière plus préférée entre 15 et 85% poids et de manière très préférée entre 20 et 80% poids par rapport au catalyseur fini. Les catalyseurs obtenus sont mis en forme sous la forme de grains de différentes formes et dimensions. Ils sont utilisés en général sous la forme d'extrudés cylindriques ou polylobés tels que bilobés, trilobés, polylobés de forme droite ou torsadée, mais peuvent éventuellement être fabriqués et employés sous la forme de poudres concassées, de tablettes, d'anneaux, de billes, de roues. La mise en forme peut être réalisée avec d'autres matrices que l'alumine, telles que par exemple la magnésie, les silice-alumines amorphes, les argiles naturelles (kaolin, bentonite, sepiolite, attapulgite), la silice, l'oxyde de titane, l'oxyde de bore, la zircone, les phosphates d'aluminium, les phosphates de titane, les phosphates de zirconium, le charbon et leurs mélanges. On préfère utiliser des matrices contenant de l'alumine, sous toutes ses formes connues de l'Homme du métier, et de manière encore plus préférée les alumines, par exemple l'alumine gamma. D'autres techniques que l'extrusion, telles que le pastillage ou la dragéification, peuvent être utilisées.
Avant utilisation dans la réaction, le métal contenu dans le catalyseur doit être réduit. Une des méthodes préférées pour conduire la réduction du métal est le traitement sous hydrogène à une température comprise entre 15O0C et 6500C et une pression totale comprise entre 1 et 250 bar. Par exemple, une réduction consiste en un palier à 1500C de deux heures puis une montée en température jusqu'à 4500C à la vitesse de 1°C/min puis un palier de deux heures à 45O0C ; durant toute cette étape de réduction, le débit d'hydrogène est de 1000 normaux litres hydrogène / litre catalyseur et la pression totale maintenue constante à 1 bar. Notons également que toute méthode de réduction ex-situ est convenable.
Étape (e)
Une partie au moins de ladite fraction lourde est introduite via la ligne (12) dans une zone (15) où elle est mise, en présence d'hydrogène (25), au contact d'un catalyseur mis en oeuvre dans le procédé selon la présente invention et dans les conditions opératoires du procédé de la présente invention afin de produire une coupe distillât moyen (kérosène + gazole) présentant de bonnes propriétés à froid.
Le catalyseur utilisé dans la zone (15) de l'étape (e) pour réaliser les réactions d'hydrocraquage et d'hydroisomérisation de la fraction lourde, définie selon l'invention, est du même type que celui présent dans le réacteur (14), c'est-à-dire un catalyseur bifonctionnel tel que défini ci-dessus dans la première partie de la demande de brevet. Il est à noter que les catalyseurs mis en oeuvre dans les réacteurs (14) et (15) peuvent être strictement identiques ou différents (par exemple, en faisant varier la proportion de la zéolithe dans le catalyseur, la nature du liant ou bien la quantité et nature de la phase hydrogénante).
Durant cette étape (e) la fraction entrant dans le réacteur subit au contact du catalyseur et en présence d'hydrogène essentiellement des réactions d'hydrocraquage qui, accompagnées de réactions d'hydroisomérisation des n-paraffines, vont permettre d'améliorer la qualité des produits formés et plus particulièrement les propriétés à froid du kérosène et du gazole, et également d'obtenir de très bons rendements en distillais. La conversion en produits ayant des points d'ébullition supérieurs ou égal à 370°C en produits à points d'ébullition inférieurs à 3700C est supérieure à 80% poids, souvent d'au moins 85% et de préférence supérieure ou égal à 88%.
Etape ffî
Les effluents en sortie des réacteurs (14) et (15) sont envoyés par les conduites (16) et (17) dans un train de distillation, qui intègre une distillation atmosphérique et éventuellement une distillation sous vide, et qui a pour but de séparer d'une part les produits légers inévitablement formés lors des étapes (d) et (e) par exemple les gaz (C1-C4) (conduite 18) et une coupe essence (conduite 19), et de distiller au moins une coupe gazole (conduite 21) et kérosène (conduite 20). Les fractions gazole et kérosène peuvent être recyclées (conduite 23) en partie, conjointement ou de façon séparée, en tête du réacteur (14) d'hydroisomérisation /hydrocraquage étape (d).
Ii est également distillé une fraction (conduite 22) bouillant au-dessus du gazole, c'est à dire dont les composés qui la constituent ont des points d'ébullition supérieurs à ceux des distillats moyens (kérosène + gazole). Cette fraction, dite fraction résiduelle, présente généralement un point d'ébullition initial d'au moins 3500C, de préférence supérieure à 370°C. Cette fraction est avantageusement recyclée en tête du réacteur (15) via la conduite (22) d'hydroisomérisation /hydrocraquage de la fraction lourde (étape e).
Il peut être également avantageux de recycler une partie du kérosène et/ou du gazole dans l'étape (d), l'étape (e) ou les deux. De façon préférée, l'une au moins des fractions kérosène et/ou gazole est recyclée en partie dans l'étape (d) (zone 14). On a pu constater qu'il est avantageux de recycler une partie du kérosène pour améliorer ses propriétés à froid.
Avantageusement et dans le même temps, la fraction non hydrocraquée est recyclée en partie dans l'étape (e) (zone 15).
Il va sans dire que les coupes gazole et kérosène sont de préférence récupérées séparément, mais les points de coupe sont ajustés par l'exploitant en fonction de ses besoins.
Sur la figure 1, on a représenté une colonne (24) de distillation, mais deux colonnes peuvent être utilisées pour traiter séparément les coupes issues de zones (14) et (15). Sur la figure 1, on a représenté seulement le recyclage du kérosène sur le catalyseur du réacteur (14). Il va sans dire qu'on peut aussi bien recycler une partie du gazole (séparément ou avec le kérosène) et de préférence sur le même catalyseur que le kérosène.
Mode de réalisation 2
Un autre mode de réalisation de l'invention comprend les étapes suivantes : a) séparation d'au moins une fraction légère de la charge de façon à obtenir une seule fraction dite lourde à point d'ébullition initial compris entre 120-2000C, b) éventuel hydrotraitement de ladite fraction lourde, éventuellement suivi d'une étape c) d'enlèvement d'au moins une partie de l'eau et éventuellement CO, CO2, NH3, H2S, d) passage dans le procédé selon l'invention d'une partie au moins de ladite fraction éventuellement hydrotraitée, la conversion sur le catalyseur selon l'invention ci-dessus décrit des produits à points d'ébullition supérieurs ou égaux à 3700C en produits à points d'ébullition inférieures à 37O0C est supérieure à 40% pds, e) distillation de la fraction hydrocraquée/hydroisomérisée pour obtenir des distillats moyens, et recyclage dans l'étape d) de la fraction résiduelle bouillant au-dessus desdits distillats moyens. La description de ce mode de réalisation sera faite en se référant à la figure 2 sans que la figure 2 ne limite l'interprétation.
Etape (a)
L'effluent issu de l'unité de synthèse Fischer-Tropsch arrivant par la conduite 1 est fractionné (par exemple par distillation) dans un moyen de séparation (2) en au moins deux fractions : au moins une fraction légère et une fraction lourde à point d'ébullition initial égal à une température comprise entre 120 et 2000C et de préférence entre 130 et 18O0C et de manière encore plus préférée à une température d'environ 15O0C, en d'autres termes le point de coupe est situé entre 120 et 2000C. La fraction légère de la figure 1 sort par la conduite (3) et la fraction lourde par la conduite (4). Ce fractionnement peut être réalisé par des méthodes bien connues de l'homme du métier telles que le flash, la distillation etc.. A titre d'exemple non limitatif, l'effluent issu de l'unité de synthèse Fischer-Tropsch sera soumis à un flash, une décantation pour éliminer l'eau et une distillation afin d'obtenir au moins les deux fractions décrites ci-dessus.
La fraction légère n'est pas traitée selon le procédé de l'invention mais peut par exemple constituer une bonne charge pour la pétrochimie et plus particulièrement pour une unité (5) de vapocraquage. La fraction lourde précédemment décrite est traitée selon le procédé de l'invention.
Etape (b)
Éventuellement, cette fraction est admise en présence d'hydrogène (conduite 6) dans une zone (7) contenant un catalyseur d'hydrotraitement qui a pour objectif de réduire la teneur en composés oléfiniques et insaturés ainsi que d'éventuellement décomposer les composés oxygénés (principalement des alcools) présents dans la fraction lourde décrite ci-dessus, ainsi que d'éventuellement décomposer d'éventuelles traces de composés soufrés et azotés présentes dans la fraction lourde. Cette étape d'hydrotraitement est non convertissante, c'est à dire que la conversion de la fraction 3700C+ en fraction 3700C" est de préférence inférieure à 20% en poids, de manière préférée inférieure à 10% en poids et de manière très préférée inférieure à 5% en poids.
Les catalyseurs utilisés dans cette étape (b) sont des catalyseurs d'hydrotraitement décrits dans l'étape b) du mode de réalisation 1.
Dans le réacteur d'hydrotraitement (7), la charge est mise en contact en présence d'hydrogène et du catalyseur à des températures et des pressions opératoires permettant de réaliser l'hydrogénation des oléfines présents dans la charge. De manière préférée, le catalyseur et les conditions opératoires choisies permettront également d'effectuer l'hydrodeoxygénation c'est à dire la décomposition des composés oxygénés (principalement des alcools) et/ou l'hydrodésulfuration ou l'hydrodéazotation des traces éventuelles de composés soufrés et/ou azotés présents dans la charge. Les températures réactionnelles utilisées dans le réacteur d'hydrotraitement sont comprises entre 100 et 400°C, de préférence entre 150 et 350°C, de façon encore plus préférée entre 150 et 3000C. La gamme de pression totale utilisée varie de 5 à 150 bar, de préférence entre 10 et 100 bar et de manière encore plus préférée entre 10 et 90 bar. L'hydrogène qui alimente le réacteur d'hydrotraitement est introduit à un débit tel que le rapport volumique hydrogène/hydrocarbures soit compris entre 50 à 3000 normaux litres par litre, de préférence entre 100 et 2000 normaux litres par litre et de façon encore plus préférée entre 150 et 1500 normaux litres par litre. Le débit de charge est tel que la vitesse volumique horaire est comprises entre 0,1 et 10 h"1, de préférence entre 0,2 et 5 h"1 et de manière encore plus préférée entre 0,2 et 3 h"1. Dans ces conditions, la teneur en molécules insaturées et oxygénées est réduite à moins de 0,5% en poids et à environ moins de 0,1% en poids en général. L'étape d'hydrotraitement est conduite dans des conditions telles que la conversion en produits ayant des points d'ébullition supérieurs ou égaux à 3700C en des produits ayant des points d'ébullition inférieurs à 3700C est limitée à 20% en pds, de préférence est inférieure à 10% en poids et de façon encore plus préférée est inférieure à 5% en poids.
Étape (c)
L'effluent (conduite 8) issu du réacteur (7) d'hydrotraitement est éventuellement introduit dans une zone (9) d'enlèvement d'eau qui a pour but d'éliminer au moins en partie l'eau produite lors des réactions d'hydrotraitement. Cette élimination d'eau peut s'effectuer avec ou sans élimination de la fraction gazeuse C4 moins qui est généralement produite lors de l'étape d'hydrotraitement. On entend par élimination de l'eau, l'élimination de l'eau produite par les réactions d'hydrodeoxygénation des oxygénés mais on peut aussi y inclure l'élimination au moins en partie de l'eau de saturation des hydrocarbures. L'élimination de l'eau peut être réalisée par toutes les méthodes et techniques connues de l'homme du métier, par exemple par séchage, passage sur un dessicant, flash, décantation...
Etape (d) La fraction lourde (éventuellement hydrotraitée) ainsi séchée est alors introduite (conduite 10) ainsi qu'éventuellement un flux d'hydrogène (conduite 11), dans la zone (12) contenant le catalyseur mis en oeuvre dans le procédé selon l'invention et dans les conditions opératoires du procédé de la présente invention. Une autre éventualité du procédé aussi selon l'invention consiste à envoyer la totalité de l'effluent sortant du réacteur d'hydrotraitement (sans séchage) dans le réacteur contenant le catalyseur selon l'invention et de préférence en même temps qu'un flux d'hydrogène.
Avant utilisation dans la réaction, si la phase hydrogénante du catalyseur est constituée d'au moins un métal noble, le métal contenu dans le catalyseur doit être réduit. Une des méthodes préférées pour conduire la réduction du métal est le traitement sous hydrogène à une température comprise entre 150°C et 6500C et une pression totale comprise entre 1 et 250 bar. Par exemple, une réduction consiste en un palier à 1500C de 2 heures puis une montée en température jusqu'à 4500C à la vitesse de 1 °C/min puis un palier de 2 heures à 4500C ; durant toute cette étape de réduction, le débit d'hydrogène est de 1000 Normaux litres hydrogène/ litre catalyseur. Notons également que toute méthode de réduction ex-situ est convenable.
Les conditions opératoires dans lesquelles est effectuée cette étape (d) sont les conditions opératoires décrites conformément au procédé selon l'invention.
L'étape d'hydroisomérisation et d'hydrocraquage est conduite dans des conditions telles que la conversion par passe en produits à points d'ébullition supérieurs ou égaux à 3700C en des produits ayant des points d'ébullition inférieurs à 3700C est supérieure à 40% poids, et de façon encore plus préférée d'au moins 50%, de préférence supérieure à 60%, de manière à obtenir des distillats moyens (gazole et kérosène) ayant des propriétés à froid suffisamment bonnes (point d'écoulement, point de congélation) pour satisfaire aux spécifications en vigueur pour ce type de carburant.
Étape (e^
L'effluent (fraction dite hydrocraquée / hydroisomérisée) en sortie du réacteur (12), étape (d), est envoyé dans un train de distillation (13), qui intègre une distillation atmosphérique et éventuellement une distillation sous vide, qui a pour but de séparer les produits de conversion de point d'ébullition inférieur à 340°C et de préférence inférieur à 370°C et incluant notamment ceux formés lors de l'étape (d) dans le réacteur (12), et de séparer la fraction résiduelle dont le point initial d'ébullition est généralement supérieur à au moins 3400C et de préférence supérieur ou égal à au moins 37O0C. Parmi les produits de conversion et hydroisomérisés, il est séparé outre les gaz légers CrC4 (conduite 14) au moins une fraction essence (conduite 15), et au moins une fraction distillats moyens kérosène (conduite 16) et gazole (conduite 17). La fraction résiduelle dont le point initial d'ébullition est généralement supérieur à au moins 34O0C et de préférence supérieur ou égal à au moins 370°C est recyclée (conduite 18) en tête du réacteur (12) d'hydroisomérisation et d'hydrocraquage.
Il peut être également avantageux de recycler (conduite 19) dans l'étape (d) (réacteur 12) une partie du kérosène et/ou du gazole ainsi obtenus. Mode de réalisation 3
Un autre mode de réalisation de l'invention comprend les étapes suivantes : a) Fractionnement (étape a) de la charge en au moins 3 fractions : - au moins une fraction intermédiaire ayant un point d'ébullition initial T1 compris entre
120 et 2000C1 et un point d'ébullition final T2 supérieur à 3000C et inférieur à 4100C,
- au moins une fraction légère bouillant au-dessous de la fraction intermédiaire,
- au moins une fraction lourde bouillant au-dessus de la fraction intermédiaire. b) Hydrotraitement (étape b) d'au moins une partie de ladite fraction intermédiaire, puis passage (étape d) dans un procédé de traitement d'au moins une partie de la fraction hydrotraitée sur un catalyseur hydroisomérisant c) élimination d'au moins une partie de l'eau produite lors des réactions d'hydrotraitement et éventuellement CO, CO2, NH3, H2S, f) Passage (étape f) dans le procédé selon l'invention d'une partie au moins de ladite fraction lourde avec une conversion des produits 3700C+ en produits 370cC moins supérieure à 40% poids. e) et g) Distillation (étapes e et g) d'au moins une partie des fractions hydrocraquées / hydroisomérisées pour obtenir des distillats moyens.
La description de ce mode de réalisation sera faite en se référant à la figure 3 sans que la figure 3 limite l'interprétation.
Etape (a)
L'effluent issu de l'unité de synthèse Fischer-Tropsch comporte majoritairement des paraffines, mais contient aussi des oléfines et des composés oxygénés tels que des alcools.
Il contient aussi de l'eau, du CO2, du CO et de l'hydrogène non réagi ainsi que des composés hydrocarbures légers Ci à C4 sous forme de gaz, voire éventuellement des impuretés soufrées ou azotées. L'effluent issu de l'unité de synthèse Fischer-Tropsch arrivant par la conduite (1) est fractionné dans un zone de fractionnement (2) en au moins trois fractions : - au moins une fraction légère (sortant par la conduite 3) dont les composés constituants ont des points d'ébullition inférieurs à une température T1 comprise entre 120 et 2000C, et de préférence entre 130 et 18O0C et de manière encore plus préférée à une température d'environ 1500C. En d'autres termes le point de coupe est situé entre 120 et 2000C.
au moins une fraction intermédiaire (conduite 4) comportant les composés dont les points d'ébullition sont compris entre le point de coupe T1 , précédemment défini, et une température T2 supérieure à 3000C, de manière encore plus préférée supérieure à 3500C et inférieure à 410°C ou mieux à 370°C.
au moins une fraction dite lourde (conduite 5) comportant les composés ayant des points d'ébullition supérieurs au point de coupe T2 précédemment défini.
Le fait de couper à 37O0C permet de séparer au moins 90% pds des oxygénés et des oléfines, et le plus souvent au moins 95% pds. La coupe lourde à traiter est alors purifiée et une élimination des hétéroatomes ou insaturés par hydrotraitement n'est alors pas nécessaire.
Le fractionnement est obtenu ici par distillation, mais il peut être réalisé en une ou plusieurs étapes et par d'autres moyens que la distillation.
Ce fractionnement peut être réalisé par des méthodes bien connues de l'homme du métier telles que le flash, la distillation etc.. A titre d'exemple non limitatif, l'effluent issu de l'unité de synthèse Fischer-Tropsch sera soumis à un flash, une décantation pour éliminer l'eau et une distillation afin d'obtenir au moins les deux fractions décrites ci-dessus.
La fraction légère n'est pas traitée selon le procédé de l'invention mais peut par exemple constituer une bonne charge pour une unité pétrochimique et plus particulièrement pour un vapocraqueur (installation 6 de vapocraquage).
Les fractions plus lourdes précédemment décrites sont traitées selon le procédé de l'invention. Étape (b)
Ladite fraction intermédiaire est admise via la ligne (4), en présence d'hydrogène amené par la tubulure (7), dans une zone d'hydrotraitement (8) contenant un catalyseur d'hydrotraitement, qui a pour objectif de réduire la teneur en composés oléfiniques et insaturés ainsi que d'éventuellement décomposer les composés oxygénés (principalement des alcools) présents dans la fraction lourde décrite ci-dessus, ainsi que d'éventuellement décomposer d'éventuelles traces de composés soufrés et azotés présentes dans la fraction lourde. Cette étape d'hydrotraitement est non convertissante, c'est à dire que la conversion de Ia fraction 1500C+ en fraction 1500C" est de préférence inférieure à 20% en poids, de manière préférée inférieure à 10% en poids et de manière très préférée inférieure à 5% en poids.
Les catalyseurs utilisés dans cette étape (b) sont des catalyseurs d'hydrotraitement décrit dans l'étape b) du mode de réalisation 1 ,
Dans le réacteur d'hydrotraitement (8), la charge est mise en contact en présence d'hydrogène et du catalyseur à des températures et des pressions opératoires permettant de réaliser l'hydrogénation des oléfines présents dans la charge. De manière préférée, le catalyseur et les conditions opératoires choisies permettront également d'effectuer l'hydrodeoxygénation c'est à dire la décomposition des composés oxygénés (principalement des alcools) et/ou l'hydrodésulfuration ou l'hydrodéazotation des traces éventuelles de composés soufrés et/ou azotés présents dans la charge. Les températures réactionnelles utilisées dans le réacteur d'hydrotraitement sont comprises entre 100 et 4000C, de préférence entre 150 et 3500C, de façon encore plus préférée entre 150 et 300°C. La gamme de pression totale utilisée varie de 5 à 150 bar, de préférence entre 10 et 100 bar et de manière encore plus préférée entre 10 et 90 bar. L'hydrogène qui alimente le réacteur d'hydrotraitement est introduit à un débit tel que le rapport volumique hydrogène/hydrocarbures soit compris entre 50 à 3000 normaux litres par litre, de préférence entre 100 et 2000 normaux litres par litre et de façon encore plus préférée entre 150 et 1500 normaux litres par litre. Le débit de charge est tel que la vitesse volumique horaire est comprises entre 0,1 et 10 h"1, de préférence entre 0,2 et 5 h"1 et de manière encore plus préférée entre 0,2 et 3 h'1. Dans ces conditions, la teneur en molécules insaturées et oxygénées est réduite à moins de 0,5% en poids et à environ moins de 0,1% en poids en général. L'étape d'hydrotraitement est conduite dans des conditions telles que la conversion en produits ayant des points d'ébullition supérieurs ou égaux à 150°C en des produits ayant des points d'ébullition inférieurs à 1500C est limitée à 20% en pds, de préférence est inférieure à 10% en poids et de façon encore plus préférée est inférieure à 5% en poids.
Étape (c)
L'effluent issu du réacteur d'hydrotraitement est éventuellement introduit dans une zone (9) d'enlèvement d'eau qui a pour but d'éliminer au moins une partie de l'eau produite lors des réactions d'hydrotraitement. Cette élimination d'eau peut s'effectuer avec ou sans élimination de la fraction gazeuse C4 moins qui est généralement produite lors de l'étape d'hydrotraitement. On entend par élimination de l'eau, l'élimination de l'eau produite par les réactions d'hydrodeoxygénation des oxygénés, mais on peut aussi y inclure l'élimination au moins en partie de l'eau de saturation des hydrocarbures. L'élimination de l'eau peut être réalisée par toutes les méthodes et techniques connues de l'homme du métier, par exemple par séchage, passage sur un dessicant, flash, décantation....
Étape f d)
La fraction ainsi éventuellement séchée est alors introduite (conduite 10), ainsi qu'éventuellement un flux d'hydrogène, (conduite 11) dans la zone (12) contenant un catalyseur hydroisomérisant. Une autre éventualité du procédé aussi selon l'invention consiste à envoyer la totalité de l'effluent sortant du réacteur d'hydrotraitement (sans séchage) dans le réacteur contenant le catalyseur hydroisomérisant et de préférence en même temps qu'un flux d'hydrogène.
Les catalyseurs hydroisomérisants sont tels que décrits dans l'étape d) du mode de réalisation 1). Les conditions opératoires dans lesquelles est effectuée cette étape (d) sont :
La pression est maintenue entre 2 et 150 bar et de préférence entre 5 et 100 bar et avantageusement de 10 à 90 bar, la vitesse spatiale est comprise entre 0,1 h"1 et 10 h"1 et de préférence entre 0,2 et 7h"1 est avantageusement entre 0,5 et 5,Oh"1. Le débit d'hydrogène est ajusté pour obtenir un rapport de 100 à 2000 Normaux litres d'hydrogène par litre de charge et préférentiellement entre 150 et 1500 litres d'hydrogène par litre de charge.
La température utilisée dans cette étape est comprise entre 200 et 45O0C et préférentiellement de 25O0C à 4500C avantageusement de 300 à 4500C, et encore plus avantageusement supérieure à 320°C ou par exemple entre 320 et 4200C.
L'étape (d) d'hydroisomérisation et d'hydrocraquage est avantageusement conduite dans des conditions telles que la conversion par passe en produits à points d'ébullition supérieurs ou égaux à 1500C en des produits ayant des points d'ébullition inférieurs à 150°C est la plus faible possible, de préférence inférieure à 50%, de manière encore plus préférée inférieure à
30%, et permet d'obtenir des distillats moyens (gazole et kérosène) ayant des propriétés à froid (point d'écoulement et de congélation) suffisamment bonnes pour satisfaire aux spécifications en vigueur pour ce type de carburant.
Ainsi dans cette étape (d), on cherche à favoriser l'hydroisomérisation plutôt que l'hydrocraquage.
Étape ffî
Ladite fraction lourde dont les points d'ébullition sont supérieurs au point de coupe T2, précédemment défini, est introduite via la ligne (5) dans une zone (13) où elle est mise, en présence d'hydrogène (26), au contact d'un catalyseur selon l'invention et dans les conditions opératoires du procédé de la présente invention afin de produire une coupe distillats moyens (kérosène + gazole) présentant de bonnes propriétés à froid.
Le catalyseur utilisé dans la zone (13) de l'étape (f) pour réaliser les réactions d'hydrocraquage et d'hydroisomérisation de la fraction lourde, défini selon l'invention, est du même type que celui présent dans le réacteur (12), c'est-à-dire tel que défini ci-dessus dans la première partie de la demande de brevet. Il est à noter que les catalyseurs mis en œuvre dans les réacteurs (12) et (13) peuvent être strictement identiques ou différents (par exemple, en jouant sur la proportion de la zéolithe dans le catalyseur, la nature du liant ou bien la quantité et nature de la phase hydrogénante ainsi que la nature du solide acide).
Durant cette étape (f) la fraction entrant dans le réacteur subit au contact du catalyseur et en présence d'hydrogène essentiellement des réactions d'hydrocraquage qui, accompagnés de réactions d'hydroisomérisation des n-paraffines, vont permettre d'améliorer la qualité des produits formés et plus particulièrement les propriétés à froid du kérosène et du gazole, et également d'obtenir de très bons rendements en distillats moyens. La conversion en produits ayant des points d'ébullition supérieurs ou égal à 3700C en produits à points d'ébullition inférieurs à 37O0C est supérieure à 40% poids, souvent d'au moins 50% et de préférence supérieure ou égal à 60%.
Dans cette étape (f), on cherchera donc à favoriser l'hydrocraquage, mais de préférence en limitant le craquage du gazole.
Le choix des conditions opératoires permet d'ajuster finement la qualité des produits (diesel, kérosène) et en particulier les propriétés à froid du kérosène, tout en conservant un bon rendement en diesel et/ou kérosène. Le procédé selon l'invention permet de façon tout à fait intéressante de produire à la fois du kérosène et du gazole et qui sont de bonne qualité tout en minimisant la production de coupes plus légères non désirées (naphta, GPL).
Etape (α^
L'effluent en sortie du réacteur (12), étape (d) est envoyé dans un train de distillation, qui intègre une distillation atmosphérique et éventuellement une distillation sous vide, et qui a pour but de séparer d'une part les produits légers inévitablement formés lors de l'étape (d) par exemple les gaz (CrC4) (conduite 14) et une coupe essence (conduite 19), et de distiller au moins une coupe gazole (conduite 17) et kérosène (conduite 16). Les fractions gazole et kérosène peuvent être recyclées (conduite 25) en partie, conjointement ou de façon séparée, en tête du réacteur (12) d'hydroisomérisation de l'étape (d).
L'effluent en sortie de l'étape (f), est soumis à une étape de séparation dans un train de distillation de manière à séparer d'une part les produits légers inévitablement formés lors de l'étape (f) par exemple les gaz (C1-C4) (conduite 18) et une coupe essence (conduite 19), à distiller une coupe gazole (conduite 21 ) et kérosène (conduite 20) et à distiller la fraction (conduite 22) bouillant au-dessus de gazole, c'est à dire dont les composés qui la constituent ont des points d'ébullition supérieurs à ceux des distillats moyens (kérosène + gazole). Cette fraction, dite fraction résiduelle, présente généralement un point d'ébullition initial d'au moins 3500C, de préférence supérieure à 37O0C. Cette fraction non hydrocraquée est avantageusement recyclée en tête du réacteur (13) d'hydroisomérisation /hydrocraquage étape (f).
Il peut être également avantageux de recycler une partie du kérosène et/ou du gazole dans l'étape (d), l'étape (f) ou les deux. De façon préférée, l'une au moins des fractions kérosène et/ou gazole est recyclée en partie (conduite 25) dans l'étape (d) (zone 12). On a pu constater qu'il est avantageux de recycler une partie du kérosène pour améliorer ses propriétés à froid.
Avantageusement et dans le même temps, la fraction non hydrocraquée est recyclée en partie dans l'étape (f) (zone 13).
II va sans dire que les coupes gazole et kérosène sont de préférence récupérées séparément, mais les points de coupe sont ajustés par l'exploitant en fonction de ses besoins.
Sur la figure 3, on a représenté 2 colonnes (23) et (24) de distillation, mais une seule peut être utilisée pour traiter l'ensemble des coupes issues de zones (12) et (13).
Sur la figure 3, on a représenté seulement le recyclage du kérosène sur le catalyseur du réacteur (12). Il va sans dire qu'on peut aussi bien recycler une partie du gazole (séparément ou avec le kérosène) et de préférence sur le même catalyseur que le kérosène. On peut également recycler une partie du kérosène et/ou du gazole produits dans les lignes (20) (21 ).
Mode de réalisation 4 Un autre mode de réalisation de l'invention comprend les étapes suivantes :
a) éventuel fractionnement de la charge en au moins une fraction lourde à point d'ébullition initial compris entre 120 et 2000C, et au moins une fraction légère bouillant en-dessous de ladite fraction lourde, b) éventuel hydrotraitement d'une partie au moins de la charge ou de la fraction lourde, éventuellement suivi (étape c) d'élimination d'au moins une partie de l'eau, d) passage d'une partie au moins de l'effluent ou de la fraction éventuellement hydrotraité dans le procédé selon l'invention sur un premier catalyseur selon l'invention e) distillation de l'effluent hydroisomérisé / hydrocraqué pour obtenir des distillats moyens (kérosène, gasoil) et une fraction résiduelle bouillant au-dessus des distillats moyens, f) passage d'au moins une partie de ladite fraction lourde résiduelle et/ou d'une partie desdits distillats moyens dans le procédé selon l'invention sur un second catalyseur selon l'invention, et distillation de l'effluent résultant pour obtenir des distillats moyens .
La description de ce mode de réalisation sera faite en se référant aux figures 4 et 5, sans que ces figures limitent l'interprétation. Etape a)
Lorsque cette étape est mise en œuvre, Peffluent issu de l'unité de synthèse Fischer- Tropsch est fractionné (par exemple par distillation) en au moins deux fractions : au moins une fraction légère et au moins une fraction lourde à point d'ébullition initial égal à une température comprise entre 120 et 2000C et de préférence entre 130 et 1800C et de manière encore plus préférée à une température d'environ 15O0C, en d'autres termes le point de coupe est situé entre 120 et 2000C.
La fraction lourde présente généralement des teneurs en paraffines d'au moins 50% poids.
Ce fractionnement peut être réalisé par des méthodes bien connues de l'homme du métier telles que le flash, la distillation etc.. A titre d'exemple non limitatif, l'effluent issu de l'unité de synthèse Fischer-Tropsch sera soumis à un flash, une décantation pour éliminer l'eau et une distillation afin d'obtenir au moins les deux fractions décrites ci-dessus.
La fraction légère n'est pas traitée selon le procédé de l'invention mais peut par exemple constituer une bonne charge pour la pétrochimie et plus particulièrement pour une unité de vapocraquage. Au moins une fraction lourde précédemment décrite est traitée selon le procédé de l'invention.
Etape b)
Eventuellement, cette fraction ou une partie au moins de la charge initiale, est admise via la ligne (1) en présence d'hydrogène (amené par la conduite (2)) dans une zone (3) contenant un catalyseur d'hydrotraitement qui a pour objectif de réduire la teneur en composés oléfiniques et insaturés ainsi que d'éventuellement décomposer les composés oxygénés (principalement des alcools) présents dans la fraction lourde décrite ci-dessus, ainsi que d'éventuellement décomposer d'éventuelles traces de composés soufrés et azotés présentes dans la fraction lourde. Cette étape d'hydrotraitement est non convertissante, c'est à dire que la conversion de la fraction 3700C+ en fraction 3700C" est de préférence inférieure à 20% en poids, de manière préférée inférieure à 10% en poids et de manière très préférée inférieure à 5% en poids.
Les catalyseurs utilisés dans cette étape (b) sont décrit dans l'étape b) du mode de réalisation 1. Dans le réacteur d'hydrotraitement (3), la charge est mise en contact en présence d'hydrogène et du catalyseur à des températures et des pressions opératoires permettant de réaliser l'hydrogénation des oléfines présents dans la charge. De manière préférée, le catalyseur et les conditions opératoires choisies permettront également d'effectuer l'hydrodeoxygénation c'est à dire la décomposition des composés oxygénés (principalement des alcools) et/ou l'hydrodésulfuration ou l'hydrodéazotation des traces éventuelles de composés soufrés et/ou azotés présents dans la charge. Les températures réactionnelles utilisées dans le réacteur d'hydrotraitement sont comprises entre 100 et 400°C, de préférence entre 150 et 3500C, de façon encore plus préférée entre 150 et 3000C. La gamme de pression totale utilisée varie de 5 à 150 bar, de préférence entre 10 et 100 bar et de manière encore plus préférée entre 10 et 90 bar. L'hydrogène qui alimente le réacteur d'hydrotraitement est introduit à un débit tel que le rapport volumique hydrogène/hydrocarbures soit compris entre 50 à 3000 normaux litres par litre, de préférence entre 100 et 2000 normaux litres par litre et de façon encore plus préférée entre 150 et 1500 normaux litres par litre. Le débit de charge est tel que la vitesse volumique horaire est comprises entre 0,1 et 10 h"1, de préférence entre 0,2 et 5 h"1 et de manière encore plus préférée entre 0,2 et 3 h"1. Dans ces conditions, la teneur en molécules insaturées et oxygénées est réduite à moins de 0,5% en poids et à environ moins de 0,1% en poids en général. L'étape d'hydrotraitement est conduite dans des conditions telles que la conversion en produits ayant des points d'ébullition supérieurs ou égaux à 37O0C en des produits ayant des points d'ébullition inférieurs à 370°C est limitée à 20% en pds, de préférence est inférieure à 10% en poids et de façon encore plus préférée est inférieure à 5% en poids.
Étape c)
L'effluent (conduite 4) issu du réacteur (3) d'hydrotraitement est éventuellement introduit dans une zone (5) d'enlèvement d'eau qui a pour but d'éliminer au moins en partie l'eau produite lors des réactions d'hydrotraitement. Cette élimination d'eau peut s'effectuer avec ou sans élimination de la fraction gazeuse C4 moins qui est généralement produite lors de l'étape d'hydrotraitement. On entend par élimination de l'eau, l'élimination de l'eau produite par les réactions d'hydrodéoxygé nation des oxygénés mais on peut aussi y inclure l'élimination au moins en partie de l'eau de saturation des hydrocarbures. L'élimination de l'eau peut être réalisée par toutes les méthodes et techniques connues de l'homme du métier, par exemple par séchage, passage sur un dessicant, flash, décantation.... Etape d)
Une partie au moins et de préférence la totalité de Ia fraction hydrocarbonée (une partie au moins de la charge ou une partie au moins de la fraction lourde de l'étape a) ou une partie au moins de la fraction ou de la charge hydrotraitée et éventuellement séchée) est alors introduite (conduite 6) ainsi qu'éventuellement un flux d'hydrogène (conduite 7) dans la zone (8) contenant le catalyseur selon l'invention. Une autre éventualité du procédé aussi selon l'invention consiste à envoyer une partie ou la totalité de Peffluent sortant du réacteur d'hydrotraitement (sans séchage) dans le réacteur contenant le catalyseur selon l'invention et de préférence en même temps qu'un flux d'hydrogène.
Avant utilisation dans la réaction, si la phase hydrogénante du catalyseur est constituée d'au moins un métal noble, le métal contenu dans le catalyseur doit être réduit. Une des méthodes préférées pour conduire la réduction du métal est le traitement sous hydrogène à une température comprise entre 150°C et 6500C et une pression totale comprise entre 1 et 250 bar. Par exemple, une réduction consiste en un palier à 15O0C de 2 heures puis une montée en température jusqu'à 4500C à la vitesse de 1°C/min puis un palier de 2 heures à 450°C ; durant toute cette étape de. réduction, le débit d'hydrogène est de 1000 litres hydrogène/ litre catalyseur. Notons également que toutes méthode de réduction ex-situ est convenable.
Étape e)
L'effluent hydroisomérisé / hydrocraqué en sortie du réacteur (8), étape (d), est envoyé dans un train de distillation (9) qui intègre une distillation atmosphérique et éventuellement une distillation sous vide qui a pour but de séparer les produits de conversion de point d'ébullition inférieur à 3400C et de préférence inférieur à 3700C et incluant notamment ceux formés lors de l'étape (d) dans le réacteur (8), et de séparer la fraction résiduelle dont le point initial d'ébullition est généralement supérieur à au moins 34O0C et de préférence supérieur ou égal à au moins 37O0C. Parmi les produits de conversion et hydroisomérisés il est séparé, outre les gaz légers Ci-C4 (conduite 10) au moins une fraction essence (conduite 11), et au moins une fraction distillât moyen kérosène (conduite 12) et gazole (conduite 13).
Etape fl Le procédé selon l'invention utilise une seconde zone (16) contenant un catalyseur d'hydroisomérisation / hydrocraquage selon l'invention. Il passe sur ce catalyseur, en présence d'hydrogène (conduite 15) un effluent choisi parmi une partie du kérosène produit (conduite 12), une partie du gazole (conduite 13) et la fraction résiduelle et de préférence, la fraction résiduelle dont le point initial d'ébullition est généralement supérieur à au moins 3700C.
Durant cette étape la fraction entrant dans le réacteur (16) subit au contact du catalyseur et en présence d'hydrogène des réactions d'hydroisomérisation et/ou d'hydrocraquage qui vont permettre d'améliorer la qualité des produits formés et plus particulièrement les propriétés à froid du kérosène et du gazole, et d'obtenir des rendements en distillât amélioré par rapport à l'art antérieur.
Le choix des conditions opératoires permet d'ajuster finement la qualité des produits (distillats moyens) et en particulier les propriétés à froid.
Les conditions opératoires dans lesquelles est effectuée cette étape (f) sont les conditions opératoires conformément au procédé selon l'invention.
L'exploitant ajustera les conditions opératoires sur le premier et second catalyseur d'hydrocraquage/hydroisomérisation de façon à obtenir les qualités de produits et les rendements souhaités.
Ainsi, de façon générale, sur le premier catalyseur, la conversion par passe en produits à points d'ébullition supérieurs ou égaux à 150°C en des produits à points d'ébullition inférieurs à 150°C est inférieure à 50% poids, de préférence inférieure à 30% poids. Ces conditions permettent au particulier d'ajuster le rapport kérosène/gazole produit ainsi que les propriétés à froid des distillats moyens, et plus particulièrement du kérosène.
Egalement de façon générale, sur le second catalyseur, lorsque la fraction résiduelle est traitée, la conversion par passe en produits à points d'ébullition supérieurs ou égaux à 3700C en produits à points d'ébullition inférieurs à 37O0C, est supérieure à 40% poids, de préférence supérieure à 50% poids, ou mieux à 60% poids. Il peut même s'avérer avantageux d'avoir des conversions d'au moins 80% poids.
Lorsque une partie du kérosène et/ou du gazole est traitée sur le second catalyseur, la conversion par passe en produits à points d'ébullition supérieurs ou égaux à 1500C en des produits à points d'ébulϋtion inférieurs à 1500C est inférieure à 50% poids, de préférence inférieure à 30% poids.
De façon générale les conditions opérations appliquées dans les réacteurs (8) et (16) peuvent être différentes ou identiques. De façon préférée les conditions opératoires utilisées dans les 2 réacteurs d'hydroisomérisation / hydrocraquage sont choisies différentes en termes de pression opératoire, température, temps de contact (vvh) et rapport H2/charge. Ce mode de réalisation permet à l'exploitant d'ajuster les qualités et/ou rendements en kérosène et gazole.
L'effluent issu du réacteur (16) est ensuite envoyé via la ligne (17) dans le train distillation de manière à séparer les produits de conversion, essence, kérosène et gazole.
Sur la figure 4, il est représenté un mode de réalisation avec la fraction résiduelle (conduite 14) passant dans la zone (16) d'hydroisomérisation / hydrocraquage (étape f), l'effluent obtenu étant envoyé (conduite 17) dans la zone (9) de séparation.
Avantageusement, dans le même temps, le kérosène et/ou le gazole peut être en partie recyclé (conduite 18) dans la zone (8) d'hydroisomérisation / hydrocraquage (étape d) sur le premier catalyseur.
Sur la figure 5, une partie du kérosène et/ou du gazole produits passent dans la zone (16) d'hydroisomérisation / hydrocraquage (étape f), l'effluent obtenu étant envoyé (conduite 17) dans la zone (9) de séparation.
Dans le même temps, la fraction résiduelle (conduite 14) est recyclée dans la zone (8) d'hydroisomérisation / hydrocraquage (étape d) sur le premier catalyseur.
On a pu constater qu'il est avantageux de recycler une partie du kérosène sur un catalyseur d'hydrocraquage / hydroisomérisation pour améliorer ses propriétés à froid.
Sur les figures, on a représenté seulement le recyclage du kérosène. Il va sans dire qu'on peut aussi bien recycler une partie du gazole (séparément ou avec le kérosène) et de préférence sur le même catalyseur que le kérosène. L'invention n'est pas limitée à ces 4 modes de réalisation.
Les produits obtenus
Le(s) gazole(s) obtenu (s) présente(nt) un point d'écoulement d'au plus 00C, généralement inférieur à -100C et souvent inférieur à -15°C. L'indice de cétane est supérieur à 60, généralement supérieur à 65, souvent supérieur à 70.
Le(s) kérosène(s) obtenu(s) présente(nt) un point de congélation d'au plus -350C, généralement inférieur à -400C. Le point de fumée est supérieur à 25 mm, généralement supérieur à 30 mm. Dans ce procédé, la production d'essence (non recherchée) est la plus faible possible. Le rendement en essence sera toujours inférieur à 50% pds, de préférence inférieur à 40% pds, avantageusement inférieur à 30% pds ou encore à 20% pds ou même à 15% pds.
Exemple 1 : Préparation d'un catalyseur non conforme à l'invention (CD
On prépare un précurseur de silice-alumine SA1 de la façon suivante : On prépare un hydrate d'alumine selon les enseignements du brevet US-A-3 124 418. Après filtration, le précipité de P1 fraîchement préparé est mélangé avec une solution d'acide silicique préparé par échange sur résine décationisante. Les proportions des deux solutions sont ajustées de manière à atteindre une composition de 70 % AI2O3- 30 % SiO2 sur le support final. Ce mélange est rapidement homogénéisé dans un broyeur colloïdal commercial en présence d'acide nitrique de façon que la teneur en acide nitrique de la suspension en sortie de broyeur soit de 8 % rapportée au solide mixte silice-alumine. Puis, la suspension (P2) est séchée classiquement dans un atomiseur de manière conventionnelle de 300°C à 600C. La poudre ainsi préparée est mise en forme dans un bras en Z en présence de 8 % d'acide nitrique par rapport au produit anhydre. L'extrusion est réalisée par passage de la pâte au travers d'une filière munie d'orifices de diamètre 1 ,4 mm. Les extrudés S1 contenant 100% de silice-alumine ainsi obtenus sont séchés à 1500C, puis calcinés à 550°C.
Le catalyseur C1 est obtenu par imprégnation à sec du support S1 (sous forme d'extrudés), par une solution d'acide hexachloroplatinique H2PtCI6 dissout dans un volume de solution correspondant au volume poreux total à imprégner. Les extrudés imprégnés sont ensuite calcinés à 55O0C sous air pendant 4 heures. La teneur en platine est de 0,48% poids et sa dispersion mesurée par titrage H2-O2 est de 86% et sa répartition est uniforme dans les extrudés. Exemple 2 : Préparation d'un catalyseur conforme à l'invention (C2)
La zéolithe ZBM-30 est synthétisée selon le brevet BASF EP-A-46504 avec le structurant organique triéthylènetétramine. Puis elle est soumise à une calcination à 550 0C sous flux d'air sec durant 12 heures. La zéolithe H-ZBM-30 (forme acide) ainsi obtenue possède un rapport Si/Ai de 45 et un rapport Na/AI inférieur à 0,001.
On mélange ensuite 5 g de zéolithe ZBM-30 et 15 g du précurseur de la silice-alumine P2 décrit dans l'exemple 1. Ce mélange se fait avant l'introduction dans l'extrudeuse. La poudre de zéolithe est préalablement mouillée et ajouté à la suspension de matrice en présence d'acide nitrique à 66 % (7 % poids d'acide par gramme de gel sec) puis malaxé pendant 15 minutes. A l'issue de ce malaxage, la pâte obtenue est passée à travers une filière ayant des orifices cylindriques de diamètre égal à 1,4 mm. Les extrudés sont ensuite séchés une nuit à 120°C sous air puis calcinés à 5500C sous air. Les extrudés S2 contiennent 20%poids de zéolithe ZBM-30 et 80% de silice-alumine.
Le catalyseur C2 est obtenu par imprégnation à sec du support S2 (sous forme d'extrudés) par une solution d'acide hexachloroplatinique H2PtCI6 dissout dans un volume de solution correspondant au volume poreux total à imprégner. Les extrudés imprégnés sont ensuite calcinés à 5500C sous air pendant 4 heures. La teneur en platine est de 0,47% poids et sa dispersion mesurée par titrage H2-O2 est de 88% et sa répartition est uniforme dans les extrudés.
Exemple 3 : Préparation d'un catalyseur conforme à l'invention (C3)
La zéolithe COK-7 est synthétisée selon la demande de brevet FR 2 882 744. Elle est ensuite soumise à une calcination à 550 0C sous flux d'air sec durant 12 heures. La zéolithe H-COK-7 (forme acide) ainsi obtenue possède un rapport Si/Ai de 37 et un rapport Na/AI inférieur à 0,003.
On mélange ensuite 5 g de zéolithe COK-7 et 28 g du précurseur de la silice-alumine P2 décrit dans l'exemple 1. Ce mélange se fait avant l'introduction dans l'extrudeuse. La poudre de zéolithe est préalablement mouillée et ajouté à la suspension de matrice en présence d'acide nitrique à 66 % (7 % poids d'acide par gramme de gel sec) puis malaxé pendant 15 minutes. A l'issue de ce malaxage, la pâte obtenue est passée à travers une filière ayant des orifices cylindriques de diamètre égal à 1 ,4 mm. Les extrudés sont ensuite séchés une nuit à 12O0C sous air puis calcinés à 5500C sous air. Les extrudés S3 contiennent 15% poids de zéolithe COK-7 et 85% poids de silice-alumine.
Le catalyseur C3 est obtenu par imprégnation à sec du support S2 (sous forme d'extrudés) par une solution d'acide hexachloroplatinique H2PtCI6 dissout dans un volume de solution correspondant au volume poreux total à imprégner. Les extrudés imprégnés sont ensuite calcinés à 5500C sous air pendant 4 heures. La teneur en platine est de 0,47% poids et sa dispersion mesurée par titrage H2-O2 est de 88% et sa répartition est uniforme dans les extrudés.
Exemple 4 : Préparation d'un catalyseur conforme à l'invention (C4) On mélange 2 g de zéolithe COK-7 (exemple 3= , 3g de zéolithe ZBM-30 (exemple 2) et 28 g du précurseur de la silice-alumine P2 décrit dans l'exemple 1. Ce mélange se fait avant l'introduction dans l'extrudeuse. La poudre de zéolithe est préalablement mouillée et ajouté à la suspension de matrice en présence d'acide nitrique à 66 % (7 % poids d'acide par gramme de gel sec) puis malaxé pendant 15 minutes. A l'issue de ce malaxage, la pâte obtenue est passée à travers une filière ayant des orifices cylindriques de diamètre égal à 1,4 mm. Les extrudés sont ensuite séchés une nuit à 1200C sous air puis calcinés à 5500C sous air. Les extrudés S4 contiennent 6% poids de zéolithe COK-7, 9% poids de ZBM-30 et 85% de silice-alumine
Le catalyseur C4 est obtenu par imprégnation à sec du support S4 (sous forme d'extrudés) par une solution d'acide hexachloroplatinique H2PtCI6 dissout dans un volume de solution correspondant au volume poreux total à imprégner. Les extrudés imprégnés sont ensuite calcinés à 550°C sous air pendant 4 heures. La teneur en platine est de 0,47% poids et sa dispersion mesurée par titrage H2-O2 est de 88% et sa répartition est uniforme dans les extrudés.
Exemple 5 : Évaluation des catalyseurs C1 , C2, C3. C4 en hvdrocraquaqe d'une charge paraffinique issue de la synthèse Fischer-Tropsch
Une charge issue de la synthèse Fischer Tropsch sur un catalyseur au cobalt est séparée en deux fractions, la fraction la plus lourde présentant les caractéristiques suivantes (tableau 1 ).
Cette fraction lourde est traitée en lit traversé à hydrogène perdu sur le catalyseur d'hydrotraitement ci dessus dans des conditions opératoires qui permettent l'élimination des composés oléfiniques et oxygénés ainsi que des traces d'azote. Les conditions opératoires sélectionnées sont les suivantes:
- WH (volume de charge / volume de catalyseur / heure) = 2 h'1 pression totale de travail: 50 bar - rapport hydrogène / charge: 200 normaux litres / litre
- température: 2700C Tableau 1: caractéristiques de la fraction lourde
Après cet hydrotraitement, les teneurs en oléfines, oxygénés et composés azotés de l'effluent tombent en dessous des seuils de détection, alors que la conversion de la fraction 37O0C+ en fraction 3700C" est négligeable (inférieure à 5% poids); voire tableau 2. Le monoxyde de carbone et/ou dioxyde de carbone et/ou l'eau et/ou l'ammoniac formés lors de l'hydrotraitement sont éliminés par une étape de flash et de décantation.
Tableau 2: caractéristiques de la fraction lourde après hydrotraitement.
L'effluent hydrotraité constitue la charge d'hydrocraquage envoyée sur les catalyseurs C1 (non- conforme) et C2, C3 et C4 (conforme à l'invention).
Avant test, chaque catalyseur subit une étape de réduction dans les conditions opératoires suivantes :
Débit d'hydrogène : 1600 normaux litres par heure et par litre de catalyseur Montée de température ambiante 1200C : 10°C/min Pallier d'une heure à 120°C Montée de 120 à à 450°C à 5°C/min
Palier de deux heures à 450°C Pression : 1 bar Après réduction, le test catalytique s'effectue dans les conditions suivantes :
Pression totale de 50 bar, Rapport H2 sur charge de 800 normaux litres/litre
Vitesse spatiale (WH) égale à 2h-1
La conversion de la fraction est prise égale à :
CN 3700C" = [ (% de 3700C " ements ) - (% de 370°C " charge) ] / [ 100 - (% de 37O0C - charge)] avec
% de 3700C ' effiuents = teneur massique en composés ayant des points d'ébullition inférieurs à 3700C dans les effluents, et
% de 3700C " charge = teneur massique en composés ayant des points d'ébullition inférieurs à 3700C dans la charge.
Les performances catalytiques obtenues sont données dans les tableaux 3 et 4 ci- après. La température du réacteur est ajustée de manière à obtenir une conversion de la fraction 3700C+ de 70% en poids (tableau 1 ). Les analyses par chromatographie en phase gazeuse permettent d'obtenir rendements de la fraction 150-3700C dans l'effluent hydrocraqué (tableau 3).
Tableau 3 : Température pour atteindre une conversion nette en 3700C- de 70% environ
Tableau 4 : Rendements des produits formés :
Ces résultats, montrent (tableaux 3 et 4) que l'utilisation des catalyseurs selon l'invention et dans un procédé selon l'invention permettent par hydrocraquage d'une charge paraffinique issue du procédé de synthèse Fischer-Tropsch d'obtenir de meilleurs rendements en distillats moyens, coupes 150-3700C qu'avec un catalyseur de l'art antérieur.
Exemple 6 comparatif : Évaluation des catalyseurs C1 en combinaison avec C2 en hvdrocraquaqe d'une charge paraffinique issue de la synthèse Fischer-Tropsch
Dans cet exemple, l'étape d'hydrocraquage est composée de deux étapes réactionnelles sur deux catalyseurs différents C1 et C2.
L'effluent hydrotraité de l'exemple 5 (tableau 2) est converti sur le catalyseur C1 puis sur le catalyseur conforme à l'invention C2, a base de ZBM-30. Les deux catalyseurs sont placés dans deux réacteurs en série. Avant test, les catalyseurs subissent une étape de réduction identique à celle de l'exemple 5. L'effluent hydrotraité est envoyé vers le catalyseur C1 (Platine/silice-alumine) dans les conditions opératoires suivantes:
- WH (volume de charge / volume de catalyseur / heure) = 2 h-1
- pression totale de travail: 50 bar - rapport hydrogène / charge: 800 normaux litres / litre
- température: 347°C
La température du réacteur est ajustée de manière à obtenir une conversion de la fraction 37O0C+ de 70% en poids.
L'effluent est mis au contact du catalyseur sélectif C2 (Platine/ZBM-30) dans les conditions opératoires ci-dessous:
- WH (volume de charge / volume de catalyseur / heure) = 1 h-1
- pression totale de travail: 50 bar rapport hydrogène / charge: 1000 normaux litres / litre La température est ajustée de manière à avoir une conversion de la fraction 370°C+ en fraction 3700C- inférieure à 5% en poids lors de l'hydroisomérisation. Les analyses par chromatographie en phase gazeuse permettent d'obtenir la distribution des différentes coupes dans l'effluent hydrocraqué puis hydroisomérisé (tableau 5).
Tableau 5:
Par rapport à l'exemple 2 conforme à l'invention, la transformation successive de la charge (cf tableau 2) sur deux catalyseurs C1 puis C2 mène, à conversion totale proche (autour de 72%), a un rendement en distillats moyens inférieur à celui obtenu dans l'exemple 5 c'est-à- dire l'utilisation d'un catalyseur comprenant de la zéolithe ZBM-30 et de la silice-alumine.

Claims

REVENDICATIONS
1. Procédé de production de distillats moyens à partir d'une charge paraffinique produite par synthèse Fischer-Tropsch, mettant en œuvre un catalyseur d'hydrocraquage/hydroisomérisation comprenant au moins au moins un métal hydro- déshydrogénant choisi dans le groupe formé par les métaux du groupe VIB et du groupe VIII de la classification périodique et un support comprenant au moins une silice-alumine et au moins une zéolithe choisie dans le groupe formé par les zéolithes de type structural TON, FER, MTT, les zéolithes ZBM-30, 2SM-48 et COK-7, prises seules ou en mélange, ledit procédé opérant à une température comprise entre 270 et 400°C , une pression comprise entre 1 et 9 MPa , une vitesse spatiale comprise entre 0,5 et 5 h-1 , un débit d'hydrogène ajusté pour obtenir un rapport de 400 à 1500 Normaux litres d'hydrogène par litre de charge.
2. Procédé selon la revendication 1 dans lequel ledit procédé opère à une température comprise entre 300 et 3900C, une pression comprise entre 2 et 8 MPa, une vitesse spatiale comprise entre 0,8 et 3 h-1 , un débit d'hydrogène ajusté pour obtenir un rapport de 600 et 1300 Normaux litres d'hydrogène par litre de charge.
3. Procédé selon l'une des revendications 1 ou 2 dans lequel ledit catalyseur d'hydrocraquage/hydroisomérisation comprend :
- 0,1 à 60 % d'au moins un métal hydro-déshydrogénant choisi dans le groupe formé par les métaux du groupe VIB et du groupe VIII, et un support comprenant : - 0 à 99 % d'au moins un liant minéral poreux amorphe ou mal cristallisé de type oxyde (hors silice-alumine)
- 0,1 à 40 %, d'au moins une zéolithe choisie dans le groupe formé par les zéolithes de type structural TON, FER, MTT, les zéolithes ZBM-30, ZSM-48 et COK-7, prises seules ou en mélange, - de 60 à 95% de silice -alumine, les pourcentages étant exprimés en pourcentage poids par rapport à la masse totale du catalyseur.
4. Procédé selon l'une des revendications 1 à 3 dans lequel ledit support dudit catalyseur d'hydrocraquage/hydroisomérisation est la zéolithe COK-7 synthétisée en présence du structurant organique triethylènetétramine.
5. Procédé selon l'une des revendications 1 à 3 dans lequel ledit support dudit catalyseur d'hydrocraquage/hydroisomérisation est la zéolithe ZBM-30 synthétisée en présence du structurant organique triethylènetétramine.
6. Procédé selon l'une des revendications 1 à 3 dans lequel ledit support dudit catalyseur d'hydrocraquage/hydroisomérisation comprend la zéolithe COK-7, synthétisée en présence du structurant organique triethylènetétramine, en mélange avec la zéolithe ZBM-30 synthétisée en présence du structurant organique triethylènetétramine.
7. Procédé selon l'une des revendications 1 à 6 dans lequel ledit support dudit catalyseur comprend une silice-alumine homogène à l'échelle du micromètre et contient une quantité supérieure à 5% poids et inférieure ou égale à 95% poids de silice, la teneur en silice est avantageusement comprise entre 10 et 50 % poids, ladite silice - alumine présentant les caractéristiques suivantes : un diamètre moyen poreux, mesuré par porosimétrie au mercure, compris entre 20 et 140 A, un volume poreux total, mesuré par porosimétrie au mercure, compris entre 0,1 ml/g et 0,5 ml/g, - un volume poreux total, mesuré par porosimétrie azote, compris entre 0,1 ml/g et 0,5 ml/g, une surface spécifique BET comprise entre 100 et 550 m2/g, un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à 140 A inférieur à 0,1 ml/g , - un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieur à 160 A inférieur à 0,1 ml/g, un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 200 Â, inférieur à 0,1 ml/g, un volume poreux, mesuré par porosimétrie au mercure, compris dans les pores de diamètre supérieurs à 500 A inférieur à 0,1 ml/g. un diagramme de diffraction X qui contient au moins les raies principales caractéristiques d'au moins une des alumines de transition comprise dans le groupe composé par les alumines alpha, rhô, chi, eta, gamma, kappa, thêta et delta.
8. Procédé selon l'une des revendications 1 à 6 dans lequel ledit procédé comprend les étapes suivantes : a) séparation d'une seule fraction dite lourde à point d'ébullition initial compris entre
120-2000C, b) hydrotraitement d'une partie au moins de ladite fraction lourde, c) fractionnement en au moins 3 fractions :
- au moins une fraction intermédiaire ayant un point d'ébullition initial T1 compris entre 120 et 2000C, et un point d'ébullition final T2 supérieur à 3000C et inférieur à 4100C,
- au moins une fraction légère bouillant au-dessous de la fraction intermédiaire, - au moins une fraction lourde bouillant au-dessus de la fraction intermédiaire. d) passage d'une partie au moins de ladite fraction intermédiaire sur un catalyseur hydroisomérisant, e) passage d'une partie au moins de ladite fraction lourde dans le procédé selon l'invention
f) distillation des fractions hydrocraquées / hydroisomérisées pour obtenir des distillats moyens, et recyclage de la fraction résiduelle bouillant au-dessus desdits distillats moyens dans l'étape (e) sur le catalyseur selon l'invention traitant la fraction lourde.
9. Procédé selon l'une des revendications 1 à 6 dans lequel ledit procédé comprend les étapes suivantes :
a) séparation d'au moins une fraction légère de la charge de façon à obtenir une seule fraction dite lourde à point d'ébullition initial compris entre 120-2000C, b) éventuel hydrotraitement de ladite fraction lourde, éventuellement suivi d'une étape c) d'enlèvement d'au moins une partie de l'eau et éventuellement CO, CO2, NH3, H2S1 d) passage dans le procédé selon l'invention d'une partie au moins de ladite fraction éventuellement hydrotraitée, la conversion sur le catalyseur selon l'invention ci- dessus décrit des produits à points d'ébullition supérieurs ou égaux à 37O0C en produits à points d'ébullition inférieures à 3700C est supérieure à 40% pds, e) distillation de la fraction hydrocraquée/hydroisomérisée pour obtenir des distillats moyens, et recyclage dans l'étape d) de la fraction résiduelle bouillant au-dessus desdits distillats moyens.
10. Procédé selon l'une des revendications 1 à 6 dans lequel ledit procédé comprend les étapes suivantes : a) Fractionnement (étape a) de la charge en au moins 3 fractions :
- au moins une fraction intermédiaire ayant un point d'ébullition initial T1 compris entre 120 et 2000C, et un point d'ébullition final T2 supérieur à 300°C et inférieur à 410°C,
- au moins une fraction légère bouillant au-dessous de la fraction intermédiaire, - au moins une fraction lourde bouillant au-dessus de la fraction intermédiaire. b) Hydrotraitement (étape b) d'au moins une partie de ladite fraction intermédiaire, puis passage (étape d) dans un procédé de traitement d'au moins une partie de la fraction hydrotraitée sur un catalyseur hydroisomérisant c) élimination d'au moins une partie de l'eau produite lors des réactions d'hydrotraitement et éventuellement CO, CO2, NH3, H2S, d) Passage (étape f) dans le procédé selon l'invention d'une partie au moins de ladite fraction lourde avec une conversion des produits 3700C+ en produits 37O0C moins supérieure à 40% poids. e) et g) Distillation (étapes e et g) d'au moins une partie des fractions hydrocraquées / hydroisomérisées pour obtenir des distillats moyens.
11. Procédé selon l'une des revendications 1 à 6 dans lequel ledit procédé comprend les étapes suivantes : a) éventuel fractionnement de la charge en au moins une fraction lourde à point d'ébullition initial compris entre 120 et 200cC, et au moins une fraction légère bouillant en-dessous de ladite fraction lourde, b) éventuel hydrotraitement d'une partie au moins de la charge ou de la fraction lourde, éventuellement suivi (étape c) d'élimination d'au moins une partie de l'eau, c) passage d'une partie au moins de l'effluent ou de la fraction éventuellement hydrotraité dans le procédé selon l'invention sur un premier catalyseur selon l'invention d) distillation de l'effluent hydroisomérisé / hydrocraqué pour obtenir des distillats moyens (kérosène, gasoil) et une fraction résiduelle bouillant au-dessus des distillats moyens, e) passage d'au moins une partie de ladite fraction lourde résiduelle et/ou d'une partie desdits distillats moyens, et distillation de l'effluent résultant pour obtenir des distillats moyens dans le procédé selon l'invention sur un second catalyseur selon l'invention.
EP08872965A 2008-01-04 2008-12-16 Procede de production de distillats moyens par hydroisomerisation et hydrocraquage de charges issues du procede fischer-tropsch Withdrawn EP2235139A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0800058A FR2926085B1 (fr) 2008-01-04 2008-01-04 Procede de production de distillats moyens par hydroisomerisation et hydrocraquage de charges issues du procede fischer-tropsch
PCT/FR2008/001745 WO2009106705A2 (fr) 2008-01-04 2008-12-16 Procede de production de distillats moyens par hydroisomerisation et hydrocraquage de charges issues du procede fischer-tropsch

Publications (1)

Publication Number Publication Date
EP2235139A2 true EP2235139A2 (fr) 2010-10-06

Family

ID=39881656

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08872965A Withdrawn EP2235139A2 (fr) 2008-01-04 2008-12-16 Procede de production de distillats moyens par hydroisomerisation et hydrocraquage de charges issues du procede fischer-tropsch

Country Status (4)

Country Link
EP (1) EP2235139A2 (fr)
FR (1) FR2926085B1 (fr)
WO (1) WO2009106705A2 (fr)
ZA (1) ZA201004890B (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2926086B1 (fr) * 2008-01-04 2010-02-12 Inst Francais Du Petrole Procede de production de distillats moyens par hydroisomerisation et hydrocraquage sequences d'un effluent produit par le procede fischer-tropsch
FR2926087B1 (fr) * 2008-01-04 2010-02-12 Inst Francais Du Petrole Procede multietapes de production de distillats moyens par hydroisomerisation et hydrocraquage d'un effluent produit par le procede fischer-tropsch
FR3003561B1 (fr) * 2013-03-21 2015-03-20 Ifp Energies Now Procede de conversion de charges issues de sources renouvelables mettant en oeuvre un catalyseur comprenant une zeolithe nu-10 et une zeolithe zsm-48
CN115739114B (zh) * 2022-11-24 2024-10-08 国家能源集团宁夏煤业有限责任公司 费托合成油加氢精制催化剂及其制备方法和应用

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2826972B1 (fr) * 2001-07-06 2007-03-23 Inst Francais Du Petrole Procede de production de distillats moyens par hydroisomerisation et hydrocraquage d'une fraction lourde issue d'un effluent produit par le procede fischer-tropsch
FR2826971B1 (fr) * 2001-07-06 2003-09-26 Inst Francais Du Petrole Procede de production de distillats moyens par hydroisomerisation et hydrocraquage de charges issues du procede fischer-tropsch
FR2850393B1 (fr) * 2003-01-27 2005-03-04 Inst Francais Du Petrole Procede de production de distillats moyens par hydroisomerisation et hydrocraquage de charges issues du procede fischer-tropsch
FR2852864B1 (fr) * 2003-03-24 2005-05-06 Inst Francais Du Petrole Catalyseur comprenant au moins une zeolithe choisie parmi zbm-30, zsm-48, eu-2 et eu-11 et au moins une zeolithe y et procede d'hydroconversion de charges hydrocarbonees utilisant un tel catalyseur
US7354507B2 (en) * 2004-03-17 2008-04-08 Conocophillips Company Hydroprocessing methods and apparatus for use in the preparation of liquid hydrocarbons
FR2882744B1 (fr) * 2005-03-07 2008-06-06 Inst Francais Du Petrole Solide cristallise cok-7, procede de preparation et utilisation pour la transformation d'hydrocarbures
FR2884827B1 (fr) * 2005-04-25 2009-12-18 Inst Francais Du Petrole Procede de production de distillats moyens par hydroisomerisation et hydrocraquage de charges issues du procede fischer-tropsch
FR2888584B1 (fr) * 2005-07-18 2010-12-10 Inst Francais Du Petrole Procede de production de distillats moyens par hydroisomerisation et hydrocraquage de charges issues du procede fischer-tropsch utilisant un lit de garde multifonctionnel
FR2926086B1 (fr) * 2008-01-04 2010-02-12 Inst Francais Du Petrole Procede de production de distillats moyens par hydroisomerisation et hydrocraquage sequences d'un effluent produit par le procede fischer-tropsch
FR2926087B1 (fr) * 2008-01-04 2010-02-12 Inst Francais Du Petrole Procede multietapes de production de distillats moyens par hydroisomerisation et hydrocraquage d'un effluent produit par le procede fischer-tropsch

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2009106705A2 (fr) 2009-09-03
FR2926085B1 (fr) 2010-02-12
FR2926085A1 (fr) 2009-07-10
ZA201004890B (en) 2011-03-30
WO2009106705A3 (fr) 2010-01-14

Similar Documents

Publication Publication Date Title
EP2313344B1 (fr) Procede de production de distillats moyens par hydrocraquage de charges issues du procédé fischer-tropsch en presence d'un catalyseur comprenant un solide izm-2
EP1590424B1 (fr) Procede de production de distillats moyens par hydroisomerisation et hydrocraquage de charges issues du procede fischer-tropsch
EP1415712B1 (fr) Catalyseur et procédé d'hydrocraquage de charges hydrocarbonées
CA2605400C (fr) Procede de production de distillats moyens par hydroisomerisation et hydrocraquage de charges issues du procede fischer-tropsch
EP1907508B1 (fr) Procede de production de distillats moyens par hydroisomerisation et hydrocraquage de charges issues du procede fischer-tropsch utilisant un lit de garde multifonctionnel
FR2863913A1 (fr) Catalyseur zeolithique,support a base de matrice silico-aluminique et de zeolithe, et procede d'hydrocraquage de charges hydrocarbonees
WO2011058242A1 (fr) Procede de production de distillat moyen a partir de cires fischer tropsch mettant en oeuvre un catalyseur a base de zeolithe modifiee par un traitement basique
EP2234721A2 (fr) Catalyseur comprenant au moins une zéolithe particuliere et au moins une silice-alumine et procédé d'hydrocraquage de charges hydrocarbonées utilisant un tel catalyseur
WO2009144411A2 (fr) Procédé de production de distillats moyens par hydrocraquage de charges issues du procédé fischer-tropsch avec un catalyseur a base d'un materiau cristallise
WO2009103881A2 (fr) Procédé multietapes de production de distillats moyens par hydroisomerisation et hydrocraquage d'un effluent produit par le procédé fischer-tropsch
FR2846664A1 (fr) Procede flexible de production de bases huiles et de distillats moyens avec une etape de pretraitement convertissant suivie d'un deparaffinage catalytique
WO2009144412A2 (fr) Procédé de production de distillats moyens par hydrocraquage de charges issues du procédé fischer-tropsch avec un catalyseur a base d'un materiau amorphe
WO2009106704A2 (fr) Procede de production de distillats moyens par hydroisomerisation et hydrocraquage sequences d'un effluent produit par le procede fischer-tropsch
EP2235139A2 (fr) Procede de production de distillats moyens par hydroisomerisation et hydrocraquage de charges issues du procede fischer-tropsch
FR2950896A1 (fr) Procede de production de distillats moyens par hydroisomerisation et hydrocraquage de charges issues du procede fischer-tropsch mettant en oeuvre un catalyseur a base de carbure de silicium
US10793791B2 (en) Use of a bifunctional catalyst based on zeolite IZM-2 for the hydroisomerization of light paraffinic feedstocks resulting from Fischer-Tropsch synthesis
CA3124867A1 (fr) Procede de deparaffinage d'une charge distillat moyen utilisant un catalyseur a base de zeolithe izm-2 et d'une zeolithe de type mfi
WO2013153318A1 (fr) Procede d'hydrotraitement et de deparaffinage d'une charge distillats moyens utilisant un catalyseur a base de zeolithe izm-2
WO2011045484A1 (fr) Procede de production de distillat moyen a partir de cires fischer tropsch utilisant un catalyseur a base de zeolithe modifiee
WO2013153317A1 (fr) Procédé de deparaffinage de charges hydrocarbonées utilisant un catalyseur a base de zeolithe izm-2
EP2781583B1 (fr) Procédé de conversion de charges issues de sources renouvelables mettant en oeuvre un catalyseur comprenant une zeolithe nu-10 et une silice alumine
FR3003562A1 (fr) Procede d'hydroisomerisation d'une charge issue de la synthese fischer-tropsch mettant en oeuvre un catalyseur comprenant une zeolithe nu-10 et une silice alumine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100804

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20170327

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ENI S.P.A.

Owner name: IFP ENERGIES NOUVELLES

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190702