EP2225527B1 - Wärmeaustauschsystem - Google Patents

Wärmeaustauschsystem Download PDF

Info

Publication number
EP2225527B1
EP2225527B1 EP08862368A EP08862368A EP2225527B1 EP 2225527 B1 EP2225527 B1 EP 2225527B1 EP 08862368 A EP08862368 A EP 08862368A EP 08862368 A EP08862368 A EP 08862368A EP 2225527 B1 EP2225527 B1 EP 2225527B1
Authority
EP
European Patent Office
Prior art keywords
heat exchange
heat
exchange system
heat exchanger
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08862368A
Other languages
English (en)
French (fr)
Other versions
EP2225527A1 (de
Inventor
Franz Summerer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A-Heat Allied Heat Exchange Technology AG Germany
Original Assignee
A-Heat Allied Heat Exchange Technology AG Germany
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A-Heat Allied Heat Exchange Technology AG Germany filed Critical A-Heat Allied Heat Exchange Technology AG Germany
Priority to EP08862368A priority Critical patent/EP2225527B1/de
Publication of EP2225527A1 publication Critical patent/EP2225527A1/de
Application granted granted Critical
Publication of EP2225527B1 publication Critical patent/EP2225527B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G15/00Details

Definitions

  • the invention relates to a heat exchange system according to the preamble of independent claim 1.
  • DE 19837683 describes such a heat exchange system.
  • Heat exchangers are used in refrigerators, e.g. used in ordinary household refrigerators, in air conditioners for buildings or in vehicles of all kinds, especially in automobiles, aircraft and ships, as water or oil coolers in internal combustion engines, as condensers or evaporators in coolant circuits and in a myriad of different applications, all of which are well known to those skilled in the art are.
  • the laminated heat exchangers serve, like all types of heat exchangers, to transfer heat between two media, for example, but not only, to transfer from a cooling medium to air or vice versa, as is known, for example, from a classic household refrigerator in which heat is released to the ambient air via the heat exchanger for generating a cooling capacity in the interior of the refrigerator.
  • the ambient medium outside the heat exchanger e.g. Water, oil or often simply the ambient air, which absorbs heat or transfers heat to the heat exchanger, for example, is either cooled or heated accordingly.
  • the second medium may e.g. be a liquid refrigerant or heat transfer or a vaporizing or condensing refrigerant.
  • the surrounding medium e.g. the air
  • the coolant that circulates in the heat exchanger system. This is compensated by greatly different heat transfer surfaces for the two media:
  • the medium with the high heat transfer coefficient flows in the tube, which on the outside by thin sheets (ribs, fins) has a greatly enlarged surface at which the heat transfer, for. takes place with the air.
  • Fig. 3 shows a simple example of an element of such a known laminated heat exchanger.
  • the heat exchanger is characterized by a variety of such elements Fig. 3 educated.
  • the lamellar spacing is chosen differently for different applications. However, purely thermodynamically, it should be as small as possible, but not so small that the air-side pressure loss is too large. An economic optimum is about 2mm, which is a typical value for condenser and recooler.
  • the efficiency is essentially determined by the fact that the heat that is transferred between the fin surface and the air, must be transmitted through heat conduction through the fins to the pipe. This heat transfer is all the more effective, the higher the conductivity or the thickness of the lamella, but also the smaller the distance between the tubes. This is called the lamella efficiency.
  • As a lamellar material is therefore nowadays predominantly aluminum used, which has a high thermal conductivity (about 220 W / mK) to economic conditions.
  • the pipe pitch should be as small as possible, but this leads to the problem that you need many pipes.
  • Many pipes mean high costs because the pipes (usually made of copper) are considerably more expensive than the thin aluminum fins.
  • minichannel or microchannel heat exchangers have been developed, which are manufactured by a completely different process and almost correspond to the ideal of a laminated heat exchanger: many small tubes with small spacings.
  • mini-channel heat exchanger which have very many small channels with a diameter of, for example, about 1 mm.
  • a heat exchanger depending on the required heat output, already manage with a single extruded profile as a central heat exchange element.
  • such profiles can be made simply and in a variety of shapes from a variety of materials using suitable extrusion techniques.
  • other manufacturing methods for the production of mini-channel heat exchangers are known, such as the assembly of suitably shaped profile sheets or other suitable methods.
  • mini-channel heat exchangers In mobile use, mini-channel heat exchangers have established themselves during the 1990s. The low weight, the small block depth and the limited dimensions that are required here are the ideal conditions for this. Car coolers and condensers and evaporators for car air conditioning systems are today almost exclusively realized with mini-channel heat exchangers.
  • hybrid coolers or hybrid dry coolers are known, such as in the WO90 / 15299 or the EP 428 647 B1 in which the gaseous or liquid medium to be cooled of the primary cooling circuit flows through a lamella heat exchanger, and deliver the dissipated heat through the cooling fins partly as sensitive and partly as latent heat to the air flow.
  • One or more fans promote the flow of air through the heat exchanger and advantageously have variable speed.
  • the dissipation of the latent heat is carried out by a liquid medium, preferably water, which is adapted to its specific values such as conductivity, hardness, content of carbonates and each is applied as a drop-forming liquid film on the air side heat transfer surface.
  • a liquid medium preferably water
  • the excess water drips back into a collection tray.
  • sprayed heat exchanger concepts are known where water is sprayed on the finned heat exchanger and completely evaporated and the evaporation energy is used to improve the heat transfer as well as in the wetting for energy optimization.
  • Hybrid heat transfer is thus understood to mean the considerable improvement in the heat transfer of lamella heat exchangers with pipes by targeted wetting or spraying of water.
  • it is especially necessary to regulate the air velocity in the disk pack in such a way that the water titration on the disk surface does not occur. This is advantageously achieved by a speed control of the fans or by other suitable measures.
  • the disadvantage here is that the sprayed or wetting water acts together with dissolved ions as the electrolyte, which can lead to numerous corrosion problems in the usually used material pairings copper pipe, and aluminum fins of the heat exchanger.
  • Another way of obtaining greater heat transfer performance is, in principle, by combining several individual heat exchange components, e.g. through the interconnection of Al-MCHX modules, attempts to achieve greater exchange rates.
  • a problem with all previously known heat exchange systems is the pollution of the system components of the heat exchange system, which in principle can not be avoided in the operating state.
  • the heat exchangers on which, for example, the cooling air is guided past with the aid of appropriate fan, can be polluted by pollution of all kinds contained in the cooling air with time more and more, which may for example lead to the heat transfer coefficient of the surface of the heat exchanger is lowered, so that the heat transfer performance is reduced.
  • This can lead to increased operating costs or in extreme cases, the heat exchange system can no longer provide the required heat exchange performance, which can lead to serious damage in the worst case.
  • a connected machine to be cooled such as a data processing system or an internal combustion engine or other machine overheats and is damaged.
  • damage to goods such as food that is stored in a cold store, can spoil, for example, in the absence of cooling.
  • the heat exchange systems must be cleaned regularly, but this is cumbersome in the known systems, so consuming and expensive.
  • it is necessary to open a housing by e.g. To clean the heat exchanger itself or other essential components inside the housing of the heat exchanger.
  • the opening of the housing is not only complicated and cumbersome.
  • the corresponding connected heat engine must be put out of action, otherwise opening the housing of the heat exchange system alone is not allowed for security reasons, or for technical reasons in the operating state is not possible.
  • the cleaning liquid with which the heat exchange system is cleaned for example, water, a detergent-added water or other cleaning fluid must be collected consuming, so that it can be disposed of properly.
  • the cleaning liquid soiled after the cleaning process must not simply be supplied to the sewage system. Therefore, in the known heat exchange systems corresponding elaborate devices are provided, for example, separators, separate channel systems, removed via the dirty cleaning liquid and fed to a collection point, or provided other known separation and collection systems that not only take up extra space, but also expensive are under construction and in operation.
  • the object of the invention is therefore to provide an improved heat exchange system which overcomes the problems known from the prior art, which in particular is easy to clean, preferably can also be cleaned in the operating state, and with which a dirty cleaning liquid is simply collected or . can be collected and disposed of.
  • the invention thus relates to a heat exchange system with a heat exchange module comprising at least a first heat exchange module with a heat exchanger, wherein an outer boundary of the heat exchange module is formed by an inflow and an outflow surface such that for exchanging heat between a Transportfluidum and a heat exchanger flowing through the heat exchanger in the operating state in that the transport fluid can be supplied to the heat exchange module via the inflow surface, can be brought into flowing contact with the heat exchanger and can be discharged again via the outflow surface from the heat exchange module.
  • a cleaning system with a cleaning flap is provided.
  • Essential to the invention is therefore that in a heat exchange system of the present invention, a cleaning system is provided with a cleaning flap, which can be easily opened or closed so that without dismantling the heat exchange system access to the interior of the heat exchange module is created, the cleaning and service work, in principle even allowed in the operating state of the heat exchange system.
  • the cleaning system of the present invention comprises a cleaning opening and / or a dust collecting grille and / or a scraper and / or a dishwasher, the function of which is known to the person skilled in the art in principle.
  • the heat exchanger can be provided on the cleaning flap and / or the heat exchanger itself is designed as a cleaning flap, which can significantly facilitate service or cleaning in special cases and depending on the application.
  • the cleaning flap is rotatably mounted about an axis of rotation for opening the heat exchange module, so that the cleaning flap in an open state is a collecting trough for a cleaning agent. This makes it possible that without further structural measures, a contaminated cleaning agent automatically collected in the drip pan and a professional disposal can be supplied.
  • a first boundary surface of the first heat exchange module is inclined at a predetermined tilt angle with respect to a second boundary surface of the first heat exchange module.
  • the heat exchanger itself can have a supporting function in the formation of the heat exchange module, for example by forming a statically integral component of a housing of the heat exchange module.
  • This can for example be realized in that the heat exchanger itself forms a housing wall of the heat exchanger module, or that the housing of the heat exchanger module does not have a boundary wall at all boundary surfaces of the housing, so that the heat exchanger itself performs a connecting and stabilizing integral static function as a housing component.
  • a boundary surface of the heat exchange system may be missing from its housing, wherein the missing housing wall in the installed state of the heat exchange system is formed by a wall of an installation object, in particular by a wall of a building is formed.
  • the heat exchange system may in particular also be formed from a plurality of heat exchange modules.
  • the first boundary surface of the first heat exchange module may be inclined with respect to the second boundary surface of the first heat exchange module below the predetermined inclination angle, that the modular heat exchange system by a second heat exchange module, in particular in a compact design can be expanded, wherein the second heat exchange module is preferably identical to the first heat exchange module.
  • the first and second boundary surfaces are inclined at 45 ° to each other, a heat exchange system are created, which has a rectangular or square cross-sectional area, idem the two inclined surfaces are arranged against each other.
  • the angle of inclination between the first boundary surface and the second boundary surface of the heat exchange module is between 20 ° and 70 °, preferably between 40 ° and 50 °, and is particularly preferably 45 °.
  • the heat exchange modules in the form of a parallelepiped formed with an inclination angle of 45 °, so two such heat exchange modules can be assembled in a particularly compact manner, for example on the inclined surfaces and also, if necessary, be extended by stringing together.
  • the heat transfer performance and / or heat transfer performance of a modular heat transfer system of the present invention can be easily and efficiently adjusted by regularly repeating preferably identical heat exchange modules or by removing identical heat exchange modules.
  • the first boundary surface of the first heat exchange module is inclined with respect to the second boundary surface of the first heat exchange module below the predetermined inclination angle, that the modular heat exchange system is expandable by a second heat exchange module, in particular in a compact design, wherein the second heat exchange module preferred identical to the first heat exchange module.
  • Compact design means that two heat exchange modules can be combined as possible to save space, so that between two combined heat exchange modules as little, preferably practically no free space remains
  • the heat exchange system is formed of a plurality of heat exchange modules, since in these, for example, by removing a heat exchange module particularly simple, the heat transfer performance can be reduced.
  • a cooling device may be provided for cooling the heat exchanger, in particular a fan for generating a gas flow, and / or the heat exchange system as known per se and described in detail as a hybrid system, and it can be a sprinkler for sprinkling the Heat exchanger to be formed with a cooling fluid, in particular with cooling water.
  • a droplet separator for separating the cooling fluid is also particularly advantageous.
  • the heat exchanger itself as known from the prior art, by a plurality of microchannels as a microchannel heat exchanger and / or the heat exchanger may also be formed as a laminated heat exchanger with cooling fins.
  • the heat exchange system is formed as a combination heat exchange system of the laminated heat exchanger and the microchannel heat exchanger, if specific requirements favor such a design.
  • a foreclosure in particular a Luftabschottung for regulating a flow rate of the transport fluid may be provided, which can be controlled either manually or via a drive unit in response to a predetermined operating parameters and / or regulated.
  • a compensating means known per se can very advantageously be provided to compensate for thermo-mechanical stresses.
  • the components of the modular heat exchange system of the present invention such as the heat exchangers and / or a supply and / or discharge for the heating means and / or the cleaning flap and / or any other component of a heat exchange system according to the invention with any other component of the heat exchange system by a Universal connection element may be connected so that, for example, a heat exchange module can be added or removed particularly easily.
  • a heat exchange module can be added or removed particularly easily.
  • the purge door and the manifolds for the heating means or even the blanks and other modules and components of the heat exchange system are connected to a universal connector.
  • These universal connecting elements are suitable for both vertical as well as for the horizontal installation of the heat exchange systems or the heat exchange modules particularly well suited.
  • a drive unit for the control and / or regulation of the heat exchange system in the operating state is usually, but not necessarily, a drive unit, in particular a drive unit with a data processing system for controlling the cooling device and / or the cleaning system and / or Heilabschottung and / or an operating or state parameter the heat medium and / or another operating parameter of the heat exchange system, as is known per se from the prior art in existing heat exchange systems to those skilled in the art.
  • the heat exchange system or the heat exchange module and / or the heat exchanger and / or a boundary surface of the heat exchange module, in particular the entire heat exchange system is particularly advantageously made of a metal and / or a metal alloy, in particular a single metal or a single metal alloy, and in particular made of stainless steel, in particular made of aluminum or an aluminum alloy, wherein a sacrificial metal is preferably provided as corrosion protection, and / or wherein the heat exchange system is at least partially provided with a protective layer, in particular with a corrosion protection layer.
  • a metal alloy in particular a single metal or a single metal alloy
  • stainless steel in particular made of aluminum or an aluminum alloy
  • a sacrificial metal is preferably provided as corrosion protection
  • the heat exchange system is at least partially provided with a protective layer, in particular with a corrosion protection layer.
  • the distribution and header pipes are preferred for high pressures, for example, for operation with CO 2 , made of high-strength materials such as stainless steel.
  • a heat exchange system is a radiator, in particular a radiator for a vehicle, in particular for a land vehicle, for an aircraft or for a watercraft, or a radiator, a condenser or an evaporator for a mobile or stationary heating system, cooling system or air conditioning in particular a cooler device for a machine, a data processing system or for a building or for another device which is to be operated with a heat exchange system.
  • Fig. 1 a and Fig. 1 b show in a schematic representation of a first simple embodiment of an inventive heat exchange system, which in the following together with the Reference numeral 1 is provided.
  • the heat exchange system is in Fig. 1 a shown in the operating state while Fig. 1 b same heat exchange system during a cleaning process shows.
  • the inventive heat exchange system 1 of Fig. 1 a or Fig. 1 b comprises as an essential element a heat exchange module 2, 21 with a heat exchanger 3 for exchanging heat between a heating means 6, for example a cooling liquid 6 or an evaporator means 6 and a transport fluid 5, for example air 5.
  • the heat exchanger 3 is in the present case a per se known micro-channel heat exchanger 3 with a plurality of micro-channels 31.
  • the heat exchanger 3 is with its micro-channels 31 via a in the Fig. 1a and Fig. 1b not shown connection system, which is known in the art in principle, connected to the exchange of heating means 6 to a chiller, also not shown.
  • the chiller is flow-connected to the connection system, comprising an inlet channel with an inlet segment of the heat exchanger 3 and an outlet channel with an outlet segment of the heat exchanger 3, such that the heat medium 6 exchanges heat with the air 5 from the inlet channel via the inlet channel Inlet segment, through the plurality of micro channels 31 of the heat exchanger 3, and finally via the outlet segment to the outlet channel can be fed.
  • An outer boundary of the heat exchange module 2, 21 is formed by an inflow 41 and an outflow 42 such that in the operating state for exchanging heat between the Transportfluidum 5, whose flow direction is shown symbolically by the arrows 5, and the heat exchanger 3 by flowing heat 6, the Transportfluidum 5 via the inflow 41 to the heat exchange module 2, 21 fed, with the heat exchanger 3 can be brought into flowing contact and via the outflow surface 42 from the heat exchange module 2, 21 can be discharged again.
  • a cooling device 10 in the present case a fan 10 is provided, with which an amount of air 5, which is transported per unit time through the heat exchange module 2, 21, is controllable.
  • a first boundary surface 9, 91 which is formed in the present case by the heat exchanger 3 itself, with respect to a second boundary surface 9, 92 of the first heat exchange module 2, 21 at a predetermined inclination angle ⁇ , which in the present specific example about 45 ° is inclined.
  • the inclination angle ⁇ may also have a different value, for example, a value greater than or less than 45 °, for example, but not only, 25 ° or 46 °.
  • the second boundary surface 92 is formed by a wall 9 of an installation object, which in the present case is a non-illustrated cold store.
  • a cleaning system 7 with cleaning flap 71 wherein Fig. 1a shows the heat exchange system 1 in the operating state in which the interior, in particular the surface of the heat exchanger 3 gradually contaminated.
  • Fig. 1 b shows the heat exchange system 1 during a cleaning process.
  • the cleaning flap 71 is designed as an access flap 71, which is designed to be rotatable about the axis of rotation 711 according to the arrow P, so that by pivoting the cleaning flap 71 about the rotation axis 711, which may be configured, for example, as a universal connection element 12 a Access to the interior of the heat exchange system 1 is created, which allows easy service, repair and cleaning work inside without the heat exchange system 1 must be dismantled or, depending on the specific embodiment, without the heat exchange system must be turned off. That is, the fact that the cleaning flap can be easily opened even in the operating state, a cleaning of the heat exchange system 1 is also possible in the operating state by the present invention.
  • the Fig. 1 b shows a situation in which just the heat exchanger 3 is cleaned with a cleaning liquid 714, for example with water 714.
  • the cleaning flap 71 was based on the situation of Fig. 1 a so pivoted about the axis of rotation 711 by 270 °, that they according to Fig. 1 b acts as a sump 712, which reliably collects the dirty cleaning liquid 714 during the cleaning process, so that the dirty cleaning liquid can be safely and optionally automatically removed and disposed of, so that, for example, environmental damage can be avoided.
  • Fig. 2 is schematically a heat exchanger 3, 300 according to Fig. 1 shown with micro channels 31 in section.
  • a heat exchanger 3 of Fig. 2 eg aluminum extruded sections are used which have very many small channels 31 with a diameter of eg about 1 mm.
  • the heat exchanger 3 of Fig. 2 For example, in a suitable extrusion process, it can be easily prepared in a variety of forms from a variety of materials. In this case, the heat exchanger 3 according Fig. 2 in another, in Fig. 2 not explicitly illustrated embodiment, be prepared by other manufacturing processes, such as by the assembly of suitably shaped profile sheets or other suitable method.
  • a heat exchange system 1 of the present invention may include, in addition to a heat exchanger 300 having a plurality of microchannels 31, a laminated heat exchanger 301 with cooling fins 32 for very specific applications.
  • the heat exchange system 1 can also be designed as a so-called hybrid system 1, the functional principle of which is also known per se to a person skilled in the art, and therefore does not have to be explicitly illustrated by a separate drawing.
  • a sprinkling device is preferably provided for sprinkling the heat exchanger 3, 300, 301 with an external cooling fluid, in particular with cooling water or cooling oil.
  • a droplet separator e.g.
  • Fig. 4 is a second embodiment of an inventive heat exchange system 1 with lateral cleaning flap 71 schematically shown.
  • the embodiment of Fig. 4 differs from that of the Fig. 1a in that the cleaning flap 71 is provided on the side of the heat exchange module 2, 21, as shown in the side view, ie, the cleaning flap 71 is mounted orthogonally to the surface of the heat exchanger 3.
  • the cleaning flap 71 covers only the cross section of the heat exchange module, resulting in the illustrated triangular shape of the cleaning flap 71 results.
  • the cleaning flap 71 can be pivoted about the axis of rotation 711 in the direction of arrow P to open the heat exchange system 1, whereby access to the interior of the heat exchange system 1 is provided.
  • a drip tray 73 is provided, which, if not necessary, of course, may be missing.
  • Fig. 5 is a further embodiment according to Fig. 4 shown schematically with an air partition 11.
  • the Luftabschottung 11 is preferably in the form of a blind or a Venetian blind comprising individual blind elements 111 and Storenimplantation 111 configured so that the degree of coverage of the heat exchanger 3 is variably, preferably electronically controlled and / or controlled variable, in which the Heilabschottung in known Way, for example, wholly or partially by pulling together of the individual shutter elements 111 and shutter elements 111 is removed from the surface of the heat exchanger 3, or by changing an angle between the individual shutter elements 111 and the surface of the heat exchanger 3, so that the effective passage area for the Air 5 is variable.
  • a regulation of the heat exchange performance of the heat exchanger 3 possible.
  • the cleaning flap 71 is the Fig. 5 so rectangular or square designed that it covers approximately twice the cross-sectional area of the heat exchange module 2, 21 and is rotatably mounted about the axis of rotation 711 by 270 °, that they according to the embodiment according to.
  • Fig. 1 b during a cleaning process at the same time as a collecting tray 712 for the cleaning agent 713 is used.
  • FIG. 6a another embodiment of an inventive heat exchange system 1 is shown schematically, in which the cleaning flap 71 with a universal connector 12 according to Fig. 6b is attached.
  • the universal connection element 12 is among other things for the simple and reliable connection of known per se, in the Fig. 6a and 6b not explicitly shown distribution and collecting pipes suitable for supplying or discharging the heating means 6 to or from the heat exchanger 3 are used.
  • the universal connection element 12 is designed so that it is particularly easy, for example via a screw or by soldering to the corresponding parts of the heat exchange system 1 is connectable.
  • the universal connector 12 is configured in detail such that it fits into a and the same embodiment can simultaneously create as many different connections, so that as little differently designed universal connection elements in one and the same modular heat exchange system 1 must be used simultaneously.
  • the universal connector 12 is configured to simultaneously perform all the connection functions between all parts of the modular heat exchange system, such that only one type of universal connector needs to be used in the same heat exchange system 1, which is the design, extension or design Reduction of a novel modular heat exchange system 1 enormously simplified and thus guarantees maximum flexibility of the system.
  • a modular heat exchange system 1 comprising two identical heat exchange modules 2, 21, 22.
  • the two modules are of identical design, wherein the inclination angle ⁇ has a value of preferably, but not necessarily 45 °.
  • any number of identical heat exchange modules 2, 21, 22 can be added perpendicular to the double arrow DP, that is to say parallel to the plane of the drawing. That is, to change the heat exchange performance of the modular heat exchange system 1, only a single type of heat exchange modules 2, 21, 22 needs to be provided to provide a plant 1 with practically any predeterminable heat exchange performance, or to expand this or an existing Plant by reducing the number of heat exchange modules 2, 21, 22 to reduce its heat exchange performance.
  • the individual heat exchange modules 2, 21, 22 are integrated in the heat exchange system 1 by using the universal connection elements 12, as they are based on the Fig. 6a and Fig. 6b already discussed. Analogous to Fig. 1a respectively.
  • Fig. 1 b are the two cleaning flaps 71 for service and cleaning purposes preferably about the axes of rotation about 270 ° pivotally, so that the cleaning flaps 71, as already explained several times above, can also serve as a sump 712 for a cleaning agent 713.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

  • Die Erfindung betrifft ein Wärmeaustauschsystem gemäss dem Oberbegriff des unabhängigen Anspruchs 1. DE 19837683 beschreibt ein derartiges Wärmeaustauschsystem.
  • Die Verwendung von Wärmetauschsystemen ist in einer kaum zu überblickenden Zahl von Anwendungen aus dem Stand der Technik bekannt. Wärmetauscher werden in Kühlanlagen, wie z.B. in gewöhnlichen Haushaltskühlschränken verwendet, in Klimaanlagen für Gebäude oder in Fahrzeugen aller Art, vor allem in Kraftfahrzeugen, Flugzeugen und Schiffen, als Wasser- oder Ölkühler in Verbrennungsmotoren, als Kondensatoren oder Verdampfer in Kühlmittelkreisen und in weiteren unzähligen verschiedenen Anwendungen, die dem Fachmann alle wohlbekannt sind.
  • Es gibt dabei verschiedene Möglichkeiten die Wärmetauscher aus ganz unterschiedlichen Anwendungen sinnvoll zu klassifizieren. Ein Versuch besteht darin, eine Unterscheidung nach dem Aufbau bzw. der Herstellung der verschiedenen Typen von Wärmetauschern vorzunehmen.
  • So kann eine Einteilung nach sogenannten "Lamellierten Wärmetauschern" einerseits, und "Minnichannel-" oder "Microchannelwärmetauscher" andererseits vorgenommen werden.
  • Die seit sehr langer Zeit wohlbekannten lamellierten Wärmetauscher dienen, wie alle Typen von Wärmetauschern, zur Übertragung von Wärme zwischen zwei Medien, z.B., aber nicht nur, zur Übertragung von einem Kühlmedium auf Luft oder umgekehrt, wie es zum Beispiel von einem klassischen Haushaltskühlschrank bekannt ist, bei dem über den Wärmetauscher zur Erzeugung einer Kühlleistung im Inneren des Kühlschranks Wärme an die Umgebungsluft abgegeben wird.
  • Das Umgebungsmedium ausserhalb des Wärmetauschers, also z.B. Wasser, Öl oder häufig einfach die Umgebungsluft, die zum Beispiel die Wärme aufnimmt oder von dem Wärme auf den Wärmetauscher übertragen wird, wird dabei entweder entsprechend abgekühlt oder erwärmt. Das zweite Medium kann z.B. ein flüssiger Kälte- bzw. Wärmeträger sein oder ein verdampfendes bzw. kondensierendes Kältemittel. In jedem Fall hat das Umgebungsmedium, also z.B. die Luft, einen wesentlich niedrigeren Wärmeübergangskoeffizienten als das zweite Medium, also z.B. das Kühlmittel, das im Wärmetauschersystem zirkuliert. Dies wird durch stark unterschiedliche Wärmeübertragungsflächen für die beiden Medien ausgeglichen: Das Medium mit dem hohen Wärmeübergangskoeffizienten strömt im Rohr, welches auf der Außenseite durch dünne Bleche (Rippen, Lamellen) eine stark vergrößerte Oberfläche aufweist, an der der Wärmeübergang z.B. mit der Luft stattfindet.
  • Fig. 3 zeigt ein einfaches Beispiel eines Elementes eines solchen an sich bekannten lamellierten Wärmeaustauschers. In der Praxis wird der Wärmetauscher dabei durch eine Vielzahl solcher Elemente gemäss Fig. 3 gebildet.
  • Das Verhältnis von Außenoberfläche zur Innenoberfläche hängt dabei von der Lamellengeometrie (= Rohrdurchmesser, Rohranordnung und Rohrabstand), sowie vom Lamellenabstand ab. Der Lamellenabstand wird für unterschiedliche Anwendungen unterschiedlich gewählt. Rein thermodynamisch sollte er jedoch möglichst klein sein, jedoch nicht so klein, dass der Luftseitige Druckverlust zu groß ist. Ein wirtschaftliches Optimum liegt bei etwa 2mm, was ein für Verflüssiger und Rückkühler typischer Wert ist.
  • Die Herstellung dieser sogenannten lamellierten Wärmeaustauscher erfolgt nach einem seit langem bekannten standardisierten Prozess: Die Lamellen werden mit einer Presse und einem speziellen Werkzeug gestanzt und in Pakete zueinander gelegt. Anschließend werden die Rohre eingeschoben und entweder mechanisch oder hydraulisch aufgeweitet so dass ein sehr guter Kontakt und somit ein guter Wärmeübergang zwischen Rohr und Lamelle entsteht. Die einzelnen Rohre werden dann durch Bögen und Sammel- und Verteilrohr miteinander verbunden, oft miteinander verlötet.
  • Der Wirkungsgrad ist dabei wesentlich durch die Tatsache bestimmt, dass die Wärme, die zwischen der Lamellenoberfläche und der Luft übertragen wird, über Wärmeleitung durch die Lamellen zum Rohr übertragen werden muss. Diese Wärmeübertragung ist umso effektiver, je höher die Leitfähigkeit bzw. die Dicke der Lamelle ist, aber auch je kleiner der Abstand zwischen den Rohren ist. Man spricht hier vom Lamellenwirkungsgrad. Als Lamellenmaterial kommt deshalb heutzutage überwiegend Aluminium zum Einsatz, welches eine hohe Wärmeleitfähigkeit (ca. 220 W/mK) zu wirtschaftlichen Bedingungen aufweist. Der Rohrabstand sollte möglichst klein sein, was jedoch zu dem Problem führt, dass man viele Rohre benötigt. Viele Rohre bedeuten hohe Kosten, denn die Rohre (in der Regel aus Kupfer) sind erheblich teurer als die dünnen Aluminiumlamellen. Diese Materialkosten könnte man dadurch verringern, dass man den Rohrdurchmesser und die Wandstärke reduziert, d.h. man baut einen Wärmetauscher mit vielen kleinen Rohren anstatt mit wenigen großen Rohren. Thermodynamisch wäre diese Lösung optimal: Sehr viele Rohre in engem Abstand mit kleinen Durchmessern. Ein wesentlicher Kostenfaktor ist jedoch auch die Arbeitszeit zum Aufweiten und Verlöten der Rohre. Dieser würde bei einer solchen Geometrie extrem ansteigen.
  • Daher sind bereits vor einigen Jahren eine neue Klasse von Wärmetauschern, sogenannte Minichannel- oder auch Mircochannelwärmeaustauscher entwickelt worden, die nach einem völlig anderen Verfahren hergestellt werden und fast dem Idealbild eines lamellierten Wärmeaustauschers entsprechen: viele kleine Rohre mit kleinen Abständen.
  • Anstatt kleiner Rohre werden jedoch beim Minichannelwärmeaustauscher Aluminiumstrangpressprofile verwendet, die sehr viele kleine Kanäle mit einem Durchmesser von z.B. etwa 1 mm haben. Ein solches, ebenfalls an sich bekanntes Strangpressprofil, ist z.B. in Fig. 2 schematisch dargestellt. In der Praxis kann dabei ein Wärmetauscher, je nach geforderter Wärmeleistung, bereits mit einem einzigen Strangpressprofil als zentrales Wärmeaustauschelement auskommen. Um höhere Wärmeübertragungsleistungen zu erzielen können selbstverständlich in einem einzigen Wärmetauscher auch mehrere Strangpressprofile gleichzeitig vorgesehen werden, die in geeigneten Kombinationen zum Beispiel über zu und Ableitungen miteinander verbunden, z.B. miteinander verlötet werden.
  • Solche Profile können z.B. in geeigneten Extrudierverfahren einfach und in vielfältigen Formen aus einer Vielzahl von Materialien hergestellt werden.
    Aber auch andere Herstellungsverfahren zur Herstellung von Minichannelwärmeaustauschern sind bekannt, wie z.B. das Zusammensetzen geeignet geformter Profilbleche oder andere geeignete Verfahren.
  • Diese Profile kann man nicht, und braucht man auch nicht aufzuweiten und sie werden auch nicht in gestanzte Lamellenpakete eingeschoben. Stattdessen werden zum Beispiel zwischen zwei eng aneinander liegenden Profilen (gängige Abstände beispielweise < 1 cm) Blechstreifen, insbesondere Aluminiumblechstreifen gelegt, so dass durch abwechselndes aneinanderlegen von Blechstreifen und Profil ein Wärmetauscherpaket entsteht. Diese Paket wir dann in einem Lötofen komplett verlötet.
  • Durch die engen Abstände und die kleinen Kanaldurchmesser entsteht ein Wärmetauscher mit einem sehr hohen Lamellenwirkungsgrad und einem sehr geringen Füllvolumen (Kanalinnenseite). Die weiteren Vorteile dieser Technik sind die Vermeidung von Materialpaarungen (Korrosion), das geringe Gewicht (kein Kupfer), die hohe Druckstabilität (ca. 100 bar) sowie die kompakte Bauform (typische Tiefe eines Wärmeaustauschers z.B. 20mm).
  • Im mobilen Einsatz haben sich Minichannelwärmeaustauscher im Laufe der 90er Jahre etabliert. Das geringe Gewicht, die geringe Blocktiefe sowie die begrenzten Abmessungen, die hier benötigt werden, sind die idealen Voraussetzungen dafür. Autokühler sowie Verflüssiger und Verdampfer für Autoklimaanlagen werden heute fast ausschließlich mit Minichannelwärmeaustauschern realisiert.
  • Im stationären Bereich werden zum einen meist größere Wärmeaustauscher benötigt, zum anderen stehen hier weniger das Gewicht und die Kompaktheit im Vordergrund als vielmehr das optimale Preisleistungsverhältnis. Minichannelwärmeaustauscher waren bisher in den Abmessungen zu begrenzt, um dafür in Frage zu kommen. Es hätten viele kleine Module aufwendig verbunden werden müssen. Hinzu kommt, dass der Aluminiumeinsatz bei den Strangpressprofilen relativ hoch ist, so dass auch vom Materialeinsatz kaum ein Kostenvorteil zu erwarten war.
  • Aufgrund der hohen Stückzahlen im Automobilsektor haben sich die Herstellprozesse für Minichannelwärmeaustauscher standardisiert und verbessert, so dass man diese Technologie heute als ausgereift bezeichnen kann. Auch die Lötofengröße ist mittlerweile gestiegen, so dass bereits Wärmetauscher in 6er Größe von etwa 1 x 2 m gefertigt werden können. Die anfänglichen Schwierigkeiten mit dem Anschlusssystem sind behoben. Es gibt mittlerweile mehrere patentierte Verfahren, wie die Versteif- und Sammelrohre eingelötet werden können.
  • Vor allem der gegenüber Aluminium stark angestiegene Kupferpreis führt jedoch jetzt dazu, dass diese Technologie auch für den stationären Einsatz sehr interessant wird.
  • Neben den einfachen Systemen, bei welchen dem Wärmetauscher zum Austausch von Wärme im wesentlichen nur ein Umgebungsmedium, wie z.B. Luft zur Verfügung steht, sind auch sogenannte hybride Kühler bzw. hybride Trockenkühler bekannt, wie z.B. in der WO90/15299 oder der EP 428 647 B1 offenbart sind, bei denen das zu kühlende gasförmige oder flüssige Medium des primären Kühlkreislaufes einen Lamellenwärmeaustauscher durchströmt, und das die abzuführende Wärme über die Kühllamellen teils als sensible und teils als latente Wärme an den Luftstrom abgeben. Ein oder mehrere Ventilatoren fördern den Luftstrom durch den Wärmeaustauscher hindurch und haben vorteilhaft variable Drehzahl. Das Abführen der latenten Wärme erfolgt durch ein flüssiges Medium, vorzugsweise Wasser, welches von seinen spezifischen Werten wie Leitfähigkeit, Härte, Gehalt an Karbonaten angepasst ist und jeweils als tropfenbildender Flüssigkeitsfilm auf die luftseitige Wärmeübertragungsfläche aufgegeben wird. Unmittelbar unter den Wärmeaustauscherelementen tropft das überschüssige Wasser in eine Sammelschale zurück. Auch sind besprühte Wärmetauscherkonzepte bekannt, wo Wasser auf die Lamellenwärmeaustauscher gesprüht wird und vollständig verdampft und dabei die Verdunstungsenergie zur Verbesserung der Wärmeübertragung ebenso wie bei der Benetzung zur energetischen Optimierung eingesetzt wird. Hier kann auch ohne Wasserüberschuss gefahren werden, allerdings muss eine Ablagerungsbildung verhindert werden, wofür z.B. VE-Wasser eingesetzt wird. Es versteht sich, dass in speziellen Fällen ausser Wasser auch andere kühlende Fluide, wie z.B. Öl in Frage kommen.
  • Die Betriebsweise der Benetzung oder Besprühung der Lamellen des Wärmeaustauschers führt zu erheblichen Energie- und Wassereinsparungen im Vergleich zu üblichen Verfahren, wie zum Beispiel bei offenen Kühltürmen. Nachteilig ist allerdings die Einschränkung der Werkstoffwahl des benetzten oder besprühten Wärmetauscherrohres in Verbindung mit der Lamelle, wo es in Verbindung mit einem Elektrolyt nicht zu Korrosion kommen darf.
  • Unter hybrider Wärmeübertragung wird somit die erhebliche Verbesserung der Wärmeübertragung von Lamellen-Wärmeübertragem mit Rohren durch gezielte Benetzung oder Besprühung von Wasser verstanden. Hierbei ist es vor allem erforderlich, die Luftgeschwindigkeit im Lamellenpaket so zu regeln, dass es nicht zum Wassermitriß auf der Lamellenoberfläche kommt. Dieses wird vorteilhaft durch eine Drehzahlregelung der Ventilatoren oder durch andere geeignete Maßnahmen erreicht.
  • Nachteilig ist dabei, dass das versprühte oder benetzende Wasser zusammen mit gelösten Ionen als Elektrolyt wirkt, was bei den üblicherweise eingesetzten Werkstoffpaarungen Kupferrohr, und Aluminiumlamellen des Wärmetauschers zu zahlreichen Korrosionsproblemen führen kann.
  • Als ein geeigneter Oberflächenschutz für Wärmetauscher ist es dabei bekannt, z. B. die sogenannte kataphoretische Tauchlackierung zu verwenden. Weiterhin werden sowohl die Werkstoffpaarungen wie Kupferrohr und -lamelle, als auch Aluminiumrohr und -lamelle sowie Edelstahlrohr und -lamelle eingesetzt, um die Problematik der Kontaktkorrosion zu beherrschen. Auch ist es bekannt, die Wärmetauscher komplett zu verzinken. An die Qualität des Umlauf- oder Besprühungswassers werden dabei hohe Anforderungen im Bezug auf die pH-Werte, Wasserhärte, Chlorgehalt, Leitfähigkeit usw. gestellt, um zu verhindern, dass sich einerseits Ablagerungen bei Eindickung auf der Lamelle durch Verdunstung, als auch andererseits zu hohe Gehalte an chemisch reaktiven Stoffen bilden, welche ihrerseits zusammen mit den Ablagerungen zu Korrosion führen können.
  • Um höhere Wärmeübertragungsleistungen zu erzielen, als sie z.B. bei kleinen Wärmetauschern aus der Automobil- oder Haushaltstechnik bekannt sind, wurde bei grösseren Wärmeübertragungssystemen bisher versucht, auf die zuvor beschriebene Hybridtechnik zurückzugreifen.
  • Eine andere Möglichkeit zu grösseren Wärmeübertragungsleistungen zu gelangen besteht prinzipiell darin, dass man durch Zusammenschaltung mehrerer einzelner Wärmeaustauschkomponenten, z.B. durch die Verschaltung von Al-MCHX-Modulen, grössere Austauschleistungen zu erzielen versucht.
  • Ein Problem bei allen bisher bekannten Wärmeaustauschsystemen ist dabei die Verschmutzung der Systemkomponenten des Wärmeaustauschsystems, was im Betriebszustand grundsätzlich nicht zu vermeiden. Die Wärmetauscher, an denen zum Beispiel die Kühlluft unter zu Hilfenahme entsprechender Lüfter vorbeigeführt wird, können sich durch Verschmutzungen aller Art, die in der Kühlluft enthalten mit der Zeit mehr und mehr verschmutzt werden, was zum Beispiel dazu führen kann, dass der Wärmeübergangskoeffizient der Oberfläche des Wärmetauschers herabgesetzt wird, so dass die Wärmeübertragungsleistung herabgesetzt wird. Das kann zu erhöhten Betriebskosten führen oder in extremen Fällen kann das Wärmeaustauschsystem überhaupt nicht mehr die geforderte Wärmeaustauschleistung erbringen, was im schlimmsten Fällen zu schweren Schäden führen kann. Zum Beispiel, dass eine zu kühlende angeschlossene Maschine, wie eine Datenverarbeitungsanlage oder eine Brennkraftmaschine oder eine andere Maschine sich überhitzt und dadurch Schaden nimmt. Aber auch Schäden an Waren, wie zum Beispiel an Lebensmitteln, die in einem Kühlhaus gelagert werden, können zum Beispiel bei mangelnder Kühlung verderben.
  • Daher müssen die Wärmeaustauschsysteme regelmässig gereinigt werden, was allerdings bei den bekannten Systemen umständlich, damit aufwendig und teuer ist. Darüber hinaus ist es bei vielen bekannten Wärmeaustauschsystemen notwendig, ein Gehäuse zu öffnen um z.B. den Wärmetauscher selbst oder andere wesentlichen Komponenten im inneren des Gehäuses des Wärmetauschers zu reinigen. Dabei ist das Öffnen der Gehäuse nicht nur aufwendig und umständlich. Auch müssen in diesem Fall die entsprechenden angeschlossenen Wärmemaschinen ausser Betrieb gesetzt werden, da sonst eine Öffnung des Gehäuses des Wärmeaustauschsystems allein schon aus Sicherheitsgründen nicht gestattet ist, oder aus technischen Gründen im Betriebszustand gar nicht möglich ist.
  • Ein weiteres Problem besteht darin, dass die Reinigungsflüssigkeit mit der das Wärmeaustauschsystem gereinigt wird, zum Beispiel Wasser, ein mit Reinigungsmittel versetztes Wasser oder eine andere Reinigungsflüssigkeit aufwändig gesammelt werden muss, so dass es fachgerecht entsorgt werden kann. In aller Regel darf nämlich die nach dem Reinigungsvorgang verschmutzte Reinigungsflüssigkeit nicht einfach der Kanalisation zugeführt werden. Daher sind bei den bekannten Wärmeaustauschsysteme entsprechende aufwändige Vorrichtungen vorgesehen, zum Beispiel Abscheider, separate Kanalsysteme, über die verschmutzte Reinigungsflüssigkeit abgeführt und einer Sammelstelle zugeführt wird, oder andere an sich bekannte Trenn- und Sammelsysteme vorgesehen, die nicht nur zusätzlichen Platz beanspruchen, sondern auch teuer im Bau und im Betrieb sind.
  • Die Aufgabe der Erfindung ist es daher, ein verbessertes Wärmeaustauschsystem bereit zu stellen, das die aus dem Stand der Technik bekannten Probleme überwindet, das insbesondere einfach zu reinigen ist, bevorzugt auch im Betriebszustand gereinigt werden kann, und mit welchem eine verschmutzte Reinigungsflüssigkeit einfach aufgefangen bzw. gesammelt und entsorgt werden kann.
  • Die diese Aufgaben lösenden Gegenstände der Erfindung sind durch die Merkmale des unabhängigen Anspruchs 1 gekennzeichnet.
  • Die abhängigen Ansprüche beziehen sich auf besonders vorteilhafte Ausführungsformen der Erfindung.
  • Die Erfindung betrifft somit ein Wärmeaustauschsystem mit einem Wärmeaustauschmodul umfassend mindestens ein erstes Wärmeaustauschmodul mit einem Wärmetauscher, wobei eine äussere Begrenzung des Wärmeaustauschmoduls durch eine Einströmfläche und eine Ausströmfläche derart gebildet ist, dass zum Austausch von Wärme zwischen einem Transportfluidum und einem den Wärmetauscher im Betriebszustand durchströmenden Wärmemittel, das Transportfluidum über die Einströmfläche dem Wärmeaustauschmodul zuführbar, mit dem Wärmetauscher in strömenden Kontakt bringbar und über die Ausströmfläche aus dem Wärmeaustauschmodul wieder abführbar ist. Erfindungsgemäss ist dabei ein Reinigungssystem mit einer Reinigungsklappe vorgesehen.
  • Wesentlich für die Erfindung ist somit, dass bei einem Wärmeaustauschsystem der vorliegenden Erfindung ein Reinigungssystem mit einer Reinigungsklappe vorgesehen ist, die einfach geöffnet bzw. geschlossen werden kann, so dass ohne das Wärmeaustauschsystem zu demontieren ein Zugang zum Inneren des Wärmeaustauschmoduls geschaffen wird, der Reinigungs- und Servicearbeiten, im Prinzip sogar im Betriebszustand des Wärmeaustauschsystems gestattet.
  • In einem bevorzugten Ausführungsbeispiel umfasst das Reinigungssystem der vorliegenden Erfindung eine Reinigungsöffnung und / oder ein Staubfanggitter und / oder einen Abstreifer und / oder einen Abwascher, deren Funktion dem Fachmann im Prinzip bekannt ist. Insbesondere kann der Wärmetauscher an der Reinigungsklappe vorgesehen und / oder der Wärmetauscher selbst ist als Reinigungsklappe ausgeführt, was in speziellen Fällen und je nach Anwendung Service- bzw. Reinigungsarbeiten wesentlich erleichtern kann.
  • Besonders bevorzugt ist zur Öffnung des Wärmeaustauschmoduls die Reinigungsklappe um eine Drehachse drehbar gelagert, so dass die Reinigungsklappe in einem geöffneten Zustand eine Auffangwanne für ein Reinigungsmittel ist. Dadurch ist es möglich, dass ohne weitere bauliche Massnahmen ein verschmutztes Reinigungsmittel automatisch in der Auffangwanne gesammelt und einer fachgerechten Entsorgung zugeführt werden kann.
  • Bei einem anderen Ausführungsbeispiel ist eine erste Begrenzungsfläche des ersten Wärmeaustauschmoduls in Bezug auf eine zweite Begrenzungsfläche des ersten Wärmeaustauschmoduls unter einem vorgebbaren Neigungswinkel geneigt. Dabei kann der Wärmetauscher selbst eine tragende Funktion bei der Bildung des Wärmeaustauschmoduls haben, zum Beispiel indem er ein statisch integrales Bauelement eines Gehäuses des Wärmeaustauschmoduls bildet. Das kann zum Beispiel dadurch realisiert sein, dass der Wärmetauscher selbst eine Gehäusewand des Wärmetauschermoduls bildet, oder dass das Gehäuse des Wärmetauschermoduls nicht an allen Begrenzungsflächen des Gehäuses eine Begrenzungswand aufweist, so dass der Wärmetauscher selbst eine verbindende und stabilisierende integrale statische Funktion als Gehäusebauteil erfüllt.
  • In einem weiteren einfachen Ausführungsbeispiel kann eine Begrenzungsfläche des Wärmeaustauschsystems an dessen Gehäuse fehlen, wobei die fehlende Gehäusewand im Einbauzustand des Wärmeaustauschsystems durch eine Wand eines Installationsobjekts gebildet ist, insbesondere durch eine Wand eines Gebäudes gebildet ist.
  • Zur Erhöhung der Wärmeaustauschleistung kann das Wärmeaustauschsystem insbesondere auch aus einer Mehrzahl von Wärmeaustauschmodulen gebildet werden.
  • Vor allem in den Fällen, aber nicht nur, in denen das Wärmeaustauschsystem aus mehreren Wärmeaustauschmodulen gebildet ist, kann die erste Begrenzungsfläche des ersten Wärmeaustauschmoduls derart in Bezug auf die zweite Begrenzungsfläche des ersten Wärmeaustauschmoduls unter dem vorgebbaren Neigungswinkel geneigt sein, dass das modulare Wärmeaustauschsystem durch ein zweites Wärmeaustauschmodul, insbesondere in kompakter Bauform erweiterbar ist, wobei das zweite Wärmeaustauschmodul bevorzugt identisch zum ersten Wärmeaustauschmodul ist. So kann zum Beispiel durch zwei im Querschnitt Dreieck förmige Wärmeaustauschmodule, deren erste und zweite Begrenzungsfläche unter 45° gegeneinander geneigt sind, ein Wärmeaustauschsystem geschaffen werden, das eine rechteckige oder quadratische Querschnittsfläche hat, idem die beiden geneigten Flächen gegeneinander angeordnet werden.
  • Der Neigungswinkel zwischen der ersten Begrenzungsfläche und der zweiten Begrenzungsfläche des Wärmeaustauschmoduls liegt dabei zwischen 20° und 70°, bevorzugt zwischen 40° und 50° liegt, und beträgt besonders bevorzugt 45°.
  • Werden also beispielweise die Wärmeaustauschmodule in Form eines Parallelepipeds mit einem Neigungswinkel von 45° ausgebildet, so können jeweils zwei solcher Wärmeaustauschmodule in besonders kompakter Weise z.B. über die geneigten Flächen zusammengesetzt werden und auch, falls notwendig, durch Aneinanderreihung beliebig erweitert werden.
  • Somit kann die Wärmeübertragungsleistung und / oder die Leistungsdichte der Wärmeübertragung durch ein modulares Wärmeübertragungssystem der vorliegenden Erfindung durch die regelmässige Wiederholung bevorzugt identischer Wärmeaustauschmodule, bzw. durch die Entfernung identischer Wärmeaustauschmodule auf einfache und effiziente Weise angepasst werden.
  • Somit ist in einem besonders bevorzugten Ausführungsbeispiel die erste Begrenzungsfläche des ersten Wärmeaustauschmoduls derart in Bezug auf die zweite Begrenzungsfläche des ersten Wärmeaustauschmoduls unter dem vorgebbaren Neigungswinkel geneigt, dass das modulare Wärmeaustauschsystem durch ein zweites Wärmeaustauschmodul, insbesondere in kompakter Bauform erweiterbar ist, wobei das zweite Wärmeaustauschmodul bevorzugt identisch zum ersten Wärmeaustauschmodul ist. Kompakte Bauform bedeutet dabei, dass zwei Wärmeaustauschmodule möglichst platzsparend miteinander kombinierbar sind, so dass zwischen zwei kombinierten Wärmeaustauschmodulen möglichst wenig, bevorzugt praktisch gar kein freier Raum mehr bleibt
  • Somit kommt eine besonders wichtige Bedeutung denjenigen erfindungsgemässen Ausführungsbeispielen zu, bei denen das Wärmeaustauschsystem aus einer Mehrzahl von Wärmeaustauschmodulen gebildet ist, da bei diesen zum Beispiel durch Entfernung eines Wärmeaustauschmoduls besonders einfach die Wärmeübertragungsleistung reduzierbar ist.
  • Zur weiteren Steigerung der Leistungsdichte der Wärmeübertragung zwischen dem Wärmemittel und dem Transportfluidum und / oder zur Erhöhung einer Wärmeübertragungsrate zwischen dem Wärmemittel und dem Transportfluidum kann eine Kühleinrichtung zur Kühlung des Wärmetauschers, insbesondere ein Lüfter zur Erzeugung eines Gasstroms vorgesehen sein, und / oder das Wärmeaustauschsystem kann wie an sich bekannt und eingangs ausführlich beschrieben als Hybridsystem ausgebildet sein, und es kann eine Berieselungseinrichtung zur Berieselung des Wärmetauschers mit einem Kühlfluid, insbesondere mit Kühlwasser ausgebildet sein. Besonders Vorteilhaft ist dabei auch ein Tropfenabscheider zur Abscheidung des Kühlfluids vorgesehen.
  • Dabei kann der Wärmetauscher selbst, wie aus dem Stand der Technik an sich bekannt, durch eine Vielzahl von Mikrokanälen als Mikrokanalwärmetauscher und / oder der Wärmetauscher kann auch als lamellierter Wärmetauscher mit Kühllamellen ausgebildet sein. Im Speziellen ist das Wärmeaustauschsystem als ein Kombinationswärmetauschsystem aus dem lamellierten Wärmetauscher und dem Mikrokanalwärmetauscher gebildet, sofern konkrete Anforderungen eine solche Bauform bevorzugen.
  • Zur Verbesserung der Möglichkeiten die Wärmeübertragungsleistung eines erfindungsgemässen Wärmeaustauschsystems zu Regulieren, kann beispielweise eine Abschottung, insbesondere eine Luftabschottung zur Regulierung einer Durchflussrate des Transportfluidums vorgesehen sein, die entweder manuell oder über eine Ansteuereinheit in Abhängigkeit von einem vorgebbaren Betriebsparameter gesteuert und / oder geregelt sein kann.
  • Sehr vorteilhaft kann darüber hinaus auch ein an sich bekanntes Kompensationsmittel zum Ausgleich von thermomechanischen Spannungen vorgesehen sein.
  • Die Komponenten des modularen Wärmeaustauschsystems der vorliegenden Erfindung, also zum Beispiel die Wärmetauscher und / oder eine Zuführung und / oder eine Abführung für das Wärmemittel und / oder die Reinigungsklappe und / oder jedes andere Bauteil eines erfindungsgemässen Wärmeaustauschsystems kann mit jeder anderen Komponente des Wärmeaustauschsystems durch ein Universalverbindungselement verbunden sein, so dass zum Beispiel ein Wärmeaustauschmodul besonders einfach hinzugefügt oder entfernt werden kann. Im Speziellen sind besonders bevorzugt die Reinigungsklappe und die Verteil- und Sammelrohre für das Wärmemittel oder auch Bleichteile und andere Module und Komponenten des Wärmeaustauschsystems mit einem Universalverbindungselement verbunden. Dabei sind diese Unversalverbindungselemente sowohl für den vertikalen als auch für den horizontalen Einbau der Wärmeaustauschsysteme bzw. der Wärmeaustauschmodule besonders gut geeignet.
  • Zur Steuerung und / oder Regelung des Wärmeaustauschsystems im Betriebszustand wird in der Regel, jedoch nicht zwingend, eine Ansteuereinheit, insbesondere eine Ansteuereinheit mit einer Datenverarbeitungsanlage zur Ansteuerung der Kühleinrichtung und / oder des Reinigungssystems und / oder der Luftabschottung und / oder eines Betriebs- oder Zustandsparameters des Wärmemittels und / oder eines anderen Betriebsparameters des Wärmeaustauschsystems vorgesehen sein, wie sie an sich aus dem Stand der Technik bei bestehenden Wärmeaustauschsystemen dem Fachmann bekannt ist.
  • Das Wärmeaustauschsystem bzw. das Wärmeaustauschmodul und / oder der Wärmetauscher und / oder eine Begrenzungsfläche des Wärmeaustauschmoduls, im Speziellen das gesamte Wärmeaustauschsystem ist besonders vorteilhaft aus einem Metall und / oder einer Metalllegierung gefertigt, insbesondere aus einem einzigen Metall oder einer einzigen Metalllegierung, und kann insbesondere aus Edelstahl, im Speziellen aus Aluminium oder einer Aluminiumlegierung gefertigt sein, wobei bevorzugt als Korrosionsschutz ein Opfermetall vorgesehen wird, und / oder wobei das Wärmeaustauschsystem zumindest teilweise mit einer Schutzschicht, insbesondere mit einer Korrosionsschutzschicht versehen ist. Vor allem die Verteil- und Sammelrohre sind bevorzugt für hohe Drücke, zum Beispiel zum Betrieb mit CO2, aus hochfesten Materialien wie beispielsweise aus Edelstahl gefertigt.
  • Im Speziellen ist ein erfindungsgemässes Wärmeaustauschsystem ein Kühler, insbesondere ein Kühler für ein Fahrzeug, im Speziellen für ein Landfahrzeug, für ein Luftfahrzeug oder für ein Wasserfahrzeug, oder ein Kühler, ein Kondensator oder ein Verdampfer für eine mobile oder stationäre Heizungsanlage, Kühlanlage oder Klimaanlage ist, insbesondere eine Kühlervorrichtung für eine Maschine, eine Datenverarbeitungsanlage oder für ein Gebäude oder für eine andere Vorrichtung, die mit einem Wärmeaustauschsystem zu betreiben ist.
  • Im Folgenden wird die Erfindung an Hand der Zeichnung näher erläutert. Es zeigen in schematischer Darstellung:
  • Fig. 1 a
    ein erstes Ausführungsbeispiel eines erfindungsgemässen Wärmeaustauschsystems im Betriebszustand;
    Fig. 1 b
    das Wärmeaustauschsystem der Fig. 1a während eines Reinigungsvorgangs;
    Fig. 2
    einen Wärmetauscher mit Mikrokanälen;
    Fig. 3
    ein Element eines lamellierten Wärmetauschers;
    Fig. 4
    ein zweites Ausführungsbeispiel eines erfindungsgemässen Wärmeaustauschsystem mit seitlicher Reinigungsklappe;
    Fig. 5
    ein weiteres Ausführungsbeispiel gemäss Fig. 4 mit Luftabschottung;
    Fig. 6a
    ein anderes Ausführungsbeispiel gemäss Fig. 1a mit Universalverbindungselement;
    Fig. 6b
    ein Universalverbindungselement der Fig. 6a im Detail;
    Fig. 7
    eine erfindungsgemässes Wärmeaustauschsystem mit zwei Wärmeaustauschmodulen;
  • Fig. 1 a und Fig. 1 b zeigen in einer schematischen Darstellung ein erstes einfaches Ausführungsbeispiel eines erfindungsgemässen Wärmeaustauschsystems, das im Folgenden gesamthaft mit dem Bezugszeichen 1 versehen ist. Dabei ist das Wärmeaustauschsystem in Fig. 1 a im Betriebszustand dargestellt, während Fig. 1 b dasselbe Wärmeaustauschsystem während eines Reinigungsvorgangs zeigt.
  • Das erfindungsgemässe Wärmeaustauschsystem 1 der Fig. 1 a bzw. Fig. 1 b umfasst als wesentliches Element ein Wärmeaustauschmodul 2, 21 mit einem Wärmetauscher 3 zum Austausch von Wärme zwischen einem Wärmemittel 6, z.B. einer Kühlflüssigkeit 6 oder einem Verdampfermittel 6 und einem Transportfluidum 5, z.B. Luft 5. Der Wärmetauscher 3 ist im vorliegenden Fall ein an sich bekannter Mikrokanalwärmetauscher 3 mit einer Vielzahl von Mikrokanälen 31. Der Wärmetauscher 3 ist mit seinen Mikrokanälen 31 über ein in den Fig. 1a und Fig. 1b nicht dargestelltes Anschlusssystem, das dem Fachmann im Prinzip bekannt ist, zum Austausch von Wärmemittel 6 an eine ebenfalls nicht dargestellte Kältemaschine angeschlossen.
  • In an sich bekannter Weise ist die Kältemaschine an das Anschlusssystem, umfassend einen Einlasskanal mit einem Einlasssegment des Wärmetauschers 3 und einen Auslasskanal mit einem Auslasssegment des Wärmetauschers 3, derart strömungsverbunden, dass das Wärmemittel 6 zum Austausch von Wärme mit der Luft 5 vom Einlasskanal über das Einlasssegment, durch die Vielzahl von Mikrokanälen 31 des Wärmetauschers 3, und schliesslich über das Auslasssegment dem Auslasskanal zuführbar ist.
  • Eine äussere Begrenzung des Wärmeaustauschmoduls 2, 21 ist dabei durch eine Einströmfläche 41 und eine Ausströmfläche 42 derart gebildet, dass im Betriebszustand zum Austausch von Wärme zwischen dem Transportfluidum 5, dessen Strömungsrichtung durch die Pfeile 5 symbolisch dargestellt ist, und dem den Wärmetauscher 3 durchströmenden Wärmemittel 6, das Transportfluidum 5 über die Einströmfläche 41 dem Wärmeaustauschmodul 2, 21 zuführbar, mit dem Wärmetauscher 3 in strömenden Kontakt bringbar und über die Ausströmfläche 42 aus dem Wärmeaustauschmodul 2, 21 wieder abführbar ist.
  • Damit die Wärme zwischen der Luft 5 und dem Wärmemittel 6 besser ausgetauscht werden kann, ist zusätzlich eine Kühleinrichtung 10, im vorliegenden Fall ein Lüfter 10 vorgesehen, mit dem eine Menge an Luft 5, die pro Zeiteinheit durch das Wärmeaustauschmodul 2, 21 befördert wird, kontrollierbar ist.
  • Dabei ist eine erste Begrenzungsfläche 9, 91, die im vorliegenden Fall durch den Wärmetauscher 3 selbst gebildet wird, in Bezug auf eine zweite Begrenzungsfläche 9, 92 des ersten Wärmeaustauschmoduls 2, 21 unter einem vorgebbaren Neigungswinkel α, der im vorliegenden speziellen Beispiel ca. 45° beträgt, geneigt. Es versteht sich, dass in einem anderen Ausführungsbeispiel der Neigungswinkel α auch einen anderen Wert haben kann, z.B. einen Wert grösser oder kleiner als 45°, z.B., aber nicht nur, 25° oder 46°. Bei dem einfachen Ausführungsbeispiel gemäss Fig. 1 ist dabei die zweite Begrenzungsfläche 92 durch eine Wand 9 eines Installationsobjekts gebildet, das im vorliegenden Fall ein nicht näher dargestelltes Kühlhaus ist.
  • Gemäss der vorliegenden Erfindung ist weiter als wesentliches Element ein Reinigungssystem 7 mit Reinigungsklappe 71 vorgesehen, wobei Fig. 1a das Wärmeaustauschsystem 1 im Betriebszustand zeigt, in welchem das Innere, insbesondere die Oberfläche des Wärmetauschers 3 nach und nach verschmutzt. Fig. 1 b zeigt dagegen das Wärmeaustauschsystem 1 während eines Reinigungsvorgangs.
  • Die Reinigungsklappe 71 ist als Zugangsklappe 71 ausgestaltet, die um die Drehachse 711 gemäss dem Pfeil P drehbar ausgestaltet ist, so dass durch ein Schwenken der Reinigungsklappe 71 um die Drehachse 711, die zum Beispiel auch als Universalverbindungselement 12 ausgestaltet sein kann, ein Zugang zum Inneren des Wärmeaustauschsystems 1 geschaffen wird, der Service, Reparatur- und Reinigungsarbeiten im Inneren einfach ermöglicht, ohne das das Wärmeaustauschsystem 1 demontiert werden muss, oder, je nach konkreter Ausführung, ohne dass das Wärmeaustauschsystem abgeschaltet werden muss. Das heisst, dadurch, dass die Reinigungsklappe auch im Betriebszustand einfach geöffnet werden kann, ist durch die vorliegende Erfindung eine Reinigung des Wärmeaustauschsystems 1 auch im Betriebszustand möglich.
  • Die Fig. 1 b zeigt eine Situation in der gerade der Wärmetauscher 3 mit einer Reinigungsflüssigkeit 714, zum Beispiel mit Wasser 714 gereinigt wird. Die Reinigungsklappe 71 wurde ausgehend von der Situation der Fig. 1 a derart um die Drehachse 711 um 270° geschwenkt, dass sie gemäss Fig. 1 b als Auffangwanne 712 fungiert, die die verschmutzte Reinigungsflüssigkeit 714 während des Reinigungsvorgangs zuverlässig aufsammelt, so dass die verschmutze Reinigungsflüssigkeit sicher und gegebenenfalls automatisch abgeführt und entsorget werden kann, so dass zum Beispiel Beeinträchtigungen der Umwelt vermeidbar sind.
  • In Fig. 2 ist schematisch ein Wärmetauscher 3, 300 gemäss Fig. 1 mit Mikrokanälen 31 im Schnitt dargestellt. Anstatt kleiner Rohre, wie sie bei den klassischen lamellierten Wärmetauschern 3 gemäss Fig. 3 verwendet werden, werden, wie bereits erwähnt, bei Minichannelwärmetauschem 300 z.B. Aluminiumstrangpressprofile verwendet, die sehr viele kleine Kanäle 31 mit einem Durchmesser von z.B. etwa 1 mm haben. Der Wärmetauscher 3 der Fig. 2 kann z.B. in einem geeigneten Extrudierverfahren einfach und in vielfältigen Formen aus einer Vielzahl von Materialien hergestellt werden. Dabei kann der Wärmetauscher 3 gemäss Fig. 2 in einer anderen, in Fig. 2 nicht explizit dargestellten Ausführungsvariante, auch durch andere Herstellungsverfahren, wie z.B. durch das Zusammensetzen geeignet geformter Profilbleche oder andere geeignete Verfahren hergestellt sein. Die Fig. 3 zeigt im Gegensatz zur Fig. 2 ein Element eines an sich bekannten lamellierten Wärmetauschers 3, 301 mit Kühllamellen 32, wie er anstelle eines Mikrokanalwärmetauschers 300 in einem Ausführungsbeispiel der vorliegenden Erfindung ebenfalls zum Einsatz kommen könnte. Das Wärmemittel 6 durchströmt das röhrenförmige Element des lamellierten Wärmetauschers 3, 301, das im Betriebszustand hauptsächlich über die Kühllamellen 32 Wärme mit der daran vorbeiströmenden Luft 5 austauscht. Es versteht sich, dass in der Praxis der Wärmetauscher 3 in der Regel aus einer Vielzahl von Elementen gemäss Fig. 3 gebildet ist. In einem ganz speziellen Ausführungsbeispiel der vorliegenden Erfindung, das aus Platzgründen nicht explizit anhand einer Zeichnung dargestellt ist, wird als Wärmetauscher 3 ein Kombinationswärmetauscher 3, 300, 301 verwendet. Das heisst, ein Wärmeaustauschsystem 1 der vorliegenden Erfindung kann für ganz spezielle Anwendungen neben einem Wärmetauscher 300 mit einer Vielzahl von Mikrokanälen 31 gleichzeitig einen lamellierten Wärmeaustauscher 301 mit Kühllamellen 32 umfassen.
  • Um eventuell noch grössere Wärmeübertragungsleistungen zu bewältigen, kann dabei das Wärmeaustauschsystem 1 auch als ein sogenanntes Hybridsystem 1 ausgebildet sein, dessen Funktionsprinzip dem Fachmann an sich ebenfalls bekannt ist, und daher nicht explizit anhand einer separaten Zeichnung dargestellt werden muss. In dem Fall ist bevorzugt eine Berieselungseinrichtung zur Berieselung des Wärmetauschers 3, 300, 301 mit einem externen Kühlfluid, insbesondere mit Kühlwasser oder Kühlöl vorgesehen. Im Speziellem kann dabei zusätzlich ein Tropfenabscheider, z.B. in Form einer Wanne zur Abscheidung und Sammlung des externen Kühlfluids im Betriebszustand vorgesehen sein, so dass das externe Kühlfluid in einem externen Kühlsystem, das der Kühlung des externen Kühlfluids dient, rezierkulierbar ist und zur erneuten Kühlung des Wärmetauschers 3, 300, 301 diesem über die Berieselungseinrichtung wieder zuführbar ist.
  • In Fig. 4 ist ein zweites Ausführungsbeispiel eines erfindungsgemässen Wärmeaustauschsystems 1 mit seitlicher Reinigungsklappe 71 schematisch dargestellt. Das Ausführungsbeispiel der Fig. 4 unterscheidet sich dabei von demjenigen der Fig. 1a dadurch, dass die Reinigungsklappe 71 seitlich darstellungsgemäss seitlich am Wärmeaustauschmodul 2, 21 vorgesehen ist, d.h., die Reinigungsklappe 71 ist orthogonal zur Oberfläche des Wärmetauschers 3 angebracht. Um die Gesamtbauform des Wärmeaustauschmoduls 2, 21 möglichst kompakt zu halten, bedeckt die Reinigungsklappe 71 nur den Querschnitt des Wärmeaustauschmoduls, woraus die dargestellte Dreiecksform der Reinigungsklappe 71 resultiert. Im Reinigungs- oder Servicefall kann die Reinigungsklappe 71 um die Drehachse 711 in Richtung des Pfeils P zu Öffnen des Wärmeaustauschsystems 1 verschwenkt werden, wodurch ein Zugang zum Inneren des Wärmeaustauschsystems 1 geschaffen wird.
  • Zum Sammeln und sicheren Abführen der Reinigungsflüssigkeit 713, die bei einer Reinigung des Wärmeaustauschsystems 1 anfällt, ist bei dem Beispiel der Fig. 4 zusätzlich eine Auffangwanne 73 vorgesehen, die, falls nicht notwendig, natürlich auch fehlen kann.
  • In Fig. 5 ist ein weiteres Ausführungsbeispiel gemäss Fig. 4 mit einer Luftabschottung 11 schematisch dargestellt. Die Luftabschottung 11 ist bevorzugt in Form einer Jalousie oder einer Raffstore, umfassend einzelne Jalousieelemente 111 bzw. Storenelemente 111 ausgestaltet, so dass der Grad der Abdeckung des Wärmeaustauschers 3 variabel, bevorzugt elektronisch gesteuert und / oder geregelt veränderbar ist, in dem die Luftabschottung in bekannter Weise zum Beispiel ganz oder teilweise durch Zusammenraffen der einzelnen Jalousieelemente 111 bzw. Storenelemente 111 von der Oberfläche des Wärmetauschers 3 entfernt wird, oder indem ein Winkel zwischen den einzelnen Storenelementen 111 und der Oberfläche des Wärmetauschers 3 geändert wird, so dass die effektive Durchtrittsfläche für die Luft 5 variierbar ist. Dadurch ist auf einfache Weise, ohne die Strömungsdynamik im Kühlsystem zu verändern, eine Regulierung der Wärmeaustauschleistung des Wärmetauschers 3 möglich.
  • Bei dem Ausführungsbeispiel der Fig. 5 ist zusätzlich eine weitere mögliche Variante für eine seitliche Reinigungsklappe 71 gemäss Fig. 4 dargestellt. Im Gegensatz zu der seitlichen Reinigungsklappe 71 der Fig. 4, die eine Dreiecksform hat, ist die Reinigungsklappe 71 der Fig. 5 derart rechteckig bzw. quadratisch ausgestaltet, dass sie ungefähr die doppelte Querschnittsfläche des Wärmeaustauschmoduls 2, 21 so abdeckt und derart um die Drehachse 711 um 270° drehbar gelagert ist, dass sie analog zu dem Ausführungsbeispiel gem. Fig. 1 b während eines Reinigungsvorgangs gleichzeitig als Auffangwanne 712 für das Reinigungsmittel 713 verwendbar ist.
  • In Fig. 6a ist ein anderes Ausführungsbeispiel eines erfindungsgemässen Wärmeaustauschsystems 1 schematisch dargestellt, bei welchem die Reinigungsklappe 71 mit einem Universalverbindungselement 12 gemäss Fig. 6b befestigt ist. Das Universalverbindungselement 12 ist unter anderem zur einfachen und zuverlässigen Verbindung von an sich bekannten, in den Fig. 6a und 6b nicht explizit dargestellten Verteil- und Sammelrohren geeignet, die zur Zu- bzw. zum Abführen des Wärmemittels 6 zum bzw. vom Wärmeaustauscher 3 dienen.
  • Bevorzugt ist das Universalverbindungselement 12 so gestaltet, dass es besonders einfach zum Beispiel über eine Verschraubung oder durch verlöten mit den entsprechenden Teilen des Wärmeaustauschsystems 1 verbindbar ist.
  • Es kann zur Verbindung von Leitungen, die Wärmemittel 6 führen dienen, oder sogar selbst als Leitung zur Beförderung von Wärmemittel 6 geeignet sein. Es kann weiter zur Verbindung von Blechteilen, wie zum Beispiel der Reinigungsklappe 71 oder anderen Teilen geeignet sein. Bevorzugt ist bei einem gegebenen modularen Wärmeaustauschsystem 1 das Universalverbindungselement 12 im Detail derart ausgestaltet, dass es in ein und derselben Ausführungsform gleichzeitig möglichst viele verschiedene Verbindungen schaffen kann, so dass möglichst wenig verschieden ausgebildete Universalverbindungselemente in ein und demselben modularen Wärmeaustauschsystem 1 gleichzeitig eingesetzt werden müssen.
  • Im Idealfall ist das Universalverbindungselement 12 so ausgestaltet, dass es alle Verbindungsfunktionen zwischen allen Teilen des modularen Wärmeaustauschsystems gleichzeitig wahrnehmen kann, so dass in ein und demselben Wärmeaustauschsystem 1 nur ein einziger Typ von Unversalverbindungselement verwendet werden muss, was den Aufbau, die Erweiterung bzw. die Verkleinerung eines erfindungsgemässen modularen Wärmeaustauschsystems 1 enorm vereinfacht und damit höchste Flexibilität des Systems garantiert.
  • Fig. 7 zeigt schliesslich ein modulares Wärmeaustauschsystem 1 gemäss der vorliegenden Erfindung, das zwei identische Wärmeaustauschmodule 2, 21, 22 umfasst. Die beiden Module sind von identischer Bauform, wobei der Neigungswinkel α einen Wert von bevorzugt, aber nicht notwendig 45° hat. Der Fachmann versteht sofort, dass im Prinzip senkrecht zum Doppelpfeil DP, also parallel zur Zeichenebene beliebig viele identische Wärmeaustauschmodule 2, 21, 22 angefügt werden können. Das heisst, zur Veränderung der Wärmeaustauschleistung des modularen Wärmeaustauschsystems 1 braucht lediglich ein einziger Typ von Wärmeaustauschmodulen 2, 21, 22 bereit gestellt zu werden, um eine Anlage 1 mit praktisch beliebig vorgebbarer Wärmeaustauschleistung bereitzustellen, bzw. um diese zu Erweitern oder um bei einer bestehenden Anlage durch Reduzierung der Zahl der Wärmeaustauschmodule 2, 21, 22 dessen Wärmeaustauschleistung zu verringen. Besonders bevorzugt sind die einzelnen Wärmeaustauschmodule 2, 21, 22 in das Wärmeaustauschsystem 1 durch Verwendung der Universalverbindungselemente 12 integriert, wie sie anhand der Fig. 6a und Fig. 6b bereits diskutiert wurden. Analog zu Fig. 1a bzw. Fig. 1 b sind die beiden Reinigungsklappen 71 zu Service und Reinigungszwecken jeweils um die Drehachsen bevorzugt um 270° verschwenkbar, so dass die Reinigungsklappen 71, wie oben bereits mehrfach erläutert, gleichzeitig als Auffangwanne 712 für ein Reinigungsmittel 713 dienen können.
  • Es versteht sich, dass die im Rahmen dieser Anmeldung beschriebenen Ausführungsbeispiele lediglich exemplarisch zu verstehend sind. Das heisst, die Erfindung ist nicht allein auf die beschriebenen speziellen Ausführungsbeispiele beschränkt. Insbesondere sind alle geeigneten Kombinationen der vorgestellten speziellen Ausführungsformen durch die Erfindung ebenfalls abgedeckt.

Claims (15)

  1. Wärmeaustauschsystem mit einem Wärmeaustauschmodul (2, 21, 22) umfassend mindestens ein erstes Wärmeaustauschmodul (21) mit einem Wärmetauscher (3), wobei eine äussere Begrenzung des Wärmeaustauschmoduls (2, 21, 22) durch eine Einströmfläche (41) und eine Ausströmfläche (42) derart gebildet ist, dass zum Austausch von Wärme zwischen einem Transportfluidum (5) und einem den Wärmetauscher (3) im Betriebszustand durchströmenden Wärmemittel (6), das Transpartfluidum (5) über die Einströmfläche (41) dem Wärmeaustauschmodul (2, 21, 22) zuführbar, mit dem Wärmetauscher (3) in strömenden Kontakt bringbar und über die Ausströmfläche (42) aus dem Wärmeaustauschmodul (2) wieder abführbar ist, und ein Reinigungssystem (7) dadurch gekennzeichnet, daβ im Betriebszustand das Reinigungssystem mit einer Reinigungsklappe (71) vorgesehen ist, wobei eine erste Begrenzungsfläche (9, 91) des ersten Wärmeaustauschmoduls (2, 21) in Bezug auf eine zweite Begrenzungsfläche (9, 92) des ersten Wärmeaustauschmoduls (2, 21) unter einem vorgebbaren Neigungswinkel (α) zwischen 20° und 70° geneigt ist.
  2. Wärmeaustauschsystem nach Anspruch 1, wobei das Reinigungssystem (7) einen Staubfanggitter und / oder einen Abstreifer und / oder einen Abwascher, insbesondere eine Reinigungsöffnung (72) umfasst, und /oder wobei der Wärmetauscher (3) an der Reinigungsklappe (71) vorgesehen ist und / oder der Wärmetauscher (3) als Reinigungsklappe (71) ausgeführt ist.
  3. Wärmeaustauschsystem nach Anspruch 1 oder 2, wobei zur Öffnung des Wärmeaustauschmoduls (2, 21, 22) die Reinigungsklappe (71) um eine Drehachse (711) drehbar gelagert ist, so dass die Reinigungsklappe (71) in einem geöffneten Zustand eine Auffangwanne (712) für ein Reinigungsmittel (713) ist.
  4. Wärmeaustauschsystem nach einem der vorangehenden Ansprüche, wobei der Wärmetauscher (3) eine tragende Funktion bei der Bildung des Wärmeaustauschmoduls (2, 21, 22) hat.
  5. Wärmeaustauschsystem nach einem der vorangehenden Ansprüche, wobei das Wärmeaustauschsystem aus einer Mehrzahl von Wärmeaustauschmodulen (2, 21, 22) gebildet ist.
  6. Wärmeaustauschsystem nach einem der vorangehenden Ansprüche, wobei die erste Begrenzungsfläche (9, 91) des ersten Wärmeaustauschmoduls (2, 21) derart in Bezug auf die zweite Begrenzungsfläche (9, 92) des ersten Wärmeaustauschmoduls (2, 21) unter dem vorgebbaren Neigungswinkel (α) geneigt ist, dass das modulare Wärmeaustauschsystem durch ein zweites Wärmeaustauschmodul (2, 22), insbesondere in kompakter Bauform erweiterbar ist, wobei das zweite Wärmeaustauschmodul (2, 22) bevorzugt identisch zum ersten Wärmeaustauschmodul (2, 21) ist.
  7. Wärmeaustauschsystem nach einem der vorangehenden Ansprüche, wobei der Neigungswinkel (α) zwischen der ersten Begrenzungsfläche (9, 91) und der zweiten Begrenzungsfläche (9, 92) des Wärmeaustauschmoduls (2, 21, 22) zwischen 40° und 50° liegt, und besonders bevorzugt 45° beträgt.
  8. Wärmeaustauschsystem nach einem der vorangehenden Ansprüche, wobei eine Begrenzungsfläche (9) des Wärmeaustauschsystems durch eine Wand (9) eines Installationsobjekts gebildet ist, insbesondere durch eine Wand (9) eines Gebäudes gebildet ist.
  9. Wärmeaustauschsystem nach einem der vorangehenden Ansprüche, wobei zur Erhöhung einer Wärmeübertragungsrate zwischen dem Wärmemittel (6) und dem Transportfluidum (5) eine Kühleinrichtung (10) zur Kühlung des Wärmetauschers (3), insbesondere ein Lüfter (10) zur Erzeugung eines Gasstroms vorgesehen ist, und / oder wobei das Wärmeaustauschsystem als Hybridsystem ausgebildet ist, und eine Berieselungseinrichtung zur Berieselung des Wärmetauschers (3) mit einem Kühlfluid, insbesondere mit Kühlwasser, und / oder ein Tropfenabscheider zur Abscheidung des Kühlfluids vorgesehen ist.
  10. Wärmeaustauschsystem nach einem der vorangehenden Ansprüche, wobei eine Abschottung (11), insbesondere eine Luftabschottung (11) zur Regulierung einer Durchflussrate des Transportfluidums (5) vorgesehen ist.
  11. Wärmeaustauschsystem nach einem der vorangehenden Ansprüche, wobei der Wärmetauscher (3) durch eine Vielzahl von Mikrokanälen (31) als Mikrokanalwärmetauscher (3, 300) ausgebildet ist und / oder wobei der Wärmetauscher als lamellierter Wärmetauscher (3, 301) mit Kühllamellen (32) ausgebildet ist und / oder das Wärmeaustauschsystem als ein Kombinationswärmetauschsystem aus dem lamellierten Wärmetauscher (3, 301) und dem Mikrokanalwärmetauscher (3, 300) gebildet ist.
  12. Wärmeaustauschsystem nach einem der vorangehenden Ansprüche, wobei ein Kompensationsmittel zum Ausgleich von thermomechanischen Spannungen und / oder wobei ein Universalverbindungselement (12) zur Anbindung einer Komponente des Wärmeaustauschsystems vorgesehen ist.
  13. Wärmeaustauschsystem nach einem der vorangehenden Ansprüche, wobei zur Steuerung und / oder Regelung des Wärmeaustauschsystems im Betriebszustand, eine Ansteuereinheit, insbesondere eine Ansteuereinheit mit einer Datenverarbeitungsanlage zur Ansteuerung der Kühleinrichtung (10) und / oder des Reinigungssystems (7) und / oder der Luftabschottung (11) und / oder eines Betriebs- oder Zustandsparameters des Wärmemittels (6) und / oder eines anderen Betriebsparameters des Wärmeaustauschsystems vorgesehen ist.
  14. Wärmeaustauschsystem nach einem der vorangehenden Ansprüche, wobei das Wärmeaustauschmodul (2, 21, 22) und / oder der Wärmetauscher (3) und / oder, eine Begrenzungsfläche (9, 91, 92) des Wärmeaustauschmoduls (2, 21, 22), im Speziellen das gesamte Wärmeaustauschsystem, aus einem Metall und / oder einer Metalllegierung gefertigt ist, insbesondere aus einem einzigen Metall oder einer einzigen Metalllegierung, insbesondere aus Edelstahl, im Speziellen aus Aluminium oder einer Aluminiumlegierung gefertigt ist, wobei bevorzugt als Korrosionsschutz ein Opfermetall vorgesehen ist, und / oder wobei das Wärmeaustauschsystem zumindest teilweise mit einer Schutzschicht, insbesondere mit einer Korrosionsschutzschicht versehen ist.
  15. Wärmeaustauschsystem nach einem der vorangehenden Ansprüche, wobei das Wärmeaustauschsystem ein Kühler ist, insbesondere ein Kühler für ein Fahrzeug, im Speziellen für ein Landfahrzeug, für ein Luftfahrzeug oder für ein Wasserfahrzeug, oder ein Kühler, ein Kondensator oder ein Verdampfer für eine mobile oder stationäre Heizungsanlage, Kühlanlage oder Klimaanlage ist, insbesondere eine Kühlervorrichtung für eine Maschine, eine Datenverarbeitungsanlage oder für ein Gebäude ist.
EP08862368A 2007-12-18 2008-10-16 Wärmeaustauschsystem Not-in-force EP2225527B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08862368A EP2225527B1 (de) 2007-12-18 2008-10-16 Wärmeaustauschsystem

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP07123498 2007-12-18
EP08862368A EP2225527B1 (de) 2007-12-18 2008-10-16 Wärmeaustauschsystem
PCT/EP2008/063992 WO2009077226A1 (de) 2007-12-18 2008-10-16 Wärmeaustauschsystem

Publications (2)

Publication Number Publication Date
EP2225527A1 EP2225527A1 (de) 2010-09-08
EP2225527B1 true EP2225527B1 (de) 2012-03-07

Family

ID=39591195

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08862368A Not-in-force EP2225527B1 (de) 2007-12-18 2008-10-16 Wärmeaustauschsystem

Country Status (11)

Country Link
US (1) US20100288471A1 (de)
EP (1) EP2225527B1 (de)
JP (1) JP2011506903A (de)
CN (1) CN101903735A (de)
AT (1) ATE548622T1 (de)
AU (1) AU2008337809A1 (de)
BR (1) BRPI0820845A2 (de)
CA (1) CA2709638A1 (de)
MX (1) MX2010005941A (de)
RU (1) RU2010129851A (de)
WO (1) WO2009077226A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102966272A (zh) * 2011-08-29 2013-03-13 哈尔滨工大金涛科技股份有限公司 污水换热器的液压门闩装置
US8739855B2 (en) 2012-02-17 2014-06-03 Hussmann Corporation Microchannel heat exchanger
US10087569B2 (en) 2016-08-10 2018-10-02 Whirlpool Corporation Maintenance free dryer having multiple self-cleaning lint filters
US10519591B2 (en) 2016-10-14 2019-12-31 Whirlpool Corporation Combination washing/drying laundry appliance having a heat pump system with reversible condensing and evaporating heat exchangers
US10738411B2 (en) 2016-10-14 2020-08-11 Whirlpool Corporation Filterless air-handling system for a heat pump laundry appliance
US10502478B2 (en) 2016-12-20 2019-12-10 Whirlpool Corporation Heat rejection system for a condenser of a refrigerant loop within an appliance
US10514194B2 (en) 2017-06-01 2019-12-24 Whirlpool Corporation Multi-evaporator appliance having a multi-directional valve for delivering refrigerant to the evaporators
DE102017210554B4 (de) * 2017-06-22 2020-06-04 Lufthansa Technik Aktiengesellschaft Reinigungsverfahren für Oberflächen im Innenvolumen von durchströmten Flugzeugkomponenten
US10718082B2 (en) 2017-08-11 2020-07-21 Whirlpool Corporation Acoustic heat exchanger treatment for a laundry appliance having a heat pump system
DE102018215836A1 (de) * 2018-09-18 2020-03-19 Mahle International Gmbh Modulare Aufdachklimaanlage
CN113380737B (zh) * 2021-04-28 2024-05-07 西安交通大学 一种y字形浸没式毛细微通道强化散热结构及其制造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1646659A (en) * 1925-10-12 1927-10-25 George W Dulany Jr Cooling system
JPS6117898A (ja) * 1984-07-03 1986-01-25 Nippon Denso Co Ltd ラジエ−タシヤツタ−装置
DE3611424C2 (de) * 1986-04-05 1995-06-29 Taprogge Gmbh Vorrichtung zur selektierten Zuführung von Reinigungskörpern in Kühlwasser führende Rohre von Wärmetauschern
JPH07133720A (ja) * 1993-11-09 1995-05-23 Hitachi Constr Mach Co Ltd 建設機械のラジエータユニット
US5494004A (en) * 1994-09-23 1996-02-27 Lockheed Corporation On line pulsed detonation/deflagration soot blower
US5778830A (en) * 1997-01-02 1998-07-14 Combustion Engineering, Inc. Closed frame sootblower with top access
DE19837683C2 (de) * 1998-08-19 2003-02-20 Framatome Anp Gmbh Auffangvorrichtung und Auffanggefäß zum Auffangen von Ablagerungen aus Wärmetauschrohren
JP2002243208A (ja) * 2001-02-14 2002-08-28 Sanyo Electric Co Ltd リモートコンデンサ
US6988538B2 (en) * 2004-01-22 2006-01-24 Hussmann Corporation Microchannel condenser assembly
WO2005073655A1 (ja) * 2004-01-29 2005-08-11 Calsonic Kansei Corporation 熱交換器及びこれを含む空調装置
JP2006057971A (ja) * 2004-08-24 2006-03-02 Mitsubishi Electric Building Techno Service Co Ltd 空気調和装置用凝縮器の冷却装置
JP5101812B2 (ja) * 2004-12-07 2012-12-19 昭和電工株式会社 熱交換器用高耐食性チューブ及び熱交換器とその製造方法
JP2007247464A (ja) * 2006-03-14 2007-09-27 Shin Caterpillar Mitsubishi Ltd 冷却装置
JP4594274B2 (ja) * 2006-05-09 2010-12-08 日菱インテリジェンス株式会社 熱交換器の洗浄装置及びその洗浄法

Also Published As

Publication number Publication date
BRPI0820845A2 (pt) 2015-06-16
ATE548622T1 (de) 2012-03-15
RU2010129851A (ru) 2012-01-27
AU2008337809A1 (en) 2009-06-25
MX2010005941A (es) 2010-08-02
WO2009077226A1 (de) 2009-06-25
JP2011506903A (ja) 2011-03-03
US20100288471A1 (en) 2010-11-18
CA2709638A1 (en) 2009-06-25
EP2225527A1 (de) 2010-09-08
CN101903735A (zh) 2010-12-01

Similar Documents

Publication Publication Date Title
EP2225527B1 (de) Wärmeaustauschsystem
EP2225523A1 (de) Modulares wärmeaustauschsystem
EP2225528B1 (de) Wärmetauschsystem
WO2009007168A1 (de) Wärmeaustauschsystem mit einem wärmetauscher, sowie ein verfahren zur herstellung eines wärmeaustauschsystems
DE1551489A1 (de) Waermeaustauscher
EP0632245A1 (de) Wasser/Luft-Wärmetauscher aus Aluminium für Kraftfahrzeuge
WO2011003444A1 (de) Wärmetauschsystem, sowie ein verfahren zum betreiben eines wärmetauschsystems
EP1522813A1 (de) Vorrichtung zum Austausch von Wärme und Verfahren zur Herstellung einer derartigen Vorrichtung
EP2338017A1 (de) Wärmetauscheranordnung und verfahren zum betrieb derselben
EP1281545B1 (de) Lufgekühlte Wärmeübertrageranordnung mit einem CO2-Gaskühler
EP1703242B1 (de) Wärmetauscher, insbesondere Kühlflüssigkeitskühler
EP0990868B1 (de) Wärmetauscher
EP1814750B1 (de) Klimaanlage mit kältespeicher
EP2377596B9 (de) Kältetrockner, insbesondere druckluftkältetrockner, sowie wärmetauscher für einen kältetrockner, insbesondere druckluftkältetrockner
EP2678615B1 (de) Flachwärmetauscher
DE102006032570A1 (de) Einheit, aufweisend einen Gaskühler und einen inneren Wärmetauscher, und Wärmetauscher
EP1625339B1 (de) Wärmetauscher
WO2010000311A1 (de) Wärmetauscherblock, sowie ein verfahren zur herstellung eines wärmetauscherblocks
EP1814751B1 (de) Klimaanlage mit kältespeicher
EP3002530B1 (de) Wärmeaustauscher, Wärmeaustauschervorrichtung und Verfahren zur Benetzung eines Wärmeaustauschers
WO2009149745A1 (de) Wärmetauscherblock, sowie ein verfahren zur benetzung eines wärmetauscherblocks
WO2011154175A2 (de) Wärmetauscher, sowie lötverfahren zur herstellung eines wärmetauschers
EP2325593B1 (de) Wärmeübertrager
WO2010105689A2 (de) Verbindungsanschluss, wärmetauscherblock, sowie ein verfahren zur herstellung eines wärmetauscherblocks
EP1520146A1 (de) Wärmeübertrager

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100719

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17Q First examination report despatched

Effective date: 20110210

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 548622

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120315

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008006645

Country of ref document: DE

Effective date: 20120503

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120607

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20120307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120608

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120707

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120709

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20121023

Year of fee payment: 5

26N No opposition filed

Effective date: 20121210

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20121023

Year of fee payment: 5

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008006645

Country of ref document: DE

Effective date: 20121210

BERE Be: lapsed

Owner name: A-HEAT ALLIEDHEAT EXCHANGE TECHNOLOGY A.G.

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121016

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121016

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120607

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081016

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008006645

Country of ref document: DE

Effective date: 20140501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140501

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131016

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 548622

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131016