EP2227853A1 - Procédé pour faire fonctionner un dispositif d'énergie éolienne - Google Patents

Procédé pour faire fonctionner un dispositif d'énergie éolienne

Info

Publication number
EP2227853A1
EP2227853A1 EP09700812A EP09700812A EP2227853A1 EP 2227853 A1 EP2227853 A1 EP 2227853A1 EP 09700812 A EP09700812 A EP 09700812A EP 09700812 A EP09700812 A EP 09700812A EP 2227853 A1 EP2227853 A1 EP 2227853A1
Authority
EP
European Patent Office
Prior art keywords
inverter
control device
transistor circuits
freewheeling diodes
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09700812A
Other languages
German (de)
English (en)
Inventor
Stephan Engelhardt
Andrzej Geniusz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Woodward Kempen GmbH
Original Assignee
Woodward SEG GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Woodward SEG GmbH and Co KG filed Critical Woodward SEG GmbH and Co KG
Publication of EP2227853A1 publication Critical patent/EP2227853A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/68Controlling or determining the temperature of the motor or of the drive based on the temperature of a drive component or a semiconductor component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/007Control circuits for doubly fed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/15Special adaptation of control arrangements for generators for wind-driven turbines

Definitions

  • the invention relates to a method for operating a wind energy plant with a double-fed asynchronous machine, at least one inverter and at least one control device, wherein over the
  • Inverter at least partially electrical energy is fed into a network, the inverter per phase at least one power semiconductor module comprising at least two transistor circuits and at least two freewheeling diodes and the inverter using the control device is at least temporarily controlled by a pulse width modulation (PWM).
  • PWM pulse width modulation
  • the invention relates to a computer program and a computer program product for carrying out the method using a processor and a control device of a double-fed asynchronous machine of a wind turbine and a wind turbine.
  • Wind turbines are becoming increasingly demanding in terms of their efficiency and quietness. Since the noise of the wind turbine increases with increasing rotor speed, a simple way to reduce the noise of a wind turbine, is to reduce their rotor speeds. When reducing the rotor speeds, it may happen that the double-fed asynchronous machine must be operated for a longer time in the synchronous operating range. Usually, in the double-fed induction machine rotor side of the Inverter provided. In the synchronous operating range, currents with very low frequencies in the range of a few hertz are impressed on the rotor side, which are provided via a machine-side inverter. The machine-side inverter is thus dependent on the
  • Frequency of the rotor side impressed currents operated is done conventionally via a pulse width modulation in which the rotor required side currents determined at a high, constant frequency and the power semiconductor modules each phase of the inverter for generating the rotor currents on and off.
  • the components of the power semiconductor modules usually these are a transistor circuit and a freewheeling diode of a corresponding phase, are not uniform in time, but are rather punctually loaded in comparison to their thermal cooling behavior.
  • Power semiconductor modules usually two IGBT modules and two freewheeling diodes per phase, are heated strongly due to the longer duty cycle, without the heat dissipation a
  • Asynchronous machine to prevent a corresponding heating is the reduction of the rotor currents in this rotor speed range. This leads to a significant power loss in these rotor speed ranges.
  • the present invention has for its object to provide a generic method for operating a wind turbine, in which there is an improved power output even in the low-noise speed range of the rotors.
  • the above object is achieved according to a first teaching of the present invention by a generic method, characterized in that at frequencies of the machine side bangargt by the inverter currents of less than 10 Hz, preferably less than 6 Hz, via the control device, the duty cycle and / or Switching frequency of the transistor circuits and / or the freewheeling diodes of the inverter can be changed depending on their thermal behavior.
  • Invention uses a rotor-side inverter, it is possible to dimension the inverter smaller due to its rotor-side arrangement, since the largest part of the electrical power output is fed into the stator on the stator side.
  • the further improved power output of a wind turbine in the synchronous operating range of the double-fed induction machine can be achieved according to a next embodiment of the method according to the invention characterized in that the duty cycle and / or the switching frequency of the transistor circuits and freewheeling diodes at least depending on the ratio of the respective component temperature to the maximum junction temperature is selected.
  • This refinement of the method according to the invention takes into account that the losses energies of the free-wheeling diodes and the transistor circuits usually designed as IGBT modules are different, so that different component temperatures are present for the same current load of the transistor circuit and the freewheeling diode. By taking into account the different heating behavior, it is possible to exploit additional reserves in the power semiconductor module, without reaching the range of critical junction temperatures of the component temperature.
  • the dependence of the duty cycle and / or the switching frequency of the transistor circuits and the freewheeling diode Predetermined from the component temperature by a simulation of the thermal behavior of the components can be estimated in a simple way, the heating of the components and be taken into account at machine side current frequencies of less than 10 Hz, in particular less than 6 Hz.
  • Temperature sensors are usually not placed directly on the components themselves, that is, for example, on the free-wheeling diodes, but in their vicinity, so that the heating of the free-wheeling diode or of the IGBT can be determined via a temperature model. Using the temperature model, the sensor provides a measure of the current component temperature, so that, in particular together with a simulation of the thermal behavior, an even more exact utilization of the component reserves with regard to the maximum component temperature is made possible.
  • the thermal heating of the components is also determined by power losses, which are generated in particular during the switching on and off operations. If according to a next embodiment of the method according to the invention the number of switching operations in the power semiconductor module is reduced, additional power reserves can therefore be achieved at the same time.
  • the power semiconductor modules using a
  • Fiattop compilers or via predicted pulse pattern driven.
  • Fiattop compiler is instead of a space vector modulation within a predetermined Angle range for the voltage or current to be modulated to leave exactly one output voltage or -ström a component in full scale and thus reduces the number of switching operations.
  • Typical angular ranges of the current or voltage vector, in which the modulation is kept constant, are 30 °, 60 ° and 120 °.
  • predicted pulse patterns these are calculated in advance, taking into account various parameters, for example the different power losses and junction temperatures of the transistor circuits and freewheeling diodes, and stored in a table as pulse patterns for entire periods.
  • control device outputs only the input variables, for example the rotor currents to be impressed, corresponding pulse patterns for controlling the machine-side inverter.
  • the switching frequency can also be easily reduced in this way, since the operating ranges can be operated with a lower machine-side power frequency with lower switching frequencies.
  • the object indicated above is achieved by a computer program with instructions whose execution causes a processor to carry out the method according to the invention.
  • Computer program contains commands whose execution causes a processor to perform the inventive method.
  • control device a double-fed asynchronous machine of a wind turbine solved, wherein the control device controls an inverter of a double-fed asynchronous machine for feeding electrical energy into a network and means are provided for controlling the inverter according to the inventive method.
  • the control device according to the invention allows the operation of a double-fed asynchronous machine of a wind turbine even in the synchronous operating range, without the power output must be significantly reduced.
  • Wind turbine can be operated in the rotor speed ranges with less noise.
  • Fig. 1 is a circuit diagram of a
  • Power semiconductor module of FIG. 1 driven according to a
  • Fig. 6 pulse pattern for controlling the power semiconductor modules of the lines
  • Fig. 7 is a schematic representation of a
  • Embodiment of a wind turbine according to the invention Embodiment of a wind turbine according to the invention.
  • Fig. 1 shows first a circuit diagram of a single-phase inverter, as it is known from the prior art.
  • the transistor circuits 1 and 2 which are usually embodied as IGBT modules, together with the freewheeling diodes 3 and 4 connected in parallel, ensure that switching occurs or igniting the IGBT modules 1 and 2 at the output 5, a corresponding current flows with positive or negative signs.
  • the IGBT module 1, together with the free-wheeling diode 4 provides a current flow with a positive sign.
  • the IGBT modules 1, 2 and the freewheeling diodes 3, 4 are connected to a voltage source V, which may be, for example, the DC link voltage of the inverter.
  • the voltage-time diagram in FIG. 2a now shows the profile of a control voltage 6 which is used to control the inverter and the profile of an associated auxiliary voltage 7, as used in conventional pulse-width modulation. At intersections of the auxiliary voltage and the control voltage, the corresponding IGBT modules are switched on or off.
  • control voltage has a sufficiently high frequency, for example mains frequency of 50 to 60 Hz, is due to the slow heat dissipation from the IGBT modules 1, 2 or the Free-wheeling diodes 3, 4 a thermal equilibrium, which leads to a uniform heating of the modules or the freewheeling diodes, wherein the maximum current output of the single-phase inverter shown in Fig. 1 via the constant heating of
  • Power semiconductor 1, 2, 3, 4 is determined in comparison to the maximum permissible junction temperature of the respective components.
  • the control voltage 6 assumes the same value over a much longer period. In the present example, this leads to the fact that the IGBT module 1 is actuated significantly longer in relation to the freewheeling diode 4 and is therefore subject to a much greater degree of heating and no equilibrium can be established between heating and heat dissipation.
  • FIGS. 3a) and 3b) now show a current-time diagram which is generated using the method according to the invention, wherein the on and off phases of the IGBT module 1 and the freewheeling diode 4 are chosen as a departure from the conventional pulse width modulation.
  • the freewheeling diode 4 has significantly larger reserves in relation to the maximum junction temperature and is driven longer than conventionally.
  • the turn-on of the IGBT module 1 is reduced in order to better distribute the flow of current through both components.
  • the duty cycle is selected so that the component temperatures of the IGBT module 1 and the freewheeling diode 4 with respect to the maximum permissible junction temperature have the same reserves.
  • a circuit diagram of a three-phase inverter is shown in Fig. 4, in which the IGBT modules as switches 1, 2, 5, 6, 9, 10 are shown.
  • IGBT module 1 2, 5, 6, 9, 10 each freewheeling diodes 3, 4, I 1 8, 11, 12 are provided.
  • the power semiconductors 1, 2, 3, 4 supply phase Ll, the power semiconductors 5 to 8 phase L2 and the power semiconductors 9 to 12 phase L3 with power.
  • a component for example, Ll is considered maximally controlled.
  • An arbitrary voltage or current space pointer s within the range 13 can then be achieved by a vector addition of the components along the axes Ll, L2 and
  • the associated vector addition is via the circuit of other power semiconductor modules of the phases L2 and L3, which are denoted here by 16 and 17.
  • the solid angle range in which a component is fully controlled is 60 °.
  • the solid angle range can also be chosen differently, for example 30 °. It is clear that the components of the phase Ll, the components 1,2,3,4 are not switched in the selected solid angle range, because they are fully controlled, so that there is a reduction in the number of switching operations in a current path. The reduction of the switching operations in turn leads to a reduction in the heat loss in the power semiconductors, so that their current output can be increased.
  • Another way to reduce the number of switching operations is achieved by using precalculated pulse patterns to drive the power semiconductors.
  • Corresponding pulse pattern for controlling the power semiconductors of the individual phases Ll, L2 and L3 is shown in FIG. 6.
  • a specific switching pattern is stored in a table and called up according to the phase position.
  • FIG. 7 shows a sketch in a sketch
  • Stator 21 of the double-fed asynchronous machine 20 is connected via a transformer 22 to a network 23 in the present embodiment.
  • a control device 24 determines the rotor speed and compares it with the on the
  • Measuring points 25 and 26 detected voltages or currents on the stator 21.
  • the control device 24 is connected to the rotor side inverter 27 and controls on the one hand the network side inverter 27 a and on the other hand, the machine provided inverter 27 b.
  • the wind turbine according to the invention switches over the inventive control device 24 from the conventional pulse width modulation control of the inverter 27b at current frequencies of less than 10 Hz or 6 Hz to the method according to the invention, which determines the duty cycle and / or the switching frequencies of the
  • Transistor circuits and freewheeling diodes depending on their thermal behavior changed.
  • the driving method is achieved that the power reduction in the range of synchronism of the double-fed asynchronous machine at constant

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

La présente invention concerne un procédé pour faire fonctionner un dispositif d'énergie éolienne comprenant une machine asynchrone à double commande, au moins un onduleur et au moins un dispositif de commande, l'énergie électrique étant alimentée dans un réseau par l'onduleur au moins partiellement, l'onduleur comprenant par phase au moins un module semi-conducteur comprenant au moins deux circuits à transistors, et au moins deux diodes de roue libre, et le dispositif de commande étant utilisé pour commander l'onduleur au moins partiellement par une l'onduleur étant contrôlé par une modulation de largeur d'impulsion (PWM). L'objet de l'invention est de concevoir un procédé de fonctionnement d'un dispositif d'énergie éolienne similaire, ledit procédé améliorant également la puissance délivrée dans la plage de vitesse peu bruyante des rotors. A cet effet, en cas de fréquences de courants à imprimer sur le côté de la machine par l'onduleur inférieures à 10 Hz, de préférence inférieures à 6 Hz, la durée de marche et/ou la fréquence de commutation des commutations du transistor et/ou des diodes de rue libre de l'onduleur sont modifiées par l'intermédiaire du dispositif de commande en fonction de leur comportement thermique.
EP09700812A 2008-01-07 2009-01-06 Procédé pour faire fonctionner un dispositif d'énergie éolienne Withdrawn EP2227853A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008003299.9A DE102008003299B4 (de) 2008-01-07 2008-01-07 Verfahren zum Betreiben einer Windenergieanlage
PCT/EP2009/050083 WO2009087150A1 (fr) 2008-01-07 2009-01-06 Procédé pour faire fonctionner un dispositif d'énergie éolienne

Publications (1)

Publication Number Publication Date
EP2227853A1 true EP2227853A1 (fr) 2010-09-15

Family

ID=40577798

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09700812A Withdrawn EP2227853A1 (fr) 2008-01-07 2009-01-06 Procédé pour faire fonctionner un dispositif d'énergie éolienne

Country Status (5)

Country Link
US (1) US8487461B2 (fr)
EP (1) EP2227853A1 (fr)
CN (1) CN101919143B (fr)
DE (1) DE102008003299B4 (fr)
WO (1) WO2009087150A1 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008007448A1 (de) * 2008-02-01 2009-08-13 Woodward Seg Gmbh & Co. Kg Verfahren zum Betreiben einer Windenergieanlage
DE102010043377A1 (de) * 2010-11-04 2012-05-10 Robert Bosch Gmbh Verfahren und Vorrichtung zur Ansteuerung von elektronisch kommutierten elektrischen Maschinen
US9190896B2 (en) * 2011-09-16 2015-11-17 Ford Global Technologies, Llc PWM strategy for reduction of inverter hotspot temperature and overall losses
DE102012210668A1 (de) * 2012-06-22 2013-12-24 Robert Bosch Gmbh Verfahren und Vorrichtung zum Ansteuern eines Wechselrichters
DE102012108164A1 (de) * 2012-09-03 2014-03-06 Woodward Kempen Gmbh Verfahren und Vorrichtung zum Betreiben eines Wechselrichters einer Stromerzeugungseinrichtung
DE102013221433A1 (de) * 2013-10-22 2015-04-23 Continental Teves Ag & Co. Ohg Verfahren zur Ansteuerung eines bürstenlosen Motors
CN104007283B (zh) * 2014-06-03 2018-05-08 河北工程大学 一种绕线式电机转子串电阻起动中的测速方法及测速电路
DE102017109728A1 (de) 2017-05-05 2018-11-08 Wobben Properties Gmbh Windenergieanlage mit überlastfähigem Umrichtersystem
CN111756306A (zh) * 2019-03-28 2020-10-09 广州汽车集团股份有限公司 用于电机的svpwm调制零矢量分配方法、装置及电动汽车
US10742149B1 (en) * 2019-04-22 2020-08-11 General Electric Company System and method for reactive power control of a wind turbine by varying switching frequency of rotor side converter
EP4002678B1 (fr) 2020-11-16 2024-01-03 Nordex Energy SE & Co. KG Procédé de fonctionnement d'une éolienne et éolienne
US20230280810A1 (en) * 2022-01-28 2023-09-07 Analog Devices, Inc. Power converter loop gain identification and compensation using a machine-learning model

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001275393A (ja) * 2000-03-28 2001-10-05 Meidensha Corp 静止形インバータ装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0382396A (ja) * 1989-08-23 1991-04-08 Mitsubishi Electric Corp パルス幅変調形インバータ装置
JP3243922B2 (ja) 1994-03-16 2002-01-07 株式会社明電舎 パワースイッチ素子の熱破損防止方法
US5610453A (en) * 1995-03-20 1997-03-11 Allen-Bradley Company, Inc. Pulsewidth modulation (PWM) frequency slider
JP3430773B2 (ja) * 1996-02-21 2003-07-28 株式会社明電舎 インバータ装置におけるスイッチング素子の過熱保護方法
DE19920505B4 (de) * 1999-05-05 2004-05-27 Semikron Elektronik Gmbh Umrichter mit Temperatursymmetrierung
WO2001091279A1 (fr) * 2000-05-23 2001-11-29 Vestas Wind Systems A/S Eolienne a vitesse variable pourvue d'un convertisseur de matrice
US6337804B1 (en) * 2000-09-26 2002-01-08 General Electric Company Multilevel PWM voltage source inverter control at low output frequencies
WO2002031952A1 (fr) * 2000-10-13 2002-04-18 Solectria Corporation Repartition amelioree des pertes de conduction de mid a vecteur spatial
US6448735B1 (en) * 2001-04-26 2002-09-10 Abb Automation Inc. Controller for a wound rotor slip ring induction machine
US7061134B2 (en) * 2003-08-01 2006-06-13 General Motors Corporation Method and system for improved thermal management of a voltage source inverter operating at low output frequency utilizing a zero vector modulation technique
US7859125B2 (en) * 2004-12-28 2010-12-28 Vestas Wind Systems A/S Method of controlling a wind turbine connected to an electric utility grid
US7356441B2 (en) * 2005-09-28 2008-04-08 Rockwell Automation Technologies, Inc. Junction temperature prediction method and apparatus for use in a power conversion module
DE102006006960B4 (de) * 2006-02-14 2021-02-18 Sew-Eurodrive Gmbh & Co Kg Verfahren und Elektro-Gerät
US7425771B2 (en) * 2006-03-17 2008-09-16 Ingeteam S.A. Variable speed wind turbine having an exciter machine and a power converter not connected to the grid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001275393A (ja) * 2000-03-28 2001-10-05 Meidensha Corp 静止形インバータ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2009087150A1 *

Also Published As

Publication number Publication date
US8487461B2 (en) 2013-07-16
DE102008003299B4 (de) 2016-06-09
WO2009087150A1 (fr) 2009-07-16
DE102008003299A1 (de) 2009-07-09
CN101919143A (zh) 2010-12-15
CN101919143B (zh) 2014-05-28
US20100277134A1 (en) 2010-11-04

Similar Documents

Publication Publication Date Title
DE102008003299B4 (de) Verfahren zum Betreiben einer Windenergieanlage
DE19843106B4 (de) System zur Drehzahlsteuerung von Wechselstrom-Motoren
DE69917630T2 (de) Motorregler für unterschiedliche Geschwindigkeiten
EP3644497B1 (fr) Procédé et dispositif de commande virtuelle d'inertie de masse pour centrales pourvues de machine asynchrone à double alimentation
DE112012006181B4 (de) Komposithalbleiterschaltvorrichtung
DE10134454A1 (de) Steuerverfahren und Schaltung zum Abbremsen eines elektronisch kommutierten Elektromotors
EP0865150A2 (fr) Circuit pour la variation continue directe ou indirecte du courant continu et/ou alternatif dans une charge alimentée par une tension de source continue ou alternative ou une combinaison quelconque de ces tensions
EP2136075A2 (fr) Circuit et procédé de commande pour onduleurs d'éoliennes
DE4334134B4 (de) Verwendung einer Leistungs- und Ansteuerelektronik an einer Spritzgießmaschine
EP2276165B1 (fr) Machine de traitement de matière synthétique et son procédé de fonctionnement
DE102007052232A1 (de) Vorrichtung zur Reduzierung des Energiebedarfs von Maschinen
EP1995456A2 (fr) Commutation électrique destinée à tester un châssis, en particulier d'une éolienne
EP3619804B1 (fr) Procédé de commande d'un convertisseur de courant, dispositif de commande pour un convertisseur de courant et convertisseur de courant
DE4413802C2 (de) Verfahren und Vorrichtung zum Steuern der Drehzahl eines elektrischen Dreiphasen-Asynchronmotors
DE102004016463A1 (de) Verfahren zur Verbesserung der Betriebsweise eines Matrix-Konverters
DE102007052233A1 (de) Vorrichtung zur Energieversorgung von Antrieben
DE102012210664A1 (de) Verfahren und Vorrichtung zum Ansteuern eines Wechselrichters
DE19902227A1 (de) Verfahren und Vorrichtung zum Betreiben eines Elektromotors eines Dokumentenvernichters
WO2019145068A1 (fr) Procédé et dispositif pour faire fonctionner une machine électrique polyphasée
EP2928055B1 (fr) Convertisseur de courant modulaire et procédé de production d'une tension de sortie sinusoïdale à harmoniques réduites
DE102011051732B3 (de) Windkraftanlage
DE102017116784B4 (de) Presse und Verfahren zum Betreiben einer Presse
EP2343796A1 (fr) Moteur EC
DE102014206725A1 (de) Stromrichter, Versorger, Leistungsteil und Verfahren zur Bereitstellung einer elektrischen Leistung für eine Last
DE10002706A1 (de) Verfahren zur Steuerung der Umrichterschaltung einer geschalteten Reluktanzmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100701

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: WOODWARD KEMPEN GMBH

17Q First examination report despatched

Effective date: 20161202

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20190612