EP2231207A1 - Coating solutions comprising segmented interactive block copolymers - Google Patents
Coating solutions comprising segmented interactive block copolymersInfo
- Publication number
- EP2231207A1 EP2231207A1 EP08867880A EP08867880A EP2231207A1 EP 2231207 A1 EP2231207 A1 EP 2231207A1 EP 08867880 A EP08867880 A EP 08867880A EP 08867880 A EP08867880 A EP 08867880A EP 2231207 A1 EP2231207 A1 EP 2231207A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- medical device
- hydrophilic
- block
- interactive
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 229920001400 block copolymer Polymers 0.000 title claims abstract description 83
- 230000002452 interceptive effect Effects 0.000 title claims abstract description 82
- 238000000576 coating method Methods 0.000 title description 23
- 239000011248 coating agent Substances 0.000 title description 16
- 238000000034 method Methods 0.000 claims abstract description 61
- -1 catheters Substances 0.000 claims abstract description 39
- 239000007943 implant Substances 0.000 claims abstract description 9
- 230000002792 vascular Effects 0.000 claims abstract description 4
- 239000000178 monomer Substances 0.000 claims description 88
- 239000000126 substance Substances 0.000 claims description 47
- 229910052710 silicon Inorganic materials 0.000 claims description 39
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 38
- 239000003795 chemical substances by application Substances 0.000 claims description 38
- 239000010703 silicon Substances 0.000 claims description 38
- 238000006243 chemical reaction Methods 0.000 claims description 30
- 239000000463 material Substances 0.000 claims description 30
- 238000010560 atom transfer radical polymerization reaction Methods 0.000 claims description 26
- 239000000017 hydrogel Substances 0.000 claims description 23
- 150000003254 radicals Chemical class 0.000 claims description 21
- 125000002813 thiocarbonyl group Chemical group *C(*)=S 0.000 claims description 19
- 239000003999 initiator Substances 0.000 claims description 18
- 239000000203 mixture Substances 0.000 claims description 18
- 229910052757 nitrogen Inorganic materials 0.000 claims description 15
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 claims description 14
- 229920001577 copolymer Polymers 0.000 claims description 14
- 239000001257 hydrogen Substances 0.000 claims description 14
- 229910052739 hydrogen Inorganic materials 0.000 claims description 14
- 229920001296 polysiloxane Polymers 0.000 claims description 13
- 230000003993 interaction Effects 0.000 claims description 12
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 11
- 239000012987 RAFT agent Substances 0.000 claims description 11
- 229910052736 halogen Inorganic materials 0.000 claims description 11
- AISZNMCRXZWVAT-UHFFFAOYSA-N 2-ethylsulfanylcarbothioylsulfanyl-2-methylpropanenitrile Chemical compound CCSC(=S)SC(C)(C)C#N AISZNMCRXZWVAT-UHFFFAOYSA-N 0.000 claims description 9
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 claims description 9
- 150000001412 amines Chemical class 0.000 claims description 9
- 239000012986 chain transfer agent Substances 0.000 claims description 9
- 125000005843 halogen group Chemical group 0.000 claims description 9
- LVLANIHJQRZTPY-UHFFFAOYSA-N vinyl carbamate Chemical class NC(=O)OC=C LVLANIHJQRZTPY-UHFFFAOYSA-N 0.000 claims description 8
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 claims description 7
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 claims description 7
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 7
- 125000004149 thio group Chemical group *S* 0.000 claims description 7
- 239000007795 chemical reaction product Substances 0.000 claims description 6
- 238000010668 complexation reaction Methods 0.000 claims description 6
- 238000007334 copolymerization reaction Methods 0.000 claims description 5
- QRIMLDXJAPZHJE-UHFFFAOYSA-N 2,3-dihydroxypropyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(O)CO QRIMLDXJAPZHJE-UHFFFAOYSA-N 0.000 claims description 4
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 claims description 4
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 4
- 150000003839 salts Chemical class 0.000 claims description 4
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 3
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 claims description 3
- WFKDPJRCBCBQNT-UHFFFAOYSA-N n,2-dimethylprop-2-enamide Chemical compound CNC(=O)C(C)=C WFKDPJRCBCBQNT-UHFFFAOYSA-N 0.000 claims description 3
- 230000009257 reactivity Effects 0.000 claims description 3
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 claims description 2
- VKIJXFIYBAYHOE-UHFFFAOYSA-N 2-phenylethenylboronic acid Chemical compound OB(O)C=CC1=CC=CC=C1 VKIJXFIYBAYHOE-UHFFFAOYSA-N 0.000 claims description 2
- SBAVKUXVNSDGHT-UHFFFAOYSA-N B(O)O.C(C(=C)C)(=O)NC=1C=C(C=C)C=CC1 Chemical compound B(O)O.C(C(=C)C)(=O)NC=1C=C(C=C)C=CC1 SBAVKUXVNSDGHT-UHFFFAOYSA-N 0.000 claims description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 claims description 2
- 125000003976 glyceryl group Chemical group [H]C([*])([H])C(O[H])([H])C(O[H])([H])[H] 0.000 claims description 2
- RQAKESSLMFZVMC-UHFFFAOYSA-N n-ethenylacetamide Chemical compound CC(=O)NC=C RQAKESSLMFZVMC-UHFFFAOYSA-N 0.000 claims description 2
- 229920000233 poly(alkylene oxides) Polymers 0.000 claims description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 2
- 229920001223 polyethylene glycol Polymers 0.000 claims description 2
- 238000003860 storage Methods 0.000 claims description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 claims description 2
- USFMMZYROHDWPJ-UHFFFAOYSA-N trimethyl-[2-(2-methylprop-2-enoyloxy)ethyl]azanium Chemical class CC(=C)C(=O)OCC[N+](C)(C)C USFMMZYROHDWPJ-UHFFFAOYSA-N 0.000 claims description 2
- 229920002554 vinyl polymer Polymers 0.000 claims description 2
- 210000000481 breast Anatomy 0.000 claims 2
- 210000003709 heart valve Anatomy 0.000 claims 2
- 210000000626 ureter Anatomy 0.000 claims 2
- DKAMDMXTYHCFSQ-UHFFFAOYSA-N 3-methyl-3-(2-methylprop-2-enoyloxy)butane-2-sulfonic acid Chemical class OS(=O)(=O)C(C)C(C)(C)OC(=O)C(C)=C DKAMDMXTYHCFSQ-UHFFFAOYSA-N 0.000 claims 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 claims 1
- FXPHJTKVWZVEGA-UHFFFAOYSA-N ethenyl hydrogen carbonate Chemical class OC(=O)OC=C FXPHJTKVWZVEGA-UHFFFAOYSA-N 0.000 claims 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims 1
- 239000000758 substrate Substances 0.000 abstract description 25
- 230000000295 complement effect Effects 0.000 abstract description 14
- 238000004381 surface treatment Methods 0.000 abstract description 5
- 229920000307 polymer substrate Polymers 0.000 abstract 1
- 229920000642 polymer Polymers 0.000 description 48
- 239000000243 solution Substances 0.000 description 42
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 38
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 24
- WHNPOQXWAMXPTA-UHFFFAOYSA-N 3-methylbut-2-enamide Chemical compound CC(C)=CC(N)=O WHNPOQXWAMXPTA-UHFFFAOYSA-N 0.000 description 18
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 18
- GDFCSMCGLZFNFY-UHFFFAOYSA-N Dimethylaminopropyl Methacrylamide Chemical compound CN(C)CCCNC(=O)C(C)=C GDFCSMCGLZFNFY-UHFFFAOYSA-N 0.000 description 15
- 238000012712 reversible addition−fragmentation chain-transfer polymerization Methods 0.000 description 14
- GBBUBIKYAQLESK-UHFFFAOYSA-N [3-(2-methylprop-2-enoylamino)phenyl]boronic acid Chemical compound CC(=C)C(=O)NC1=CC=CC(B(O)O)=C1 GBBUBIKYAQLESK-UHFFFAOYSA-N 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- 229910052786 argon Inorganic materials 0.000 description 12
- 238000006116 polymerization reaction Methods 0.000 description 12
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 11
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 10
- OZAIFHULBGXAKX-VAWYXSNFSA-N AIBN Substances N#CC(C)(C)\N=N\C(C)(C)C#N OZAIFHULBGXAKX-VAWYXSNFSA-N 0.000 description 10
- 125000000524 functional group Chemical group 0.000 description 10
- 230000004048 modification Effects 0.000 description 10
- 238000012986 modification Methods 0.000 description 10
- 230000009466 transformation Effects 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 9
- 125000004432 carbon atom Chemical group C* 0.000 description 9
- 239000012634 fragment Substances 0.000 description 9
- 239000003618 borate buffered saline Substances 0.000 description 8
- 238000004806 packaging method and process Methods 0.000 description 8
- 238000003786 synthesis reaction Methods 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 7
- 239000004926 polymethyl methacrylate Substances 0.000 description 7
- 238000010526 radical polymerization reaction Methods 0.000 description 7
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 6
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 6
- QTBSBXVTEAMEQO-UHFFFAOYSA-N acetic acid Substances CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- 150000001336 alkenes Chemical class 0.000 description 6
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 6
- 239000002244 precipitate Substances 0.000 description 6
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 125000003396 thiol group Chemical class [H]S* 0.000 description 6
- 238000011282 treatment Methods 0.000 description 6
- UURVHRGPGCBHIC-UHFFFAOYSA-N 3-(ethenoxycarbonylamino)propanoic acid 4-[[[[[[[[[[[[[[[[[[[[[[[[[[[4-ethenoxycarbonyloxybutyl(dimethyl)silyl]oxy-dimethylsilyl]oxy-dimethylsilyl]oxy-dimethylsilyl]oxy-dimethylsilyl]oxy-dimethylsilyl]oxy-dimethylsilyl]oxy-dimethylsilyl]oxy-dimethylsilyl]oxy-dimethylsilyl]oxy-dimethylsilyl]oxy-dimethylsilyl]oxy-dimethylsilyl]oxy-dimethylsilyl]oxy-dimethylsilyl]oxy-dimethylsilyl]oxy-dimethylsilyl]oxy-dimethylsilyl]oxy-dimethylsilyl]oxy-dimethylsilyl]oxy-dimethylsilyl]oxy-dimethylsilyl]oxy-dimethylsilyl]oxy-dimethylsilyl]oxy-dimethylsilyl]oxy-dimethylsilyl]oxy-dimethylsilyl]butyl ethenyl carbonate 1-ethenylpyrrolidin-2-one ethenyl N-[3-tris(trimethylsilyloxy)silylpropyl]carbamate Chemical compound C=CN1CCCC1=O.OC(=O)CCNC(=O)OC=C.C[Si](C)(C)O[Si](CCCNC(=O)OC=C)(O[Si](C)(C)C)O[Si](C)(C)C.C[Si](C)(CCCCOC(=O)OC=C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)CCCCOC(=O)OC=C UURVHRGPGCBHIC-UHFFFAOYSA-N 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 150000001350 alkyl halides Chemical class 0.000 description 5
- 125000000129 anionic group Chemical group 0.000 description 5
- 229940088644 n,n-dimethylacrylamide Drugs 0.000 description 5
- YLGYACDQVQQZSW-UHFFFAOYSA-N n,n-dimethylprop-2-enamide Chemical compound CN(C)C(=O)C=C YLGYACDQVQQZSW-UHFFFAOYSA-N 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 239000012745 toughening agent Substances 0.000 description 5
- PGQNYIRJCLTTOJ-UHFFFAOYSA-N trimethylsilyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)O[Si](C)(C)C PGQNYIRJCLTTOJ-UHFFFAOYSA-N 0.000 description 5
- 239000012989 trithiocarbonate Substances 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical group N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 4
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 4
- 229960000583 acetic acid Drugs 0.000 description 4
- 150000001298 alcohols Chemical class 0.000 description 4
- 150000001335 aliphatic alkanes Chemical class 0.000 description 4
- 150000001345 alkine derivatives Chemical class 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 4
- 150000001540 azides Chemical class 0.000 description 4
- 229920001688 coating polymer Polymers 0.000 description 4
- 125000003700 epoxy group Chemical group 0.000 description 4
- 150000002367 halogens Chemical class 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 229920001477 hydrophilic polymer Polymers 0.000 description 4
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 4
- 125000005496 phosphonium group Chemical group 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000005070 sampling Methods 0.000 description 4
- DBGVGMSCBYYSLD-UHFFFAOYSA-N tributylstannane Chemical compound CCCC[SnH](CCCC)CCCC DBGVGMSCBYYSLD-UHFFFAOYSA-N 0.000 description 4
- 239000000080 wetting agent Substances 0.000 description 4
- 102100026735 Coagulation factor VIII Human genes 0.000 description 3
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 3
- 101000911390 Homo sapiens Coagulation factor VIII Proteins 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 239000007983 Tris buffer Substances 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- ZADPBFCGQRWHPN-UHFFFAOYSA-N boronic acid Chemical compound OBO ZADPBFCGQRWHPN-UHFFFAOYSA-N 0.000 description 3
- 125000005620 boronic acid group Chemical group 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 239000006172 buffering agent Substances 0.000 description 3
- 125000002091 cationic group Chemical group 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000003431 cross linking reagent Substances 0.000 description 3
- 238000010828 elution Methods 0.000 description 3
- 239000012467 final product Substances 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000005022 packaging material Substances 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 230000035484 reaction time Effects 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 3
- HIZCIEIDIFGZSS-UHFFFAOYSA-L trithiocarbonate Chemical compound [S-]C([S-])=S HIZCIEIDIFGZSS-UHFFFAOYSA-L 0.000 description 3
- SJHPCNCNNSSLPL-CSKARUKUSA-N (4e)-4-(ethoxymethylidene)-2-phenyl-1,3-oxazol-5-one Chemical compound O1C(=O)C(=C/OCC)\N=C1C1=CC=CC=C1 SJHPCNCNNSSLPL-CSKARUKUSA-N 0.000 description 2
- PRAMZQXXPOLCIY-UHFFFAOYSA-N 2-(2-methylprop-2-enoyloxy)ethanesulfonic acid Chemical class CC(=C)C(=O)OCCS(O)(=O)=O PRAMZQXXPOLCIY-UHFFFAOYSA-N 0.000 description 2
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 2
- BESKSSIEODQWBP-UHFFFAOYSA-N 3-tris(trimethylsilyloxy)silylpropyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCC[Si](O[Si](C)(C)C)(O[Si](C)(C)C)O[Si](C)(C)C BESKSSIEODQWBP-UHFFFAOYSA-N 0.000 description 2
- 239000007989 BIS-Tris Propane buffer Substances 0.000 description 2
- 239000004971 Cross linker Substances 0.000 description 2
- VMQMZMRVKUZKQL-UHFFFAOYSA-N Cu+ Chemical compound [Cu+] VMQMZMRVKUZKQL-UHFFFAOYSA-N 0.000 description 2
- 239000012988 Dithioester Substances 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 238000003109 Karl Fischer titration Methods 0.000 description 2
- 239000002841 Lewis acid Substances 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- CIUQDSCDWFSTQR-UHFFFAOYSA-N [C]1=CC=CC=C1 Chemical compound [C]1=CC=CC=C1 CIUQDSCDWFSTQR-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 125000002877 alkyl aryl group Chemical group 0.000 description 2
- 125000005119 alkyl cycloalkyl group Chemical group 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- OWMVSZAMULFTJU-UHFFFAOYSA-N bis-tris Chemical compound OCCN(CCO)C(CO)(CO)CO OWMVSZAMULFTJU-UHFFFAOYSA-N 0.000 description 2
- HHKZCCWKTZRCCL-UHFFFAOYSA-N bis-tris propane Chemical compound OCC(CO)(CO)NCCCNC(CO)(CO)CO HHKZCCWKTZRCCL-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 125000002843 carboxylic acid group Chemical group 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 125000000753 cycloalkyl group Chemical group 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 125000005022 dithioester group Chemical group 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000007337 electrophilic addition reaction Methods 0.000 description 2
- 238000000921 elemental analysis Methods 0.000 description 2
- ILHMPZFVDISGNP-UHFFFAOYSA-N ethenyl n-[3-tris(trimethylsilyloxy)silylpropyl]carbamate Chemical compound C[Si](C)(C)O[Si](O[Si](C)(C)C)(O[Si](C)(C)C)CCCNC(=O)OC=C ILHMPZFVDISGNP-UHFFFAOYSA-N 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 150000007517 lewis acids Chemical class 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 125000005647 linker group Chemical group 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 description 2
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 2
- 229920006030 multiblock copolymer Polymers 0.000 description 2
- 238000010534 nucleophilic substitution reaction Methods 0.000 description 2
- 238000006053 organic reaction Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 229920005553 polystyrene-acrylate Polymers 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- 125000005401 siloxanyl group Chemical group 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M sodium chloride Inorganic materials [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- 238000010301 surface-oxidation reaction Methods 0.000 description 2
- 238000001149 thermolysis Methods 0.000 description 2
- YLGRTLMDMVAFNI-UHFFFAOYSA-N tributyl(prop-2-enyl)stannane Chemical compound CCCC[Sn](CCCC)(CCCC)CC=C YLGRTLMDMVAFNI-UHFFFAOYSA-N 0.000 description 2
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 238000003828 vacuum filtration Methods 0.000 description 2
- 239000012991 xanthate Substances 0.000 description 2
- GVYHLYQWXHOJGV-UHFFFAOYSA-N (1-propan-2-ylcyclopentyl) prop-2-enoate Chemical compound C=CC(=O)OC1(C(C)C)CCCC1 GVYHLYQWXHOJGV-UHFFFAOYSA-N 0.000 description 1
- PSGCQDPCAWOCSH-UHFFFAOYSA-N (4,7,7-trimethyl-3-bicyclo[2.2.1]heptanyl) prop-2-enoate Chemical compound C1CC2(C)C(OC(=O)C=C)CC1C2(C)C PSGCQDPCAWOCSH-UHFFFAOYSA-N 0.000 description 1
- PHPRWKJDGHSJMI-UHFFFAOYSA-N 1-adamantyl prop-2-enoate Chemical compound C1C(C2)CC3CC2CC1(OC(=O)C=C)C3 PHPRWKJDGHSJMI-UHFFFAOYSA-N 0.000 description 1
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- NPPNUGUVBUJRAB-UHFFFAOYSA-N 2-[tert-butyl(dimethyl)silyl]oxyethyl ethenyl carbonate Chemical compound CC(C)(C)[Si](C)(C)OCCOC(=O)OC=C NPPNUGUVBUJRAB-UHFFFAOYSA-N 0.000 description 1
- PNYGERBROPJVCX-UHFFFAOYSA-N 2-tridecanethioylsulfanylpropanoic acid Chemical compound CCCCCCCCCCCCC(=S)SC(C)C(O)=O PNYGERBROPJVCX-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- OKKJLVBELUTLKV-MZCSYVLQSA-N Deuterated methanol Chemical compound [2H]OC([2H])([2H])[2H] OKKJLVBELUTLKV-MZCSYVLQSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000005058 Isophorone diisocyanate Substances 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- OKJPEAGHQZHRQV-UHFFFAOYSA-N Triiodomethane Natural products IC(I)I OKJPEAGHQZHRQV-UHFFFAOYSA-N 0.000 description 1
- 229920006311 Urethane elastomer Polymers 0.000 description 1
- PODDNPJWQAULFB-UHFFFAOYSA-N [1-(2-methylbutan-2-yl)cycloheptyl] 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC1(C(C)(C)CC)CCCCCC1 PODDNPJWQAULFB-UHFFFAOYSA-N 0.000 description 1
- PXUKGSMOLCOWIX-UHFFFAOYSA-N [1-(4-methylpentyl)cyclopentyl] prop-2-enoate Chemical compound CC(C)CCCC1(OC(=O)C=C)CCCC1 PXUKGSMOLCOWIX-UHFFFAOYSA-N 0.000 description 1
- PISMUIKNTLPALX-UHFFFAOYSA-N [5-hydroxy-2-(3-methylbutyl)cyclohexyl] 2-methylprop-2-enoate Chemical compound CC(C)CCC1CCC(O)CC1OC(=O)C(C)=C PISMUIKNTLPALX-UHFFFAOYSA-N 0.000 description 1
- NXSPLICBQVJDGV-UHFFFAOYSA-N [[2-hydroxy-5-(4-methylpentyl)cyclopentyl]amino] 2-methylprop-2-enoate Chemical compound CC(C)CCCC1CCC(O)C1NOC(=O)C(C)=C NXSPLICBQVJDGV-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 150000003926 acrylamides Chemical class 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 238000007098 aminolysis reaction Methods 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- PFOPZEIFQCBTRG-UHFFFAOYSA-N azane;buta-1,3-diene Chemical compound N.N.C=CC=C PFOPZEIFQCBTRG-UHFFFAOYSA-N 0.000 description 1
- 230000010065 bacterial adhesion Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 239000000560 biocompatible material Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 235000010338 boric acid Nutrition 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 125000001951 carbamoylamino group Chemical group C(N)(=O)N* 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical group 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000013068 control sample Substances 0.000 description 1
- 210000004087 cornea Anatomy 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010511 deprotection reaction Methods 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- KZJNAICCMJTRKF-UHFFFAOYSA-N ethenyl 2-trimethylsilylethyl carbonate Chemical compound C[Si](C)(C)CCOC(=O)OC=C KZJNAICCMJTRKF-UHFFFAOYSA-N 0.000 description 1
- RWEUKWCZWYHIQA-UHFFFAOYSA-N ethenyl 3-trimethylsilylpropyl carbonate Chemical compound C[Si](C)(C)CCCOC(=O)OC=C RWEUKWCZWYHIQA-UHFFFAOYSA-N 0.000 description 1
- NDXTZJDCEOXFOP-UHFFFAOYSA-N ethenyl 3-tris(trimethylsilyloxy)silylpropyl carbonate Chemical compound C[Si](C)(C)O[Si](O[Si](C)(C)C)(O[Si](C)(C)C)CCCOC(=O)OC=C NDXTZJDCEOXFOP-UHFFFAOYSA-N 0.000 description 1
- KRAZQXAPJAYYJI-UHFFFAOYSA-N ethenyl trimethylsilylmethyl carbonate Chemical compound C[Si](C)(C)COC(=O)OC=C KRAZQXAPJAYYJI-UHFFFAOYSA-N 0.000 description 1
- 238000003682 fluorination reaction Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000005227 gel permeation chromatography Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 239000012362 glacial acetic acid Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 150000002431 hydrogen Chemical group 0.000 description 1
- 230000005660 hydrophilic surface Effects 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 229940119545 isobornyl methacrylate Drugs 0.000 description 1
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 1
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 1
- 229960004592 isopropanol Drugs 0.000 description 1
- 239000000644 isotonic solution Substances 0.000 description 1
- 210000001542 lens epithelial cell Anatomy 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229940127554 medical product Drugs 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229950004354 phosphorylcholine Drugs 0.000 description 1
- PYJNAPOPMIJKJZ-UHFFFAOYSA-N phosphorylcholine chloride Chemical compound [Cl-].C[N+](C)(C)CCOP(O)(O)=O PYJNAPOPMIJKJZ-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 239000001508 potassium citrate Substances 0.000 description 1
- 229960002635 potassium citrate Drugs 0.000 description 1
- QEEAPRPFLLJWCF-UHFFFAOYSA-K potassium citrate (anhydrous) Chemical compound [K+].[K+].[K+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O QEEAPRPFLLJWCF-UHFFFAOYSA-K 0.000 description 1
- 235000011082 potassium citrates Nutrition 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- NHARPDSAXCBDDR-UHFFFAOYSA-N propyl 2-methylprop-2-enoate Chemical compound CCCOC(=O)C(C)=C NHARPDSAXCBDDR-UHFFFAOYSA-N 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000005956 quaternization reaction Methods 0.000 description 1
- 238000001226 reprecipitation Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- UHUUYVZLXJHWDV-UHFFFAOYSA-N trimethyl(methylsilyloxy)silane Chemical compound C[SiH2]O[Si](C)(C)C UHUUYVZLXJHWDV-UHFFFAOYSA-N 0.000 description 1
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical group CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 1
- BSVBQGMMJUBVOD-UHFFFAOYSA-N trisodium borate Chemical compound [Na+].[Na+].[Na+].[O-]B([O-])[O-] BSVBQGMMJUBVOD-UHFFFAOYSA-N 0.000 description 1
- 229960000281 trometamol Drugs 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 150000003673 urethanes Chemical class 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
- G02B1/041—Lenses
- G02B1/043—Contact lenses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/28—Materials for coating prostheses
- A61L27/34—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/08—Materials for coatings
- A61L31/10—Macromolecular materials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/0427—Coating with only one layer of a composition containing a polymer binder
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/056—Forming hydrophilic coatings
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D153/00—Coating compositions based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
- C09D153/005—Modified block copolymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2333/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
- C08J2333/04—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
- C08J2333/14—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
- C08J2333/16—Homopolymers or copolymers of esters containing halogen atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2383/00—Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
- C08J2383/10—Block- or graft-copolymers containing polysiloxane sequences
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2453/00—Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
Definitions
- This invention relates to coating solutions comprising a new class of tailored polymers useful as surface coatings for ophthalmic devices.
- These polymers can be specifically tailored using controlled radical polymerization processes and contain a number of functional domains.
- Controlled radical polymerization allows the facile synthesis of segmented block copolymers with tunable chemical composition that, as a result, show different chemical properties than those prepared via conventional free radical polymerization.
- Segmented block copolymers with substrate binding domain(s) containing functional groups such as boronic acids, hydrogen bonding groups and electrostatic groups and hydrophilic domain(s) show good surface properties when interactively bound to substrates containing complimentary functionality.
- Medical devices such as ophthalmic lenses are made from a wide variety of materials.
- materials are broadly categorized into conventional hydrogels or silicone hydrogels.
- silicone-containing materials silicone hydrogels
- These materials can vary greatly in water content.
- silicone materials tend to be relatively hydrophobic, non-wettable, and have a high affinity for lipids.
- Methods to modify the surface of silicone devices by increasing their hydrophilicity and improving their biocompatibility are of great importance.
- US Pat. No. 6,958,169 discloses providing a medical device formed from a monomer mixture comprising a hydrophilic device-forming monomer including a copolymerizable group and an electron donating moiety, and a second device-forming monomer including a copolymerizable group and a interactive functional group; and, contacting a surface of the medical device with a wetting agent including a proton donating moiety reactive with the functional group provided by the second lens-forming monomer and that complexes with the electron donating moiety provided by the hydrophilic lens-forming monomer.
- US Pat. No. 6,858,310 discloses a method of modifying the surface of a medical device to increase its biocompatibility or hydrophilicity by coating the device with a removable hydrophilic polymer by means of reaction between reactive functionalities on the hydrophilic polymer with functionalities that are complementary on or near the surface of the medical device.
- US Pat. No. 6,599,559 discloses a method of modifying the surface of a medical device to increase its biocompatibility or hydrophilicity by coating the device with a removable hydrophilic polymer by means of reaction between reactive functionalities on the hydrophilic polymer which functionalities are complementary to reactive functionalities on or near the surface of the medical device.
- US Pat. No. 6,428,839 discloses a method for improving the wettability of a medical device, comprising the steps of: (a) providing a medical device formed from a monomer mixture comprising a hydrophilic monomer and a silicone-containing monomer, wherein said medical device has not been subjected to a surface oxidation treatment; (b) contacting a surface of the medical device with a solution comprising a proton-donating wetting agent, whereby the wetting agent forms a complex with the hydrophilic monomer on the surface of the medical device in the absence of a surface oxidation treatment step and without the addition of a coupling agent.
- copolymers are currently made using conventional free radical polymerization techniques with the structure of the polymer being completely random or controlled by the reactivity ratios of the respective monomers.
- controlled free radical polymerization techniques one is able to assemble copolymers in a controlled fashion and, in turn, they show completely different solution and coating properties than copolymers prepared using conventional free radical polymerization techniques.
- Controlled free radical polymerization can be conducted by a variety of methods, such as ATRP (atom transfer radical polymerization) and RAFT (Reversible addition- fragmentation chain transfer polymerization).
- the invention relates generally to coating solutions comprising interactive segmented block copolymers for forming bound coatings in the manufacture of medical devices.
- bound refers to various chemical interactions such as, electrostatic, ionic, complexation, hydrogen bond or other interaction between the interactive segmented block copolymer and the surface functionality of the device which results in the association of the coating composition with the device.
- suitable devices include contact lenses, intraocular lenses, intraocular lens inserters, vascular stents, phakic intraocular lenses, aphakic intraocular lenses, corneal implants, catheters, implants, and the like.
- ARP Atom Transfer Radical Polymerization
- Ri is the reactive residue of a moiety capable of acting as an initiator for Atom Transfer Radical Polymerization
- A is a chemical binding unit block
- B is a hydrophilic unit block
- m is 1 to 10,000
- n is 1 to 10,000
- p and q are natural numbers
- X is a halogen capping group of the initiator for Atom Transfer Radical Polymerization with the proviso that when A is an ionic block, B will be a nonionic block.
- polymers prepared using ATRP according to the invention herein would include those where X is a halogen capping group of the initiator for Atom Transfer Radical Polymerization and those polymers that have undergone post polymerization removal or transformation of the halogen capping group of an initiator for Atom Transfer Radical Polymerization (i.e., derivatized reaction product).
- the polymers which contain halogen end-groups can be utilized in a host of traditional alkyl halide organic reactions.
- tributyltin hydride to the polymeric alkyl halide in the presence of a radical source (AIBN, or Cu(I) complex) leads to a saturated hydrogen-terminated polymer.
- a radical source AIBN, or Cu(I) complex
- polymers with allyl end groups can be prepared.
- the terminal halogen can also be displaced by nucleophilic substitution, free-radical chemistry, or electrophilic addition catalyzed by Lewis acids to yield a wide variety of telechelic derivatives, such as alkenes, alkynes, alcohols, thiols, alkanes, azides, amines, phosphoniums, or epoxy groups, to mention a few.
- telechelic derivatives such as alkenes, alkynes, alcohols, thiols, alkanes, azides, amines, phosphoniums, or epoxy groups, to mention a few.
- Interactive segmented block copolymers prepared through Reversible addition- fragmentation chain transfer polymerization (“RAFT”) methods in accordance with the invention herein may have the following generic formula (II):
- Ri is a radical forming residue of a RAFT agent or free radical initiator
- A is a chemical binding unit block
- B is a hydrophilic unit block
- m is 1 to 10,000
- n is 1 to 10,000
- p and q are natural numbers
- R 2 is a thio carbonyl thio fragment of the chain transfer agent with the proviso that when A is an ionic block, B will be a nonionic block.
- RAFT agents based upon thio carbonyl thio chemistry are well known to those of ordinary skill in the art and would include, for example, xanthates, trithiocarbonates and dithio esters. It should be noted, that there are many processes for the post polymerization removal or transformation of the thio carbonyl thio fragment of the chain transfer agent which are known to one of ordinary skill in the art. Therefore polymers prepared using RAFT agent according to the invention herein would include those where R 2 is a thio carbonyl thio fragment of the chain transfer agent and those polymers that have undergone post polymerization removal or transformation of the thio carbonyl thio fragment of the chain transfer agent (i.e., a derivatized reaction product).
- RAFT reversible addition- fragmentation chain transfer polymerization
- the order of the block units is not critical and the interactive segmented block copolymer can contain more than two blocks. Therefore the interactive segmented block copolymers can be multiblock copolymers and include repetition of one or more blocks.
- Interactive segmented block copolymers according to the invention herein may also contain blocks that would not be considered to be binding or hydrophilic, for example, polystyrene or polymethyl methacrylate.
- the presence of non binding or non hydrophilic block(s) within a polymer is contemplated as being within the scope of the claimed interactive segmented block copolymers and formulae I, II and III of the invention herein.
- a method of forming a surface modified medical device comprising providing a medical device having at least one group providing interactive functionality on at least one surface of the medical device; providing a surface modifying agent comprising a interactive segmented block copolymer comprising a hydrophilic block and a chemical binding unit block having reactivity that is complimentary to the at least one group providing surface functionality of the medical device; contacting the at least one surface having interactive functionality of the medical device with the surface modifying agent, and; subjecting the device surface and surface modifying agent to reaction conditions suitable for forming a chemical interaction selected from the group consisting of electrostatic, ionic, complexation or hydrogen bond interaction between the device surface and the surface modifying agent to form a surface modified medical device.
- a surface modified medical device comprising a medical device having at least one group providing reactive functionality on at least one surface of the medical device; and a interactive segmented block copolymer comprising a chemical binding unit block and a hydrophilic block applied to the surface of the medical device; whereby a chemical interaction selected from the group consisting of electrostatic, ionic, complexation or hydrogen bond interaction occurs between the device surface and the surface modifying agent to form a surface modified medical device.
- Figure 1 is a schematic example of atom-transfer radical polymerization (ATRP) used to make a segmented block copolymer in which there is an oligomeric block of the chemical binding unit at one end of the polymer followed by a large hydrophilic block;
- Figure 2 is the structural formula of various monomers which may be used to provide the interactive functionality of the segmented block copolymers of the invention herein;
- Figure 3 is a reaction schematic showing how RAFT polymerization can be used to polymerize block copolymers with functional domains.
- the present invention relates generally to coating solutions comprising interactive segmented block copolymers.
- Compositions comprising the interactive segmented block copolymers are useful in providing surface bound coatings in the manufacture of medical devices.
- the present invention relates to interactive segmented block copolymers having interactive functionality that is complimentary to surface functionality of a medical device such as an ophthalmic lens.
- surface is not to be limited to meaning "at least one complete surface”. Surface coverage does not have to be even or complete to be effective for surface functionality.
- the interactive segmented block copolymers of the present invention are useful as coatings for biocompatible materials including both soft and rigid materials commonly used for ophthalmic lenses, including contact lenses.
- Ri is the reactive residue of a moiety capable of acting as an initiator for Atom Transfer Radical Polymerization
- A is a chemical binding unit block
- B is a hydrophilic unit block
- m is 1 to 10,000
- n is 1 to 10,000
- p and q are natural numbers
- X is a halogen capping group of the initiator for Atom Transfer Radical Polymerization with the proviso that when A is an ionic block, B will be a nonionic block.
- X being an alkyl halide can be converted to another functionality through subsequent chemical reaction.
- tributyltin hydride to the polymeric alkyl halide in the presence of a radical source (AIBN, or Cu(I) complex) leads to a saturated hydrogen-terminated polymer.
- a radical source AIBN, or Cu(I) complex
- polymers with allyl end groups can be prepared.
- the terminal halogen can also be displaced by nucleophilic substitution, free-radical chemistry, or electrophilic addition catalyzed by Lewis acids to yield a wide variety of telechelic derivatives, such as alkenes, alkynes, alcohols, thiols, alkanes, azides, amines, phosphoniums, or epoxy groups, to mention a few.
- Ri is a radical forming residue of a RAFT agent or free radical initiator
- A is a chemical binding unit block
- B is a hydrophilic unit block
- m is 1 to 10,000
- n is 1 to 10,000
- p and q are natural numbers
- R 2 is a thio carbonyl thio fragment of the chain transfer agent with the proviso that when A is an ionic block, B will be a nonionic block.
- R 2 being a thio carbonyl thio fragment can be cleaved from the end of the polymer or converted to another functionality through subsequent chemical reaction.
- RAFT agents based upon thio carbonyl thio chemistry are well known to those of ordinary skill in the art and would include, for example, xanthates, trithiocarbonates and dithio esters. It should be noted, that there are many processes for the post polymerization removal or transformation of the thio carbonyl thio fragment of the chain transfer agent which are known to one of ordinary skill in the art.
- polymers prepared using RAFT agent according to the invention herein would include those where R 2 is a thio carbonyl thio fragment of the chain transfer agent and those polymers that have undergone post polymerization removal or transformation of the thio carbonyl thio fragment of the chain transfer agent (i.e., a derivatized reaction product).
- R 2 is a thio carbonyl thio fragment of the chain transfer agent
- a transformation is the use of free radical reducing agents to replace the thio carbonyl thio group with hydrogen.
- Others include thermolysis of the end group or conversion of the thio carbonyl thio groups to thiol groups by amino Iy sis.
- a wide variety of telechelic derivatives can be prepared, such as alkenes, alkynes, alcohols, thio
- RAFT reversible addition- fragmentation chain transfer polymerization
- the order of the block units is not critical and the interactive segmented block copolymer can contain more than two blocks. Therefore the interactive segmented block copolymers can be multiblock copolymers and include repetition of one or more blocks.
- the nonlimiting representations below each of which is intended to fall within generic formula I, II and III:
- Interactive segmented block copolymers according to the invention herein may also contain blocks that would not be considered to be binding or hydrophilic, for example, polystyrene or polymethyl methacrylate.
- the presence of non binding or non hydrophilic block(s) within a polymer is contemplated as being within the scope of the claimed reactive segmented block copolymers and formulae I, II and III of the invention herein.
- the present invention provides materials useful for surface modifying contact lenses and like medical devices through the use of complementary interactive functionality. Although only contact lenses will be referred to hereinafter for purposes of simplicity, such reference is not intended to be limiting since the subject method is suitable for surface modification of other medical devices such as phakic and aphakic intraocular lenses and corneal implants as well as contact lenses.
- the preferred interactive segmented block copolymers in the present invention are selected based on the specific interactive surface groups of the polymeric material to be coated.
- the one or more interactive segmented block copolymers selected for surface modification should have complementary interactive chemical functionality to that of the surface of the substrate. Such complementary interactive chemical functionality enables a chemical reaction between the interactive segmented block copolymers and the complementary surface functionality of the substrate to form electrostatic, ionic, complexation, hydrogen bond or other interactions there between.
- the one or more interactive segmented block copolymers are thus bound to the surface of the contact lens or like medical device to achieve surface modification thereof.
- the interactive segmented block copolymer comprises a chemical binding unit block to provide the desired surface binding of the molecule.
- the chemical binding unit block can be varied and is determined based upon the intended use of the interactive segmented block copolymers. That is, the chemical binding unit block of the interactive segmented block copolymers is selected to provide functionality that is complementary with the surface functionality of the device.
- the chemical binding unit block will contain functional groups such as boronic acids, hydrogen bonding groups and electrostatic groups.
- Selection of the chemical binding unit monomer of the block copolymer is determined by the functional groups on the surface of the device.
- a quaternary amine containing monomer can be a chemical binding unit monomer of the interactive segmented block copolymer.
- boronic acid containing monomers can be a chemical binding unit monomer of the interactive segmented block copolymer.
- the chemical binding unit block may comprise a moiety selected from styrene boronic acid, 3-methacrylamido styrene boronic acid, trimethyl, 2-methacryloyloxyethylsulfonate salts, 3- methacrylamidopropyl-N,N,N-trimethyammonium salts, 2-methacryloyloxyethyl- N,N,N-trimethylamrnonium salts, and amine-containing monomers, such as 3- methacrylamidopropyl-N,N-dimethyl amine. Examples of complementary functionality are provided below in Table 1.
- the chemical binding unit block of the interactive segmented block copolymers is oligomeric or polymeric and is sized to provide suitable binding to the surface of the medical device to be coated. Therefore the variable m of formula I, II or III can be between 1 and about 1000, preferably between 1 and about 100, most preferably between 1 and about 30.
- the interactive segmented block copolymers of the invention herein will also contain hydrophilic domain(s) showing good surface properties when the block copolymer is covalently bound to substrates containing complimentary functionality.
- the hydrophilic domain(s) will comprise at least one hydrophilic monomer, such as, HEMA, glycerol methacrylate, methacrylic acid (“MAA”), acrylic acid (“AA”), methacrylamide, acrylamide, N,N'- dimethylmethacrylamide, or N,N'-dimethylacrylamide; copolymers thereof; hydrophilic prepolymers, such as ethylenically unsaturated poly(alkylene oxide)s, cyclic lactams such as N-vinyl-2-pyrrolidone (“NVP”), or derivatives thereof.
- hydrophilic monomer such as, HEMA, glycerol methacrylate, methacrylic acid (“MAA"), acrylic acid (“AA”), methacrylamide, acrylamide, N,N'-
- Hydrophilic monomers can be nonionic monomers, such as 2-hydroxyethyl methacrylate (“HEMA”), 2-hydroxyethyl acrylate (“HEA”), 2-(2-ethoxyethoxy)ethyl (meth)acrylate, glyceryl (meth)acrylate, poly(ethylene glycol (meth)acrylate), tetrahydrofurfuryl (meth)acrylate, (meth)acrylamide, N,N'-dimethylmethacrylamide, N,N'-dimethylacrylamide("DMA”), N-vinyl-2-pyrrolidone (or other N-vinyl lactams), N-vinyl acetamide, and combinations thereof.
- HEMA 2-hydroxyethyl methacrylate
- HOA 2-hydroxyethyl acrylate
- glyceryl (meth)acrylate poly(ethylene glycol (meth)acrylate
- hydrophilic monomers are the vinyl carbonate and vinyl carbamate monomers disclosed in U.S. Patent 5,070,215, and the hydrophilic oxazolone monomers disclosed in U.S. Patent 4,910,277. The contents of these patents are incorporated herein by reference.
- the hydrophilic monomer also can be an anionic monomer, such as 2-methacryloyloxyethylsulfonate salts.
- Substituted anionic hydrophilic monomers such as from acrylic and methacrylic acid, can also be utilized wherein the substituted group can be removed by a facile chemical process.
- Non- limiting examples of such substituted anionic hydrophilic monomers include trimethylsilyl esters of (meth)acrylic acid, which are hydrolyzed to regenerate an anionic carboxyl group.
- the hydrophilic monomer also can be a cationic monomer selected from the group consisting of 3-methacrylamidopropyl-N,N,N-trimefhyamrnonium salts, 2-methacryloyloxyethyl-N,N,N-trimethylammonium salts, and amine-containing monomers, such as 3-methacrylamidopropyl-N,N-dimethyl amine.
- Other suitable hydrophilic monomers will be apparent to one skilled in the art.
- the hydrophilic monomer block will be sized to provide the desirable surface coating property of the interactive segmented block copolymer.
- the size of the hydrophilic oligomeric or polymeric block may vary depending upon the substrate to be coated and the intended use. Therefore the variable n of formula I, II or III can be between 1 and about 10000, preferably between about 10 and about 1000, and more preferably between about 20 and about 300.
- Atom-transfer radical polymerization can be used to prepare segmented block copolymers in which the molecular weight of each of the blocks and the entire polymer can be precisely controlled.
- atom-transfer radical polymerization can be used to make a segmented block copolymer in which there is a block of the chemical binding unit at one end of the polymer followed by a large hydrophilic block.
- the order of addition of the monomer comprising the chemical binding unit domain and the monomer comprising the hydrophilic domain is not critical. A large number of monomers are available for the assembly of polymers (For example, see Figure 2).
- the interactive segmented block copolymers of the invention herein are useful in providing coatings for substrates.
- substrate materials useful with the present invention are taught in U.S. Patents 5,908,906 to K ⁇ nzler et al.; 5,714,557 to Kunzler et al.; 5,710,302 to Kunzler et al.; 5,708,094 to Lai et al.; 5,616,757 to Bambury et al.; 5,610,252 to Bambury et al.; 5,512,205 to Lai; 5,449,729 to Lai; 5,387,662 to Kunzler et al.; 5,310,779 to Lai and 6,891 ,010 to Kunzler et al.; which patents are incorporated by reference as if set forth at length herein.
- the present invention contemplates the use of interactive segmented block copolymers with medical devices including both "hard” and “soft” contact lenses.
- the invention is applicable to a wide variety of materials.
- Hydrogels in general are a well-known class of materials that comprise hydrated, cross-linked polymeric systems containing water in an equilibrium state. Silicon containing hydrogels generally have water content greater than about 5 weight percent and more commonly between about 10 to about 80 weight percent. Such materials are usually prepared by polymerizing a mixture containing at least one silicon containing monomer and at least one hydrophilic monomer.
- either the silicon containing monomer or the hydrophilic monomer functions as a crosslinking agent (a crosslinker being defined as a monomer having multiple polymerizable functionalities) or a separate crosslinker may be employed.
- a crosslinker being defined as a monomer having multiple polymerizable functionalities
- a separate crosslinker may be employed.
- Applicable silicon containing monomeric units for use in the formation of silicon containing hydrogels are well known in the art and numerous examples are provided in U.S. Patent Nos. 4,136,250; 4,153,641 ; 4,740,533; 5,034,461 ; 5,070,215; 5,260,000; 5,310,779; and 5,358,995.
- Examples of applicable silicon-containing monomeric units include bulky polysiloxanylalkyl (meth)acrylic monomers.
- An example of bulky polysiloxanylalkyl (meth)acrylic monomers are represented by the following Formula IV: R 2
- X denotes -O- or -NR-; each Ri independently denotes hydrogen or methyl; each R 2 independently denotes a lower alkyl radical, phenyl radical or a group represented by n ,
- silicon containing vinyl carbonate or vinyl carbamate monomers such as: l,3-bis[4- vinyloxycarbonyloxy)butyl]tetramethyl-disiloxane; 3-(trimethylsilyl)propyl vinyl carbonate; 3-(vinyloxycarbonylthio)propyl-[tris(trirnethylsiloxy)silane] ; 3-[tris(tri- methylsiloxy)silyl] propyl vinyl carbamate; 3-[tris(trimethylsiloxy)silyl] propyl allyl carbamate; 3-[tris(trimethylsiloxy)silyl]propyl vinyl carbonate; t- butyldimethylsiloxyethyl vinyl carbonate; trimethylsilylethyl vinyl carbonate; and trimethylsilylmethyl vinyl carbonate.
- An example of silicon-containing vinyl carbonate or vinyl carbamate monomers are represented by Formula V:
- Y' denotes -O-, -S- or -NH-;
- R denotes a silicon containing organic radical
- R 3 denotes hydrogen or methyl
- d is 1, 2, 3 or 4
- q is 0 or 1.
- Suitable silicon containing organic radicals R ⁇ i include the following: -(CH 2 V SiKCH 2 WCH 3 I 3 ; -(CH 2 )n' Si[OSi(CH 2 WCH 3 ] 3 ;
- R 5 denotes an alkyl radical or a fluoroalkyl radical having 1 to 6 carbon atoms; e is 1 to 200; n' is 1, 2, 3 or 4; and m' is 0, 1, 2, 3, 4 or 5.
- silicon-containing monomers includes polyurethane- polysiloxane macromonomers (also sometimes referred to as prepolymers), which may have hard- soft-hard blocks like traditional urethane elastomers. They may be end- capped with a hydrophilic monomer such as HEMA.
- a hydrophilic monomer such as HEMA.
- Examples of such silicon containing urethanes are disclosed in a variety of publications, including Lai, Yu-Chin, "The Role of Bulky Polysiloxanylalkyl Methacrylates in Polyurethane-Polysiloxane Hydrogels, " Journal of Applied Polymer Science, Vol. 60, 1 193-1 199 (1996).
- PCT Published Application No. WO 96/31792 discloses examples of such monomers, which disclosure is hereby incorporated by reference in its entirety.
- Further examples of silicon containing urethane monomers are represented by Formulae VII and VIII:
- D denotes an alkyl diradical, an alkyl cycloalkyl diradical, a cycloalkyl diradical, an aryl diradical or an alkylaryl diradical having 6 to 30 carbon atoms;
- G denotes an alkyl diradical, a cycloalkyl diradical, an alkyl cycloalkyl diradical, an aryl diradical or an alkylaryl diradical having 1 to 40 carbon atoms and which may contain ether, thio or amine linkages in the main chain;
- each R s independently denotes an alkyl or fluoro-substituted alkyl group having 1 to 10 carbon atoms which may contain ether linkages between carbon atoms; m' is at least 1 ; and p is a number which provides a moiety weight of 400 to 10,000; each of E and E' independently denotes a polymerizable unsaturated organic radical represented by Formula X:
- Rn is hydrogen or methyl
- R 7 is hydrogen, an alkyl radical having 1 to 6 carbon atoms, or a -CO-Y-R 9 radical wherein Y is -O-, -S- or -NH-;
- Rg is a divalent alkylene radical having 1 to 10 carbon atoms
- R 9 is a alkyl radical having 1 to 12 carbon atoms;
- X denotes -CO- or -OCO-;
- Z denotes -O- or -NH-
- Ar denotes an aromatic radical having 6 to 30 carbon atoms; w is 0 to 6; x is 0 or 1 ; y is 0 or 1 ; and z is 0 or 1.
- m is at least 1 and is preferably 3 or 4
- a is at least 1 and preferably is 1
- p is a number which provides a moiety weight of 400 to 10,000 and is preferably at least 30
- Rio is a diradical of a diisocyanate after removal of the isocyanate group, such as the diradical of isophorone diisocyanate, and each E" is a group represented by:
- a preferred silicon containing hydrogel material comprises (in the bulk monomer mixture that is copolymerized) 5 to 50 percent, preferably 10 to 25 percent, by weight of one or more silicon containing macromonomers, 5 to 75 percent, preferably 30 to 60 percent, by weight of one or more polysiloxanylalkyl (meth)acrylic monomers, and 10 to 50 percent, preferably 20 to 40 percent, by weight of a hydrophilic monomer.
- the silicon containing macromonomer is a poly(organosiloxane) capped with an unsaturated group at two or more ends of the molecule.
- the silane macromonomer is a silicon-containing vinyl carbonate or vinyl carbamate or a polyurethane-polysiloxane having one or more hard-soft-hard blocks and end-capped with a hydrophilic monomer.
- Suitable hydrophilic monomers form hydrogels, such as silicon-containing hydrogel materials useful in the present invention.
- useful monomers include amides such as dimethylacrylamide, dimethylmefhacrylamide, cyclic lactams such as n-vinyl-2-pyrrolidone and poly(alkene glycols) functionalized with polymerizable groups.
- useful functionalized poly(alkene glycols) include poly(diethylene glycols) of varying chain length containing monomethacrylate or dimethacrylate end caps.
- the poly(alkene glycol) polymer contains at least two alkene glycol monomeric units.
- Still further examples are the hydrophilic vinyl carbonate or vinyl carbamate monomers disclosed in U.S. Patent Nos.
- the monomer mix may, further as necessary and within limits not to impair the purpose and effect of the present invention, comprise various additives such as antioxidant, coloring agent, ultraviolet absorber and lubricant.
- the monomer mix may be prepared by using, according to the end-use and the like of the resulting shaped polymer articles, one or at least two of the above comonomers and oligomers and, when occasions demand, one or more crosslinking agents.
- the monomer mix is suitably prepared from one or more of the silicon compounds, e.g. siloxanyl (meth)acrylate, siloxanyl (meth)acrylamide and silicon containing oligomers, to obtain contact lenses with high oxygen permeability.
- the silicon compounds e.g. siloxanyl (meth)acrylate, siloxanyl (meth)acrylamide and silicon containing oligomers
- the monomer mix may include additional constituents such as crosslinking agents, internal wetting agents, hydrophilic monomeric units, toughening agents, and other constituents as is well known in the art.
- the monomer mix may include toughening agents, preferably in quantities of less than about 80 weight percent e.g. from about 5 to about 80 weight percent, and more typically from about 20 to about 60 weight percent. Examples of suitable toughening agents are described in U.S. Pat. No. 4,327,203.
- These agents include cycloalkyl acrylates or methacrylates, such as: methyl acrylate and methacrylate, f-butylcyclohexyl methacrylate, isopropylcyclopentyl acrylate, t- pentylcycloheptyl methacrylate, Z-butylcyclohexyl acrylate, isohexylcyclopentyl acrylate and methylisopentyl cyclooctyl acrylate.
- suitable toughening agents are described in U.S. Pat. No. 4,355, 147.
- This reference describes polycyclic acrylates or methacrylates such as: isobornyl acrylate and methacrylate, dicyclopentadienyl acrylate and methacrylate, adamantyl acrylate and methacrylate, and isopinocamphyl acrylate and methacrylate. Further examples of toughening agents are provided in U.S. Pat. No. 5,270,418. This reference describes branched alkyl hydroxyl cycloalkyl acrylates, methacrylates, acrylamides and methacrylamides.
- Representative examples include: 4-?-butyl-2-hydroxycyclohexyl methacrylate (TBE); 4-/-butyl-2- hydroxycyclopentyl methacrylate; methacryloxyamino-4-?-butyl-2-hydroxycyclohexane; 6-isopentyl-3-hydroxycyclohexyl methacrylate; and methacryloxyamino-2-isohexyl-5- hydroxycyclopentane.
- TBE 4-?-butyl-2-hydroxycyclohexyl methacrylate
- 4-/-butyl-2- hydroxycyclopentyl methacrylate methacryloxyamino-4-?-butyl-2-hydroxycyclohexane
- 6-isopentyl-3-hydroxycyclohexyl methacrylate 6-isopentyl-3-hydroxycyclohexyl methacrylate
- methacryloxyamino-2-isohexyl-5- hydroxycyclopentane methacryloxy
- surface structure and composition determine many of the physical properties and ultimate uses of solid materials. Characteristics such as wetting, friction, and adhesion or lubricity are largely influenced by surface characteristics. The alteration of surface characteristics is of special significance in biotechnical applications where biocompatibility is of particular concern. Thus, it is desired to provide a silicon containing hydrogel contact lens with an optically clear, hydrophilic surface film that will not only exhibit improved wettability, but which will generally allow the use of a silicon containing hydrogel contact lens in the human eye for extended period of time.
- a silicon containing hydrogel lens for extended wear, it be further desirable to provide an improved silicon-containing hydrogel contact lens with an optically clear surface film that will not only exhibit improved lipid and microbial behavior, but which will generally allow the use of a silicon-containing hydrogel contact lens in the human eye for an extended period of time.
- Such a surface treated lens would be comfortable to wear in actual use and allow for the extended wear of the lens without irritation or other adverse effects to the cornea.
- the present invention is useful for surface treatment of a polymeric device.
- the surface treatment comprises the binding of interactive segmented block copolymers to the surface of a polymeric medical device substrate by reacting complementary interactive functionalities of the interactive segmented block copolymers with interactive functionalities along the polymeric substrate surface.
- complementary functionality is incorporated between the surface of the contact lens material (i.e., the substrate) and the chemical binding unit block of the interactive segmented block copolymer used as a surface modification treatment polymer (surface modifying agent).
- surface modifying agent if a surface modifying agent has a boronic acid containing functionality, then the contact lens material to be treated must have a residue with complementary functionality that will react with that of the surface modifying agent.
- the contact lens material could include a hydroxyl containing monomer such as 2-Hydroxyethyl methacrylate or glycerol methacrylate to interact with the surface modifying agent boronic acid functionality.
- a contact lens is formed from material having a residue providing boronic acid, a surface modifying agent containing a 2-hydroxyethyl methacrylate or glycerol methacrylate functionality could be used for surface modification in accordance with the present invention.
- Such complementary chemical functionality enables binding to occur between the surface of the contact lens and the interactive groups of the one or more surface modifying agent's. This binding between functional groups forms chemical interactions there between.
- a contact lens containing prepolymer having surface carboxylic acid groups preferably undergo surface modification using surface modifying agents containing quaternary ammonia or other cationic functional groups.
- a contact lens having surface cationic groups preferably undergo surface modification using surface modifying agents containing carboxylic acid units, sulfonic acid units, or other anionic functional units.
- the reaction of the contact lens containing surface interactive functional groups and the interactive surface modifying agent is conducted under conditions known to those of skill in the art. In the case where interactive groups are not present in the substrate material, they can be added.
- a surface activation treatment such as oxygen plasma, ammonia-butadiene-ammonia (ABA) treatments and hydrogen-ammonia- butadiene-ammonia (HABA) treatments.
- Plasma treatment of substrate materials is known and is described in U.S. Patent No.'s 6, 193,369 Valint et al., 6,213,604 Valint et al. and 6,550,915 Grobe, III.
- Methods of coating the substrate would include dip coating of the substrate into a solution containing the surface modifying agent.
- the solution containing the surface modifying agent may contain substantially the surface modifying agent in solvent or may contain other materials such as cleaning and extracting materials.
- Other methods could include spray coating the device with the surface modifying agent.
- suitable catalysts for example, condensation catalyst.
- the substrate and the other surface modifying agent may be subjected to autoclave conditions.
- the substrate and the surface modifying agent may be autoclaved in the packaging material that will contain the coated substrate. Once the reaction between the substrate and the surface modifying agent has occurred, the remaining surface modifying agent could be substantially removed and packaging solution would be added to the substrate packaging material. Sealing and other processing steps would then proceed as they usually do.
- the surface modifying agent could be retained in the substrate packaging material during storage and shipping of the substrate device to the end user.
- the treated lenses are allowed to cool for a minimum of 3 hours, then removed from the vials and rinsed at least three times with deionized water.
- the rinsed lenses are then placed into new vials containing 4 ml of borate buffered saline (phosphate for samples undergoing bacterial adhesion testing) and autoclaved for one 30- minute cycle for sterilization.
- Pure VisionTM contact lenses comprising Balafilcon A hydrogel material, disclosed in U.S. Patent 5,260,000, which is incorporated herein by reference, a surface-treated with a coating polymer as disclosed above.
- Pur VisionTM contact lenses are available from Bausch and Lomb Incorporated, Rochester, New York.
- PureVisionTM contact lenses were first treated with a plasma discharge generated in a chamber containing air and ammonia to increase the population of reactive surface functional groups.
- a solution for surface treatment comprised segmented block poly(DMA-co- GMA) and poly(acrylic acid).
- the silicone hydrogel contact lenses are packaged in a container that includes a receptacle portion to hold the contact lens and a sterile packaging solution.
- the container are conventional contact lens blister packages.
- This receptacle, containing the contact lens immersed in the solution is hermetically sealed, for example, by sealing lidstock on the package over the receptacle.
- the lidstock is sealed around a perimeter of the receptacle.
- the solution and the contact lens are sterilized while sealed in the package receptacle.
- sterilization techniques include subjecting the solution and the contact lens to thermal energy, microwave radiation, gamma radiation or ultraviolet radiation.
- a specific example involves heating the solution and the contact lens, while sealed in the package container, to a temperature of at least 100 0 C, more preferably at least 12O 0 C, such as by autoclaving.
- the packaging solution is an aqueous solution that includes the interactive segmented block copolymer, preferably in an amount of 0.02 to 5.0 weight percent, based on total weight of the packaging solution.
- the specific amount of interactive segmented block copolymer will vary depending on the substrate and the copolymer, but generally, the interactive segmented block copolymer will be present in an amount within this range.
- the packaging solutions preferably have a pH of about 6.0 to 8.0, more preferably about 6.5 to 7.8, and most preferably 6.7 to 7.7.
- Suitable buffers include monoethanolamine, diethanolamine, triethanolamine, tromethamine (tris(hydroxymethyl)aminomethane, Tris), Bis-Tris, Bis-Tris Propane, borate, citrate, phosphate, bicarbonate, amino acids, and mixtures thereof.
- specific buffering agents include boric acid, sodium borate, potassium citrate, citric acid, Bis- Tris, Bis-Tris Propane, and sodium bicarbonate. When present, buffers will generally be used in amounts ranging from about 0.05 to 2.5 percent by weight, and preferably from 0.1 to 1.5 percent by weight.
- the packaging solutions may further include a tonicity adjusting agent, optionally in the form of a buffering agent, for providing an isotonic or near-isotonic solution having an osmolality of about 200 to 400 mOsm/kg, more preferably about 250 to 350 m ⁇ sm/kg.
- suitable tonicity adjusting agents include sodium and potassium chloride, dextrose, glycerin, calcium and magnesium chloride. When present, these agents will generally be used in amounts ranging from about 0.01 to 2.5 weight percent and preferably from about 0.2 to about 1.5 weight percent.
- packaging solutions may include an antimicrobial agent, but it is preferred that the solutions lack such an agent.
- the interactive segmented block copolymers useful in certain embodiments of the present invention may be prepared according to syntheses well known in the art and according to the methods disclosed in the following examples. Surface modification of contact lenses using one or more surface modifying agents in accordance with the present invention is described in still greater detail in the examples that follow.
- NVP N- vinylpyrrolidone
- the product was characterized by proton NMR (DMSO-d6) and GPC. Resonances attributable to the phenyl protons of MAAPBA were observed at approximately 7.2 to 8.0 ppm. The DMAPMA resonances could not be cleanly distinguished from the PVP resonances.
- the product was characterized by proton NMR (DMSO-d6) and GPC. Resonances attributable to the phenyl protons of MAAPBA were observed at approximately 7.2 to 8.0 ppm. The DMAPMA resonances could not be cleanly distinguished from the DMA resonances. Resonances attributable to MPC units were observed at 3.2 ppm (trimethylammonium protons) and 3.6 to 4.1 ppm (methylene protons adjacent to oxygen atoms). GPC was performed using a PLgel RESIpore column and DMF + 1.0 M LiBr as solvent with triple detection. The polymer did not elute from the column.
- Balafilcon A is a copolymer comprised of 3-[tris(tri- methylsiloxy)silyl] propyl vinyl carbamate, N-vinyl-2-pyrrolidone (NVP), 1 ,3-bis[4- vinyloxycarbonyloxy)but- l-yl]polydimethylsiloxane and N-vinyloxycarbonyl alanine. All Balafilcon A lenses were air-plasma treated prior to exposure to coating polymer ("Test" Groups) or just standard borate-buffered saline solution containing 300 ppm EDTA ("Control" Groups), below.
- each lens was placed in a polypropylene (PP) blister containing 3.8-mL of a 100 or 250 ppm (w/v) solution of the subject polymer dissolved in borate-buffered saline (BBS) containing 300 ppm EDTA.
- PP polypropylene
- BBS borate-buffered saline
- Test sample A was coated with the polymer of Example A
- Test sample B was coated with the polymer of Example B.
- Atomic concentrations were determined by XPS, as described below.
- XPS X-ray Photoelectron Spectroscopy
- ESCA Microprobe This instrument utilizes a monochromatic Al anode operated at 18kV and 100 Watts in the high power mode and 15kV and 0.25Watts/micron in low power mode. All high power acquisitions are rastered over a 1400 micron x 100 micron analysis area. Dual beam neutralization (ions and electrons) is used. The base pressure of the instrument was 5 x 10 "10 torr and during operation the pressure was less than or equal to 1 x 10 "7 torr.
- This instrument made use of a hemispherical analyzer operated in FAT mode. A gauze lens was coupled to a hemispherical analyzer in order to increase signal throughput. Assuming the inelastic mean free path for a carbon 1 s photoelectron is 35 A, the practical measure for sampling depth for this instrument at a sampling angle of 45 is approximately 75A. The governing equation for sampling depth in XPS is:
- ⁇ sin3 d where d is the sampling depth, ⁇ is the photoelectron inelastic mean free path and ⁇ is the angle formed between the sample surface and the axis of the analyzer.
- d is the sampling depth
- ⁇ is the photoelectron inelastic mean free path
- ⁇ is the angle formed between the sample surface and the axis of the analyzer.
- Each specimen was analyzed utilizing a low-resolution survey spectra (0-1 10OeV) to identify the elements present on the sample surface. Quantification of elemental compositions was completed by integration of the photoelectron peak areas. Analyzer transmission, photoelectron cross-sections and source angle correction were taken into consideration in order to give accurate atomic concentration values.
- Example D Synthesis of DMA -b-DM APM A/MA APB A/DM A
- the addition funnel was charged with a solution of 1.37-g (0.0081-mol) of deinhibited and distilled N- [3-(dimethylamino)propyl]methacrylamide (DMAPMA), 0.83-g (0.0040-mol) of 3- methacrylamidophenylboronic acid (MAAPBA) and 1.20-g (0.121 -mol) of distilled N,N- dimethylacrylamide (DMA) in 30 mL dioxane. Both solutions were individually sparged with nitrogen for at least 30-min before heating and were subsequently maintained under a nitrogen blanket for the duration of the reaction. The reaction was heated to 60 0 C. After 2.75 h, the addition funnel contents were added to the reaction flask.
- DMAPMA deinhibited and distilled N- [3-(dimethylamino)propyl]methacrylamide
- MAAPBA 3- methacrylamidophenylboronic acid
- DMA distilled N,N- dimethylacrylamide
- the copolymer was dissolved in 100-mL 2- propanol containing 0.53-g (0.0032-mol) of AIBN. The solution was sparged with nitrogen for Ih and then heated at 80 0 C for 12 h under a nitrogen blanket. The cooled solution was precipitated by dropwise addition into 6-L of mechanically stirred ethyl ether. The white solid was collected by vacuum filtration and vacuum dried at 85 0 C giving 18.75-g of product.
- This polymerization yields a block copolymer, PDMA-block-( DMAPMA/MAAPBA/DMA), in which the second block is actually a statistical copolymerization of any remaining DMA that had not been polymerized at the time of the DMAPMA, MAAPBA, and DMA addition.
- the second "block" is therefore compositionally heterogeneous.
- a polymerization that yields a statistical copolymerization or compositionally heterogeneous block as the second block would also be considered to be a reactive segmented block copolymer according to the invention herein.
- the product was characterized by proton NMR (methanol-d4),GPC, Karl-Fischer and elemental analysis. Resonances attributable to the phenyl protons of MAAPBA were observed at approximately 7.1 to 7.8 ppm. The DMAPMA resonances could not be cleanly distinguished from DMA resonances.
- GPC was performed at 35 0 C in DMF containing 0.01 M lithium nitrate.
- the results for elemental analysis were: TABLE 3
- Balafilcon A Contact lenses made of Balafilcon A were cast and processed under standard manufacturing procedures. All Balafilcon lenses were air-plasma treated prior to exposure to coating polymer ("Test” Groups) or standard borate-buffered saline (BBS) containing 300 ppm EDTA.
- Test coating polymer
- BBS borate-buffered saline
- each lens was placed in a polypropylene (PP) blister containing 3.8-mL of a 500 ppm (w/v) solution of subject polymer dissolved in BBS containing 300 ppm EDTA.
- the lens blisters were sealed and autoclaved at 121 0 C for 30-min.
- Test Sample 500 ppm polymer 67.5 (0.4) 18.6 (0.1) 10.2 (0.7) 3.8 (0.3)
- Example G Synthesis of a matrix of GMA-b-DMA Copolymers where the MW of each of the blocks is varied (demonstrates control of MW with CRP)
- Reaction 2748-1 14 is described below as an example of the procedure used.
- DMA N,N-Dimethylacrylamide
- Both the first precipitate and the block copolymer of DMA and GMA were characterized by proton NMR (CDC13) and GPC.
- the GPC shows a shift in the elution peak to shorter times (higher MW) after the addition of the GMA block.
- the NMR spectra of the block copolymer shows peaks for the glycidol methacrylate contributions at 3.7 ppm and 4.3 ppm.
- GPC data for these polymers using DMF as an eluent are shown below, using both PMMA standards and PVP standards as calibrants. Although the trends in MW are the same, PMMA standards show MW s much closer to the theoretically expected value for polyDMA.
- DMAPMA N,N ⁇ dimethylaminopropyl methacrylate
- the GPC shows a shift in the elution peak to shorter times (higher MW) after the addition of the DMAPMA block. (Mn shifts from 1 1 ,000 Daltons to 12,000 Daltons using PMMA standards).
- the DMAPMA resonances could not be cleanly distinguished from the DMA resonances, however the influence of the N-methyl resonances could be seen at arpund 2.2 ppm (shape of the peak changed).
- TMS-MA trimethylsilyl methacrylate
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Polymers & Plastics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Transplantation (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Dermatology (AREA)
- Wood Science & Technology (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- Heart & Thoracic Surgery (AREA)
- Surgery (AREA)
- Vascular Medicine (AREA)
- Graft Or Block Polymers (AREA)
- Materials For Medical Uses (AREA)
- Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Macromonomer-Based Addition Polymer (AREA)
- Eyeglasses (AREA)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US1684307P | 2007-12-27 | 2007-12-27 | |
| US12/334,619 US8100528B2 (en) | 2007-12-27 | 2008-12-15 | Coating solutions comprising segmented interactive block copolymers |
| PCT/US2008/086990 WO2009085756A1 (en) | 2007-12-27 | 2008-12-16 | Coating solutions comprising segmented interactive block copolymers |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP2231207A1 true EP2231207A1 (en) | 2010-09-29 |
Family
ID=40521758
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP08867880A Withdrawn EP2231207A1 (en) | 2007-12-27 | 2008-12-16 | Coating solutions comprising segmented interactive block copolymers |
| EP08867921A Withdrawn EP2231208A1 (en) | 2007-12-27 | 2008-12-17 | Coating solutions comprising surface active segmented block copolymers |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP08867921A Withdrawn EP2231208A1 (en) | 2007-12-27 | 2008-12-17 | Coating solutions comprising surface active segmented block copolymers |
Country Status (4)
| Country | Link |
|---|---|
| EP (2) | EP2231207A1 (enExample) |
| JP (1) | JP2011508908A (enExample) |
| CN (1) | CN101977638A (enExample) |
| WO (2) | WO2009085756A1 (enExample) |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9486311B2 (en) | 2013-02-14 | 2016-11-08 | Shifamed Holdings, Llc | Hydrophilic AIOL with bonding |
| US10195018B2 (en) | 2013-03-21 | 2019-02-05 | Shifamed Holdings, Llc | Accommodating intraocular lens |
| US10350056B2 (en) | 2016-12-23 | 2019-07-16 | Shifamed Holdings, Llc | Multi-piece accommodating intraocular lenses and methods for making and using same |
| US10548718B2 (en) | 2013-03-21 | 2020-02-04 | Shifamed Holdings, Llc | Accommodating intraocular lens |
| US10736734B2 (en) | 2014-08-26 | 2020-08-11 | Shifamed Holdings, Llc | Accommodating intraocular lens |
| US10987214B2 (en) | 2017-05-30 | 2021-04-27 | Shifamed Holdings, Llc | Surface treatments for accommodating intraocular lenses and associated methods and devices |
| US11141263B2 (en) | 2015-11-18 | 2021-10-12 | Shifamed Holdings, Llc | Multi-piece accommodating intraocular lens |
| US11266496B2 (en) | 2017-06-07 | 2022-03-08 | Shifamed Holdings, Llc | Adjustable optical power intraocular lenses |
| US12167960B2 (en) | 2016-12-23 | 2024-12-17 | Shifamed Holdings, Llc | Multi-piece accommodating intraocular lenses and methods for making and using same |
| US12376957B2 (en) | 2015-11-18 | 2025-08-05 | Shifamed Holdings, Llc | Multi-piece accommodating intraocular lens |
Families Citing this family (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8454689B2 (en) * | 2008-12-30 | 2013-06-04 | Bausch & Lomb Incorporated | Brush copolymers |
| US8383744B2 (en) * | 2009-05-22 | 2013-02-26 | Novartis Ag | Actinically-crosslinkable siloxane-containing copolymers |
| US20100315588A1 (en) * | 2009-06-16 | 2010-12-16 | Bausch & Lomb Incorporated | Biomedical devices |
| US9522980B2 (en) | 2010-05-06 | 2016-12-20 | Johnson & Johnson Vision Care, Inc. | Non-reactive, hydrophilic polymers having terminal siloxanes and methods for making and using the same |
| US9170349B2 (en) | 2011-05-04 | 2015-10-27 | Johnson & Johnson Vision Care, Inc. | Medical devices having homogeneous charge density and methods for making same |
| JP5439551B2 (ja) | 2011-08-15 | 2014-03-12 | 一般財団法人川村理化学研究所 | ブロック共重合体の塗膜 |
| US20130323295A1 (en) * | 2011-12-08 | 2013-12-05 | Johnson & Johnson Vision Care, Inc. | Monomer systems with dispersed silicone-based engineered particles |
| US9244196B2 (en) | 2012-05-25 | 2016-01-26 | Johnson & Johnson Vision Care, Inc. | Polymers and nanogel materials and methods for making and using the same |
| US10073192B2 (en) * | 2012-05-25 | 2018-09-11 | Johnson & Johnson Vision Care, Inc. | Polymers and nanogel materials and methods for making and using the same |
| JP2015526745A (ja) * | 2012-05-25 | 2015-09-10 | ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッドJohnson & Johnson Vision Care, Inc. | 水溶性n−(2ヒドロキシアルキル)(メタ)アクリルアミドポリマー又はコポリマーを含むコンタクトレンズ |
| WO2014203668A1 (ja) | 2013-06-20 | 2014-12-24 | 住友ゴム工業株式会社 | 表面改質方法及び表面改質体 |
| JP6371165B2 (ja) * | 2014-09-02 | 2018-08-08 | 住友ゴム工業株式会社 | 金属医療用具 |
| CN104193923B (zh) * | 2014-10-13 | 2017-01-18 | 陕西省石油化工研究设计院 | 一种疏水/疏油氟硅三嵌段聚合物及其制备方法 |
| JP6613692B2 (ja) | 2015-08-03 | 2019-12-04 | 住友ゴム工業株式会社 | 表面改質方法及び表面改質弾性体 |
| WO2018148063A1 (en) * | 2017-02-07 | 2018-08-16 | Quantapore, Inc. | Monolayer polymeric coatings for modifying metal oxide surfaces |
| JP7485602B2 (ja) * | 2018-01-30 | 2024-05-16 | アルコン インク. | その上に潤滑性コーティングを有するコンタクトレンズ |
| US11590267B2 (en) * | 2018-10-01 | 2023-02-28 | Microvention, Inc. | Medical devices |
| CN113613998B (zh) * | 2019-01-29 | 2023-04-11 | 鲍希与洛姆伯股份有限公司 | 用于隐形眼镜的包装溶液 |
| JP7329956B2 (ja) * | 2019-04-25 | 2023-08-21 | 大塚化学株式会社 | N-アルケニルラクタム系ブロック共重合体を含有する重合生成物および重合生成物の製造方法 |
| CA3163263A1 (en) * | 2020-03-12 | 2021-09-16 | Toray Industries, Inc. | Coating agent and medical material using same |
Family Cites Families (30)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4136250A (en) | 1977-07-20 | 1979-01-23 | Ciba-Geigy Corporation | Polysiloxane hydrogels |
| US4153641A (en) | 1977-07-25 | 1979-05-08 | Bausch & Lomb Incorporated | Polysiloxane composition and contact lens |
| US4740533A (en) | 1987-07-28 | 1988-04-26 | Ciba-Geigy Corporation | Wettable, flexible, oxygen permeable, substantially non-swellable contact lens containing block copolymer polysiloxane-polyoxyalkylene backbone units, and use thereof |
| US4910277A (en) | 1988-02-09 | 1990-03-20 | Bambury Ronald E | Hydrophilic oxygen permeable polymers |
| US5070215A (en) | 1989-05-02 | 1991-12-03 | Bausch & Lomb Incorporated | Novel vinyl carbonate and vinyl carbamate contact lens material monomers |
| US5034461A (en) | 1989-06-07 | 1991-07-23 | Bausch & Lomb Incorporated | Novel prepolymers useful in biomedical devices |
| US5310779A (en) | 1991-11-05 | 1994-05-10 | Bausch & Lomb Incorporated | UV curable crosslinking agents useful in copolymerization |
| US5358995A (en) | 1992-05-15 | 1994-10-25 | Bausch & Lomb Incorporated | Surface wettable silicone hydrogels |
| US5260000A (en) | 1992-08-03 | 1993-11-09 | Bausch & Lomb Incorporated | Process for making silicone containing hydrogel lenses |
| US5321108A (en) | 1993-02-12 | 1994-06-14 | Bausch & Lomb Incorporated | Fluorosilicone hydrogels |
| US5616757A (en) | 1993-04-08 | 1997-04-01 | Bausch & Lomb Incorporated | Organosilicon-containing materials useful for biomedical devices |
| US5760100B1 (en) | 1994-09-06 | 2000-11-14 | Ciba Vision Corp | Extended wear ophthalmic lens |
| KR100468803B1 (ko) | 1995-12-07 | 2005-04-19 | 바슈 앤드 롬 인코포레이티드 | 실리콘히드로겔의모듈러스를감소시키는데유용한단량체단위 |
| US5708094A (en) | 1996-12-17 | 1998-01-13 | Bausch & Lomb Incorporated | Polybutadiene-based compositions for contact lenses |
| US6630243B2 (en) * | 1999-05-20 | 2003-10-07 | Bausch & Lomb Incorporated | Surface treatment of silicone hydrogel contact lenses comprising hydrophilic polymer chains attached to an intermediate carbon coating |
| US6981010B1 (en) | 2000-08-02 | 2005-12-27 | Board Of Regents Of The University Of Nebraska | System and method for generating psuedo-noise sequences |
| US6756449B2 (en) * | 2002-02-27 | 2004-06-29 | Medtronic, Inc. | AnB block copolymers containing poly (vinyl pyrrolidone) units, medical devices, and methods |
| US7298344B2 (en) * | 2002-05-20 | 2007-11-20 | Raytheon Company | Series fed amplified antenna reflect array |
| US6958169B2 (en) | 2002-12-17 | 2005-10-25 | Bausch & Lomb Incorporated | Surface treatment of medical device |
| US7261946B2 (en) | 2003-11-14 | 2007-08-28 | Advanced Cardiovascular Systems, Inc. | Block copolymers of acrylates and methacrylates with fluoroalkenes |
| US20070026043A1 (en) | 2003-11-20 | 2007-02-01 | Angiotech International Ag | Medical devices combined with diblock copolymer compositions |
| US7176268B2 (en) * | 2003-12-05 | 2007-02-13 | Bausch & Lomb Incorporated | Prepolymers for improved surface modification of contact lenses |
| WO2005068571A1 (ja) | 2004-01-15 | 2005-07-28 | Menicon Co., Ltd. | 眼用レンズ表面のコーティング剤 |
| WO2007024500A1 (en) | 2005-08-25 | 2007-03-01 | Medtronic Vascular, Inc. | Controlled radical polymerization-derived block copolymer compositions for medical device coatings |
| US7988988B2 (en) * | 2005-11-21 | 2011-08-02 | Bausch & Lomb Incorporated | Contact lenses with mucin affinity |
| WO2007064594A2 (en) * | 2005-11-29 | 2007-06-07 | Bausch & Lomb Incorporated | New coatings on ophthalmic lenses |
| US20070155907A1 (en) | 2005-12-30 | 2007-07-05 | Zhao Jonathon Z | Biologically active block copolymers |
| US7811555B2 (en) | 2005-12-30 | 2010-10-12 | Cordis Corporation | Tri-branched biologically active copolymer |
| JP4832910B2 (ja) | 2006-01-31 | 2011-12-07 | 株式会社メニコン | 眼用レンズ表面用コーティング剤およびそれにより得られる眼用レンズ |
| US20070264303A1 (en) * | 2006-05-12 | 2007-11-15 | Liliana Atanasoska | Coating for medical devices comprising an inorganic or ceramic oxide and a therapeutic agent |
-
2008
- 2008-12-16 WO PCT/US2008/086990 patent/WO2009085756A1/en not_active Ceased
- 2008-12-16 EP EP08867880A patent/EP2231207A1/en not_active Withdrawn
- 2008-12-16 CN CN2008801271855A patent/CN101977638A/zh active Pending
- 2008-12-16 JP JP2010540782A patent/JP2011508908A/ja active Pending
- 2008-12-17 WO PCT/US2008/087152 patent/WO2009085817A1/en not_active Ceased
- 2008-12-17 EP EP08867921A patent/EP2231208A1/en not_active Withdrawn
Non-Patent Citations (1)
| Title |
|---|
| See references of WO2009085756A1 * |
Cited By (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11540916B2 (en) | 2013-02-14 | 2023-01-03 | Shifamed Holdings, Llc | Accommodating intraocular lens |
| US9486311B2 (en) | 2013-02-14 | 2016-11-08 | Shifamed Holdings, Llc | Hydrophilic AIOL with bonding |
| US10350057B2 (en) | 2013-02-14 | 2019-07-16 | Shifamed Holdings, Llc | Hydrophilic AIOL with bonding |
| US10709549B2 (en) | 2013-02-14 | 2020-07-14 | Shifamed Holdings, Llc | Hydrophilic AIOL with bonding |
| US10195018B2 (en) | 2013-03-21 | 2019-02-05 | Shifamed Holdings, Llc | Accommodating intraocular lens |
| US10548718B2 (en) | 2013-03-21 | 2020-02-04 | Shifamed Holdings, Llc | Accommodating intraocular lens |
| US11583390B2 (en) | 2014-08-26 | 2023-02-21 | Shifamed Holdings, Llc | Accommodating intraocular lens |
| US10736734B2 (en) | 2014-08-26 | 2020-08-11 | Shifamed Holdings, Llc | Accommodating intraocular lens |
| US12251303B2 (en) | 2014-08-26 | 2025-03-18 | Shifamed Holdings, Llc | Accommodating intraocular lens |
| US11141263B2 (en) | 2015-11-18 | 2021-10-12 | Shifamed Holdings, Llc | Multi-piece accommodating intraocular lens |
| US12376957B2 (en) | 2015-11-18 | 2025-08-05 | Shifamed Holdings, Llc | Multi-piece accommodating intraocular lens |
| US12376958B2 (en) | 2015-11-18 | 2025-08-05 | Shifamed Holdings, Llc | Multi-piece accommodating intraocular lens |
| US11065109B2 (en) | 2016-12-23 | 2021-07-20 | Shifamed Holdings, Llc | Multi-piece accommodating intraocular lenses and methods for making and using same |
| US10350056B2 (en) | 2016-12-23 | 2019-07-16 | Shifamed Holdings, Llc | Multi-piece accommodating intraocular lenses and methods for making and using same |
| US12167960B2 (en) | 2016-12-23 | 2024-12-17 | Shifamed Holdings, Llc | Multi-piece accommodating intraocular lenses and methods for making and using same |
| US10987214B2 (en) | 2017-05-30 | 2021-04-27 | Shifamed Holdings, Llc | Surface treatments for accommodating intraocular lenses and associated methods and devices |
| US11266496B2 (en) | 2017-06-07 | 2022-03-08 | Shifamed Holdings, Llc | Adjustable optical power intraocular lenses |
| US12465483B2 (en) | 2017-06-07 | 2025-11-11 | Shifamed Holdings, Llc | Adjustable optical power intraocular lenses |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2009085817A1 (en) | 2009-07-09 |
| WO2009085756A1 (en) | 2009-07-09 |
| CN101977638A (zh) | 2011-02-16 |
| EP2231208A1 (en) | 2010-09-29 |
| JP2011508908A (ja) | 2011-03-17 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8100528B2 (en) | Coating solutions comprising segmented interactive block copolymers | |
| EP2231207A1 (en) | Coating solutions comprising segmented interactive block copolymers | |
| CN101977972B (zh) | 包含反应性嵌段共聚物的涂覆溶液 | |
| WO2009085754A1 (en) | Segmented interactive block copolymers | |
| US8454689B2 (en) | Brush copolymers | |
| US8419792B2 (en) | Brush copolymers | |
| EP1968658A2 (en) | Contact lenses with mucin affinity | |
| US20080003259A1 (en) | Modification of surfaces of polymeric articles by Michael addition reaction | |
| WO2007064594A2 (en) | New coatings on ophthalmic lenses | |
| WO2008005752A2 (en) | Modification of surfaces of polymeric articles by michael addition reaction | |
| WO2009085759A1 (en) | Segmented reactive block copolymers | |
| WO2008079495A2 (en) | Coatings and solutions for contact lenses | |
| US20070264509A1 (en) | Copolymer and Medical Device with the Copolymer | |
| WO2008005753A2 (en) | HYDROPHILIC MACROMONOMERS HAVING α, β -CONJUGATED CARBOXYLIC TERMINAL GROUP AND MEDICAL DEVICES INCORPORATING SAME | |
| US20070264503A1 (en) | Polymers comprising polyhydric alcohols, medical devices modified with same, and method of making | |
| US20070087113A1 (en) | Surface-modified medical devices and method of making | |
| US20080003252A1 (en) | Functionalized hydrophilic macromonomers and medical devices incorporating same | |
| WO2007061916A2 (en) | Contact lenses with mucin affinity | |
| US20090156745A1 (en) | Surface modified biomedical devices |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20100721 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
| AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
| 17Q | First examination report despatched |
Effective date: 20110201 |
|
| DAX | Request for extension of the european patent (deleted) | ||
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
| 18D | Application deemed to be withdrawn |
Effective date: 20110812 |