EP2220451B1 - Fluid distribution element for a fluid-conducting device, especially for multichannel-type fluid-conducting appliances nested in each other - Google Patents

Fluid distribution element for a fluid-conducting device, especially for multichannel-type fluid-conducting appliances nested in each other Download PDF

Info

Publication number
EP2220451B1
EP2220451B1 EP20080854597 EP08854597A EP2220451B1 EP 2220451 B1 EP2220451 B1 EP 2220451B1 EP 20080854597 EP20080854597 EP 20080854597 EP 08854597 A EP08854597 A EP 08854597A EP 2220451 B1 EP2220451 B1 EP 2220451B1
Authority
EP
European Patent Office
Prior art keywords
channel
layer
fluid distribution
partial
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP20080854597
Other languages
German (de)
French (fr)
Other versions
EP2220451A1 (en
Inventor
Benoit Sicre
Thore Oltersdorf
Michael Hermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP2220451A1 publication Critical patent/EP2220451A1/en
Application granted granted Critical
Publication of EP2220451B1 publication Critical patent/EP2220451B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • F28F3/14Elements constructed in the shape of a hollow panel, e.g. with channels by separating portions of a pair of joined sheets to form channels, e.g. by inflation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0037Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the conduits for the other heat-exchange medium also being formed by paired plates touching each other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems

Definitions

  • the present invention relates to a fluid distribution element for fluid-carrying devices, in particular for devices having multi-channel tubes. Such an element is out DE 4426097 A known, and corresponds to the general concept of the claim1.
  • the fluid distribution element according to the invention is alternatively referred to below as distributor connection piece, fluid distribution device or fluid collection device.
  • the present invention also relates to an arrangement of such fluid distribution elements and to manufacturing processes for producing such fluid distribution elements.
  • Fluid distribution elements are of particular interest when heat or mass transfer between multiple carriers (fluids) is to take place at the same time.
  • An example is tube-in-tube heat exchangers Air conditioning systems in the automotive industry, which serve as internal heat transfer for the refrigeration circuit. Essential here is in particular the fulfillment of requirements in terms of space requirements and weight reduction and as to the cost reduction.
  • Another example in which fluid distribution elements can be used are so-called combination evaporators (also abbreviated to Kombiverdampfer) for heat pumps, as described for example in the patent WO 2004/094921 A1 to be discribed.
  • the present invention is achieved by a fluid distribution element according to claim 1 and by an arrangement of such fluid distribution elements according to claim 9.
  • Advantageous embodiments of the fluid distribution elements or arrangements according to the invention can be found in the dependent claims.
  • Inventive methods can be found in claims 13 and 14. Uses according to the invention are described by claim 15.
  • a fluid distribution element or a fluid distribution device / fluid collection device in particular of metal or plastic, is provided, which is suitable in particular for connection to interleaved or overlapping multichannel-type lines (multiple channel tubes).
  • multi-channel pipes are to carry one or more different fluids separately in a space-saving manner independently of each other and to utilize the possibility of controlled heat transfer or controlled mass transfer.
  • multi-channel pipe heat exchangers offer the advantage that they allow the heat exchange between different heat transfer media (for example, from two different heat sources with different temperature levels and with different heat transfer composition and a heat sink) in a reduced space.
  • Multi-channel pipes offer, inter alia, the advantage that they allow the controlled mass transfer between more than two fluids in a reduced space, for example by means of the diffusion, osmosis or sieving principle.
  • the present invention provides a fluid distribution element or manifold connector, the purpose of which is to connect, on the one hand, monotube leads to, on the other hand, a multichannel tube, without having to penetrate the channels.
  • the inventive approach is that the individual supply channels open in sub-channels and these sub-channels intersect and overlap, so that a contact surface for the purpose of heat and / or mass transfer arises.
  • the fluid distribution element or connector can advantageously made of metal or plastic and with different cost-effective methods (for example, pressure welding, gluing and / or soldering) are produced.
  • the fluid distribution element according to the invention has a very small space requirement and simplifies the concatenated connection of multi-channel tubes for the purpose of constructing a compact unit for heat transfer.
  • the fluid distribution element according to the invention can be produced in a structurally simple manner, without there being an increased risk of leakage, as in the prior art at the penetration points.
  • the structure of the fluid-carrying device by means of the fluid distribution elements can advantageously be such that bionic approaches are tracked in the route of the channel.
  • the fluid distribution element according to the invention has a plurality of individual layers stacked one above the other (for example, flat metal layers or plastic layers), which are connected to each other with parts of their surfaces. Between such connection areas, bulges or elevations are realized (for example, by swelling of partial areas of the surfaces which were provided with a release agent or also by preforming) perpendicular to the layer plane, which then form spaces between the individual layers, by means of which fluid guide channels are realized.
  • it is a stack arrangement of three, for example, pressure-pressed material layers, particularly advantageous (see also the following embodiment) are four layers of material used.
  • such a fluid distribution element according to the invention can also be produced cost-effectively and fully automatically by bonding preformed plastic or metal parts in which half channels are already preformed.
  • a fluid distribution element according to the invention is therefore in the simplest case a structure with substantially circular or semicircular flow cross sections (tubes) which are pre-embossed into flat bodies (the individual layers) which in this variant are glued or soldered to other flat bodies.
  • the connecting pipe pieces, which are connected to the leads conclusively become.
  • the channels do not overlap in or between the individual layers.
  • Single layers of metal are used for the above-described roll-bonding process (or autogenous rolling welding). It is applied a suitable release agent at the locations of the channels to be formed and the sheets are cold-welded together by rolling.
  • the release agent leaves unconverted areas exist, which can be expanded with a fluid, in particular air, pressurized into tubes.
  • a fluid in particular air, pressurized into tubes.
  • the sequence of expansion of the regions which are not disposed of. For example, the space between the inner, centrally located individual layers or individual layers is first widened, and then the space between individual layers lying further outside. In order to preserve the channel structure of already inflated channels, it is possible to leave them under pressure as more channels are inflated.
  • the individual layers of the fluid distribution element or distributor connection piece can easily be connected to one another and then individual fluid distribution elements or distributor connection pieces stacked perpendicular to the layer plane and connected to supply lines, so that a stack (arrangement) of distributed, piled and provided with fluid guide channels fluid distribution elements.
  • the design of such an arrangement of fluid distribution elements according to the invention can then be designed similar to a lamella heat exchanger, in which the tubes form a closed body with the lamellae.
  • an arrangement of fluid distribution elements or a Merrives fluid supply unit using multiple fluids can be formed, between the individual (coated from individual layers) fluid distribution elements or around the stack spaced apart individual fluid distribution elements, which now serve as fins, an example gaseous fluid can flow.
  • Spacers can be arranged between adjacent individual fluid distribution elements or plate bodies, which can be selected such that sufficient fluid can flow or flow past between individual fluid distribution elements.
  • surface structures such as ridges or ribs, which have a turbulence-increasing effect, can be applied to the outer surfaces of the fluid distribution elements according to the invention. This leads to an improved heat transfer between a fluid flowing in a fluid distribution element according to the invention and the fluid flowing between it and an adjacent fluid distribution element.
  • the above-described type of preparation for the individual fluid distribution elements or the entire, the arrangement of fluid distribution elements having fluid guide unit brings in addition to the advantage that no soldering or welding are necessary, also the advantage that they or it with the same conventional inexpensive metals or plastics, as the multi-channel pipes to be connected can be generated itself.
  • the connections on the front side of the Eizelrohrzu füren are advantageously formed with a circular cross-section and selected with a standardized inner width, so that a connection with conventional lines and Kochsch scholaren can be done easily.
  • the cross-section of the channels can remain constant along the route, so that pressure or flow is constant remain, or be varied, so that physical phenomena, such as evaporation or compression can be specifically favored.
  • the distributor connection piece or fluid distribution element according to the invention is thus characterized by a simple structure and a simple production and by low material costs.
  • the shape of the plates can be arbitrary (seen in the layer plane), for example in a rectangular or polygonal shape.
  • the entire combi-steamer is not conventionally manufactured as a lamellar tube heat exchanger made of aluminum fins and tube registers made of copper, but it is a multilayer body of at least four individual layers realized (for example, with the above-described rolling bonding method).
  • certain areas in the intermediate layers or between the individual layers may be excluded from a joining compound which will expand at the disposal of the other areas or are already pre-embossed when in use and thus form areas between the individual layers for the flow of fluids (ie channels).
  • An exception here is the production by extrusion, whereby structures without branches and returns can be made in one piece.
  • the flow-through areas in the intermediate layers may also include more complex structures, such as branches and returns.
  • the fluid distribution element according to the invention is also used of the fluid distribution element according to the invention in Kombiverdampfer the structure simplified so that leads are no longer complex shapes with penetrations, but that the problem of penetration is shifted to the multilayer body.
  • the bodies through which it flows are then tubular channels or channel-like tubes.
  • the multilayer panels are shaped to achieve functionality analogous to the combination steamer, which is accomplished by cold welding a body having advantageously four layers of panels, for example, in the roll bond technique. This results in a total of three intermediate layers or areas between two adjacent individual layers, which are available either by release agents or by the use of pre-stamped structures for the fluid guide available.
  • the individual layers can also be soldered or glued, in which case channel guides represent recessed areas.
  • This multi-layered body can then be used to make a channel system overlying the flow filaments.
  • These outer channel systems can in this case be separated from each other by two further plates, which may be necessary because during the later continuation of these channels, the channel in the middle intermediate layer laterally penetrates into the outer channels. This process of lateral penetration corresponds to the penetration in the previous production of supply lines or distribution lines.
  • Y-shaped branches can also be produced.
  • a Y-shaped branch piece which in combination can be used with a fluid distribution element according to the invention or can be connected to this, applies, for example, if a multi-channel pipe must be divided into two parallel multi-channel pipes (for example, for the purpose of reducing pressure drop in the same transfer area in Kombiverdampfern).
  • a release medium may be applied to the ply planes according to the shape and arrangement of the branch.
  • the present invention thus provides a metal or plastic manifold connector for nested multi-channel fluid routing apparatus consisting essentially of separate leads on one side (first face) and interleaved channels on the other face (second, first face) Front side opposite end), wherein the channels do not penetrate, but in separate sub-channels (closing the multi-channel tube) open, with these sub-channels intersect and partially or completely overlap, so that a contact surface for heat or mass transfer via an intermediate Canal wall is created.
  • the supply or removal of fluids to or from the heat exchanger in separate, not superimposed channels so that the supply line can be connected on one side with conventional Einrohrön.
  • the element according to the invention can be produced by roll bonding or pressure welding from a plurality of individual layers (advantageously at least three or four individual layers).
  • the channel-like Structures can be created by puffing.
  • the channel-like structures can alternatively also be provided by pre-stamped channel structures in the individual layers.
  • the individual layers can also be cast or bonded together by gluing.
  • a plurality of fluid distribution elements according to the invention can be stacked on top of one another and at a distance from each other, preferably perpendicular to the layer plane, whereby a heat exchanger with a plurality of multiple-channel tubes or several flights within the fluid-guiding unit is formed. Between each individual fluid distribution element of such a fluid-guiding unit, a further fluid can then flow through corresponding fluid-carrying structures.
  • bionic approaches such as harp shape
  • pipe branches eg Y-shaped branches
  • FIG. 1 shows an embodiment of a fluid distribution element according to the invention.
  • FIG. 1a shows a plan view of the layer plane L of the fluid distribution element
  • FIG. 1b shows various sectional views perpendicular to the layer plane and substantially perpendicular to the channel longitudinal direction K (see. FIG. 2 ).
  • the channel longitudinal axis direction here is that direction in the layer plane L which essentially corresponds to the flow direction of the fluid through the inner channel I or the outer channel A.
  • the fluid distribution element consists of four individual layers or individual layers 1 to 4, which each consist of flat metal bodies, here zinc sheets or aluminum sheets.
  • the individual aluminum plates or zinc sheet layers 1 to 4 are stacked one above the other perpendicular to the layer plane L. Parts of the surfaces or the upper sides and / or lower sides of the individual Layers 1 to 4 are each pressure-tightly connected by the above-described roll-bonding method or roll pressing with parts of the opposite surfaces of adjacent individual layers.
  • non-bonded regions are formed between these connected partial area regions of two layers, in which cavities are created by bulging one or both of the adjacent individual layers, which then serve as fluid guide channels (inner channel I and outer channels A, A SP , see below). are formed.
  • FIG. 1 shows, in the uppermost single layer 1, a first in the direction perpendicular to the layer plane L upwards (see. FIG. 1b ) Ducted channel structure 1S formed.
  • first intermediate layer upper intermediate layer 2
  • second channel structure 2S Seen in the direction of the channel longitudinal direction K (in FIG. 1a the direction from bottom to top, cf. FIG.
  • FIG. 1a bottom left shows the connection area AB, on its outside front side (the in FIG. 1a shown below) of the inner channel I and the outer channel A completely separate from each other and laterally offset from one another, so that two separate individual tubes can be connected to the fluid distributor according to the invention at this end face.
  • the channel structure 1S of the uppermost layer 1 in the form of two bulges formed laterally offset from one another is formed on the outside end face of the connection region AB.
  • the underlying single layer 2 also has a bulge (which forms the channel structure 2S), which is designed and arranged such that it snugly fits into the bulge 1S of the first layer 1.
  • the underlying single layer 2 In the region of the second bulge portion of the channel structure 1S ( FIG. 1b at the bottom right), the underlying single layer 2, however, no bulge, but is formed as a flat surface: This is formed between the individual layers 1 and 2 in the cross section shown trapezoidal, upwardly tapering cavity, which is the first outer channel section A1 for fluid transport formed outer channel A is formed.
  • the adjacent to the second single layer 2 and below the same arranged third single layer 3 is now seen in relation to the layer plane L mirror-symmetrical to the second single layer 2 formed.
  • the fourth single layer which is arranged adjacent to this third individual layer 3 and below it, is mirror-symmetrically shaped (seen with respect to the layer plane L) to the uppermost single layer 1.
  • connection area AB Due to this mirror-symmetrical shape (and a corresponding mirror-symmetrical arrangement) arises in the connection area AB through the arched channel structure 2S of the second single layer 2 and through their likeness in the third single layer 3 a cross-section approximately doppelrapezförmiger cavity between the second single layer 2 and the third single layer 3, which is also designed as an inner channel I (in the area AB as the first inner channel section I1) for fluid guidance. Due to the above-described symmetrical configuration also results in relation to the layer plane L seen opposite the first outer channel section A1 of the outer channel A between the fourth layer and the third layer also in cross-section approximate trapezoidal cavity, which as a further outer channel A SP (SP stands for mirror-symmetrical) is formed.
  • SP stands for mirror-symmetrical
  • channel longitudinal direction K reduces the distance between the channel centers of the first inner channel section I1 and the first outer channel section A1 of the inner channel I. or the outer channel A successively, so that the two channels I and A (or A SP ) gradually approach until they begin in the adjoining the connection area AB in the channel longitudinal direction K crossing area KB to intersect.
  • the first channel structure 1S of the uppermost layer 2 and the second channel structure 2S of the upper middle layer 2 are thus formed in the crossing region KB (this also applies to the third channel structures 3S and 4S of the lower middle layer 3 and the lower layer 4) facing each other mirror-symmetrically the overlap area between the first channel structure 1S and the second channel structure 2S is increasingly increased, until (due to the larger Width of the channel structure 1S compared to the channel structure 2S; the width here is the extension perpendicular to the direction K in the layer plane L), the first channel structure 1S completely overlaps the second channel structure 2S.
  • K thus slides upwards in the longitudinal direction of the channel K (cf. FIG.
  • the overlapping region UB then adjoins, in which third channel sections (third inner channel section I3 and third outer channel section A3) are formed such that the inner channel I or the second channel structure 2S is completely separated from the outer channel A and from the first Channel structure 1S is overlapped or covered.
  • the first channel structure 1S overlaps the second channel structure 2S symmetrically on both sides, so that the inner channel I, I3 runs centrally below the outer channel A, A3 or is enclosed by it on one side.
  • the fluid distribution element shown thus has a substantially concentric within two outer channels A, A SP running inside channel I, so that in a simple manner at this upper connection side a suitably trained multiple channel pipe can be connected (see also sectional view F-F ').
  • a fluid distribution element can be varied in a variety of ways in the context of the present invention:
  • the fluid distribution element can be integrated with such a multi-channel tube be continued.
  • Various fluid control structures can additionally be integrated into the fluid distribution element shown, for example a Y-shaped branching element (cf. FIG. 5 ), in which the inner channel I guided concentrically within the two outer channels A, A SP branches, together with the outer channels surrounding it, into two separate strands.
  • the fluid distribution element according to the invention from only three individual layers 1 to 3, so that only one outer channel A and one inner channel I result (omission of the second outer channel A SP ).
  • the further layer elements 3 and 4 need not be formed symmetrically to the sheet elements 1 and 2, but may also be designed as a flat flat plates. In this case, then only one here in the example simply trapezoidal (but there are also other forms possible in general) inner channel I and an outer channel A.
  • the individual layers can also be the same be formed integrally. This does not have to concern all individual layers, but may also relate only to individual layers shown (for example, waiving the single layer 4, the two individual layers 2 and 3 could be made as a one-piece, extruded molded body, which superimposed another layer (top layer 1) becomes).
  • FIG. 2 shows an isometric view of the in FIG. 1 shown fluid distribution element.
  • the two separate outer channels A and A SP semiconductorircular
  • the inner channel I circular
  • FIG. 3 shows a further embodiment of an inventive fluid distribution element (shown here only the top view on the layer plane L). This is basically the same structure as the layer element shown in Figure 1, so that only the differences will be described here.
  • the two channel structures 1S and 2S are designed such that the inner channel I separates into two separate inner channel sections in the connection region AB and in the crossing region KB.
  • the connection region AB two separate, offset from one another and offset from the outer channel A, A1 are formed first inner channel sections I1a and I1b formed, which allow the connection of two separate single-pipe supply lines for the inner channel I on the outside end face.
  • the two separate inner channel sections intersect in the crossing area KB thus on both sides of the outer channel A and below the same in this one, which by a corresponding construction, as already to FIG. 1 has been described, can be realized.
  • the inner channel I, I3 and the outer channel A, A3 overlap each other in the overlapping area ÜB.
  • FIG. 4 shows an inventive arrangement of several (here three) fluid distribution elements F1 to F3.
  • the three fluid distribution elements F1 to F3 are in this case perpendicular to the layer plane or in the stacking direction S spaced from each other and arranged one above the other.
  • the layer planes L of the individual fluid distribution elements in this case run parallel to each other.
  • the individual fluid distribution elements are kept spaced apart by spacers Abs.
  • Front in FIG. 4 the connection side for the single-pipe feed lines for the fluid distribution elements is shown.
  • the individual pipe feed lines are here realized in such a way that branch off from a first, arranged in the stacking direction S connection line 3 at the level of the individual fluid distribution elements single pipe channels, which are then respectively connected to an inner channel I of a fluid distribution element.
  • a second connection line 4 is likewise arranged in the stacking direction S, from which individual tube channels likewise branch off at the level of the individual fluid distribution elements, which then each with the individual individual tube connections the outer channels A of the fluid distribution elements are connected.
  • the arrangement shown here is realized here due to the spacing of the individual fluid distribution elements F1 to F3 realized by the spacers Abs so that a volume arises between two adjacent fluid distribution elements, which also flows through a fluid (third fluid outside the inner channels I and the outer channels A) can.
  • the outer surface (upper side of the individual layers 1 and lower side of the individual layers 4) is provided with a plurality of individual, parallel to each other and offset from one another Rib structures 5 provided. These rib structures are arranged both laterally next to the channel structures 1S and 4S, as well as on the outside on these and provide a turbulence of the flowing through the gaps between the fluid distribution elements through the third fluid, whereby the heat exchange is optimized.
  • FIG. 5 finally outlines a Y-branch piece made of the individual layers 1 to 4, for example by roll bonding, which can be used in combination with a fluid distribution element according to the invention to split the fluid flow of the inner channel I and the outer channel A into two separate fluid streams (the Y-branch piece shown)
  • a fluid distribution element according to the invention to split the fluid flow of the inner channel I and the outer channel A into two separate fluid streams (the Y-branch piece shown)
  • the Y-branch piece shown For example, at the upper end of the overlap area UB of in FIG. 1 shown fluid distribution element, see there sectional view F-F ') are docked.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

The fluid distribution element according to the invention has a very low spatial requirement and simplifies the interlinked connection of multichannel pipes for the purpose of construction of a compact assembly for heat exchange. In particular the fluid distribution element according to the invention can be produced in a constructionally simple manner thus without, as in the state of the art, an increased risk of leakage arising at the interpenetration points. In order to prevent in addition possible pressure losses, the construction of the fluid-conducting device can be effected advantageously by means of the fluid distribution elements such that bionic attachments are followed in the line of the channel.

Description

Die vorliegende Erfindung bezieht sich auf ein Fluidverteilungselement für fluidführende Vorrichtungen, insbesondere für Vorrichtungen, welche Mehrkanalrohre aufweisen. Solch ein element ist aus DE 4426097 A bekannt, und entspricht dem Oberbegrift des anspruchs1. Das erfindungsgemäße Fluidverteilungselement wird nachfolgend alternativ auch als Verteilerverbindungsstück, Fluidverteilungseinrichtung oder Fluidsammeleinrichtung bezeichnet. Die vorliegende Erfindung bezieht sich darüberhinaus auf eine Anordnung aus solchen Fluidverteilungselementen sowie auf Herstellungsverfahren zur Herstellung solcher Fluidverteilungselemente.The present invention relates to a fluid distribution element for fluid-carrying devices, in particular for devices having multi-channel tubes. Such an element is out DE 4426097 A known, and corresponds to the general concept of the claim1. The fluid distribution element according to the invention is alternatively referred to below as distributor connection piece, fluid distribution device or fluid collection device. The present invention also relates to an arrangement of such fluid distribution elements and to manufacturing processes for producing such fluid distribution elements.

Fluidverteilungselemente sind insbesondere von Interesse, wenn ein Wärme- oder Stofftransport zwischen mehreren Trägern (Fluiden) zeitgleich erfolgen soll. Ein Beispiel stellen Rohr-in-Rohr-Wärmeüberträger in Klimaanlagen in der Automobilindustrie dar, welche als innere Wärmeüberträger für den Kältekreis dienen. Wesentlich hierbei ist insbesondere die Erfüllung von Anforderungen betreffs des Raumbedarfs und der Gewichtsreduzierung sowie betreffs der Kostensenkung. Ein weiteres Beispiel, in welchem Fluidverteilungselemente eingesetzt werden können, sind sog. Kombinationsverdampfer (auch kurz: Kombiverdampfer) für Wärmepumpen, wie sie beispielsweise in der Patentschrift WO 2004/094921 A1 beschrieben werden.Fluid distribution elements are of particular interest when heat or mass transfer between multiple carriers (fluids) is to take place at the same time. An example is tube-in-tube heat exchangers Air conditioning systems in the automotive industry, which serve as internal heat transfer for the refrigeration circuit. Essential here is in particular the fulfillment of requirements in terms of space requirements and weight reduction and as to the cost reduction. Another example in which fluid distribution elements can be used are so-called combination evaporators (also abbreviated to Kombiverdampfer) for heat pumps, as described for example in the patent WO 2004/094921 A1 to be discribed.

Dabei sind Herstellungsverfahren für Rohr-in-Rohr-Anordnungen beispielsweise aus Metall oder Kunststoff bekannt, wo die Verbindung zu der Zuleitung bzw. zum Sammelstrang über eine Durchdringung des überstehenden Kanals erfolgt (siehe z.B. DD 269205 A1 ). Ein solches Herstellungsverfahren ist jedoch mehrstufig und nicht vollautomatisierbar: Es erfordert u.a. das Dichten des durchdrungenen Kanals, in der Regel durch ein Lötmittel, dessen thermisches Ausdehnverhalten unterschiedlich zu dem des Kanalmaterials ist. Bei hoher thermischer Belastung kann dies zur Rissbildung führen. Hierdurch entsteht die Notwendigkeit eines umfassenderen, zeitlich und personell aufwendigen Leckagetests.In this case, production methods for pipe-in-pipe arrangements, for example of metal or plastic are known, where the connection to the supply line or to the collecting strand via a penetration of the projecting channel takes place (see, eg DD 269205 A1 ). However, such a manufacturing process is multi-level and not fully automated: It requires, inter alia, the sealing of the penetrated channel, usually by a solder whose thermal expansion behavior is different from that of the channel material. At high thermal stress, this can lead to cracking. This creates the need for a more comprehensive, time and personnel-consuming leak test.

Aus dem Stand der Technik sind darüberhinaus Konstruktionsprinzipien für Wärmeüberträger zum Kühlen oder Erwärmen von Flüssigkeiten oder von Gasen, welche aus mehreren miteinander walzgepressten Metallblechen ausgebildet sind, bekannt, wobei Kanäle aufgebläht werden. Hierbei dienen dann Platten zur Trennung der Fluide (beispielsweise DE 30 03 137 A1 ). Hierbei wird ein sog. Walzenverbinden bzw. englisch Roll-Bonding vorgenommen, wodurch eine Verbindung zweier oder mehrerer relativ dünner Bahnen, Bleche oder Tafeln zustande kommt, was durch Walzendruck geschieht. Eine solche Verbindung kann ggf. auch durch Erwärmung oder durch Verklebung realisiert werden. Zwischenbleche können hierbei Wellen aufweisen, um die Wärmeübertragung zu intensivieren.In addition, design principles for heat exchangers for cooling or heating liquids or gases formed from a plurality of metal plates rolled together with each other are known from the prior art, wherein channels are inflated. In this case, plates are used to separate the fluids (for example DE 30 03 137 A1 ). In this case, a so-called. Roll bonding or English roll-bonding is carried out, whereby a compound of two or more relatively thin webs, sheets or panels, what happens through roller pressure. If necessary, such a connection can also be realized by heating or by gluing. Intermediate plates can in this case have waves to intensify the heat transfer.

Wärmeüberträger bzw. Wärmetauscher werden ihrer Grundform nach unterteilt in Röhrbündel-, Platten-, Koaxial- und Spiralwärmeüberträger. Ein Plattenwärmeüberträger lässt sich im Verhältnis zu den anderen Ausführungsformen sehr kompakt bauen. Er ist dadurch aufgrund seines Materialbedarfs und des Gesamtvolumens grundsätzlich überall dort vorzuziehen, wo die Forderungen nach geringen Materialkosten und der Kompaktheit für kleine Anlagen die Korrosions- und Druckbeständigkeit überwiegen. Dies ist beispielsweise für im Bereich der Kältetechnik eingesetzte Verdampfer der Fall. Im Bereich der Wärmepumpen gilt, dass sich neben den Kosten für die Anlage selbst erhöhte Anschaffungskosten durch die notwendige Erschließung einer Wärmequelle ergeben. Aus diesem Grund sind Außenluftwärmepumpen wirtschaftlich gesehen von Vorteil. Üblicherweise werden in Kältekreisen dieser Anlagen für diesen Zweck Lamellenrohr-Wärmeüberträger eingesetzt. Allerdings ist die Effizienz einer solchen Wärmepumpe geringer, weil die Wärmequelle viel stärkeren saisonal bedingten Temperaturschwankungen unterliegt. Durch die Unterstützung dieser primären Wärmequelle durch eine sekundäre Wärmequelle lassen sich Zugewinne bei der Verdampferleistung und eine geringere Frostbildung am Verdampfer einer Außenluftwärmepumpe realisieren. Hierzu wurden beispielsweise Kombiverdampfersysteme entwickelt (siehe WO 2004/094921 A1 ). In all solchen genannten Systemen kann das erfindungsgemäße Fluidverteilungselement als Bauteil eingesetzt werden: Wie nachfolgend noch ausführlich beschrieben, bietet dies den Vorteil, dass, beispielsweise beim Kombiverdampfer, Anordnungen konzentrisch ineinander eingeführter Rohre, bei denen die Geometrie Zuleitungen mit Durchdringungen aufweist, vermieden werden können. Solche Zuleitungen mit Durchdringungen sind im Stand der Technik notwendig, wenn Fluide in direktem thermischen Kontakt zueinander stehen sollen. Hierzu sind aus dem Stand der Technik die beiden folgenden Realisierungsmöglichkeiten bekannt:

  1. 1. Zwei Rohre unterschiedlichen Durchmessers werden ineinander angeordnet und das Volumen des Ringspalts und das des Innenrohrs werden mit Sand verpresst. In diesem Zustand lässt sich eine typische mäanderförmige Rohranordnung (Rohrregister im Lamellenkörper) realisieren. Dieses Verfahren ist technisch sehr aufwendig und nicht voll automatisierbar.
  2. 2. Das Außenrohr wird bereits vorgeformt mit Lamellen bezogen. Das Rohrregister ist dann bereits in dem Lamellenkörper angeordnet. In dieses Rohrregister wird nun das Innenrohr eingebracht, wobei dieses das Rohrregister im Bereich der Rohrkrümmer außerhalb des Lamellenkörpers durchdringt. Hierdurch ergeben sich insbesondere Problemstellen bei einer automatisierten Fertigung aufgrund der komplexen Geometrie der durchdrungenen Bereiche der Rohrwandung in den Rohrkrümmern.
Heat exchangers or heat exchangers are subdivided into their basic form into tube bundle, plate, coaxial and spiral heat exchangers. A plate heat exchanger can be very compact in relation to the other embodiments. As a result, due to its material requirements and the total volume, it is generally preferable wherever the demands for low material costs and compactness for small systems outweigh the corrosion and pressure resistance. This is the case, for example, for evaporators used in the field of refrigeration technology. In the field of heat pumps, in addition to the costs for the system itself, increased initial costs result from the necessary development of a heat source. For this reason, outdoor air heat pumps are economically advantageous. Usually lamellae heat exchangers are used in refrigeration circuits of these systems for this purpose. However, the efficiency of such a heat pump is lower because the heat source is subject to much higher seasonal temperature fluctuations. By supporting this primary heat source by a secondary heat source, gains in evaporator performance and less frost formation on the evaporator of an outdoor air heat pump can be realized. For this purpose, for example, Kombiverdampfersysteme have been developed (see WO 2004/094921 A1 ). In all such systems mentioned fluid distribution element of the invention can be used as a component: As follows described in detail, this offers the advantage that, for example, the combination steamer, arrangements concentrically nested tubes in which the geometry leads with penetrations can be avoided. Such feedthroughs with penetrations are necessary in the prior art when fluids are to be in direct thermal contact with each other. For this purpose, the two following implementation possibilities are known from the prior art:
  1. 1. Two tubes of different diameters are arranged inside each other and the volume of the annular gap and that of the inner tube are pressed with sand. In this state, a typical meander-shaped pipe arrangement (pipe register in the disk body) can be realized. This method is technically very complicated and not fully automated.
  2. 2. The outer tube is already preformed with lamellae. The pipe register is then already arranged in the disk body. In this pipe register, the inner tube is now introduced, which penetrates the pipe register in the region of the pipe bend outside of the disk body. This results in particular problem areas in an automated production due to the complex geometry of the penetrated areas of the pipe wall in the elbows.

Ausgehend vom Stand der Technik ist es somit die Aufgabe der vorliegenden Erfindung, ein Fluidverteilungselement (bzw. eine Anordnung von Fluidverteilungselementen) zur Verfügung zu stellen, mit welchem auf konstruktiv einfache und preisgünstige Art und Weise sowie auf über eine lange Lebensdauer hinweg gesehen zuverlässige Art und Weise eine Fluidverteilung innerhalb einer fluidführenden Vorrichtung, insbesondere innerhalb eines Wärmetauschers oder innerhalb einer Vorrichtung zum Austausch von Stoffen zwischen Fluidströmen, realisiert werden kann. Aufgabe der vorliegenden Erfindung ist es darüberhinaus, entsprechende Herstellungsverfahren zur Verfügung zu stellen.Based on the prior art, it is thus the object of the present invention to provide a fluid distribution element (or an arrangement of fluid distribution elements) with which structurally simple and inexpensive manner and seen over a long service life reliable manner, a fluid distribution within a fluid-conducting device, in particular within a heat exchanger or within a device for exchanging substances between fluid streams, can be realized. It is also an object of the present invention to provide corresponding production methods.

Die vorliegende Erfindung wird durch ein Fluidverteilungselement nach Anspruch 1 sowie durch eine Anordnung von solchen Fluidverteilungselementen nach Anspruch 9 gelöst. Vorteilhafte Ausgestaltungsformen der erfindungsgemäßen Fluidverteilungselemente bzw. Anordnungen lassen sich den abhängigen Ansprüchen entnehmen. Erfindungsgemäße Verfahren lassen sich den Ansprüchen 13 und 14 entnehmen. Erfindungsgemäße Verwendungen werden durch Anspruch 15 beschrieben.The present invention is achieved by a fluid distribution element according to claim 1 and by an arrangement of such fluid distribution elements according to claim 9. Advantageous embodiments of the fluid distribution elements or arrangements according to the invention can be found in the dependent claims. Inventive methods can be found in claims 13 and 14. Uses according to the invention are described by claim 15.

Nachfolgend wird ein erfindungsgemäßes Fluidverteilungselement (sowie eine entsprechende Anordnung) zunächst allgemein beschrieben. Hieran schließen sich konkrete Ausführungsbeispiele an. Die einzelnen konkreten Konstruktionsmerkmale, wie sie sich sowohl der allgemeinen Beschreibung, wie auch den sich anschließenden speziellen Ausführungsbeispielen entnehmen lassen, können hierbei im Rahmen der vorliegenden Erfindung selbstverständlich durch den Fachmann mittels seiner Fachkenntnisse auch konstruktiv abgewandelt werden bzw. in einer beliebigen anderen, nicht gezeigten Kombination eingesetzt werden, ohne hierdurch den Schutzbereich der vorliegenden Erfindung, welcher allein durch die Patentansprüche gegeben ist, zu verlassen.Hereinafter, a fluid distribution element according to the invention (and a corresponding arrangement) will first be described generally. This is followed by concrete embodiments. The individual concrete design features, as can be inferred both from the general description and from the subsequent specific exemplary embodiments, can, of course, be constructively modified within the scope of the present invention by the person skilled in the art by means of his specialist knowledge or in any other, not shown Combination can be used without departing from the scope of the present invention, which is given solely by the claims.

Erfindungsgemäß wird ein Fluidverteilungselement bzw. eine Fluidverteilungseinrichtung/Fluidsammeleinrichtung, insbesondere aus Metall oder Kunststoff, zur Verfügung gestellt, welche(s) sich insbesondere zum Anschluss an ineinander verschachtelte oder sich überlagernde mehrkanalartige Leitungen (Mehrfachkanalrohre) eignet. Der Zweck von solchen Mehrfachkanalrohren besteht darin, in einer platzsparenden Bauweise ein oder mehrere unterschiedliche Fluide in getrennter Weise unabhängig voneinander zu führen und die Möglichkeit der kontrollierten Wärmeübertragung bzw. der kontrollierten Stoffübertragung zu nutzen. Hierbei bieten beispielsweise Mehrfachkanal-Rohr-Wärmeüberträger den Vorteil, dass sie in einem reduzierten Raum den Wärmeaustausch zwischen verschiedenen Wärmeträgermedien (beispielsweise aus zwei unterschiedlichen Wärmequellen mit unterschiedlichem Temperaturniveau und mit unterschiedlicher Wärmeträgerzusammensetzung und einer Wärmesenke) ermöglichen. Mehrfachkanalrohre bieten u.a. den Vorteil, dass sie in einem reduzierten Raum beispielsweise mittels des Diffusions-, des Osmose- oder des Siebprinzips den kontrollierten Stoffübergang zwischen mehr als zwei Fluiden ermöglichen. Die vorliegende Erfindung stellt ein Fluidverteilungselement bzw. ein Verteilerverbindungsstück zur Verfügung, dessen Zweck das Verbinden von einerseits Einrohr-Zuleitungen mit andererseits einem Mehrfachkanalrohr ist, ohne dass sich die Kanäle durchdringen müssen. Der erfindungsgemäße Ansatz besteht darin, dass die einzelnen Zuleitungskanäle sich in Teilkanäle öffnen und sich diese Teilkanäle kreuzen und überlappen, so dass eine Kontaktfläche zwecks Wärme- und/oder Stoffaustausch entsteht. Das Fluidverteilungselement bzw. Verbindungsstück kann vorteilhafterweise aus Metall oder Kunststoff und mit unterschiedlichen kostengünstigen Verfahren (beispielsweise Pressschweißen, Kleben und/oder Löten) hergestellt werden.According to the invention, a fluid distribution element or a fluid distribution device / fluid collection device, in particular of metal or plastic, is provided, which is suitable in particular for connection to interleaved or overlapping multichannel-type lines (multiple channel tubes). The purpose of such multi-channel pipes is to carry one or more different fluids separately in a space-saving manner independently of each other and to utilize the possibility of controlled heat transfer or controlled mass transfer. In this case, for example, multi-channel pipe heat exchangers offer the advantage that they allow the heat exchange between different heat transfer media (for example, from two different heat sources with different temperature levels and with different heat transfer composition and a heat sink) in a reduced space. Multi-channel pipes offer, inter alia, the advantage that they allow the controlled mass transfer between more than two fluids in a reduced space, for example by means of the diffusion, osmosis or sieving principle. The present invention provides a fluid distribution element or manifold connector, the purpose of which is to connect, on the one hand, monotube leads to, on the other hand, a multichannel tube, without having to penetrate the channels. The inventive approach is that the individual supply channels open in sub-channels and these sub-channels intersect and overlap, so that a contact surface for the purpose of heat and / or mass transfer arises. The fluid distribution element or connector can advantageously made of metal or plastic and with different cost-effective methods (for example, pressure welding, gluing and / or soldering) are produced.

Das erfindungsgemäße Fluidverteilungselement hat einen sehr geringen Raumbedarf und vereinfacht die verkettete Anbindung von Mehrkanalrohren zum Zweck des Aufbaus eines kompakten Aggregats zur Wärmeübertragung. Insbesondere ist das erfindungsgemäße Fluidverteilungselement auf konstruktiv einfache Art und Weise so herstellbar, ohne dass wie beim Stand der Technik an den Durchdringungsstellen eine erhöhte Gefahr für Leckage besteht. Um mögliche Druckverluste zusätzlich zu verhindern, kann der Aufbau der fluidführenden Vorrichtung mittels der Fluidverteilungselemente vorteilhafterweise so erfolgen, dass bionische Ansätze bei der Trasse des Kanals verfolgt werden.The fluid distribution element according to the invention has a very small space requirement and simplifies the concatenated connection of multi-channel tubes for the purpose of constructing a compact unit for heat transfer. In particular, the fluid distribution element according to the invention can be produced in a structurally simple manner, without there being an increased risk of leakage, as in the prior art at the penetration points. In order to additionally prevent possible pressure losses, the structure of the fluid-carrying device by means of the fluid distribution elements can advantageously be such that bionic approaches are tracked in the route of the channel.

Wie nachfolgend anhand der speziellen Ausführungsbeispiele noch ausführlich dargestellt, weist das erfindungsgemäße Fluidverteilungselement mehrere übereinander gestapelt angeordnete Einzellagen auf (beispielsweise flache Metalllagen oder Kunststofflagen), welche jeweils mit Teilen ihrer Oberflächen miteinander verbunden werden. Zwischen solchen Verbindungsbereichen werden (beispielsweise durch Aufblähen von Teilbereichen der Oberflächen, welche mit einem Trennmittel versehen wurden oder auch durch Vorformung) senkrecht zur Lagenebene Auswölbungen bzw. Erhebungen realisiert, welche dann Zwischenräume zwischen den einzelnen Lagen ausbilden, mittels derer Fluidführungskanäle realisiert werden. Vorteilhafterweise handelt es sich um eine Stapelanordnung aus drei, beispielsweise druckgepressten Materiallagen, besonders vorteilhaft (siehe auch nachfolgendes Ausführungsbeispiel) werden vier Materiallagen verwendet.As will be described in more detail below with reference to the specific embodiments, the fluid distribution element according to the invention has a plurality of individual layers stacked one above the other (for example, flat metal layers or plastic layers), which are connected to each other with parts of their surfaces. Between such connection areas, bulges or elevations are realized (for example, by swelling of partial areas of the surfaces which were provided with a release agent or also by preforming) perpendicular to the layer plane, which then form spaces between the individual layers, by means of which fluid guide channels are realized. Advantageously, it is a stack arrangement of three, for example, pressure-pressed material layers, particularly advantageous (see also the following embodiment) are four layers of material used.

Hierbei werden, wie bereits erwähnt, entlang bestimmter Pfade auf den Trennflächen zwischen zwei Einzellagen, beispielsweise durch das Anbringen eines Trennmittels, diese Areale nicht gefügt, sondern über ein Druckfluid ausgeweitet (dies kann mit Hilfe des bekannten Roll-Bond-Verfahrens zur Kanalbildung geschehen, vgl. DE 30 03 137 A1 ). Hierdurch entstehen Kanäle zwischen den verschiedenen Lagen, welche so geführt sind, dass sie in den Randbereichen des Körpers auf der einen Stirnseite separate Anschlüsse für Ein-Rohr-Zuleitungen bilden, sich im Verlauf des Körpers annähern, bis sie sich kreuzen und überdecken, so dass ineinander verschachtelte oder sich überlagernde Kanäle entstehen, an die dann auf der anderen Stirnseite des Körpers ein Mehrfachkanalrohr angeschlossen werden kann.Here, as already mentioned, along certain paths on the separating surfaces between two individual layers, for example by the attachment of a release agent, these areas are not joined, but expanded by a pressurized fluid (this can be done using the known roll-bonding method for channeling, see. DE 30 03 137 A1 ). This results in channels between the various layers, which are guided so that they form separate connections for single-pipe supply lines in the edge regions of the body on one end face, approach each other in the course of the body until they intersect and overlap, so that nested or overlapping channels are formed, to which then a multi-channel tube can be connected on the other end face of the body.

Neben der kostengünstigen Herstellung mit Hilfe des beschriebenen Roll-Bond-Verfahrens mit Metallblechen kann ein solches erfindungsgemäßes Fluidverteilungselement auch mittels Verkleben von vorgeformten Kunststoff- oder Metallteilen, in welchen Halbkanäle bereits vorgeformt sind, kostengünstig und vollautomatisiert hergestellt werden.In addition to the cost-effective production by means of the described roll-bonding method with metal sheets, such a fluid distribution element according to the invention can also be produced cost-effectively and fully automatically by bonding preformed plastic or metal parts in which half channels are already preformed.

Ein erfindungsgemäßes Fluidverteilungselement ist somit im einfachsten Fall eine Struktur mit im wesentlichen kreisförmigen oder halbkreisförmigen Strömungsquerschnitten (Rohren), die in flache Körper (die Einzellagen) vorgeprägt werden welche bei dieser Variante mit anderen flachen Körpern geklebt oder gelötet werden. In den Randbereichen bzw. an den Stirnseiten dieser flachen Körper verlaufen die Anschlussrohrstücke, die mit den Zuleitungen schlüssig verbunden werden. Im Bereich des Anschlusses der Einzelrohrleitungen überlagern sich die Kanäle in den bzw. zwischen den einzelnen Schichten nicht.A fluid distribution element according to the invention is therefore in the simplest case a structure with substantially circular or semicircular flow cross sections (tubes) which are pre-embossed into flat bodies (the individual layers) which in this variant are glued or soldered to other flat bodies. In the edge regions or at the end faces of these flat body, the connecting pipe pieces, which are connected to the leads conclusively become. In the area of the connection of the individual pipelines, the channels do not overlap in or between the individual layers.

Für das vorbeschriebene Roll-Bond-Verfahren (bzw. das autogene Walzschweißen) werden Einzellagen aus Metall verwendet. Es wird ein geeignetes Trennmittel an den Stellen der zu bildenden Kanäle aufgetragen und die Bleche werden durch Walzen miteinander kalt verschweißt. Das Trennmittel lässt nicht verfügte Bereiche bestehen, welche mit einem Fluid, insbesondere Luft, druckbeaufschlagt zu Rohren aufgeweitet werden können. Für die Reihenfolge der Expansion der nicht verfügten Bereiche gibt es erfindungsgemäß mehrere Möglichkeiten: Beispielsweise wird zuerst der Raum zwischen den inneren, mittig liegenden Einzelschichten bzw. Einzellagen aufgeweitet, danach der Raum zwischen weiter außen liegenden Einzellagen. Um die Kanalstruktur bereits aufgeblähter Kanäle zu erhalten, ist es möglich, diese unter Druck zu belassen, wenn weitere Kanäle aufgebläht werden. Leicht lassen sich so die Einzellagen des Fluidverteilungselements bzw. Verteilerverbindungsstückes miteinander verbinden und anschließend einzelne Fluidverteilungselemente bzw. Verteilerverbindungsstücke senkrecht zur Lagenebene aufstapeln und an Zuleitungen anschließen, so dass ein Stack (Anordnung) aus verfügten, aufgeschichteten und mit Fluidführungskanälen versehenen Fluidverteilungselementen entsteht. Die Bauform einer solchen Anordnung von erfindungsgemäßen Fluidverteilungselementen kann dann ähnlich wie bei einem Lamellenwärmeüberträger ausgebildet sein, bei dem die Rohre mit den Lamellen einen geschlossenen Körper bilden. Auf diese Weise kann erfindungsgemäß eine Anordnung von Fluidverteilungselementen bzw. ein mehrzügiges Fluidführungsaggregat unter Nutzung mehrerer Fluide gebildet werden, wobei zwischen den einzelnen (aus Einzellagen beschichteten) Fluidverteilungselementen bzw. um die im Stapel beabstandet voneinander angeordneten einzelnen Fluidverteilungselementen, die nun als Lamellen dienen, ein beispielsweise gasförmiges Fluid strömen kann. Zwischen benachbarten einzelnen Fluidverteilungselementen bzw. Plattenkörpern können dabei Abstandshalter angeordnet werden, die so gewählt sein können, dass ausreichend Fluid zwischen einzelnen Fluidverteilungselementen hindurchströmen bzw. vorbeiströmen kann. Hierbei können auf den äußeren Oberflächen der erfindungsgemäßen Fluidverteilungselemente Oberflächenstrukturen, wie Grate oder Rippen, aufgebracht sein, welche eine turbulenzsteigernde Wirkung aufweisen. Dies führt zu einer verbesserten Wärmeübertragung zwischen einem in einem erfindungsgemäßen Fluidverteilungselement strömenden Fluid und dem zwischen diesen und einem benachbarten Fluidverteilungselement hindurchströmenden Fluid.Single layers of metal are used for the above-described roll-bonding process (or autogenous rolling welding). It is applied a suitable release agent at the locations of the channels to be formed and the sheets are cold-welded together by rolling. The release agent leaves unconverted areas exist, which can be expanded with a fluid, in particular air, pressurized into tubes. According to the invention, there are several possibilities for the sequence of expansion of the regions which are not disposed of. For example, the space between the inner, centrally located individual layers or individual layers is first widened, and then the space between individual layers lying further outside. In order to preserve the channel structure of already inflated channels, it is possible to leave them under pressure as more channels are inflated. The individual layers of the fluid distribution element or distributor connection piece can easily be connected to one another and then individual fluid distribution elements or distributor connection pieces stacked perpendicular to the layer plane and connected to supply lines, so that a stack (arrangement) of distributed, piled and provided with fluid guide channels fluid distribution elements. The design of such an arrangement of fluid distribution elements according to the invention can then be designed similar to a lamella heat exchanger, in which the tubes form a closed body with the lamellae. In this way, according to the invention an arrangement of fluid distribution elements or a mehrzügiges fluid supply unit using multiple fluids can be formed, between the individual (coated from individual layers) fluid distribution elements or around the stack spaced apart individual fluid distribution elements, which now serve as fins, an example gaseous fluid can flow. Spacers can be arranged between adjacent individual fluid distribution elements or plate bodies, which can be selected such that sufficient fluid can flow or flow past between individual fluid distribution elements. In this case, surface structures, such as ridges or ribs, which have a turbulence-increasing effect, can be applied to the outer surfaces of the fluid distribution elements according to the invention. This leads to an improved heat transfer between a fluid flowing in a fluid distribution element according to the invention and the fluid flowing between it and an adjacent fluid distribution element.

Die vorbeschriebene Art der Herstellung für die einzelnen Fluidverteilungselemente bzw. das gesamte, die Anordnung von Fluidverteilungselementen aufweisende Fluidführungsaggregat bringt neben dem Vorteil, dass keine Löt- oder Schweißarbeiten notwendig sind, auch den Vorteil mit sich, dass sie bzw. es mit denselben konventionellen kostengünstigen Metallen oder Kunststoffen, wie die anzuschließenden Mehrfachkanalrohre selbst erzeugt werden können bzw. kann. Die Anschlüsse auf der Stirnseite der Eizelrohr-Zuleitungen werden vorteilhafterweise mit kreisförmigem Querschnitt geformt und mit standardisierter Innenweite gewählt, so dass ein Anschluss mit konventionellen Leitungen und Überwurfstücken problemlos erfolgen kann. Der Querschnitt der Kanäle kann entlang der Strecke konstant bleiben, so dass Druck oder Durchfluss konstant bleiben, oder variiert werden, so dass physikalische Phänomene, wie z.B. das Verdampfen oder die Verdichtung gezielt begünstigt werden können. Das erfindungsgemäße Verteilerverbindungsstück bzw. Fluidverteilungselement ist somit durch einen einfachen Aufbau und eine einfache Herstellung sowie durch geringe Materialkosten gekennzeichnet. Die Form der Platten kann (in der Lagenebene gesehen) beliebig sein, beispielsweise in Rechteckform oder auch in Polygonform.The above-described type of preparation for the individual fluid distribution elements or the entire, the arrangement of fluid distribution elements having fluid guide unit brings in addition to the advantage that no soldering or welding are necessary, also the advantage that they or it with the same conventional inexpensive metals or plastics, as the multi-channel pipes to be connected can be generated itself. The connections on the front side of the Eizelrohrzuleitungen are advantageously formed with a circular cross-section and selected with a standardized inner width, so that a connection with conventional lines and Überwurfstücken can be done easily. The cross-section of the channels can remain constant along the route, so that pressure or flow is constant remain, or be varied, so that physical phenomena, such as evaporation or compression can be specifically favored. The distributor connection piece or fluid distribution element according to the invention is thus characterized by a simple structure and a simple production and by low material costs. The shape of the plates can be arbitrary (seen in the layer plane), for example in a rectangular or polygonal shape.

Besonders vorteilhaft kann das erfindungsgemäße Fluidverteilungselement in einem Kombinationsverdampfer eingesetzt werden: Hierbei wird dann der gesamte Kombiverdampfer nicht konventionell als Lamellenrohr-Wärmeüberträger aus Aluminiumlamellen und Rohrregistern aus Kupfer gefertigt, sondern es wird ein mehrlagiger Körper aus mindestens vier Einzellagen realisiert (beispielsweise mit dem vorbeschriebenen Roll-Bond-Verfahren). Je nach Herstellungsverfahren (Löten, Roll-Bonden bzw. Walzen, Schweißen oder Kleben) können mit Hilfe von Trennmitteln oder Aussparungen bestimmte Bereiche in den Zwischenschichten bzw. zwischen den Einzellagen von einer fügenden Verbindungen ausgenommen bleiben, die sich nach der Verfügung der anderen Bereiche aufblähen lassen oder die beim Verfügen bereits vorgeprägt sind und somit Bereiche zwischen den einzelnen Lagen für die Durchströmung von Fluiden (also Kanäle) bilden. Ausnahme ist hier die Herstellung durch Extrudieren, wobei sich Strukturen ohne Verzweigungen und Rückläufe aus einem Stück fertigen lassen. Bei den anderen Herstellungsverfahren können die durchströmten Bereiche in den Zwischenschichten auch komplexere Strukturen, wie Verzweigungen und Rückläufe, beinhalten.In this case, the entire combi-steamer is not conventionally manufactured as a lamellar tube heat exchanger made of aluminum fins and tube registers made of copper, but it is a multilayer body of at least four individual layers realized (for example, with the above-described rolling bonding method). Depending on the manufacturing process (soldering, roll-bonding or rolling, welding or gluing), certain areas in the intermediate layers or between the individual layers may be excluded from a joining compound which will expand at the disposal of the other areas or are already pre-embossed when in use and thus form areas between the individual layers for the flow of fluids (ie channels). An exception here is the production by extrusion, whereby structures without branches and returns can be made in one piece. In the other manufacturing processes, the flow-through areas in the intermediate layers may also include more complex structures, such as branches and returns.

Wie bereits vorbeschrieben, wird auch beim Einsatz des erfindungsgemäßen Fluidverteilungselements im Kombiverdampfer der Aufbau so vereinfacht, dass Zuleitungen nicht mehr komplexe Formen mit Durchdringungen sind, sondern dass das Problem der Durchdringung auf den mehrlagigen Körper verlagert wird. Auf der Seite des mehrlagigen Körpers handelt es sich bei den durchströmten Körpern dann um rohrartige Kanäle bzw. um kanalartige Rohre. Die mehrschichtigen Platten werden so ausgeformt, dass eine dem Kombiverdampfer analoge Funktionalität erreicht wird, was man erreicht, indem ein Körper mit vorteilhafterweise vier Schichten an Platten beispielsweise in der Roll-Bond-Technik miteinander kalt verschweißt wird. Hierdurch entstehen insgesamt drei Zwischenschichten bzw. Bereiche zwischen zwei benachbarten Einzellagen, welche entweder durch Trennmittel oder durch die Verwendung von vorgeprägten Strukturen für die Fluidführung zur Verfügung stehen. Die einzelnen Lagen können jedoch auch verlötet oder verklebt werden, wobei dann Kanalführungen ausgesparte Bereiche darstellen. Die obere und die untere Schicht dieses mehrlagigen Körpers können dann für die Herstellung eines sich in den Strömungsfäden überlagernden Kanalsystems verwendet werden. Diese äußeren Kanalsysteme können hierbei noch durch zwei weitere Platten voneinander getrennt werden, was notwendig sein kann, da während der späteren Fortführung dieser Kanäle der Kanal in der mittleren Zwischenschicht in die äußeren Kanäle seitlich eindringt. Dieser Vorgang des seitlichen Eindringens entspricht der Durchdringung bei der bisherigen Herstellung von Zuleitungen oder Verteilerleitungen.As already described above, is also used of the fluid distribution element according to the invention in Kombiverdampfer the structure simplified so that leads are no longer complex shapes with penetrations, but that the problem of penetration is shifted to the multilayer body. On the side of the multilayered body, the bodies through which it flows are then tubular channels or channel-like tubes. The multilayer panels are shaped to achieve functionality analogous to the combination steamer, which is accomplished by cold welding a body having advantageously four layers of panels, for example, in the roll bond technique. This results in a total of three intermediate layers or areas between two adjacent individual layers, which are available either by release agents or by the use of pre-stamped structures for the fluid guide available. However, the individual layers can also be soldered or glued, in which case channel guides represent recessed areas. The upper and lower layers of this multi-layered body can then be used to make a channel system overlying the flow filaments. These outer channel systems can in this case be separated from each other by two further plates, which may be necessary because during the later continuation of these channels, the channel in the middle intermediate layer laterally penetrates into the outer channels. This process of lateral penetration corresponds to the penetration in the previous production of supply lines or distribution lines.

Nach dem gleichen Prinzip wie vorbeschrieben können auch Y-förmige Verzweigungen hergestellt werden. Ein solches Y-förmiges Verzweigungsstück, welches in Kombination mit einem erfindungsgemäßen Fluidverteilungselement eingesetzt werden kann bzw. an dieses angeschlossen werden kann, findet Anwendung, wenn beispielsweise ein Mehrkanalrohr in zwei parallele Mehrkanalrohre aufgeteilt werden muss (beispielsweise zwecks der Druckabfallreduzierung bei gleicher Übertragungsfläche in Kombiverdampfern). Um ein solches Y-förmiges Element herzustellen, kann beispielsweise ein Trennmedium auf den Lagenebenen gemäß der Form und Anordnung der Verzweigung aufgetragen werden. Wie bei dem erfindungsgemäßen Verbindungsstück können dann die beispielsweise vier Einzellagen walzengepresst und die Kanäle anschließend aufgebläht werden.According to the same principle as described above, Y-shaped branches can also be produced. Such a Y-shaped branch piece, which in combination can be used with a fluid distribution element according to the invention or can be connected to this, applies, for example, if a multi-channel pipe must be divided into two parallel multi-channel pipes (for example, for the purpose of reducing pressure drop in the same transfer area in Kombiverdampfern). For example, to prepare such a Y-shaped member, a release medium may be applied to the ply planes according to the shape and arrangement of the branch. As in the case of the connecting piece according to the invention, it is then possible, for example, to roll-press the four individual layers and then to inflate the channels.

Die vorliegende Erfindung stellt somit ein Verteilerverbindungsstück aus Metall oder Kunststoff für ineinander verschachtelte bzw. überlagerte mehrkanalartige Fluidführungsapparate zur Verfügung, welches im Wesentlichen aus separaten Zuleitungen auf der einen Seite (erste Stirnseite) und aus ineinander verschachtelten Kanälen auf der anderen Seite (zweite, der ersten Stirnseite gegenüberliegende Stirnseite) besteht, wobei sich die Kanäle nicht durchdringen, sondern sich in separate Teilkanäle (schließend an das Mehrkanalrohr) öffnen, wobei sich diese Teilkanäle kreuzen und zum Teil oder komplett überlagern, so dass eine Kontaktfläche für Wärme- oder Stofftransport über eine zwischenliegende Kanalwand entsteht. Hierbei kann die Zu- oder Abfuhr der Fluide zu bzw. aus dem Wärmeüberträger in getrennten, nicht überlagerten Kanälen erfolgen, damit die Zuleitung auf einer Seite mit konventionellen Einrohrleitungen angeschlossen werden kann. Das erfindungsgemäße Element kann durch Roll-Bonding bzw. Pressschweißen aus mehreren Einzellagen (vorteilhafterweise mindestens drei oder vier Einzellagen) hergestellt werden. Die kanalartigen Strukturen können durch Aufblähen erzeugt werden. Die kanalartigen Strukturen können alternativ jedoch auch durch vorgeprägte Kanalstrukturen in den einzelnen Lagen zur Verfügung gestellt werden. Die einzelnen Lagen können auch gegossen werden oder durch Kleben miteinander verbunden werden. Mehrere erfindungsgemäße Fluidverteilungselemente lassen sich, bevorzugt senkrecht zur Lagenebene übereinander und beabstandet zueinander aufstapeln, wodurch ein Wärmeüberträger mit mehreren Mehrfachkanalrohren bzw. mehreren Zügen innerhalb des Fluidführungsaggregats entsteht. Zwischen jedem einzelnen Fluidverteilungselement eines solchen Fluidführungsaggregats kann dann ein weiteres Fluid durch entsprechende fluidführende Strukturen fließen. Bei der Festlegung des Kanalwegs der einzelnen Kanäle im Fluidführungsaggregat können dann bionische Ansätze (beispielsweise Harfenform) zwecks Druckverlustminderung realisiert werden. Mit den beschriebenen Herstellungsverfahren lassen sich auch Rohrverzweigungen (z.B. Y-förmige Verzweigungen) realisieren. Im Falle eines Phasenwechsels können die Querschnitte von ineinander geführten Kanälen zum Zweck eines konstanten Volumenstroms aneinander angepasst werden.The present invention thus provides a metal or plastic manifold connector for nested multi-channel fluid routing apparatus consisting essentially of separate leads on one side (first face) and interleaved channels on the other face (second, first face) Front side opposite end), wherein the channels do not penetrate, but in separate sub-channels (closing the multi-channel tube) open, with these sub-channels intersect and partially or completely overlap, so that a contact surface for heat or mass transfer via an intermediate Canal wall is created. In this case, the supply or removal of fluids to or from the heat exchanger in separate, not superimposed channels so that the supply line can be connected on one side with conventional Einrohrleitungen. The element according to the invention can be produced by roll bonding or pressure welding from a plurality of individual layers (advantageously at least three or four individual layers). The channel-like Structures can be created by puffing. However, the channel-like structures can alternatively also be provided by pre-stamped channel structures in the individual layers. The individual layers can also be cast or bonded together by gluing. A plurality of fluid distribution elements according to the invention can be stacked on top of one another and at a distance from each other, preferably perpendicular to the layer plane, whereby a heat exchanger with a plurality of multiple-channel tubes or several flights within the fluid-guiding unit is formed. Between each individual fluid distribution element of such a fluid-guiding unit, a further fluid can then flow through corresponding fluid-carrying structures. In the determination of the channel path of the individual channels in the fluid management unit then bionic approaches (such as harp shape) can be realized for the purpose of pressure loss reduction. With the described manufacturing process can also pipe branches (eg Y-shaped branches) realize. In the case of a phase change, the cross sections of channels which are guided into one another can be adapted to one another for the purpose of a constant volume flow.

Nachfolgend wird nun die vorliegende Erfindung anhand einzelner Ausführungsbeispiele beschrieben.Hereinafter, the present invention will now be described with reference to individual embodiments.

Es zeigen

Figur 1
ein erstes erfindungsgemäßes Fluidverteilungselement in Aufsicht auf die Lagenebene L (Figur 1a) und in Schnittansicht senkrecht zur Lagenebene L (Figur 1b).
Figur 2
eine isometrische Ansicht des in Figur 1 dargestellten erfindungsgemäßen Fluidverteilungselements.
Figur 3
ein zweites erfindungsgemäßes Fluidverteilungselement, welches analog zu dem in Figur 1 gezeigten aufgebaut ist, jedoch einen verzweigten Innenkanal ausbildet.
Figur 4
eine Anordnung von mehreren übereinander gestapelten erfindungsgemäßen Fluidverteilungselementen.
Figur 5
ein Y-förmiges Fluidverteilungsstück, welches an ein erfindungsgemäßes Fluidverteilungselement angeschlossen werden kann.
Show it
FIG. 1
a first fluid distribution element according to the invention in a plan view of the layer plane L (FIG. FIG. 1a ) and in a sectional view perpendicular to the layer plane L ( FIG. 1b ).
FIG. 2
an isometric view of the in FIG. 1 shown fluid distribution element according to the invention.
FIG. 3
a second fluid distribution element according to the invention, which analogous to that in FIG. 1 is shown, but forms a branched inner channel.
FIG. 4
an arrangement of a plurality of stacked fluid distribution elements according to the invention.
FIG. 5
a Y-shaped fluid distribution piece, which can be connected to a fluid distribution element according to the invention.

Figur 1 zeigt ein Ausführungsbeispiel eines erfindungsgemäßen Fluidverteilungselements. Figur 1a zeigt eine Aufsicht auf die Lagenebene L des Fluidverteilungselements, Figur 1b zeigt verschiedene Schnittansichten senkrecht zur Lagenebene und im Wesentlichen senkrecht zur Kanallängsrichtung K (vgl. Figur 2). Die Kanallängsachsrichtung ist hierbei diejenige Richtung in der Lagenebene L, welche im Wesentlichen der Strömungsrichtung des Fluids durch den Innenkanal I bzw. den Außenkanal A entspricht. FIG. 1 shows an embodiment of a fluid distribution element according to the invention. FIG. 1a shows a plan view of the layer plane L of the fluid distribution element, FIG. 1b shows various sectional views perpendicular to the layer plane and substantially perpendicular to the channel longitudinal direction K (see. FIG. 2 ). The channel longitudinal axis direction here is that direction in the layer plane L which essentially corresponds to the flow direction of the fluid through the inner channel I or the outer channel A.

Das Fluidverteilungselement besteht aus vier einzelnen Lagen bzw. Einzellagen 1 bis 4, welche jeweils aus flächigen Metallkörpern, hier Zinkblechen oder Alublechen, bestehen. Die einzelnen Alublechlagen oder Zinkblechlagen 1 bis 4 sind senkrecht zur Lagenebene L übereinander gestapelt. Teile der Oberflächen bzw. der Oberseiten und/oder Unterseiten der einzelnen Lagen 1 bis 4 sind jeweils durch das vorbeschriebene Roll-Bonding-Verfahren bzw. Walzenpressen mit Teilen der gegenüberliegenden Oberflächen benachbarter Einzellagen druckdicht verbunden. Zwischen diesen verbundenen Teilflächenbereichen zweier Lagen sind jeweils, wie nachfolgend noch näher beschrieben, nicht verbundene Bereiche ausgebildet, in welchen durch Aufwölbung einer oder beider der benachbarten Einzellagen Hohlräume entstehen, welche dann als Fluidführungskanäle (Innenkanal I und Außenkanäle A, ASP, siehe nachfolgend) ausgebildet sind.The fluid distribution element consists of four individual layers or individual layers 1 to 4, which each consist of flat metal bodies, here zinc sheets or aluminum sheets. The individual aluminum plates or zinc sheet layers 1 to 4 are stacked one above the other perpendicular to the layer plane L. Parts of the surfaces or the upper sides and / or lower sides of the individual Layers 1 to 4 are each pressure-tightly connected by the above-described roll-bonding method or roll pressing with parts of the opposite surfaces of adjacent individual layers. As will be described in more detail below, non-bonded regions are formed between these connected partial area regions of two layers, in which cavities are created by bulging one or both of the adjacent individual layers, which then serve as fluid guide channels (inner channel I and outer channels A, A SP , see below). are formed.

Wie Figur 1 zeigt, ist in der obersten Einzellage 1 eine erste in Richtung senkrecht zur Lagenebene L nach oben (vgl. Figur 1b) ausgewölbte Kanalstruktur 1S ausgeformt. In der benachbart zur obersten Lage 1 angeordneten ersten Zwischenlage (obere Zwischenlage 2) ist eine weitere, senkrecht zur Lagenebene L nach oben ausgewölbte Kanalstruktur, die zweite Kanalstruktur 2S ausgeformt. In Richtung der Kanallängsrichtung K gesehen (in Figur 1a die Richtung von unten nach oben, vgl. Figur 2) sind nun die beiden Kanalstrukturen 1S und 2S in unterschiedlichen Bereichen der Einzellagen, wie nachfolgend noch näher beschrieben, so ausgebildet, dass sich zunächst zwei separat verlaufende Kanäle, der Innenkanal I und der Außenkanal A, ausbilden, welche sich in Kanallängsrichtung K gesehen zunehmend annähern, schließlich kreuzen und teilweise überlappen und schließlich im wesentlichen parallel zueinander und vollständig übereinander überlappend zueinander verlaufen.As FIG. 1 shows, in the uppermost single layer 1, a first in the direction perpendicular to the layer plane L upwards (see. FIG. 1b ) Ducted channel structure 1S formed. In the first intermediate layer (upper intermediate layer 2) arranged adjacent to the uppermost layer 1, a further channel structure bulged upwards perpendicular to the layer plane L is formed, the second channel structure 2S. Seen in the direction of the channel longitudinal direction K (in FIG. 1a the direction from bottom to top, cf. FIG. 2 ) are now the two channel structures 1S and 2S in different areas of the individual layers, as described in more detail below, designed so that initially two separately extending channels, the inner channel I and the outer channel A, form, which increasingly seen in channel longitudinal direction K approach , finally intersect and partially overlap and finally extend substantially parallel to each other and completely overlapping one another.

Figur 1a links unten zeigt hierzu den Anschlussbereich AB, an dessen außenseitiger Stirnseite (die in Figur 1a unten gezeigte Seite) der Innenkanal I und der Außenkanal A vollständig separat zueinander und seitlich versetzt zueinander verlaufen, so dass an dieser Stirnseite zwei getrennte Einzelrohre an den erfindungsgemäßen Fluidverteiler angeschlossen werden können. Wie die Schnittansicht A-A' (Figur 1b rechts unten) zeigt, ist an der außenseitigen Stirnseite des Anschlussbereichs AB die Kanalstruktur 1S der obersten Lage 1 in Form von zwei seitlich versetzt zueinander gebildeten Auswölbungen ausgeformt. Im Bereich der einen Auswölbung (die in Figur 1b ganz unten links gezeigte Auswölbung) weist die darunterliegende Einzellage 2 ebenfalls eine Auswölbung (welche die Kanalstruktur 2S ausbildet) auf, welche so ausgebildet und angeordnet ist, dass sie sich formschlüssig in die Auswölbung 1S der ersten Lage 1 einschmiegt. Im Bereich des zweiten Auswölbungsteils der Kanalstruktur 1S (Figur 1b ganz unten rechts) weist die darunterliegende Einzellage 2 jedoch keine Auswölbung auf, sondern ist als ebene Fläche ausgebildet: Hierdurch wird zwischen den Einzellagen 1 und 2 ein im gezeigten Querschnitt trapezförmiger, sich nach oben verjüngender Hohlraum ausgebildet, welcher als erstes Außenkanalteilstück A1 eines zum Fluidtransport ausgebildeten Außenkanals A ausgeformt ist. FIG. 1a bottom left shows the connection area AB, on its outside front side (the in FIG. 1a shown below) of the inner channel I and the outer channel A completely separate from each other and laterally offset from one another, so that two separate individual tubes can be connected to the fluid distributor according to the invention at this end face. Like the sectional view AA '( FIG. 1b bottom right), the channel structure 1S of the uppermost layer 1 in the form of two bulges formed laterally offset from one another is formed on the outside end face of the connection region AB. In the area of a bulge (the in FIG. 1b the underlying single layer 2 also has a bulge (which forms the channel structure 2S), which is designed and arranged such that it snugly fits into the bulge 1S of the first layer 1. In the region of the second bulge portion of the channel structure 1S ( FIG. 1b at the bottom right), the underlying single layer 2, however, no bulge, but is formed as a flat surface: This is formed between the individual layers 1 and 2 in the cross section shown trapezoidal, upwardly tapering cavity, which is the first outer channel section A1 for fluid transport formed outer channel A is formed.

Die angrenzend an die zweite Einzellage 2 und unterhalb derselben angeordnete dritte Einzellage 3 ist nun in Bezug auf die Lagenebene L gesehen spiegelsymmetrisch zur zweiten Einzellage 2 ausgeformt. Die vierte Einzellage, welche angrenzend an diese dritte Einzellage 3 und unterhalb derselben angeordnet ist, ist spiegelsymmetrisch (in Bezug auf die Lagenebene L gesehen) zur obersten Einzellage 1 ausgeformt. Aufgrund dieser spiegelsymmetrischen Ausformung (und einer entsprechenden spiegelsymmetrischen Anordnung) entsteht im Anschlussbereich AB durch die ausgewölbte Kanalstruktur 2S der zweiten Einzellage 2 und durch ihr Ebenbild in der dritten Einzellage 3 ein im Querschnitt annähern doppeltrapezförmiger Hohlraum zwischen der zweiten Einzellage 2 und der dritten Einzellage 3, welcher als Innenkanal I (im Bereich AB als erstes Innenkanalteilstück I1) ebenfalls zur Fluidführung ausgebildet ist. Aufgrund der vorbeschriebenen symmetrischen Ausgestaltung ergibt sich darüberhinaus in Bezug auf die Lagenebene L gesehen gegenüberliegend des ersten Außenkanalteilstücks A1 des Außenkanals A zwischen der vierten Lage und der dritten Lage ein ebenfalls im Querschnitt annähern trapezförmiger Hohlraum, welcher als weiterer Außenkanal ASP (SP steht hierbei für spiegelsymmetrisch) ausgebildet ist.The adjacent to the second single layer 2 and below the same arranged third single layer 3 is now seen in relation to the layer plane L mirror-symmetrical to the second single layer 2 formed. The fourth single layer, which is arranged adjacent to this third individual layer 3 and below it, is mirror-symmetrically shaped (seen with respect to the layer plane L) to the uppermost single layer 1. Due to this mirror-symmetrical shape (and a corresponding mirror-symmetrical arrangement) arises in the connection area AB through the arched channel structure 2S of the second single layer 2 and through their likeness in the third single layer 3 a cross-section approximately doppelrapezförmiger cavity between the second single layer 2 and the third single layer 3, which is also designed as an inner channel I (in the area AB as the first inner channel section I1) for fluid guidance. Due to the above-described symmetrical configuration also results in relation to the layer plane L seen opposite the first outer channel section A1 of the outer channel A between the fourth layer and the third layer also in cross-section approximate trapezoidal cavity, which as a further outer channel A SP (SP stands for mirror-symmetrical) is formed.

Wie nun die weiteren Querschnitte B-B' und C-C', welche beabstandet vom Querschnitt A-A' in Kanallängsrichtung K gesehen aufgenommen wurden, zeigen, verringert sich in Kanallängsrichtung K gesehen der Abstand der Kanalmitten des ersten Innenkanalteilstücks I1 und des ersten Außenkanalteilstücks A1 des Innenkanals I bzw. des Außenkanals A sukzessive, so dass sich die beiden Kanäle I und A (bzw. ASP) sukzessive annähern, bis sie in dem sich an den Anschlussbereich AB in Kanallängsrichtung K anschließenden Kreuzungsbereich KB beginnen, sich zu kreuzen.As now seen the further cross-sections BB 'and C-C', which were seen spaced from the cross-section AA 'seen in the channel longitudinal direction K, as shown in channel longitudinal direction K reduces the distance between the channel centers of the first inner channel section I1 and the first outer channel section A1 of the inner channel I. or the outer channel A successively, so that the two channels I and A (or A SP ) gradually approach until they begin in the adjoining the connection area AB in the channel longitudinal direction K crossing area KB to intersect.

Im Kreuzungsbereich KB sind nun die erste Kanalstruktur 1S der obersten Lage und die zweite Kanalstruktur 2S der oberen Mittellage 2 so ausgebildet (dies gilt ebenso für die ihnen spiegelsymmetrisch gegenüberliegenden dritten Kanalstrukturen 3S und 4S der unteren Mittellage 3 und der unteren Lage 4), dass sich der Überlappungsbereich zwischen der ersten Kanalstruktur 1S und der zweiten Kanalstruktur 2S zunehmend vergrößert, und zwar solange, bis (aufgrund der größeren Breite der Kanalstruktur 1S im Vergleich zur Kanalstruktur 2S; die Breite ist hierbei die Ausdehnung senkrecht zur Richtung K in der Lagenebene L) die erste Kanalstruktur 1S die zweite Kanalstruktur 2S vollständig überlappt. Im Kreuzungsbereich KB schiebt sich somit in Kanallängsachsrichtung K nach oben (vgl. Figur 1a) gesehen die erste Kanalstruktur 1S sukzessive über die zweite Kanalstruktur 2S, so dass sich sukzessive übereinanderschiebende zweite Kanalteilstücke (Teilstück A2 des Außenkanals A und Teilstück 12 des Innenkanals) ausbilden. Am oberen Rand des Kreuzungsbereichs KB überdeckt die erste Kanalstruktur 1S die zweite Kanalstruktur 2S vollständig. Einen Schnitt im Bereich einer noch teilweisen Überlappung zeigt die Schnittansicht D-D'.The first channel structure 1S of the uppermost layer 2 and the second channel structure 2S of the upper middle layer 2 are thus formed in the crossing region KB (this also applies to the third channel structures 3S and 4S of the lower middle layer 3 and the lower layer 4) facing each other mirror-symmetrically the overlap area between the first channel structure 1S and the second channel structure 2S is increasingly increased, until (due to the larger Width of the channel structure 1S compared to the channel structure 2S; the width here is the extension perpendicular to the direction K in the layer plane L), the first channel structure 1S completely overlaps the second channel structure 2S. In the crossing region KB, K thus slides upwards in the longitudinal direction of the channel K (cf. FIG. 1a ) seen the first channel structure 1S successively on the second channel structure 2S, so that successively übereinanderschiebende second channel sections (section A2 of the outer channel A and portion 12 of the inner channel) form. At the upper edge of the crossing area KB, the first channel structure 1S completely covers the second channel structure 2S. A section in the area of a still partial overlap shows the sectional view D-D '.

Am oberen Ende des Kreuzungsbereichs KB schließt sich dann der Überlappungsbereich ÜB an, in dem dritte Kanalteilstücke (drittes Innenkanalteilstück I3 und drittes Außenkanalteilstück A3) so ausgebildet sind, dass der Innenkanal I bzw. die zweite Kanalstruktur 2S vollständig vom Außenkanal A bzw. von der ersten Kanalstruktur 1S überlappt wird bzw. überdeckt ist. Am oberen Rand des Überlappungsbereichs ÜB (obere Stirnseite des Fluidverteilungselements) überlappt die erste Kanalstruktur 1S die zweite Kanalstruktur 2S beidseitig symmetrisch, so dass der Innenkanal I, I3 mittig unterhalb des Außenkanals A, A3 verläuft bzw. von diesem halbseitig umschlossen ist. Eben solches gilt natürlich entsprechend für den symmetrisch dazu angeordneten weiteren Außenkanal ASP.At the upper end of the crossing region KB, the overlapping region UB then adjoins, in which third channel sections (third inner channel section I3 and third outer channel section A3) are formed such that the inner channel I or the second channel structure 2S is completely separated from the outer channel A and from the first Channel structure 1S is overlapped or covered. At the upper edge of the overlapping area UB (upper end side of the fluid distribution element), the first channel structure 1S overlaps the second channel structure 2S symmetrically on both sides, so that the inner channel I, I3 runs centrally below the outer channel A, A3 or is enclosed by it on one side. The same applies, of course, accordingly for the symmetrically arranged further outer channel A SP .

An der oberen Stirnseite weist das gezeigte Fluidverteilungselement somit einen im wesentlichen konzentrisch innerhalb zweier Außenkanäle A, ASP laufenden Innenkanal I auf, so dass auf einfache Art und Weise an dieser oberen Anschlussseite ein entsprechend ausgebildetes Mehrfachkanalrohr angeschlossen werden kann (vgl. auch Schnittansicht F-F').At the upper end side, the fluid distribution element shown thus has a substantially concentric within two outer channels A, A SP running inside channel I, so that in a simple manner at this upper connection side a suitably trained multiple channel pipe can be connected (see also sectional view F-F ').

Wie dem Fachmann klar ist, lässt sich das gezeigte Ausführungsbeispiel eines Fluidverteilungselements auf vielgestaltige Art und Weise im Rahmen der vorliegenden Erfindung variieren: So kann im Bereich der oberen Anschlussseite statt der Ausbildung eines Anschlussstücks für ein Mehrfachkanalrohr das Fluidverteilungselement integriert mit einem solchen Mehrkanalrohr ausgebildet sein bzw. weitergeführt werden. Verschiedendste Fluidführungsstrukturen können zusätzlich in das gezeigte Fluidverteilungselement integriert werden, so z.B. ein Y-förmiges Verzweigungselement (vgl. auch Figur 5), bei dem sich der konzentrisch innerhalb der beiden Außenkanäle A, ASP geführte Innenkanal I samt der ihn umgebenden Außenkanäle in zwei separate Stränge verzweigt.As is clear to the person skilled in the art, the illustrated embodiment of a fluid distribution element can be varied in a variety of ways in the context of the present invention: Thus, in the region of the upper connection side, instead of forming a connection piece for a multi-channel tube, the fluid distribution element can be integrated with such a multi-channel tube be continued. Various fluid control structures can additionally be integrated into the fluid distribution element shown, for example a Y-shaped branching element (cf. FIG. 5 ), in which the inner channel I guided concentrically within the two outer channels A, A SP branches, together with the outer channels surrounding it, into two separate strands.

Ebenso ist es auch möglich, das erfindungsgemäße Fluidverteilungselement aus lediglich drei Einzellagen 1 bis 3 auszugestalten, so dass sich lediglich ein Außenkanal A und ein Innenkanal I ergeben (Wegfall des zweiten Außenkanals ASP). Die weiteren Lagenelemente 3 und 4 müssen auch nicht symmetrisch zu den Lagenelementen 1 und 2 ausgeformt sein, sondern können auch als ebene Flachplatten ausgeführt sein. In diesem Fall ergibt sich dann lediglich ein hier im Beispiel einfach trapezförmiger (es sind im allgemeinen jedoch auch andere Formen möglich) Innenkanal I und ein Außenkanal A.Likewise, it is also possible to design the fluid distribution element according to the invention from only three individual layers 1 to 3, so that only one outer channel A and one inner channel I result (omission of the second outer channel A SP ). The further layer elements 3 and 4 need not be formed symmetrically to the sheet elements 1 and 2, but may also be designed as a flat flat plates. In this case, then only one here in the example simply trapezoidal (but there are also other forms possible in general) inner channel I and an outer channel A.

Alternativ zur Ausbildung aus mehreren ursprünglich getrennten Elementen können die Einzellagen (beispielsweise durch ein Extrudierverfahren) auch gleich einstückig ausgebildet sein. Dies muss nicht alle Einzellagen betreffen, sondern kann auch nur einzelne der gezeigten Einzellagen betreffen (so könnten beispielsweise unter Verzicht auf die Einzellage 4 die beiden Einzellagen 2 und 3 als einstückiger, extrudierter Formkörper hergestellt sein, welchem eine weitere Lage (oberste Lage 1) überlagert wird).As an alternative to the formation of a plurality of originally separate elements, the individual layers (for example by an extrusion method) can also be the same be formed integrally. This does not have to concern all individual layers, but may also relate only to individual layers shown (for example, waiving the single layer 4, the two individual layers 2 and 3 could be made as a one-piece, extruded molded body, which superimposed another layer (top layer 1) becomes).

Im gezeigten Beispiel bildet somit die Unterseite der obersten Lage 1 sowie die Oberseite der oberen Mittellage 2 die Wandung des Außenkanals A, die Unterseite des Lagenelementes 2 sowie die Oberseite des Lagenelementes 3 die Außenwandung des Innenkanals I sowie die Unterseite des Lagenelementes 3 sowie die Oberseite des Lagenelementes 4 die Wandung des unteren Außenkanals ASP.In the example shown thus forms the underside of the top layer 1 and the top of the upper middle layer 2, the wall of the outer channel A, the underside of the layer element 2 and the top of the layer element 3, the outer wall of the inner channel I and the bottom of the layer element 3 and the top of the Layer element 4, the wall of the lower outer channel A SP .

Figur 2 zeigt eine isometrische Ansicht des in Figur 1 dargestellten Fluidverteilungselementes. Im untenseitig gezeigtem vorderen Schnitt sind deutlich die beiden getrennten Außenkanäle A und ASP (halbkreisförmig) sowie der Innenkanal I (kreisförmig) zu erkennen. FIG. 2 shows an isometric view of the in FIG. 1 shown fluid distribution element. In the front section shown below, the two separate outer channels A and A SP (semicircular) and the inner channel I (circular) can be clearly seen.

Figur 3 zeigt ein weiteres Ausführungsbeispiel für ein erfindungsgemäßes Fluidverteilungselement (hier nur die Aufsicht auf die Lagenebene L gezeigt). Dieses ist grundsätzlich ebenso aufgebaut wie das in Figur 1 gezeigte Lagenelement, so dass hier nur die Unterschiede beschrieben werden. Im in Figur 3 gezeigten Beispiel sind die beiden Kanalstrukturen 1S und 2S so ausgebildet, dass im Anschlussbereich AB und im Kreuzungsbereich KB der Innenkanal I sich in zwei separate Innenkanalteilstücke auftrennt: Im Anschlussbereich AB werden somit zwei separate, versetzt zueinander und versetzt zum Außenkanal A, A1 ausgebildete erste Innenkanalteilstücke I1a und I1b ausgebildet, welche an der außenseitigen Stirnseite den Anschluss von zwei separaten Einzelrohr-Zufuhrleitungen für den Innenkanal I erlauben. Die beiden separaten Innenkanalteilstücke kreuzen sich im Kreuzungsbereich KB somit beiderseits des Außenkanals A und unterhalb desselben in diesen ein, was durch eine entsprechende Konstruktion, wie sie bereits zu Figur 1 beschrieben worden ist, realisiert werden kann. Wie in Figur 1 gezeigtem Fall verlaufen im Überlappungsbereich ÜB dann der Innenkanal I, I3 und der Außenkanal A, A3 übereinander überlappend. FIG. 3 shows a further embodiment of an inventive fluid distribution element (shown here only the top view on the layer plane L). This is basically the same structure as the layer element shown in Figure 1, so that only the differences will be described here. Im in FIG. 3 In the example shown, the two channel structures 1S and 2S are designed such that the inner channel I separates into two separate inner channel sections in the connection region AB and in the crossing region KB. In the connection region AB, two separate, offset from one another and offset from the outer channel A, A1 are formed first inner channel sections I1a and I1b formed, which allow the connection of two separate single-pipe supply lines for the inner channel I on the outside end face. The two separate inner channel sections intersect in the crossing area KB thus on both sides of the outer channel A and below the same in this one, which by a corresponding construction, as already to FIG. 1 has been described, can be realized. As in FIG. 1 In the case shown, the inner channel I, I3 and the outer channel A, A3 overlap each other in the overlapping area ÜB.

Figur 4 zeigt eine erfindungsgemäße Anordnung aus mehreren (hier drei) Fluidverteilungselementen F1 bis F3. Die drei Fluidverteilungselemente F1 bis F3 sind hierbei senkrecht zur Lagenebene bzw. in Stapelrichtung S beabstandet voneinander und übereinander angeordnet. Die Lagenebenen L der einzelnen Fluidverteilungselemente verlaufen hierbei parallel zueinander. Die einzelnen Fluidverteilungselemente werden durch Abstandshalter Abs voneinander beabstandet gehalten. Vorderseitig in Figur 4 gezeigt ist die Anschlussseite für die Einzelrohr-Zuleitungen für die Fluidverteilungselemente. Die einzelnen Rohrzuleitungen sind hier so realisiert, dass von einer ersten, in Stapelrichtung S angeordneten Anschlussleitung 3 auf Höhe der einzelnen Fluidverteilungselemente jeweils Einzelrohrkanäle abzweigen, welche dann jeweils mit einem Innenkanal I eines Fluidverteilungselementes verbunden sind. Parallel zur ersten Anschlussleitung 3 und seitlich versetzt davon ist ebenfalls in Stapelrichtung S eine zweite Anschlussleitung 4 angeordnet, aus welcher ebenfalls auf Höhe der einzelnen Fluidverteilungselemente Einzelrohrkanäle abzweigen, welche dann jeweils mit den einzelnen Einzelrohranschlüssen der Außenkanäle A der Fluidverteilungselemente verbunden sind. FIG. 4 shows an inventive arrangement of several (here three) fluid distribution elements F1 to F3. The three fluid distribution elements F1 to F3 are in this case perpendicular to the layer plane or in the stacking direction S spaced from each other and arranged one above the other. The layer planes L of the individual fluid distribution elements in this case run parallel to each other. The individual fluid distribution elements are kept spaced apart by spacers Abs. Front in FIG. 4 the connection side for the single-pipe feed lines for the fluid distribution elements is shown. The individual pipe feed lines are here realized in such a way that branch off from a first, arranged in the stacking direction S connection line 3 at the level of the individual fluid distribution elements single pipe channels, which are then respectively connected to an inner channel I of a fluid distribution element. Parallel to the first connection line 3 and laterally offset therefrom, a second connection line 4 is likewise arranged in the stacking direction S, from which individual tube channels likewise branch off at the level of the individual fluid distribution elements, which then each with the individual individual tube connections the outer channels A of the fluid distribution elements are connected.

Die gezeigte Anordnung ist hier aufgrund des durch die Abstandshalter Abs realisierten Abstandes der einzelnen Fluidverteilungselemente F1 bis F3 so realisiert, dass zwischen zwei benachbarten Fluidverteilungselementen ein Volumen entsteht, welches ebenfalls durch ein Fluid (drittes Fluid außerhalb der Innenkanäle I und der Außenkanäle A) durchströmt werden kann. Um hier eine optimale Wärmeübertragung zwischen diesem dritten Fluid und dem durch die Innen-und die Außenkanäle durchströmenden Fluiden zu gewährleisten, ist die äußere Oberfläche (Oberseite der Einzellagen 1 und Unterseite der Einzellagen 4) mit einer Vielzahl von einzelnen, parallel zueinander und versetzt zueinander verlaufenden Rippenstrukturen 5 versehen. Diese Rippenstrukturen sind sowohl seitlich neben den Kanalstrukturen 1S bzw. 4S, als auch außenseitig auf diesen angeordnet und sorgen für eine Verwirbelung des durch die Zwischenräume zwischen den Fluidverteilungselementen hindurch strömenden dritten Fluids, wodurch der Wärmeaustausch optimiert wird.The arrangement shown here is realized here due to the spacing of the individual fluid distribution elements F1 to F3 realized by the spacers Abs so that a volume arises between two adjacent fluid distribution elements, which also flows through a fluid (third fluid outside the inner channels I and the outer channels A) can. In order to ensure optimum heat transfer between this third fluid and the fluids flowing through the inner and outer channels, the outer surface (upper side of the individual layers 1 and lower side of the individual layers 4) is provided with a plurality of individual, parallel to each other and offset from one another Rib structures 5 provided. These rib structures are arranged both laterally next to the channel structures 1S and 4S, as well as on the outside on these and provide a turbulence of the flowing through the gaps between the fluid distribution elements through the third fluid, whereby the heat exchange is optimized.

Figur 5 skizziert schließlich ein aus den Einzellagen 1 bis 4 beispielsweise durch Rollbonding hergestelltes Y-Verzweigungsstück, welches in Kombination mit einem erfindungsgemäßen Fluidverteilungselement eingesetzt werden kann, um den Fluidstrom des Innenkanals I und des Außenkanals A jeweils in zwei separate Fluidströme aufzuspalten (das gezeigte Y-Verzweigungsstück kann beispielsweise an der oberen Stirnseite des Überlappungsbereiches ÜB des in Figur 1 gezeigten erfindungsgemäßen Fluidverteilungselementes, siehe dort Schnittansicht F-F') angedockt werden. FIG. 5 finally outlines a Y-branch piece made of the individual layers 1 to 4, for example by roll bonding, which can be used in combination with a fluid distribution element according to the invention to split the fluid flow of the inner channel I and the outer channel A into two separate fluid streams (the Y-branch piece shown) For example, at the upper end of the overlap area UB of in FIG. 1 shown fluid distribution element, see there sectional view F-F ') are docked.

Claims (15)

  1. Fluid distribution element for a fluid-conducting device, in particular for a heat exchanger or a device for exchanging materials between fluid flows,
    having a plurality of individual layers disposed in a stack one above the other, at least one partial region of the surface of each of the plurality of individual layers being disposed abutting against at least one partial region of the surface of another individual layer of the plurality of individual layers and there being configured, at least in a first individual layer (1) of the plurality of individual layers, a first channel structure (1S) which is curved perpendicular to the layer plane (L) and, in a second individual layer (2) of the plurality of individual layers, adjacent to the first individual layer, a second channel structure (2S) which is curved perpendicular to the layer plane, characterized in that
    the two channel structures (1S, 2S), viewed in the channel longitudinal direction (K)
    • firstly forming, in a connection region (A - A', B - B', C - C', AB), two first channel partial pieces (first inner channel partial piece 11, first outer channel partial piece A1) of an inner channel (I) configured for fluid transport and an outer channel (A) configured for fluid transport, which first channel partial pieces extend separately in the layer plane offset laterally relative to each other and at a spacing from each other,
    • subsequently forming, in an intersection region (D - D', KB) abutting against the connection region, two second channel partial pieces (second inner channel partial piece I2, second outer channel partial piece A2) of the inner channel (I) and of the outer channel (A), which two second channel partial pieces intersect in the layer plane and are displaced increasingly one over the other and connected to the first channel partial pieces and
    • finally forming, in an overlapping region (E - E', F - F', ÜB) abutting against the intersection region, two third channel partial pieces (third inner channel partial piece I3, third outer channel partial piece A3) of the inner channel (I) and of the outer channel (A), which two third channel partial pieces extend essentially parallel to each other in the layer plane and are connected to the second channel partial pieces, the third inner channel partial piece (I3) being covered in an overlapping manner in the overlapping region by the third outer channel partial piece (A3).
  2. Fluid distribution element according to the preceding claim,
    characterised in that
    the first channel structure (1S) forms a part of the wall of the outer channel (A) and a section surrounding a part of the wall of the inner channel (I) in at least a part of the connection region
    and/or
    in that the second channel structure (2S) forms a part of the wall of the inner channel (I) in at least a part of the connection region.
  3. Fluid distribution element according to one of the preceding claims,
    characterised in that
    the first channel structure (1S) forms a part of the wall of the outer channel (A) and a section surrounding a part of the wall of the inner channel (I) in at least a part of the intersection region
    and/or
    in that the second channel structure (2S) forms a part of the wall of the inner channel (I) and a part of the wall of the outer channel (A) in at least a part of the intersection region.
  4. Fluid distribution element according to one of the preceding claims,
    characterised in that
    the first channel structure (1S) forms a part of the wall of the outer channel (A) in at least a part of the overlapping region
    and/or
    in that the second channel structure (2S) forms a part of the wall of the inner channel (I) and a part of the wall of the outer channel (A) in at least a part of the overlapping region.
  5. Fluid distribution element according to one of the preceding claims,
    characterised by
    at least three, preferably precisely three individual layers disposed one above the other: the first individual layer (1) as uppermost layer, the second individual layer (2) as central layer which is disposed abutting thereon at least partially and a third individual layer (3) which is disposed on the oppositely situated side of the uppermost layer abutting at least partially against the central layer as lower layer, preferably as lowermost layer, in which third individual layer preferably a third channel structure (3S) which is curved perpendicular to the layer plane is configured,
    wherein preferably the third individual layer (3), viewed with respect to a plane parallel to the layer plane, is formed and/or disposed essentially mirror-symmetrically relative to the second individual layer (2).
  6. Fluid distribution element according to one of the preceding claims,
    characterised by
    at least four, preferably precisely four individual layers: the first individual layer (1) as uppermost layer, the second individual layer (2) as first central layer which is disposed abutting thereon at least partially, a third individual layer (3) which is disposed on the oppositely situated side of the uppermost layer abutting at least partially against the first central layer as second central layer and a fourth individual layer (4) which is disposed on the oppositely situated side of the first central layer (2) abutting at least partially against the second central layer (3) as lower layer, preferably as lowermost layer, in which fourth individual layer preferably a fourth channel structure (4S) which is curved perpendicular to the layer plane is configured,
    wherein preferably the fourth individual layer (4), viewed with respect to a plane parallel to the layer plane, is formed and/or is disposed essentially mirror-symmetrically relative to the first individual layer (1).
  7. Fluid distribution element according to one of the preceding claims,
    characterised in that
    the two channel structures (1S, 2S) form, in the connection region, a plurality of first inner channel partial pieces (I1a, I1b) of the inner channel (I) which extend separately in the layer plane offset laterally relative to each other and relative to the first outer channel partial piece (A1) of the outer channel (A) and at a spacing from each other and from the first outer channel partial piece (A1) of the outer channel (A), the plurality of first inner channel partial pieces (I1a, I1b) uniting in the abutting intersection region into the second inner channel partial piece (I2) and/or
    that at least a partial portion of a wall configured by the first and/or the second channel structure (1S, 2S) is configured to be selectively permeable for material exchange between the inner and the outer channel and/or for material exchange between the inner and/or the outer channel and the surroundings.
  8. Fluid distribution element according to one of the preceding claims,
    characterised in that
    several or all of the individual layers are configured in one piece, in particular as a one-piece moulded article and/or that
    at least one of the individual layers is configured at least partially from metal or has this
    and/or
    in that at least one of the individual layers is configured at least partially from plastic material or has this.
  9. Arrangement comprising a plurality of fluid distribution elements (F1, F2, ...) which are in a stack one above the other essentially perpendicular to the layer plane, according to one of the preceding claims.
  10. Arrangement according to the preceding claim,
    characterised by
    a first connection line (3) which is connected respectively in the connection region to a plurality of first inner channel partial pieces of inner channels of different fluid distribution elements (F1, F2, ...)
    and/or
    a second connection line (4) which is connected respectively in the connection region to a plurality of first outer channel partial pieces of outer channels of different fluid distribution elements (F1, F2, ...).
  11. Arrangement according to one of the preceding arrangement claims,
    characterised by
    at least one multichannel pipe which is connected in the overlapping region of at least one fluid distribution element (F1, F2, ...) to the outer channel thereof and the inner channel thereof.
  12. Arrangement according to one of the preceding arrangement claims,
    characterised in that
    at least one outer surface of at least one of the fluid distribution elements (F1, F2, ...) has a surface structure (5) at least in portions which has preferably a rib-shaped and/or burr-shaped configuration.
  13. Method for producing a fluid distribution element, wherein a plurality of individual layers of the fluid distribution element to be stacked one above the other being such welded to each other by pressure-pressing by means of rollers (roll-bonding), and
    wherein either at least one inner channel (I) and at least one outer channel (A) of the fluid distribution element is such inflated by application of pressure, in particular by means of compressed air,
    or wherein at least one inner channel (I) of the fluid distribution element is such inflated by application of pressure, in particular by means of compressed air, and wherein, in order to form at least one outer channel (A), at least one individual layer provided with a prefabricated channel structure is such used that the fluid distribution element has the configuration as described in the following:
    fluid distribution element for a fluid-conducting device, in particular for a heat exchanger or a device for exchanging materials between fluid flows,
    having a plurality of individual layers disposed in a stack one above the other, at least one partial region of the surface of each of the plurality of individual layers being disposed abutting against at least one partial region of the surface of another individual layer of the plurality of individual layers and there being configured, at least in a first individual layer (1) of the plurality of individual layers, a first channel structure (1S) which is curved perpendicular to the layer plane (L) and, in a second individual layer (2) of the plurality of individual layers, adjacent to the first individual layer, a second channel structure (2S) which is curved perpendicular to the layer plane, and
    the two channel structures (1S, 2S), viewed in the channel longitudinal direction (K)
    • firstly forming, in a connection region (A - A', B - B', C - C', AB), two first channel partial pieces (first inner channel partial piece I1, first outer channel partial piece A1) of an inner channel (I) configured for fluid transport and an outer channel (A) configured for fluid transport, which first channel partial pieces extend separately in the layer plane offset laterally relative to each other and at a spacing from each other,
    • subsequently forming, in an intersection region (D - D', KB) abutting against the connection region, two second channel partial pieces (second inner channel partial piece I2, second outer channel partial piece A2) of the inner channel (I) and of the outer channel (A), which two second channel partial pieces intersect in the layer plane and are displaced increasingly one over the other and connected to the first channel partial pieces and
    finally forming, in an overlapping region (E - E', F - F', ÜB) abutting against the intersection region, two third channel partial pieces (third inner channel partial piece I3, third outer channel partial piece A3) of the inner channel (I) and of the outer channel (A), which two third channel partial pieces extend essentially parallel to each other in the layer plane and are connected to the second channel partial pieces, the third inner channel partial piece (I3) being covered in an overlapping manner in the overlapping region by the third outer channel partial piece (A3).
  14. Method according to the preceding claim,
    characterised in that
    firstly at least one inner channel is inflated before subsequently at least one outer channel is inflated or vice versa and/or that
    an already inflated inner channel and/or an already inflated outer channel is left under pressure, whilst a further inner channel and/or outer channel is inflated.
  15. Use of a fluid distribution element or of an arrangement comprising a plurality of fluid distribution elements according to one of the preceding device claims in a heat exchanger or in a device for exchanging materials between fluid flows.
EP20080854597 2007-11-27 2008-11-25 Fluid distribution element for a fluid-conducting device, especially for multichannel-type fluid-conducting appliances nested in each other Not-in-force EP2220451B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007056995A DE102007056995B4 (en) 2007-11-27 2007-11-27 Fluid distribution element for a fluid-carrying device, in particular for nested multi-channel fluid management apparatuses
PCT/EP2008/009985 WO2009068245A1 (en) 2007-11-27 2008-11-25 Fluid distribution element for a fluid-conducting device, especially for multichannel-type fluid-conducting appliances nested in each other

Publications (2)

Publication Number Publication Date
EP2220451A1 EP2220451A1 (en) 2010-08-25
EP2220451B1 true EP2220451B1 (en) 2012-01-25

Family

ID=40546039

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20080854597 Not-in-force EP2220451B1 (en) 2007-11-27 2008-11-25 Fluid distribution element for a fluid-conducting device, especially for multichannel-type fluid-conducting appliances nested in each other

Country Status (5)

Country Link
US (1) US20100288380A1 (en)
EP (1) EP2220451B1 (en)
AT (1) ATE543065T1 (en)
DE (1) DE102007056995B4 (en)
WO (1) WO2009068245A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2283919A1 (en) * 2009-08-13 2011-02-16 Methanol Casale S.A. Plate heat exchanger for isothermal chemical reactors
DE102010054879B4 (en) * 2010-12-17 2013-07-18 Institut für Bioprozess- und Analysenmesstechnik e.V. Arrangement and method for conditioning fluid compartments
EP2849823A1 (en) * 2012-05-16 2015-03-25 Sanofi-Aventis Deutschland GmbH Dispense interface
DE102012011032B4 (en) * 2012-06-05 2014-05-15 Martin Hess Passively cooled instrument protective housing
EP2696434B1 (en) * 2012-08-08 2016-10-19 Samsung SDI Co., Ltd. Cooling device for a car battery
DE102014219812A1 (en) 2014-09-30 2016-03-31 Robert Bosch Gmbh Cooling plate for an electrical energy storage
DE102016002791A1 (en) * 2016-03-07 2017-09-07 Aionacast Consulting Gmbh A method of manufacturing a housing of an electric motor stator, a housing of an electric motor stator, an electric motor with such a stator housing, and use of a cooling passage made by roll welding
CN105764307B (en) * 2016-04-11 2018-06-01 联想(北京)有限公司 Radiator and electronic equipment
EP4300027A1 (en) * 2022-06-29 2024-01-03 TI Automotive Technology Center GmbH Assembly for transporting media

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1751317A (en) * 1928-03-23 1930-03-18 Kulair Corp Evaporator element
US2813701A (en) * 1954-09-02 1957-11-19 United Aircraft Corp Cross-flow heat exchanger
US2979310A (en) * 1956-10-08 1961-04-11 Intercontinental Mfg Company I Heat exchangers
CH476536A (en) * 1966-03-17 1969-08-15 Omnia Spojene Strojarne A Smal Process for the production of heat exchangers from metallic or non-metallic strips
GB1442985A (en) * 1972-09-08 1976-07-21 Delanair Ltd Module heat exchanger
US4227391A (en) * 1979-01-29 1980-10-14 Olin Corporation Process for making tube in sheet heat exchangers
SE7909964L (en) * 1979-01-29 1980-07-30 Olin Corp PROCEDURE FOR MANUFACTURE OF PIPES IN PLATE HEAT EXCHANGERS
US4352393A (en) * 1980-09-02 1982-10-05 Caterpillar Tractor Co. Heat exchanger having a corrugated sheet with staggered transition zones
DD269205A1 (en) * 1987-12-21 1989-06-21 Orgreb Inst Kraftwerke METHOD FOR PRODUCING A DOUBLE TUBE-TYPE WATER TRANSFER
DD269204A1 (en) * 1987-12-21 1989-06-21 Orgreb Inst Kraftwerke METHOD FOR PRODUCING A COATING TUBULAR CHAMBER TRANSFER COMPRISING SEPARATING CRYSTALS IN STREAMING DIRECTION
US5469914A (en) * 1993-06-14 1995-11-28 Tranter, Inc. All-welded plate heat exchanger
DE4426097A1 (en) * 1994-07-22 1996-01-25 Kloeckner Stahl Gmbh Process for the production of hollow body structures from sheet metal
US5941091A (en) * 1998-01-14 1999-08-24 Broadbent; John A. Low cost ice making evaporator
DE10011568C1 (en) * 2000-03-09 2001-06-13 Gea Canzler Gmbh Heat exchanger element; has at least two welded plates of reactive transition metal with flow channels formed between plates for heat exchange medium, and joined by electron beam welding under vacuum
EP1462751A1 (en) * 2003-03-25 2004-09-29 Soleco, SL Heat exchange panel and method for manufacturing the same
US20070209780A1 (en) * 2003-04-23 2007-09-13 Christian Bichler Combined Fluid-Air Evaporator And Novel Switching Concept For A Heat Pump In A Ventilating Apparatus
DE102005037708A1 (en) * 2005-08-10 2007-02-15 Albert-Ludwig-Universität Freiburg Arrangement of heat exchanger plates, which are in thermal contact with an adsorbent

Also Published As

Publication number Publication date
WO2009068245A1 (en) 2009-06-04
ATE543065T1 (en) 2012-02-15
EP2220451A1 (en) 2010-08-25
DE102007056995A1 (en) 2009-05-28
US20100288380A1 (en) 2010-11-18
DE102007056995B4 (en) 2011-10-20

Similar Documents

Publication Publication Date Title
EP2220451B1 (en) Fluid distribution element for a fluid-conducting device, especially for multichannel-type fluid-conducting appliances nested in each other
DE10392610B4 (en) Improved heat exchanger
EP1654508B2 (en) Heat exchanger and method for the production thereof
DE202012102349U1 (en) battery cooler
DE102007043231A1 (en) U-shaped radiator
DE102012012711A1 (en) Process for producing a low pressure thin wall heat exchanger and thin wall heat exchanger
DE102006002932B4 (en) Heat exchangers and manufacturing processes for heat exchangers
WO2006074903A1 (en) Plate heat exchanger
DE19719256A1 (en) Multi-flow flat tube heat exchanger for motor vehicles with a deflecting base and manufacturing process
EP2256419A2 (en) Area heating and/or cooling element
DE102007027316B3 (en) Plate heat exchanger, comprises two identical heat exchanger plates, where two spiral and looping channel halves, in medium of heat exchanger, proceeds in heat exchanger plate
DE19547928C2 (en) Plate heat exchanger
EP2167895B1 (en) Heat exchanger
DE202014002477U1 (en) heat exchangers
DE102006004828A1 (en) Plastic tube for passing through heating or cooling medium, has external diameter of up to five millimeters, where section thickness of tube is partly strengthened in terminal area, and inner diameter of tube in terminal area is smaller
EP1304536A2 (en) Refrigerant / air heat exchange system
DE19501276C2 (en) Pipe bundles for boiler heat exchangers and heat exchangers with pipe bundles and process for the production of pipe bundles
WO2004068052A1 (en) Air/water heat exchanger with partial water ways
DE19846347C2 (en) Heat exchanger made of aluminum or an aluminum alloy
EP3239641A1 (en) Flat tube for a heat exchanger
DE202009017100U1 (en) Plate heat exchanger
EP2045544A2 (en) Heat exchanger, in particular absorber for thermal solar collectors
DE29521278U1 (en) Solar panel
CH675019A5 (en)
DE102012011926A1 (en) Heat exchanger coil for use in controlling temperature of buildings, has connection profiles that include flow connector which is sealingly arranged between chambers on multi-chamber profile

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100625

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 543065

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008006217

Country of ref document: DE

Effective date: 20120322

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120125

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20120125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120425

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120525

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120425

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120525

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120426

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20121026

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008006217

Country of ref document: DE

Effective date: 20121026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120506

BERE Be: lapsed

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWAN

Effective date: 20121130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081125

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 543065

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131125

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20141120

Year of fee payment: 7

Ref country code: DE

Payment date: 20141120

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131125

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20141118

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008006217

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20151125

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160601

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130