EP2220451B1 - Fluidverteilungselement für eine fluidführende vorrichtung, insbesondere für ineinander verschachtelte mehrkanalartige fluidführungsapparate - Google Patents
Fluidverteilungselement für eine fluidführende vorrichtung, insbesondere für ineinander verschachtelte mehrkanalartige fluidführungsapparate Download PDFInfo
- Publication number
- EP2220451B1 EP2220451B1 EP20080854597 EP08854597A EP2220451B1 EP 2220451 B1 EP2220451 B1 EP 2220451B1 EP 20080854597 EP20080854597 EP 20080854597 EP 08854597 A EP08854597 A EP 08854597A EP 2220451 B1 EP2220451 B1 EP 2220451B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- channel
- layer
- fluid distribution
- partial
- fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
- F28F3/12—Elements constructed in the shape of a hollow panel, e.g. with channels
- F28F3/14—Elements constructed in the shape of a hollow panel, e.g. with channels by separating portions of a pair of joined sheets to form channels, e.g. by inflation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/0031—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
- F28D9/0037—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the conduits for the other heat-exchange medium also being formed by paired plates touching each other
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/8593—Systems
Definitions
- the present invention relates to a fluid distribution element for fluid-carrying devices, in particular for devices having multi-channel tubes. Such an element is out DE 4426097 A known, and corresponds to the general concept of the claim1.
- the fluid distribution element according to the invention is alternatively referred to below as distributor connection piece, fluid distribution device or fluid collection device.
- the present invention also relates to an arrangement of such fluid distribution elements and to manufacturing processes for producing such fluid distribution elements.
- Fluid distribution elements are of particular interest when heat or mass transfer between multiple carriers (fluids) is to take place at the same time.
- An example is tube-in-tube heat exchangers Air conditioning systems in the automotive industry, which serve as internal heat transfer for the refrigeration circuit. Essential here is in particular the fulfillment of requirements in terms of space requirements and weight reduction and as to the cost reduction.
- Another example in which fluid distribution elements can be used are so-called combination evaporators (also abbreviated to Kombiverdampfer) for heat pumps, as described for example in the patent WO 2004/094921 A1 to be discribed.
- the present invention is achieved by a fluid distribution element according to claim 1 and by an arrangement of such fluid distribution elements according to claim 9.
- Advantageous embodiments of the fluid distribution elements or arrangements according to the invention can be found in the dependent claims.
- Inventive methods can be found in claims 13 and 14. Uses according to the invention are described by claim 15.
- a fluid distribution element or a fluid distribution device / fluid collection device in particular of metal or plastic, is provided, which is suitable in particular for connection to interleaved or overlapping multichannel-type lines (multiple channel tubes).
- multi-channel pipes are to carry one or more different fluids separately in a space-saving manner independently of each other and to utilize the possibility of controlled heat transfer or controlled mass transfer.
- multi-channel pipe heat exchangers offer the advantage that they allow the heat exchange between different heat transfer media (for example, from two different heat sources with different temperature levels and with different heat transfer composition and a heat sink) in a reduced space.
- Multi-channel pipes offer, inter alia, the advantage that they allow the controlled mass transfer between more than two fluids in a reduced space, for example by means of the diffusion, osmosis or sieving principle.
- the present invention provides a fluid distribution element or manifold connector, the purpose of which is to connect, on the one hand, monotube leads to, on the other hand, a multichannel tube, without having to penetrate the channels.
- the inventive approach is that the individual supply channels open in sub-channels and these sub-channels intersect and overlap, so that a contact surface for the purpose of heat and / or mass transfer arises.
- the fluid distribution element or connector can advantageously made of metal or plastic and with different cost-effective methods (for example, pressure welding, gluing and / or soldering) are produced.
- the fluid distribution element according to the invention has a very small space requirement and simplifies the concatenated connection of multi-channel tubes for the purpose of constructing a compact unit for heat transfer.
- the fluid distribution element according to the invention can be produced in a structurally simple manner, without there being an increased risk of leakage, as in the prior art at the penetration points.
- the structure of the fluid-carrying device by means of the fluid distribution elements can advantageously be such that bionic approaches are tracked in the route of the channel.
- the fluid distribution element according to the invention has a plurality of individual layers stacked one above the other (for example, flat metal layers or plastic layers), which are connected to each other with parts of their surfaces. Between such connection areas, bulges or elevations are realized (for example, by swelling of partial areas of the surfaces which were provided with a release agent or also by preforming) perpendicular to the layer plane, which then form spaces between the individual layers, by means of which fluid guide channels are realized.
- it is a stack arrangement of three, for example, pressure-pressed material layers, particularly advantageous (see also the following embodiment) are four layers of material used.
- such a fluid distribution element according to the invention can also be produced cost-effectively and fully automatically by bonding preformed plastic or metal parts in which half channels are already preformed.
- a fluid distribution element according to the invention is therefore in the simplest case a structure with substantially circular or semicircular flow cross sections (tubes) which are pre-embossed into flat bodies (the individual layers) which in this variant are glued or soldered to other flat bodies.
- the connecting pipe pieces, which are connected to the leads conclusively become.
- the channels do not overlap in or between the individual layers.
- Single layers of metal are used for the above-described roll-bonding process (or autogenous rolling welding). It is applied a suitable release agent at the locations of the channels to be formed and the sheets are cold-welded together by rolling.
- the release agent leaves unconverted areas exist, which can be expanded with a fluid, in particular air, pressurized into tubes.
- a fluid in particular air, pressurized into tubes.
- the sequence of expansion of the regions which are not disposed of. For example, the space between the inner, centrally located individual layers or individual layers is first widened, and then the space between individual layers lying further outside. In order to preserve the channel structure of already inflated channels, it is possible to leave them under pressure as more channels are inflated.
- the individual layers of the fluid distribution element or distributor connection piece can easily be connected to one another and then individual fluid distribution elements or distributor connection pieces stacked perpendicular to the layer plane and connected to supply lines, so that a stack (arrangement) of distributed, piled and provided with fluid guide channels fluid distribution elements.
- the design of such an arrangement of fluid distribution elements according to the invention can then be designed similar to a lamella heat exchanger, in which the tubes form a closed body with the lamellae.
- an arrangement of fluid distribution elements or a Merrives fluid supply unit using multiple fluids can be formed, between the individual (coated from individual layers) fluid distribution elements or around the stack spaced apart individual fluid distribution elements, which now serve as fins, an example gaseous fluid can flow.
- Spacers can be arranged between adjacent individual fluid distribution elements or plate bodies, which can be selected such that sufficient fluid can flow or flow past between individual fluid distribution elements.
- surface structures such as ridges or ribs, which have a turbulence-increasing effect, can be applied to the outer surfaces of the fluid distribution elements according to the invention. This leads to an improved heat transfer between a fluid flowing in a fluid distribution element according to the invention and the fluid flowing between it and an adjacent fluid distribution element.
- the above-described type of preparation for the individual fluid distribution elements or the entire, the arrangement of fluid distribution elements having fluid guide unit brings in addition to the advantage that no soldering or welding are necessary, also the advantage that they or it with the same conventional inexpensive metals or plastics, as the multi-channel pipes to be connected can be generated itself.
- the connections on the front side of the Eizelrohrzu füren are advantageously formed with a circular cross-section and selected with a standardized inner width, so that a connection with conventional lines and Kochsch scholaren can be done easily.
- the cross-section of the channels can remain constant along the route, so that pressure or flow is constant remain, or be varied, so that physical phenomena, such as evaporation or compression can be specifically favored.
- the distributor connection piece or fluid distribution element according to the invention is thus characterized by a simple structure and a simple production and by low material costs.
- the shape of the plates can be arbitrary (seen in the layer plane), for example in a rectangular or polygonal shape.
- the entire combi-steamer is not conventionally manufactured as a lamellar tube heat exchanger made of aluminum fins and tube registers made of copper, but it is a multilayer body of at least four individual layers realized (for example, with the above-described rolling bonding method).
- certain areas in the intermediate layers or between the individual layers may be excluded from a joining compound which will expand at the disposal of the other areas or are already pre-embossed when in use and thus form areas between the individual layers for the flow of fluids (ie channels).
- An exception here is the production by extrusion, whereby structures without branches and returns can be made in one piece.
- the flow-through areas in the intermediate layers may also include more complex structures, such as branches and returns.
- the fluid distribution element according to the invention is also used of the fluid distribution element according to the invention in Kombiverdampfer the structure simplified so that leads are no longer complex shapes with penetrations, but that the problem of penetration is shifted to the multilayer body.
- the bodies through which it flows are then tubular channels or channel-like tubes.
- the multilayer panels are shaped to achieve functionality analogous to the combination steamer, which is accomplished by cold welding a body having advantageously four layers of panels, for example, in the roll bond technique. This results in a total of three intermediate layers or areas between two adjacent individual layers, which are available either by release agents or by the use of pre-stamped structures for the fluid guide available.
- the individual layers can also be soldered or glued, in which case channel guides represent recessed areas.
- This multi-layered body can then be used to make a channel system overlying the flow filaments.
- These outer channel systems can in this case be separated from each other by two further plates, which may be necessary because during the later continuation of these channels, the channel in the middle intermediate layer laterally penetrates into the outer channels. This process of lateral penetration corresponds to the penetration in the previous production of supply lines or distribution lines.
- Y-shaped branches can also be produced.
- a Y-shaped branch piece which in combination can be used with a fluid distribution element according to the invention or can be connected to this, applies, for example, if a multi-channel pipe must be divided into two parallel multi-channel pipes (for example, for the purpose of reducing pressure drop in the same transfer area in Kombiverdampfern).
- a release medium may be applied to the ply planes according to the shape and arrangement of the branch.
- the present invention thus provides a metal or plastic manifold connector for nested multi-channel fluid routing apparatus consisting essentially of separate leads on one side (first face) and interleaved channels on the other face (second, first face) Front side opposite end), wherein the channels do not penetrate, but in separate sub-channels (closing the multi-channel tube) open, with these sub-channels intersect and partially or completely overlap, so that a contact surface for heat or mass transfer via an intermediate Canal wall is created.
- the supply or removal of fluids to or from the heat exchanger in separate, not superimposed channels so that the supply line can be connected on one side with conventional Einrohrön.
- the element according to the invention can be produced by roll bonding or pressure welding from a plurality of individual layers (advantageously at least three or four individual layers).
- the channel-like Structures can be created by puffing.
- the channel-like structures can alternatively also be provided by pre-stamped channel structures in the individual layers.
- the individual layers can also be cast or bonded together by gluing.
- a plurality of fluid distribution elements according to the invention can be stacked on top of one another and at a distance from each other, preferably perpendicular to the layer plane, whereby a heat exchanger with a plurality of multiple-channel tubes or several flights within the fluid-guiding unit is formed. Between each individual fluid distribution element of such a fluid-guiding unit, a further fluid can then flow through corresponding fluid-carrying structures.
- bionic approaches such as harp shape
- pipe branches eg Y-shaped branches
- FIG. 1 shows an embodiment of a fluid distribution element according to the invention.
- FIG. 1a shows a plan view of the layer plane L of the fluid distribution element
- FIG. 1b shows various sectional views perpendicular to the layer plane and substantially perpendicular to the channel longitudinal direction K (see. FIG. 2 ).
- the channel longitudinal axis direction here is that direction in the layer plane L which essentially corresponds to the flow direction of the fluid through the inner channel I or the outer channel A.
- the fluid distribution element consists of four individual layers or individual layers 1 to 4, which each consist of flat metal bodies, here zinc sheets or aluminum sheets.
- the individual aluminum plates or zinc sheet layers 1 to 4 are stacked one above the other perpendicular to the layer plane L. Parts of the surfaces or the upper sides and / or lower sides of the individual Layers 1 to 4 are each pressure-tightly connected by the above-described roll-bonding method or roll pressing with parts of the opposite surfaces of adjacent individual layers.
- non-bonded regions are formed between these connected partial area regions of two layers, in which cavities are created by bulging one or both of the adjacent individual layers, which then serve as fluid guide channels (inner channel I and outer channels A, A SP , see below). are formed.
- FIG. 1 shows, in the uppermost single layer 1, a first in the direction perpendicular to the layer plane L upwards (see. FIG. 1b ) Ducted channel structure 1S formed.
- first intermediate layer upper intermediate layer 2
- second channel structure 2S Seen in the direction of the channel longitudinal direction K (in FIG. 1a the direction from bottom to top, cf. FIG.
- FIG. 1a bottom left shows the connection area AB, on its outside front side (the in FIG. 1a shown below) of the inner channel I and the outer channel A completely separate from each other and laterally offset from one another, so that two separate individual tubes can be connected to the fluid distributor according to the invention at this end face.
- the channel structure 1S of the uppermost layer 1 in the form of two bulges formed laterally offset from one another is formed on the outside end face of the connection region AB.
- the underlying single layer 2 also has a bulge (which forms the channel structure 2S), which is designed and arranged such that it snugly fits into the bulge 1S of the first layer 1.
- the underlying single layer 2 In the region of the second bulge portion of the channel structure 1S ( FIG. 1b at the bottom right), the underlying single layer 2, however, no bulge, but is formed as a flat surface: This is formed between the individual layers 1 and 2 in the cross section shown trapezoidal, upwardly tapering cavity, which is the first outer channel section A1 for fluid transport formed outer channel A is formed.
- the adjacent to the second single layer 2 and below the same arranged third single layer 3 is now seen in relation to the layer plane L mirror-symmetrical to the second single layer 2 formed.
- the fourth single layer which is arranged adjacent to this third individual layer 3 and below it, is mirror-symmetrically shaped (seen with respect to the layer plane L) to the uppermost single layer 1.
- connection area AB Due to this mirror-symmetrical shape (and a corresponding mirror-symmetrical arrangement) arises in the connection area AB through the arched channel structure 2S of the second single layer 2 and through their likeness in the third single layer 3 a cross-section approximately doppelrapezförmiger cavity between the second single layer 2 and the third single layer 3, which is also designed as an inner channel I (in the area AB as the first inner channel section I1) for fluid guidance. Due to the above-described symmetrical configuration also results in relation to the layer plane L seen opposite the first outer channel section A1 of the outer channel A between the fourth layer and the third layer also in cross-section approximate trapezoidal cavity, which as a further outer channel A SP (SP stands for mirror-symmetrical) is formed.
- SP stands for mirror-symmetrical
- channel longitudinal direction K reduces the distance between the channel centers of the first inner channel section I1 and the first outer channel section A1 of the inner channel I. or the outer channel A successively, so that the two channels I and A (or A SP ) gradually approach until they begin in the adjoining the connection area AB in the channel longitudinal direction K crossing area KB to intersect.
- the first channel structure 1S of the uppermost layer 2 and the second channel structure 2S of the upper middle layer 2 are thus formed in the crossing region KB (this also applies to the third channel structures 3S and 4S of the lower middle layer 3 and the lower layer 4) facing each other mirror-symmetrically the overlap area between the first channel structure 1S and the second channel structure 2S is increasingly increased, until (due to the larger Width of the channel structure 1S compared to the channel structure 2S; the width here is the extension perpendicular to the direction K in the layer plane L), the first channel structure 1S completely overlaps the second channel structure 2S.
- K thus slides upwards in the longitudinal direction of the channel K (cf. FIG.
- the overlapping region UB then adjoins, in which third channel sections (third inner channel section I3 and third outer channel section A3) are formed such that the inner channel I or the second channel structure 2S is completely separated from the outer channel A and from the first Channel structure 1S is overlapped or covered.
- the first channel structure 1S overlaps the second channel structure 2S symmetrically on both sides, so that the inner channel I, I3 runs centrally below the outer channel A, A3 or is enclosed by it on one side.
- the fluid distribution element shown thus has a substantially concentric within two outer channels A, A SP running inside channel I, so that in a simple manner at this upper connection side a suitably trained multiple channel pipe can be connected (see also sectional view F-F ').
- a fluid distribution element can be varied in a variety of ways in the context of the present invention:
- the fluid distribution element can be integrated with such a multi-channel tube be continued.
- Various fluid control structures can additionally be integrated into the fluid distribution element shown, for example a Y-shaped branching element (cf. FIG. 5 ), in which the inner channel I guided concentrically within the two outer channels A, A SP branches, together with the outer channels surrounding it, into two separate strands.
- the fluid distribution element according to the invention from only three individual layers 1 to 3, so that only one outer channel A and one inner channel I result (omission of the second outer channel A SP ).
- the further layer elements 3 and 4 need not be formed symmetrically to the sheet elements 1 and 2, but may also be designed as a flat flat plates. In this case, then only one here in the example simply trapezoidal (but there are also other forms possible in general) inner channel I and an outer channel A.
- the individual layers can also be the same be formed integrally. This does not have to concern all individual layers, but may also relate only to individual layers shown (for example, waiving the single layer 4, the two individual layers 2 and 3 could be made as a one-piece, extruded molded body, which superimposed another layer (top layer 1) becomes).
- FIG. 2 shows an isometric view of the in FIG. 1 shown fluid distribution element.
- the two separate outer channels A and A SP semiconductorircular
- the inner channel I circular
- FIG. 3 shows a further embodiment of an inventive fluid distribution element (shown here only the top view on the layer plane L). This is basically the same structure as the layer element shown in Figure 1, so that only the differences will be described here.
- the two channel structures 1S and 2S are designed such that the inner channel I separates into two separate inner channel sections in the connection region AB and in the crossing region KB.
- the connection region AB two separate, offset from one another and offset from the outer channel A, A1 are formed first inner channel sections I1a and I1b formed, which allow the connection of two separate single-pipe supply lines for the inner channel I on the outside end face.
- the two separate inner channel sections intersect in the crossing area KB thus on both sides of the outer channel A and below the same in this one, which by a corresponding construction, as already to FIG. 1 has been described, can be realized.
- the inner channel I, I3 and the outer channel A, A3 overlap each other in the overlapping area ÜB.
- FIG. 4 shows an inventive arrangement of several (here three) fluid distribution elements F1 to F3.
- the three fluid distribution elements F1 to F3 are in this case perpendicular to the layer plane or in the stacking direction S spaced from each other and arranged one above the other.
- the layer planes L of the individual fluid distribution elements in this case run parallel to each other.
- the individual fluid distribution elements are kept spaced apart by spacers Abs.
- Front in FIG. 4 the connection side for the single-pipe feed lines for the fluid distribution elements is shown.
- the individual pipe feed lines are here realized in such a way that branch off from a first, arranged in the stacking direction S connection line 3 at the level of the individual fluid distribution elements single pipe channels, which are then respectively connected to an inner channel I of a fluid distribution element.
- a second connection line 4 is likewise arranged in the stacking direction S, from which individual tube channels likewise branch off at the level of the individual fluid distribution elements, which then each with the individual individual tube connections the outer channels A of the fluid distribution elements are connected.
- the arrangement shown here is realized here due to the spacing of the individual fluid distribution elements F1 to F3 realized by the spacers Abs so that a volume arises between two adjacent fluid distribution elements, which also flows through a fluid (third fluid outside the inner channels I and the outer channels A) can.
- the outer surface (upper side of the individual layers 1 and lower side of the individual layers 4) is provided with a plurality of individual, parallel to each other and offset from one another Rib structures 5 provided. These rib structures are arranged both laterally next to the channel structures 1S and 4S, as well as on the outside on these and provide a turbulence of the flowing through the gaps between the fluid distribution elements through the third fluid, whereby the heat exchange is optimized.
- FIG. 5 finally outlines a Y-branch piece made of the individual layers 1 to 4, for example by roll bonding, which can be used in combination with a fluid distribution element according to the invention to split the fluid flow of the inner channel I and the outer channel A into two separate fluid streams (the Y-branch piece shown)
- a fluid distribution element according to the invention to split the fluid flow of the inner channel I and the outer channel A into two separate fluid streams (the Y-branch piece shown)
- the Y-branch piece shown For example, at the upper end of the overlap area UB of in FIG. 1 shown fluid distribution element, see there sectional view F-F ') are docked.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Description
- Die vorliegende Erfindung bezieht sich auf ein Fluidverteilungselement für fluidführende Vorrichtungen, insbesondere für Vorrichtungen, welche Mehrkanalrohre aufweisen. Solch ein element ist aus
DE 4426097 A bekannt, und entspricht dem Oberbegrift des anspruchs1. Das erfindungsgemäße Fluidverteilungselement wird nachfolgend alternativ auch als Verteilerverbindungsstück, Fluidverteilungseinrichtung oder Fluidsammeleinrichtung bezeichnet. Die vorliegende Erfindung bezieht sich darüberhinaus auf eine Anordnung aus solchen Fluidverteilungselementen sowie auf Herstellungsverfahren zur Herstellung solcher Fluidverteilungselemente. - Fluidverteilungselemente sind insbesondere von Interesse, wenn ein Wärme- oder Stofftransport zwischen mehreren Trägern (Fluiden) zeitgleich erfolgen soll. Ein Beispiel stellen Rohr-in-Rohr-Wärmeüberträger in Klimaanlagen in der Automobilindustrie dar, welche als innere Wärmeüberträger für den Kältekreis dienen. Wesentlich hierbei ist insbesondere die Erfüllung von Anforderungen betreffs des Raumbedarfs und der Gewichtsreduzierung sowie betreffs der Kostensenkung. Ein weiteres Beispiel, in welchem Fluidverteilungselemente eingesetzt werden können, sind sog. Kombinationsverdampfer (auch kurz: Kombiverdampfer) für Wärmepumpen, wie sie beispielsweise in der Patentschrift
WO 2004/094921 A1 beschrieben werden. - Dabei sind Herstellungsverfahren für Rohr-in-Rohr-Anordnungen beispielsweise aus Metall oder Kunststoff bekannt, wo die Verbindung zu der Zuleitung bzw. zum Sammelstrang über eine Durchdringung des überstehenden Kanals erfolgt (siehe z.B.
DD 269205 A1 - Aus dem Stand der Technik sind darüberhinaus Konstruktionsprinzipien für Wärmeüberträger zum Kühlen oder Erwärmen von Flüssigkeiten oder von Gasen, welche aus mehreren miteinander walzgepressten Metallblechen ausgebildet sind, bekannt, wobei Kanäle aufgebläht werden. Hierbei dienen dann Platten zur Trennung der Fluide (beispielsweise
DE 30 03 137 A1 ). Hierbei wird ein sog. Walzenverbinden bzw. englisch Roll-Bonding vorgenommen, wodurch eine Verbindung zweier oder mehrerer relativ dünner Bahnen, Bleche oder Tafeln zustande kommt, was durch Walzendruck geschieht. Eine solche Verbindung kann ggf. auch durch Erwärmung oder durch Verklebung realisiert werden. Zwischenbleche können hierbei Wellen aufweisen, um die Wärmeübertragung zu intensivieren. - Wärmeüberträger bzw. Wärmetauscher werden ihrer Grundform nach unterteilt in Röhrbündel-, Platten-, Koaxial- und Spiralwärmeüberträger. Ein Plattenwärmeüberträger lässt sich im Verhältnis zu den anderen Ausführungsformen sehr kompakt bauen. Er ist dadurch aufgrund seines Materialbedarfs und des Gesamtvolumens grundsätzlich überall dort vorzuziehen, wo die Forderungen nach geringen Materialkosten und der Kompaktheit für kleine Anlagen die Korrosions- und Druckbeständigkeit überwiegen. Dies ist beispielsweise für im Bereich der Kältetechnik eingesetzte Verdampfer der Fall. Im Bereich der Wärmepumpen gilt, dass sich neben den Kosten für die Anlage selbst erhöhte Anschaffungskosten durch die notwendige Erschließung einer Wärmequelle ergeben. Aus diesem Grund sind Außenluftwärmepumpen wirtschaftlich gesehen von Vorteil. Üblicherweise werden in Kältekreisen dieser Anlagen für diesen Zweck Lamellenrohr-Wärmeüberträger eingesetzt. Allerdings ist die Effizienz einer solchen Wärmepumpe geringer, weil die Wärmequelle viel stärkeren saisonal bedingten Temperaturschwankungen unterliegt. Durch die Unterstützung dieser primären Wärmequelle durch eine sekundäre Wärmequelle lassen sich Zugewinne bei der Verdampferleistung und eine geringere Frostbildung am Verdampfer einer Außenluftwärmepumpe realisieren. Hierzu wurden beispielsweise Kombiverdampfersysteme entwickelt (siehe
WO 2004/094921 A1 ). In all solchen genannten Systemen kann das erfindungsgemäße Fluidverteilungselement als Bauteil eingesetzt werden: Wie nachfolgend noch ausführlich beschrieben, bietet dies den Vorteil, dass, beispielsweise beim Kombiverdampfer, Anordnungen konzentrisch ineinander eingeführter Rohre, bei denen die Geometrie Zuleitungen mit Durchdringungen aufweist, vermieden werden können. Solche Zuleitungen mit Durchdringungen sind im Stand der Technik notwendig, wenn Fluide in direktem thermischen Kontakt zueinander stehen sollen. Hierzu sind aus dem Stand der Technik die beiden folgenden Realisierungsmöglichkeiten bekannt: - 1. Zwei Rohre unterschiedlichen Durchmessers werden ineinander angeordnet und das Volumen des Ringspalts und das des Innenrohrs werden mit Sand verpresst. In diesem Zustand lässt sich eine typische mäanderförmige Rohranordnung (Rohrregister im Lamellenkörper) realisieren. Dieses Verfahren ist technisch sehr aufwendig und nicht voll automatisierbar.
- 2. Das Außenrohr wird bereits vorgeformt mit Lamellen bezogen. Das Rohrregister ist dann bereits in dem Lamellenkörper angeordnet. In dieses Rohrregister wird nun das Innenrohr eingebracht, wobei dieses das Rohrregister im Bereich der Rohrkrümmer außerhalb des Lamellenkörpers durchdringt. Hierdurch ergeben sich insbesondere Problemstellen bei einer automatisierten Fertigung aufgrund der komplexen Geometrie der durchdrungenen Bereiche der Rohrwandung in den Rohrkrümmern.
- Ausgehend vom Stand der Technik ist es somit die Aufgabe der vorliegenden Erfindung, ein Fluidverteilungselement (bzw. eine Anordnung von Fluidverteilungselementen) zur Verfügung zu stellen, mit welchem auf konstruktiv einfache und preisgünstige Art und Weise sowie auf über eine lange Lebensdauer hinweg gesehen zuverlässige Art und Weise eine Fluidverteilung innerhalb einer fluidführenden Vorrichtung, insbesondere innerhalb eines Wärmetauschers oder innerhalb einer Vorrichtung zum Austausch von Stoffen zwischen Fluidströmen, realisiert werden kann. Aufgabe der vorliegenden Erfindung ist es darüberhinaus, entsprechende Herstellungsverfahren zur Verfügung zu stellen.
- Die vorliegende Erfindung wird durch ein Fluidverteilungselement nach Anspruch 1 sowie durch eine Anordnung von solchen Fluidverteilungselementen nach Anspruch 9 gelöst. Vorteilhafte Ausgestaltungsformen der erfindungsgemäßen Fluidverteilungselemente bzw. Anordnungen lassen sich den abhängigen Ansprüchen entnehmen. Erfindungsgemäße Verfahren lassen sich den Ansprüchen 13 und 14 entnehmen. Erfindungsgemäße Verwendungen werden durch Anspruch 15 beschrieben.
- Nachfolgend wird ein erfindungsgemäßes Fluidverteilungselement (sowie eine entsprechende Anordnung) zunächst allgemein beschrieben. Hieran schließen sich konkrete Ausführungsbeispiele an. Die einzelnen konkreten Konstruktionsmerkmale, wie sie sich sowohl der allgemeinen Beschreibung, wie auch den sich anschließenden speziellen Ausführungsbeispielen entnehmen lassen, können hierbei im Rahmen der vorliegenden Erfindung selbstverständlich durch den Fachmann mittels seiner Fachkenntnisse auch konstruktiv abgewandelt werden bzw. in einer beliebigen anderen, nicht gezeigten Kombination eingesetzt werden, ohne hierdurch den Schutzbereich der vorliegenden Erfindung, welcher allein durch die Patentansprüche gegeben ist, zu verlassen.
- Erfindungsgemäß wird ein Fluidverteilungselement bzw. eine Fluidverteilungseinrichtung/Fluidsammeleinrichtung, insbesondere aus Metall oder Kunststoff, zur Verfügung gestellt, welche(s) sich insbesondere zum Anschluss an ineinander verschachtelte oder sich überlagernde mehrkanalartige Leitungen (Mehrfachkanalrohre) eignet. Der Zweck von solchen Mehrfachkanalrohren besteht darin, in einer platzsparenden Bauweise ein oder mehrere unterschiedliche Fluide in getrennter Weise unabhängig voneinander zu führen und die Möglichkeit der kontrollierten Wärmeübertragung bzw. der kontrollierten Stoffübertragung zu nutzen. Hierbei bieten beispielsweise Mehrfachkanal-Rohr-Wärmeüberträger den Vorteil, dass sie in einem reduzierten Raum den Wärmeaustausch zwischen verschiedenen Wärmeträgermedien (beispielsweise aus zwei unterschiedlichen Wärmequellen mit unterschiedlichem Temperaturniveau und mit unterschiedlicher Wärmeträgerzusammensetzung und einer Wärmesenke) ermöglichen. Mehrfachkanalrohre bieten u.a. den Vorteil, dass sie in einem reduzierten Raum beispielsweise mittels des Diffusions-, des Osmose- oder des Siebprinzips den kontrollierten Stoffübergang zwischen mehr als zwei Fluiden ermöglichen. Die vorliegende Erfindung stellt ein Fluidverteilungselement bzw. ein Verteilerverbindungsstück zur Verfügung, dessen Zweck das Verbinden von einerseits Einrohr-Zuleitungen mit andererseits einem Mehrfachkanalrohr ist, ohne dass sich die Kanäle durchdringen müssen. Der erfindungsgemäße Ansatz besteht darin, dass die einzelnen Zuleitungskanäle sich in Teilkanäle öffnen und sich diese Teilkanäle kreuzen und überlappen, so dass eine Kontaktfläche zwecks Wärme- und/oder Stoffaustausch entsteht. Das Fluidverteilungselement bzw. Verbindungsstück kann vorteilhafterweise aus Metall oder Kunststoff und mit unterschiedlichen kostengünstigen Verfahren (beispielsweise Pressschweißen, Kleben und/oder Löten) hergestellt werden.
- Das erfindungsgemäße Fluidverteilungselement hat einen sehr geringen Raumbedarf und vereinfacht die verkettete Anbindung von Mehrkanalrohren zum Zweck des Aufbaus eines kompakten Aggregats zur Wärmeübertragung. Insbesondere ist das erfindungsgemäße Fluidverteilungselement auf konstruktiv einfache Art und Weise so herstellbar, ohne dass wie beim Stand der Technik an den Durchdringungsstellen eine erhöhte Gefahr für Leckage besteht. Um mögliche Druckverluste zusätzlich zu verhindern, kann der Aufbau der fluidführenden Vorrichtung mittels der Fluidverteilungselemente vorteilhafterweise so erfolgen, dass bionische Ansätze bei der Trasse des Kanals verfolgt werden.
- Wie nachfolgend anhand der speziellen Ausführungsbeispiele noch ausführlich dargestellt, weist das erfindungsgemäße Fluidverteilungselement mehrere übereinander gestapelt angeordnete Einzellagen auf (beispielsweise flache Metalllagen oder Kunststofflagen), welche jeweils mit Teilen ihrer Oberflächen miteinander verbunden werden. Zwischen solchen Verbindungsbereichen werden (beispielsweise durch Aufblähen von Teilbereichen der Oberflächen, welche mit einem Trennmittel versehen wurden oder auch durch Vorformung) senkrecht zur Lagenebene Auswölbungen bzw. Erhebungen realisiert, welche dann Zwischenräume zwischen den einzelnen Lagen ausbilden, mittels derer Fluidführungskanäle realisiert werden. Vorteilhafterweise handelt es sich um eine Stapelanordnung aus drei, beispielsweise druckgepressten Materiallagen, besonders vorteilhaft (siehe auch nachfolgendes Ausführungsbeispiel) werden vier Materiallagen verwendet.
- Hierbei werden, wie bereits erwähnt, entlang bestimmter Pfade auf den Trennflächen zwischen zwei Einzellagen, beispielsweise durch das Anbringen eines Trennmittels, diese Areale nicht gefügt, sondern über ein Druckfluid ausgeweitet (dies kann mit Hilfe des bekannten Roll-Bond-Verfahrens zur Kanalbildung geschehen, vgl.
DE 30 03 137 A1 ). Hierdurch entstehen Kanäle zwischen den verschiedenen Lagen, welche so geführt sind, dass sie in den Randbereichen des Körpers auf der einen Stirnseite separate Anschlüsse für Ein-Rohr-Zuleitungen bilden, sich im Verlauf des Körpers annähern, bis sie sich kreuzen und überdecken, so dass ineinander verschachtelte oder sich überlagernde Kanäle entstehen, an die dann auf der anderen Stirnseite des Körpers ein Mehrfachkanalrohr angeschlossen werden kann. - Neben der kostengünstigen Herstellung mit Hilfe des beschriebenen Roll-Bond-Verfahrens mit Metallblechen kann ein solches erfindungsgemäßes Fluidverteilungselement auch mittels Verkleben von vorgeformten Kunststoff- oder Metallteilen, in welchen Halbkanäle bereits vorgeformt sind, kostengünstig und vollautomatisiert hergestellt werden.
- Ein erfindungsgemäßes Fluidverteilungselement ist somit im einfachsten Fall eine Struktur mit im wesentlichen kreisförmigen oder halbkreisförmigen Strömungsquerschnitten (Rohren), die in flache Körper (die Einzellagen) vorgeprägt werden welche bei dieser Variante mit anderen flachen Körpern geklebt oder gelötet werden. In den Randbereichen bzw. an den Stirnseiten dieser flachen Körper verlaufen die Anschlussrohrstücke, die mit den Zuleitungen schlüssig verbunden werden. Im Bereich des Anschlusses der Einzelrohrleitungen überlagern sich die Kanäle in den bzw. zwischen den einzelnen Schichten nicht.
- Für das vorbeschriebene Roll-Bond-Verfahren (bzw. das autogene Walzschweißen) werden Einzellagen aus Metall verwendet. Es wird ein geeignetes Trennmittel an den Stellen der zu bildenden Kanäle aufgetragen und die Bleche werden durch Walzen miteinander kalt verschweißt. Das Trennmittel lässt nicht verfügte Bereiche bestehen, welche mit einem Fluid, insbesondere Luft, druckbeaufschlagt zu Rohren aufgeweitet werden können. Für die Reihenfolge der Expansion der nicht verfügten Bereiche gibt es erfindungsgemäß mehrere Möglichkeiten: Beispielsweise wird zuerst der Raum zwischen den inneren, mittig liegenden Einzelschichten bzw. Einzellagen aufgeweitet, danach der Raum zwischen weiter außen liegenden Einzellagen. Um die Kanalstruktur bereits aufgeblähter Kanäle zu erhalten, ist es möglich, diese unter Druck zu belassen, wenn weitere Kanäle aufgebläht werden. Leicht lassen sich so die Einzellagen des Fluidverteilungselements bzw. Verteilerverbindungsstückes miteinander verbinden und anschließend einzelne Fluidverteilungselemente bzw. Verteilerverbindungsstücke senkrecht zur Lagenebene aufstapeln und an Zuleitungen anschließen, so dass ein Stack (Anordnung) aus verfügten, aufgeschichteten und mit Fluidführungskanälen versehenen Fluidverteilungselementen entsteht. Die Bauform einer solchen Anordnung von erfindungsgemäßen Fluidverteilungselementen kann dann ähnlich wie bei einem Lamellenwärmeüberträger ausgebildet sein, bei dem die Rohre mit den Lamellen einen geschlossenen Körper bilden. Auf diese Weise kann erfindungsgemäß eine Anordnung von Fluidverteilungselementen bzw. ein mehrzügiges Fluidführungsaggregat unter Nutzung mehrerer Fluide gebildet werden, wobei zwischen den einzelnen (aus Einzellagen beschichteten) Fluidverteilungselementen bzw. um die im Stapel beabstandet voneinander angeordneten einzelnen Fluidverteilungselementen, die nun als Lamellen dienen, ein beispielsweise gasförmiges Fluid strömen kann. Zwischen benachbarten einzelnen Fluidverteilungselementen bzw. Plattenkörpern können dabei Abstandshalter angeordnet werden, die so gewählt sein können, dass ausreichend Fluid zwischen einzelnen Fluidverteilungselementen hindurchströmen bzw. vorbeiströmen kann. Hierbei können auf den äußeren Oberflächen der erfindungsgemäßen Fluidverteilungselemente Oberflächenstrukturen, wie Grate oder Rippen, aufgebracht sein, welche eine turbulenzsteigernde Wirkung aufweisen. Dies führt zu einer verbesserten Wärmeübertragung zwischen einem in einem erfindungsgemäßen Fluidverteilungselement strömenden Fluid und dem zwischen diesen und einem benachbarten Fluidverteilungselement hindurchströmenden Fluid.
- Die vorbeschriebene Art der Herstellung für die einzelnen Fluidverteilungselemente bzw. das gesamte, die Anordnung von Fluidverteilungselementen aufweisende Fluidführungsaggregat bringt neben dem Vorteil, dass keine Löt- oder Schweißarbeiten notwendig sind, auch den Vorteil mit sich, dass sie bzw. es mit denselben konventionellen kostengünstigen Metallen oder Kunststoffen, wie die anzuschließenden Mehrfachkanalrohre selbst erzeugt werden können bzw. kann. Die Anschlüsse auf der Stirnseite der Eizelrohr-Zuleitungen werden vorteilhafterweise mit kreisförmigem Querschnitt geformt und mit standardisierter Innenweite gewählt, so dass ein Anschluss mit konventionellen Leitungen und Überwurfstücken problemlos erfolgen kann. Der Querschnitt der Kanäle kann entlang der Strecke konstant bleiben, so dass Druck oder Durchfluss konstant bleiben, oder variiert werden, so dass physikalische Phänomene, wie z.B. das Verdampfen oder die Verdichtung gezielt begünstigt werden können. Das erfindungsgemäße Verteilerverbindungsstück bzw. Fluidverteilungselement ist somit durch einen einfachen Aufbau und eine einfache Herstellung sowie durch geringe Materialkosten gekennzeichnet. Die Form der Platten kann (in der Lagenebene gesehen) beliebig sein, beispielsweise in Rechteckform oder auch in Polygonform.
- Besonders vorteilhaft kann das erfindungsgemäße Fluidverteilungselement in einem Kombinationsverdampfer eingesetzt werden: Hierbei wird dann der gesamte Kombiverdampfer nicht konventionell als Lamellenrohr-Wärmeüberträger aus Aluminiumlamellen und Rohrregistern aus Kupfer gefertigt, sondern es wird ein mehrlagiger Körper aus mindestens vier Einzellagen realisiert (beispielsweise mit dem vorbeschriebenen Roll-Bond-Verfahren). Je nach Herstellungsverfahren (Löten, Roll-Bonden bzw. Walzen, Schweißen oder Kleben) können mit Hilfe von Trennmitteln oder Aussparungen bestimmte Bereiche in den Zwischenschichten bzw. zwischen den Einzellagen von einer fügenden Verbindungen ausgenommen bleiben, die sich nach der Verfügung der anderen Bereiche aufblähen lassen oder die beim Verfügen bereits vorgeprägt sind und somit Bereiche zwischen den einzelnen Lagen für die Durchströmung von Fluiden (also Kanäle) bilden. Ausnahme ist hier die Herstellung durch Extrudieren, wobei sich Strukturen ohne Verzweigungen und Rückläufe aus einem Stück fertigen lassen. Bei den anderen Herstellungsverfahren können die durchströmten Bereiche in den Zwischenschichten auch komplexere Strukturen, wie Verzweigungen und Rückläufe, beinhalten.
- Wie bereits vorbeschrieben, wird auch beim Einsatz des erfindungsgemäßen Fluidverteilungselements im Kombiverdampfer der Aufbau so vereinfacht, dass Zuleitungen nicht mehr komplexe Formen mit Durchdringungen sind, sondern dass das Problem der Durchdringung auf den mehrlagigen Körper verlagert wird. Auf der Seite des mehrlagigen Körpers handelt es sich bei den durchströmten Körpern dann um rohrartige Kanäle bzw. um kanalartige Rohre. Die mehrschichtigen Platten werden so ausgeformt, dass eine dem Kombiverdampfer analoge Funktionalität erreicht wird, was man erreicht, indem ein Körper mit vorteilhafterweise vier Schichten an Platten beispielsweise in der Roll-Bond-Technik miteinander kalt verschweißt wird. Hierdurch entstehen insgesamt drei Zwischenschichten bzw. Bereiche zwischen zwei benachbarten Einzellagen, welche entweder durch Trennmittel oder durch die Verwendung von vorgeprägten Strukturen für die Fluidführung zur Verfügung stehen. Die einzelnen Lagen können jedoch auch verlötet oder verklebt werden, wobei dann Kanalführungen ausgesparte Bereiche darstellen. Die obere und die untere Schicht dieses mehrlagigen Körpers können dann für die Herstellung eines sich in den Strömungsfäden überlagernden Kanalsystems verwendet werden. Diese äußeren Kanalsysteme können hierbei noch durch zwei weitere Platten voneinander getrennt werden, was notwendig sein kann, da während der späteren Fortführung dieser Kanäle der Kanal in der mittleren Zwischenschicht in die äußeren Kanäle seitlich eindringt. Dieser Vorgang des seitlichen Eindringens entspricht der Durchdringung bei der bisherigen Herstellung von Zuleitungen oder Verteilerleitungen.
- Nach dem gleichen Prinzip wie vorbeschrieben können auch Y-förmige Verzweigungen hergestellt werden. Ein solches Y-förmiges Verzweigungsstück, welches in Kombination mit einem erfindungsgemäßen Fluidverteilungselement eingesetzt werden kann bzw. an dieses angeschlossen werden kann, findet Anwendung, wenn beispielsweise ein Mehrkanalrohr in zwei parallele Mehrkanalrohre aufgeteilt werden muss (beispielsweise zwecks der Druckabfallreduzierung bei gleicher Übertragungsfläche in Kombiverdampfern). Um ein solches Y-förmiges Element herzustellen, kann beispielsweise ein Trennmedium auf den Lagenebenen gemäß der Form und Anordnung der Verzweigung aufgetragen werden. Wie bei dem erfindungsgemäßen Verbindungsstück können dann die beispielsweise vier Einzellagen walzengepresst und die Kanäle anschließend aufgebläht werden.
- Die vorliegende Erfindung stellt somit ein Verteilerverbindungsstück aus Metall oder Kunststoff für ineinander verschachtelte bzw. überlagerte mehrkanalartige Fluidführungsapparate zur Verfügung, welches im Wesentlichen aus separaten Zuleitungen auf der einen Seite (erste Stirnseite) und aus ineinander verschachtelten Kanälen auf der anderen Seite (zweite, der ersten Stirnseite gegenüberliegende Stirnseite) besteht, wobei sich die Kanäle nicht durchdringen, sondern sich in separate Teilkanäle (schließend an das Mehrkanalrohr) öffnen, wobei sich diese Teilkanäle kreuzen und zum Teil oder komplett überlagern, so dass eine Kontaktfläche für Wärme- oder Stofftransport über eine zwischenliegende Kanalwand entsteht. Hierbei kann die Zu- oder Abfuhr der Fluide zu bzw. aus dem Wärmeüberträger in getrennten, nicht überlagerten Kanälen erfolgen, damit die Zuleitung auf einer Seite mit konventionellen Einrohrleitungen angeschlossen werden kann. Das erfindungsgemäße Element kann durch Roll-Bonding bzw. Pressschweißen aus mehreren Einzellagen (vorteilhafterweise mindestens drei oder vier Einzellagen) hergestellt werden. Die kanalartigen Strukturen können durch Aufblähen erzeugt werden. Die kanalartigen Strukturen können alternativ jedoch auch durch vorgeprägte Kanalstrukturen in den einzelnen Lagen zur Verfügung gestellt werden. Die einzelnen Lagen können auch gegossen werden oder durch Kleben miteinander verbunden werden. Mehrere erfindungsgemäße Fluidverteilungselemente lassen sich, bevorzugt senkrecht zur Lagenebene übereinander und beabstandet zueinander aufstapeln, wodurch ein Wärmeüberträger mit mehreren Mehrfachkanalrohren bzw. mehreren Zügen innerhalb des Fluidführungsaggregats entsteht. Zwischen jedem einzelnen Fluidverteilungselement eines solchen Fluidführungsaggregats kann dann ein weiteres Fluid durch entsprechende fluidführende Strukturen fließen. Bei der Festlegung des Kanalwegs der einzelnen Kanäle im Fluidführungsaggregat können dann bionische Ansätze (beispielsweise Harfenform) zwecks Druckverlustminderung realisiert werden. Mit den beschriebenen Herstellungsverfahren lassen sich auch Rohrverzweigungen (z.B. Y-förmige Verzweigungen) realisieren. Im Falle eines Phasenwechsels können die Querschnitte von ineinander geführten Kanälen zum Zweck eines konstanten Volumenstroms aneinander angepasst werden.
- Nachfolgend wird nun die vorliegende Erfindung anhand einzelner Ausführungsbeispiele beschrieben.
- Es zeigen
- Figur 1
- ein erstes erfindungsgemäßes Fluidverteilungselement in Aufsicht auf die Lagenebene L (
Figur 1a ) und in Schnittansicht senkrecht zur Lagenebene L (Figur 1b ). - Figur 2
- eine isometrische Ansicht des in
Figur 1 dargestellten erfindungsgemäßen Fluidverteilungselements. - Figur 3
- ein zweites erfindungsgemäßes Fluidverteilungselement, welches analog zu dem in
Figur 1 gezeigten aufgebaut ist, jedoch einen verzweigten Innenkanal ausbildet. - Figur 4
- eine Anordnung von mehreren übereinander gestapelten erfindungsgemäßen Fluidverteilungselementen.
- Figur 5
- ein Y-förmiges Fluidverteilungsstück, welches an ein erfindungsgemäßes Fluidverteilungselement angeschlossen werden kann.
-
Figur 1 zeigt ein Ausführungsbeispiel eines erfindungsgemäßen Fluidverteilungselements.Figur 1a zeigt eine Aufsicht auf die Lagenebene L des Fluidverteilungselements,Figur 1b zeigt verschiedene Schnittansichten senkrecht zur Lagenebene und im Wesentlichen senkrecht zur Kanallängsrichtung K (vgl.Figur 2 ). Die Kanallängsachsrichtung ist hierbei diejenige Richtung in der Lagenebene L, welche im Wesentlichen der Strömungsrichtung des Fluids durch den Innenkanal I bzw. den Außenkanal A entspricht. - Das Fluidverteilungselement besteht aus vier einzelnen Lagen bzw. Einzellagen 1 bis 4, welche jeweils aus flächigen Metallkörpern, hier Zinkblechen oder Alublechen, bestehen. Die einzelnen Alublechlagen oder Zinkblechlagen 1 bis 4 sind senkrecht zur Lagenebene L übereinander gestapelt. Teile der Oberflächen bzw. der Oberseiten und/oder Unterseiten der einzelnen Lagen 1 bis 4 sind jeweils durch das vorbeschriebene Roll-Bonding-Verfahren bzw. Walzenpressen mit Teilen der gegenüberliegenden Oberflächen benachbarter Einzellagen druckdicht verbunden. Zwischen diesen verbundenen Teilflächenbereichen zweier Lagen sind jeweils, wie nachfolgend noch näher beschrieben, nicht verbundene Bereiche ausgebildet, in welchen durch Aufwölbung einer oder beider der benachbarten Einzellagen Hohlräume entstehen, welche dann als Fluidführungskanäle (Innenkanal I und Außenkanäle A, ASP, siehe nachfolgend) ausgebildet sind.
- Wie
Figur 1 zeigt, ist in der obersten Einzellage 1 eine erste in Richtung senkrecht zur Lagenebene L nach oben (vgl.Figur 1b ) ausgewölbte Kanalstruktur 1S ausgeformt. In der benachbart zur obersten Lage 1 angeordneten ersten Zwischenlage (obere Zwischenlage 2) ist eine weitere, senkrecht zur Lagenebene L nach oben ausgewölbte Kanalstruktur, die zweite Kanalstruktur 2S ausgeformt. In Richtung der Kanallängsrichtung K gesehen (inFigur 1a die Richtung von unten nach oben, vgl.Figur 2 ) sind nun die beiden Kanalstrukturen 1S und 2S in unterschiedlichen Bereichen der Einzellagen, wie nachfolgend noch näher beschrieben, so ausgebildet, dass sich zunächst zwei separat verlaufende Kanäle, der Innenkanal I und der Außenkanal A, ausbilden, welche sich in Kanallängsrichtung K gesehen zunehmend annähern, schließlich kreuzen und teilweise überlappen und schließlich im wesentlichen parallel zueinander und vollständig übereinander überlappend zueinander verlaufen. -
Figur 1a links unten zeigt hierzu den Anschlussbereich AB, an dessen außenseitiger Stirnseite (die inFigur 1a unten gezeigte Seite) der Innenkanal I und der Außenkanal A vollständig separat zueinander und seitlich versetzt zueinander verlaufen, so dass an dieser Stirnseite zwei getrennte Einzelrohre an den erfindungsgemäßen Fluidverteiler angeschlossen werden können. Wie die Schnittansicht A-A' (Figur 1b rechts unten) zeigt, ist an der außenseitigen Stirnseite des Anschlussbereichs AB die Kanalstruktur 1S der obersten Lage 1 in Form von zwei seitlich versetzt zueinander gebildeten Auswölbungen ausgeformt. Im Bereich der einen Auswölbung (die inFigur 1b ganz unten links gezeigte Auswölbung) weist die darunterliegende Einzellage 2 ebenfalls eine Auswölbung (welche die Kanalstruktur 2S ausbildet) auf, welche so ausgebildet und angeordnet ist, dass sie sich formschlüssig in die Auswölbung 1S der ersten Lage 1 einschmiegt. Im Bereich des zweiten Auswölbungsteils der Kanalstruktur 1S (Figur 1b ganz unten rechts) weist die darunterliegende Einzellage 2 jedoch keine Auswölbung auf, sondern ist als ebene Fläche ausgebildet: Hierdurch wird zwischen den Einzellagen 1 und 2 ein im gezeigten Querschnitt trapezförmiger, sich nach oben verjüngender Hohlraum ausgebildet, welcher als erstes Außenkanalteilstück A1 eines zum Fluidtransport ausgebildeten Außenkanals A ausgeformt ist. - Die angrenzend an die zweite Einzellage 2 und unterhalb derselben angeordnete dritte Einzellage 3 ist nun in Bezug auf die Lagenebene L gesehen spiegelsymmetrisch zur zweiten Einzellage 2 ausgeformt. Die vierte Einzellage, welche angrenzend an diese dritte Einzellage 3 und unterhalb derselben angeordnet ist, ist spiegelsymmetrisch (in Bezug auf die Lagenebene L gesehen) zur obersten Einzellage 1 ausgeformt. Aufgrund dieser spiegelsymmetrischen Ausformung (und einer entsprechenden spiegelsymmetrischen Anordnung) entsteht im Anschlussbereich AB durch die ausgewölbte Kanalstruktur 2S der zweiten Einzellage 2 und durch ihr Ebenbild in der dritten Einzellage 3 ein im Querschnitt annähern doppeltrapezförmiger Hohlraum zwischen der zweiten Einzellage 2 und der dritten Einzellage 3, welcher als Innenkanal I (im Bereich AB als erstes Innenkanalteilstück I1) ebenfalls zur Fluidführung ausgebildet ist. Aufgrund der vorbeschriebenen symmetrischen Ausgestaltung ergibt sich darüberhinaus in Bezug auf die Lagenebene L gesehen gegenüberliegend des ersten Außenkanalteilstücks A1 des Außenkanals A zwischen der vierten Lage und der dritten Lage ein ebenfalls im Querschnitt annähern trapezförmiger Hohlraum, welcher als weiterer Außenkanal ASP (SP steht hierbei für spiegelsymmetrisch) ausgebildet ist.
- Wie nun die weiteren Querschnitte B-B' und C-C', welche beabstandet vom Querschnitt A-A' in Kanallängsrichtung K gesehen aufgenommen wurden, zeigen, verringert sich in Kanallängsrichtung K gesehen der Abstand der Kanalmitten des ersten Innenkanalteilstücks I1 und des ersten Außenkanalteilstücks A1 des Innenkanals I bzw. des Außenkanals A sukzessive, so dass sich die beiden Kanäle I und A (bzw. ASP) sukzessive annähern, bis sie in dem sich an den Anschlussbereich AB in Kanallängsrichtung K anschließenden Kreuzungsbereich KB beginnen, sich zu kreuzen.
- Im Kreuzungsbereich KB sind nun die erste Kanalstruktur 1S der obersten Lage und die zweite Kanalstruktur 2S der oberen Mittellage 2 so ausgebildet (dies gilt ebenso für die ihnen spiegelsymmetrisch gegenüberliegenden dritten Kanalstrukturen 3S und 4S der unteren Mittellage 3 und der unteren Lage 4), dass sich der Überlappungsbereich zwischen der ersten Kanalstruktur 1S und der zweiten Kanalstruktur 2S zunehmend vergrößert, und zwar solange, bis (aufgrund der größeren Breite der Kanalstruktur 1S im Vergleich zur Kanalstruktur 2S; die Breite ist hierbei die Ausdehnung senkrecht zur Richtung K in der Lagenebene L) die erste Kanalstruktur 1S die zweite Kanalstruktur 2S vollständig überlappt. Im Kreuzungsbereich KB schiebt sich somit in Kanallängsachsrichtung K nach oben (vgl.
Figur 1a ) gesehen die erste Kanalstruktur 1S sukzessive über die zweite Kanalstruktur 2S, so dass sich sukzessive übereinanderschiebende zweite Kanalteilstücke (Teilstück A2 des Außenkanals A und Teilstück 12 des Innenkanals) ausbilden. Am oberen Rand des Kreuzungsbereichs KB überdeckt die erste Kanalstruktur 1S die zweite Kanalstruktur 2S vollständig. Einen Schnitt im Bereich einer noch teilweisen Überlappung zeigt die Schnittansicht D-D'. - Am oberen Ende des Kreuzungsbereichs KB schließt sich dann der Überlappungsbereich ÜB an, in dem dritte Kanalteilstücke (drittes Innenkanalteilstück I3 und drittes Außenkanalteilstück A3) so ausgebildet sind, dass der Innenkanal I bzw. die zweite Kanalstruktur 2S vollständig vom Außenkanal A bzw. von der ersten Kanalstruktur 1S überlappt wird bzw. überdeckt ist. Am oberen Rand des Überlappungsbereichs ÜB (obere Stirnseite des Fluidverteilungselements) überlappt die erste Kanalstruktur 1S die zweite Kanalstruktur 2S beidseitig symmetrisch, so dass der Innenkanal I, I3 mittig unterhalb des Außenkanals A, A3 verläuft bzw. von diesem halbseitig umschlossen ist. Eben solches gilt natürlich entsprechend für den symmetrisch dazu angeordneten weiteren Außenkanal ASP.
- An der oberen Stirnseite weist das gezeigte Fluidverteilungselement somit einen im wesentlichen konzentrisch innerhalb zweier Außenkanäle A, ASP laufenden Innenkanal I auf, so dass auf einfache Art und Weise an dieser oberen Anschlussseite ein entsprechend ausgebildetes Mehrfachkanalrohr angeschlossen werden kann (vgl. auch Schnittansicht F-F').
- Wie dem Fachmann klar ist, lässt sich das gezeigte Ausführungsbeispiel eines Fluidverteilungselements auf vielgestaltige Art und Weise im Rahmen der vorliegenden Erfindung variieren: So kann im Bereich der oberen Anschlussseite statt der Ausbildung eines Anschlussstücks für ein Mehrfachkanalrohr das Fluidverteilungselement integriert mit einem solchen Mehrkanalrohr ausgebildet sein bzw. weitergeführt werden. Verschiedendste Fluidführungsstrukturen können zusätzlich in das gezeigte Fluidverteilungselement integriert werden, so z.B. ein Y-förmiges Verzweigungselement (vgl. auch
Figur 5 ), bei dem sich der konzentrisch innerhalb der beiden Außenkanäle A, ASP geführte Innenkanal I samt der ihn umgebenden Außenkanäle in zwei separate Stränge verzweigt. - Ebenso ist es auch möglich, das erfindungsgemäße Fluidverteilungselement aus lediglich drei Einzellagen 1 bis 3 auszugestalten, so dass sich lediglich ein Außenkanal A und ein Innenkanal I ergeben (Wegfall des zweiten Außenkanals ASP). Die weiteren Lagenelemente 3 und 4 müssen auch nicht symmetrisch zu den Lagenelementen 1 und 2 ausgeformt sein, sondern können auch als ebene Flachplatten ausgeführt sein. In diesem Fall ergibt sich dann lediglich ein hier im Beispiel einfach trapezförmiger (es sind im allgemeinen jedoch auch andere Formen möglich) Innenkanal I und ein Außenkanal A.
- Alternativ zur Ausbildung aus mehreren ursprünglich getrennten Elementen können die Einzellagen (beispielsweise durch ein Extrudierverfahren) auch gleich einstückig ausgebildet sein. Dies muss nicht alle Einzellagen betreffen, sondern kann auch nur einzelne der gezeigten Einzellagen betreffen (so könnten beispielsweise unter Verzicht auf die Einzellage 4 die beiden Einzellagen 2 und 3 als einstückiger, extrudierter Formkörper hergestellt sein, welchem eine weitere Lage (oberste Lage 1) überlagert wird).
- Im gezeigten Beispiel bildet somit die Unterseite der obersten Lage 1 sowie die Oberseite der oberen Mittellage 2 die Wandung des Außenkanals A, die Unterseite des Lagenelementes 2 sowie die Oberseite des Lagenelementes 3 die Außenwandung des Innenkanals I sowie die Unterseite des Lagenelementes 3 sowie die Oberseite des Lagenelementes 4 die Wandung des unteren Außenkanals ASP.
-
Figur 2 zeigt eine isometrische Ansicht des inFigur 1 dargestellten Fluidverteilungselementes. Im untenseitig gezeigtem vorderen Schnitt sind deutlich die beiden getrennten Außenkanäle A und ASP (halbkreisförmig) sowie der Innenkanal I (kreisförmig) zu erkennen. -
Figur 3 zeigt ein weiteres Ausführungsbeispiel für ein erfindungsgemäßes Fluidverteilungselement (hier nur die Aufsicht auf die Lagenebene L gezeigt). Dieses ist grundsätzlich ebenso aufgebaut wie das in Figur 1 gezeigte Lagenelement, so dass hier nur die Unterschiede beschrieben werden. Im inFigur 3 gezeigten Beispiel sind die beiden Kanalstrukturen 1S und 2S so ausgebildet, dass im Anschlussbereich AB und im Kreuzungsbereich KB der Innenkanal I sich in zwei separate Innenkanalteilstücke auftrennt: Im Anschlussbereich AB werden somit zwei separate, versetzt zueinander und versetzt zum Außenkanal A, A1 ausgebildete erste Innenkanalteilstücke I1a und I1b ausgebildet, welche an der außenseitigen Stirnseite den Anschluss von zwei separaten Einzelrohr-Zufuhrleitungen für den Innenkanal I erlauben. Die beiden separaten Innenkanalteilstücke kreuzen sich im Kreuzungsbereich KB somit beiderseits des Außenkanals A und unterhalb desselben in diesen ein, was durch eine entsprechende Konstruktion, wie sie bereits zuFigur 1 beschrieben worden ist, realisiert werden kann. Wie inFigur 1 gezeigtem Fall verlaufen im Überlappungsbereich ÜB dann der Innenkanal I, I3 und der Außenkanal A, A3 übereinander überlappend. -
Figur 4 zeigt eine erfindungsgemäße Anordnung aus mehreren (hier drei) Fluidverteilungselementen F1 bis F3. Die drei Fluidverteilungselemente F1 bis F3 sind hierbei senkrecht zur Lagenebene bzw. in Stapelrichtung S beabstandet voneinander und übereinander angeordnet. Die Lagenebenen L der einzelnen Fluidverteilungselemente verlaufen hierbei parallel zueinander. Die einzelnen Fluidverteilungselemente werden durch Abstandshalter Abs voneinander beabstandet gehalten. Vorderseitig inFigur 4 gezeigt ist die Anschlussseite für die Einzelrohr-Zuleitungen für die Fluidverteilungselemente. Die einzelnen Rohrzuleitungen sind hier so realisiert, dass von einer ersten, in Stapelrichtung S angeordneten Anschlussleitung 3 auf Höhe der einzelnen Fluidverteilungselemente jeweils Einzelrohrkanäle abzweigen, welche dann jeweils mit einem Innenkanal I eines Fluidverteilungselementes verbunden sind. Parallel zur ersten Anschlussleitung 3 und seitlich versetzt davon ist ebenfalls in Stapelrichtung S eine zweite Anschlussleitung 4 angeordnet, aus welcher ebenfalls auf Höhe der einzelnen Fluidverteilungselemente Einzelrohrkanäle abzweigen, welche dann jeweils mit den einzelnen Einzelrohranschlüssen der Außenkanäle A der Fluidverteilungselemente verbunden sind. - Die gezeigte Anordnung ist hier aufgrund des durch die Abstandshalter Abs realisierten Abstandes der einzelnen Fluidverteilungselemente F1 bis F3 so realisiert, dass zwischen zwei benachbarten Fluidverteilungselementen ein Volumen entsteht, welches ebenfalls durch ein Fluid (drittes Fluid außerhalb der Innenkanäle I und der Außenkanäle A) durchströmt werden kann. Um hier eine optimale Wärmeübertragung zwischen diesem dritten Fluid und dem durch die Innen-und die Außenkanäle durchströmenden Fluiden zu gewährleisten, ist die äußere Oberfläche (Oberseite der Einzellagen 1 und Unterseite der Einzellagen 4) mit einer Vielzahl von einzelnen, parallel zueinander und versetzt zueinander verlaufenden Rippenstrukturen 5 versehen. Diese Rippenstrukturen sind sowohl seitlich neben den Kanalstrukturen 1S bzw. 4S, als auch außenseitig auf diesen angeordnet und sorgen für eine Verwirbelung des durch die Zwischenräume zwischen den Fluidverteilungselementen hindurch strömenden dritten Fluids, wodurch der Wärmeaustausch optimiert wird.
-
Figur 5 skizziert schließlich ein aus den Einzellagen 1 bis 4 beispielsweise durch Rollbonding hergestelltes Y-Verzweigungsstück, welches in Kombination mit einem erfindungsgemäßen Fluidverteilungselement eingesetzt werden kann, um den Fluidstrom des Innenkanals I und des Außenkanals A jeweils in zwei separate Fluidströme aufzuspalten (das gezeigte Y-Verzweigungsstück kann beispielsweise an der oberen Stirnseite des Überlappungsbereiches ÜB des inFigur 1 gezeigten erfindungsgemäßen Fluidverteilungselementes, siehe dort Schnittansicht F-F') angedockt werden.
Claims (15)
- Fluidverteilungselement für eine fluidführende Vorrichtung, insbesondere für einen Wärmetauscher oder eine Vorrichtung zum Austausch von Stoffen zwischen Fluidströmen,
aufweisend mehrere übereinander gestapelt angeordnete Einzellagen, wobei zumindest ein Teilbereich der Oberfläche jeder der mehreren Einzellagen angrenzend an zumindest einen Teilbereich der Oberfläche einer anderen Einzellage der mehreren Einzellagen angeordnet ist und wobei mindestens in einer ersten Einzellage (1) der mehreren Einzellagen eine erste, senkrecht zur Lagenebene (L) ausgewölbte Kanalstruktur (1S) und in einer zweiten, zur ersten Einzellage benachbarten Einzellage (2) der mehreren Einzellagen eine zweite, senkrecht zur Lagenebene ausgewölbte Kanalstruktur (2S) ausgebildet ist, dadurch gekennzeichnet, daß die beiden Kanalstrukturen (1S, 2S) in Kanallängsrichtung (K) gesehen• zunächst in einem Anschlussbereich (A-A', B-B', C-C', AB) zwei in der Lagenebene seitlich versetzt zueinander und beabstandet voneinander separat verlaufende erste Kanalteilstücke (erstes Innenkanalteilstück I1, erstes Außenkanalteilstück A1) eines zum Fluidtransport ausgebildeten Innenkanals (I) und eines zum Fluidtransport ausgebildeten Außenkanals (A) ausformen,• anschließend in einem sich an den Anschlussbereich anschließenden Kreuzungsbereich (D-D', KB) zwei sich in der Lagenebene kreuzende und zunehmend übereinander schiebende zweite, mit den ersten Kanalteilstücken verbundene Kanalteilstücke (zweites Innenkanalteilstück 12, zweites Außenkanalteilstück A2) des Innenkanals (I) und des Außenkanals (A) ausformen und• schließlich in einem sich an den Kreuzungsbereich anschließenden Überlappungsbereich (E-E', F-F', ÜB) zwei in der Lagenebene im wesentlichen parallel zueinander verlaufende dritte, mit den zweiten Kanalteilstücken verbundene Kanalteilstücke (drittes Innenkanalteilstück I3, drittes Außenkanalteilstück A3) des Innenkanals (I) und des Außenkanals (A) ausformen, wobei im Überlapppungsbereich das dritte Innenkanalteilstück (I3) vom dritten Außenkanalteilstück (A3) überlappend überdeckt ist. - Fluidverteilungselement nach dem vorhergehenden Anspruch,
dadurch gekennzeichnet, dass
in zumindest einem Teil des Anschlussbereichs die erste Kanalstruktur (1S) einen Teil der Wandung des Außenkanals (A) und einen einen Teil der Wandung des Innenkanals (I) umhüllenden Abschnitt ausbildet
und/oder
dass in zumindest einem Teil des Anschlussbereichs die zweite Kanalstruktur (2S) einen Teil der Wandung des Innenkanals (I) ausbildet. - Fluidverteilungselement nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
in zumindest einem Teil des Kreuzungsbereichs die erste Kanalstruktur (1S) einen Teil der Wandung des Außenkanals (A) und einen einen Teil der Wandung des Innenkanals (I) umhüllenden Abschnitt ausbildet
und/oder
dass in zumindest einem Teil des Kreuzungsbereichs die zweite Kanalstruktur (2S) einen Teil der Wandung des Innenkanals (I) und einen Teil der Wandung des Außenkanals (A) ausbildet. - Fluidverteilungselement nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
in zumindest einem Teil des Überlappungsbereichs die erste Kanalstruktur (1S) einen Teil der Wandung des Außenkanals (A) ausbildet
und/oder
dass in zumindest einem Teil des Überlappungsbereichs die zweite Kanalstruktur (2S) einen Teil der Wandung des Innenkanals (I) und einen Teil der Wandung des Außenkanals (A) ausbildet. - Fluidverteilungselement nach einem der vorhergehenden Ansprüche,
gekennzeichnet durch
mindestens drei, bevorzugt genau drei übereinander angeordnete Einzellagen: Die erste Einzellage (1) als oberste Lage, die zumindest teilweise daran angrenzend angeordnete zweite Einzellage (2) als mittlere Lage und eine auf der gegenüberliegenden Seite der obersten Lage zumindest teilweise angrenzend an die mittlere Lage als untere Lage, bevorzugt als unterste Lage angeordnete dritte Einzellage (3), in welcher bevorzugt eine dritte, senkrecht zur Lagenebene ausgewölbte Kanalstruktur (3S) ausgebildet ist,
wobei bevorzugt die dritte Einzellage (3) in Bezug auf eine Ebene parallel zur Lagenebene gesehen im Wesentlichen spiegelsymmetrisch zur zweiten Einzellage (2) ausgeformt und/oder angeordnet ist. - Fluidverteilungselement nach einem der vorhergehenden Ansprüche,
gekennzeichnet durch
mindestens vier, bevorzugt genau vier Einzellagen: Die erste Einzellage (1) als oberste Lage, die zumindest teilweise daran angrenzend angeordnete zweite Einzellage (2) als erste mittlere Lage, eine auf der gegenüberliegenden Seite der obersten Lage zumindest teilweise angrenzend an die erste mittlere Lage als zweite mittlere Lage angeordnete dritte Einzellage (3) und eine auf der gegenüberliegenden Seite der ersten mittleren Lage (2) zumindest teilweise angrenzend an die zweite mittlere Lage (3) als untere Lage, bevorzugt als unterste Lage angeordnete vierte Einzellage (4), in welcher bevorzugt eine vierte, senkrecht zur Lagenebene ausgewölbte Kanalstruktur (4S) ausgebildet ist,
wobei bevorzugt die vierte Einzellage (4) in Bezug auf eine Ebene parallel zur Lagenebene gesehen im Wesentlichen spiegelsymmetrisch zur ersten Einzellage (1) ausgeformt und/oder angeordnet ist. - Fluidverteilungselement nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
die beiden Kanalstrukturen (1S, 2S) im Anschlussbereich mehrere in der Lagenebene seitlich versetzt zueinander und zum ersten Außenkanalteilstück (A1) des Außenkanals (A) und beabstandet voneinander und vom ersten Außenkanalteilstück (A1) des Außenkanals (A) separat verlaufende erste Innenkanalteilstücke (I1a, Ilb) des Innenkanals (I) ausformen, wobei sich die mehreren ersten Innenkanalteilstücke (I1a, I1b) im sich anschließenden Kreuzungsbereich in das zweite Innenkanalteilstück I2 vereinigen
und/oder
dass zumindest ein Teilabschnitt einer durch die erste und/oder die zweite Kanalstruktur (1S, 2S) ausgebildeten Wandung selektiv stoffdurchlässig ausgebildet ist zum Stoffaustausch zwischen dem Innen- und dem Außenkanal und/oder zum Stoffaustausch zwischen dem Innen- und/oder dem Außenkanal und der Umgebung. - Fluidverteilungselement nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
mehrere oder alle der Einzellagen einstückig, insbesondere als einstückiger Formkörper, ausgebildet sind
und/oder
dass mindestens eine der Einzellagen zumindest teilweise aus Metall ausgebildet ist oder dieses aufweist
und/oder
dass mindestens eine der Einzellagen zumindest teilweise aus Kunststoff ausgebildet ist oder dieses aufweist. - Anordnung aus mehreren im Wesentlichen senkrecht zur Lagenebene übereinander gestapelten Fluidverteilungselementen (F1, F2, ...) nach einem der vorhergehenden Ansprüche.
- Anordnung nach dem vorhergehenden Anspruch,
gekennzeichnet durch
eine erste Anschlussleitung (3), welche jeweils im Anschlussbereich mit mehreren ersten Innenkanalteilstücken von Innenkanälen unterschiedlicher Fluidverteilungselemente (F1, F2, ...) verbunden ist
und/oder
eine zweite Anschlussleitung (4), welche jeweils im Anschlussbereich mit mehreren ersten Außenkanalteilstücken von Außenkanälen unterschiedlicher Fluidverteilungselemente (F1, F2, ...) verbunden ist. - Anordnung nach einem der vorhergehenden Anordnungsansprüche,
gekennzeichnet durch
mindestens ein Mehrkanalrohr, welches im Überlappungsbereich mindestens eines Fluidverteilungselementes (F1, F2, ...) mit dessen Außenkanal und dessen Innenkanal verbunden ist. - Anordnung nach einem der vorhergehenden Anordnungsansprüche,
dadurch gekennzeichnet, dass
mindestens eine äußere Oberfläche mindestens eines der Fluidverteilungselementes (F1, F2, ...) zumindest abschnittsweise eine Oberflächenstrukturierung (5), welche bevorzugt rippen- und/oder gratförmig ausgebildet ist, aufweist. - Verfahren zur Herstellung eines Fluidverteilungselements,
wobei mehrere übereinander zu stapelnde Einzellagen des Fluidverteilungselements durch Druckpressung mittels Walzen (Rollbonden) so miteinander verschweißt werden, und
wobei entweder mindestens ein Innenkanal (I) und mindestens ein Außenkanal (A) des Fluidverteilungselements durch Druckanwendung, insbesondere mittels Druckluft, so aufgebläht wird, oder wobei mindestens ein Innenkanal (I) des Fluidverteilungselements durch Druckanwendung, insbesondere mittels Druckluft, so aufgebläht wird und wobei zur Ausbildung mindestens eines Außenkanals (A) mindestens eine mit einer vorgefertigten Kanalstruktur versehene Einzellage so eingesetzt wird, dass sich das Fluidverteilungselement in der nachfolgend beschriebenen Form ergibt:Fluidverteilungselement für eine fluidführende Vorrichtung, insbesondere für einen Wärmetauscher oder eine Vorrichtung zum Austausch von Stoffen zwischen Fluidströmen,aufweisend mehrere übereinander gestapelt angeordnete Einzellagen, wobei zumindest ein Teilbereich der Oberfläche jeder der mehreren Einzellagen angrenzend an zumindest einen Teilbereich der Oberfläche einer anderen Einzellage der mehreren Einzellagen angeordnet ist und wobei mindestens in einer ersten Einzellage (1) der mehreren Einzellagen eine erste, senkrecht zur Lagenebene (L) ausgewölbte Kanalstruktur (1S) und in einer zweiten, zur ersten Einzellage benachbarten Einzellage (2) der mehreren Einzellagen eine zweite, senkrecht zur Lagenebene ausgewölbte Kanalstruktur (2S) ausgebildet ist, undwobei die beiden Kanalstrukturen (1S, 2S) in Kanallängsrichtung (K) gesehen• zunächst in einem Anschlussbereich (A-A', B-B', C-C', AB) zwei in der Lagenebene seitlich versetzt zueinander und beabstandet voneinander separat verlaufende erste Kanalteilstücke (erstes Innenkanalteilstück I1, erstes Außenkanalteilstück A1) eines zum Fluidtransport ausgebildeten Innenkanals (I) und eines zum Fluidtransport ausgebildeten Außenkanals (A) ausformen,• anschließend in einem sich an den Anschlussbereich anschließenden Kreuzungsbereich (D-D', KB) zwei sich in der Lagenebene kreuzende und zunehmend übereinander schiebende zweite, mit den ersten Kanalteilstücken verbundene Kanalteilstücke (zweites Innenkanalteilstück I2, zweites Außenkanalteilstück A2) des Innenkanals (I) und des Außenkanals (A) ausformen und• schließlich in einem sich an den Kreuzungsbereich anschließenden Überlappungsbereich (E-E', F-F', ÜB) zwei in der Lagenebene im wesentlichen parallel zueinander verlaufende dritte, mit den zweiten Kanalteilstücken verbundene Kanalteilstücke (drittes Innenkanalteilstück I3, drittes Außenkanalteilstück A3) des Innenkanals (I) und des Außenkanals (A) ausformen, wobei im Überlapppungsbereich das dritte Innenkanalteilstück (I3) vom dritten Außenkanalteilstück (A3) überlappend überdeckt ist. - Verfahren nach dem vorhergehenden Anspruch,
dadurch gekennzeichnet, dass
zunächst mindestens ein Innenkanal aufgebläht wird bevor anschließend zumindest ein Außenkanal aufgebläht wird oder umgekehrt
und/oder
dass ein bereits aufgeblähter Innenkanal und/oder ein bereits aufgeblähter Außenkanal unter Druck belassen wird, während ein weiterer Innenkanal und/oder Außenkanal aufgebläht wird. - Verwendung eines Fluidverteilungselements oder einer Anordnung aus mehreren Fluidverteilungselementen nach einem der vorhergehenden Vorrichtungsansprüche in einem Wärmetauscher oder in einer Vorrichtung zum Austausch von Stoffen zwischen Fluidströmen.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102007056995A DE102007056995B4 (de) | 2007-11-27 | 2007-11-27 | Fluidverteilungselement für eine fluidführende Vorrichtung, insbesondere für ineinander verschachtelte mehrkanalartige Fluidführungsapparate |
PCT/EP2008/009985 WO2009068245A1 (de) | 2007-11-27 | 2008-11-25 | Fluidverteilungselement für eine fluidführende vorrichtung, insbesondere für ineinander verschachtelte mehrkanalartige fluidführungsapparate |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2220451A1 EP2220451A1 (de) | 2010-08-25 |
EP2220451B1 true EP2220451B1 (de) | 2012-01-25 |
Family
ID=40546039
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20080854597 Not-in-force EP2220451B1 (de) | 2007-11-27 | 2008-11-25 | Fluidverteilungselement für eine fluidführende vorrichtung, insbesondere für ineinander verschachtelte mehrkanalartige fluidführungsapparate |
Country Status (5)
Country | Link |
---|---|
US (1) | US20100288380A1 (de) |
EP (1) | EP2220451B1 (de) |
AT (1) | ATE543065T1 (de) |
DE (1) | DE102007056995B4 (de) |
WO (1) | WO2009068245A1 (de) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2283919A1 (de) * | 2009-08-13 | 2011-02-16 | Methanol Casale S.A. | Plattenwärmetauscher für isotherme chemische Reaktoren |
DE102010054879B4 (de) * | 2010-12-17 | 2013-07-18 | Institut für Bioprozess- und Analysenmesstechnik e.V. | Anordnung und Verfahren zur Konditionierung von Fluidkompartimenten |
EP2849823A1 (de) * | 2012-05-16 | 2015-03-25 | Sanofi-Aventis Deutschland GmbH | Ausgabeschnittstelle |
DE102012011032B4 (de) * | 2012-06-05 | 2014-05-15 | Martin Hess | Passiv gekühltes Instrumenten-Schutzgehäuse |
EP2696434B1 (de) * | 2012-08-08 | 2016-10-19 | Samsung SDI Co., Ltd. | Kühlvorrichtung für eine Fahrzeugbatterie |
DE102014219812A1 (de) | 2014-09-30 | 2016-03-31 | Robert Bosch Gmbh | Kühlplatte für einen elektrischen Energiespeicher |
DE102016002791A1 (de) * | 2016-03-07 | 2017-09-07 | Aionacast Consulting Gmbh | Verfahren zum Herstellen eines Gehäuses eines Elektromotor-Stators, Gehäuse eines Elektromotor-Stators, Elektromotor mit einem solchen Stator-Gehäuse und Verwendung eines durch Walzschweißen hergestellten Kühlkanals |
CN105764307B (zh) * | 2016-04-11 | 2018-06-01 | 联想(北京)有限公司 | 散热装置及电子设备 |
EP4300027A1 (de) * | 2022-06-29 | 2024-01-03 | TI Automotive Technology Center GmbH | Anordnung für den transport von medien |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1751317A (en) * | 1928-03-23 | 1930-03-18 | Kulair Corp | Evaporator element |
US2813701A (en) * | 1954-09-02 | 1957-11-19 | United Aircraft Corp | Cross-flow heat exchanger |
US2979310A (en) * | 1956-10-08 | 1961-04-11 | Intercontinental Mfg Company I | Heat exchangers |
CH476536A (de) * | 1966-03-17 | 1969-08-15 | Omnia Spojene Strojarne A Smal | Verfahren zur Herstellung von Wärmeaustauschern aus metallischen oder nichtmetallischen Bändern |
GB1442985A (en) * | 1972-09-08 | 1976-07-21 | Delanair Ltd | Module heat exchanger |
SE7909964L (sv) * | 1979-01-29 | 1980-07-30 | Olin Corp | Forfarande for tillverkning av ror i platvermevexlare |
US4227391A (en) * | 1979-01-29 | 1980-10-14 | Olin Corporation | Process for making tube in sheet heat exchangers |
US4352393A (en) * | 1980-09-02 | 1982-10-05 | Caterpillar Tractor Co. | Heat exchanger having a corrugated sheet with staggered transition zones |
DD269204A1 (de) * | 1987-12-21 | 1989-06-21 | Orgreb Inst Kraftwerke | Verfahren zur herstellung eines mantelrohrartigen waermeuebertragers mit in stroemungsrichtung unterschiedlichen stroemungsquerschnitten |
DD269205A1 (de) * | 1987-12-21 | 1989-06-21 | Orgreb Inst Kraftwerke | Verfahren zur herstellung eines doppelrohrartigen waermeuebertragers |
US5469914A (en) * | 1993-06-14 | 1995-11-28 | Tranter, Inc. | All-welded plate heat exchanger |
DE4426097A1 (de) * | 1994-07-22 | 1996-01-25 | Kloeckner Stahl Gmbh | Verfahren zur Herstellung von Hohlkörperstrukturen aus Blechen |
US5941091A (en) * | 1998-01-14 | 1999-08-24 | Broadbent; John A. | Low cost ice making evaporator |
DE10011568C1 (de) * | 2000-03-09 | 2001-06-13 | Gea Canzler Gmbh | Wärmetauscherelement |
EP1462751A1 (de) * | 2003-03-25 | 2004-09-29 | Soleco, SL | Wärmetauscherplatte und Verfahren zu deren Herstellung |
EP1616133B1 (de) * | 2003-04-23 | 2008-10-22 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Fluid-luft-kombiverdampfer und neues schaltkonzept für eine wärmepumpe in einem lüftungsgerät |
DE102005037708A1 (de) * | 2005-08-10 | 2007-02-15 | Albert-Ludwig-Universität Freiburg | Anordnung von Wärmetauscherplatten, die in thermischem Kontakt mit einem Adsorbens stehen |
-
2007
- 2007-11-27 DE DE102007056995A patent/DE102007056995B4/de not_active Expired - Fee Related
-
2008
- 2008-11-25 AT AT08854597T patent/ATE543065T1/de active
- 2008-11-25 WO PCT/EP2008/009985 patent/WO2009068245A1/de active Application Filing
- 2008-11-25 EP EP20080854597 patent/EP2220451B1/de not_active Not-in-force
-
2010
- 2010-05-21 US US12/784,766 patent/US20100288380A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
WO2009068245A1 (de) | 2009-06-04 |
DE102007056995B4 (de) | 2011-10-20 |
ATE543065T1 (de) | 2012-02-15 |
DE102007056995A1 (de) | 2009-05-28 |
US20100288380A1 (en) | 2010-11-18 |
EP2220451A1 (de) | 2010-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2220451B1 (de) | Fluidverteilungselement für eine fluidführende vorrichtung, insbesondere für ineinander verschachtelte mehrkanalartige fluidführungsapparate | |
DE10392610B4 (de) | Verbesserter Wärmeübertrager | |
EP1654508B2 (de) | Wärmeübertrager sowie verfahren zu dessen herstellung | |
DE3752324T2 (de) | Kondensator | |
DE19883002B4 (de) | Wärmetauscherleitung sowie Wärmetauscher mit einer solchen Wärmetauscherleitung | |
DE202012102349U1 (de) | Batteriekühler | |
DE102007043231A1 (de) | U-förmiger Kühler | |
DE102012012711A1 (de) | Verfahren zur Herstellung eines Niederdruck- Dünnwandwärmetauschers und Dünnwandwärmetauscher | |
DE102006002932B4 (de) | Wärmetauscher und Herstellungsverfahren für Wärmetauscher | |
WO2006074903A1 (de) | Stapelscheiben-wärmetauscher | |
DE19719256A1 (de) | Mehrflutiger Flachrohrwärmetauscher für Kraftfahrzeuge mit Umlenkboden sowie Herstellungsverfahren | |
EP2256419A2 (de) | Flächenheiz- oder/und Kühlelement | |
DE102007027316B3 (de) | Plattenwärmetauscher | |
EP1588114B1 (de) | Kreuz-Gegenstrom-Schicht-Wärmetauscher | |
DE19547928C2 (de) | Plattenwärmetauscher | |
DE202014002477U1 (de) | Wärmetauscher | |
EP2167895B1 (de) | Wärmetauscher | |
DE102007015171A1 (de) | Membranvorrichtung und Verfahren zur Herstellung einer Membranvorrichtung | |
DE102006004828A1 (de) | Kunststoffrohr für die Durchleitung eines Heiz- oder Kühlmediums, unter Verwendung derartiger Rohre hergestellte Matte sowie Verbindung zwischen der Stirnseite eines derartigen Rohres und einem Kunststoffkörper | |
EP1304536A2 (de) | Kältemittel/Luft-Wärmeaustauschernetz | |
DE19501276C2 (de) | Rohrbündel für Heizkessel-Wärmetauscher sowie Wärmetauscher mit Rohrbündel und Verfahren zur Herstellung von Rohrbündeln | |
EP3239641A1 (de) | Flachrohr für einen wärmeübertrager | |
DE202009017100U1 (de) | Plattenwärmetauscher | |
EP2045544A2 (de) | Wärmetauscher, insbesondere Absorber für thermische Solarkollektoren | |
DE29521278U1 (de) | Sonnenkollektor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20100625 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 543065 Country of ref document: AT Kind code of ref document: T Effective date: 20120215 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502008006217 Country of ref document: DE Effective date: 20120322 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20120125 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20120125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120425 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120125 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120125 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120125 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120525 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120425 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120125 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120525 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120125 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120426 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120125 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120125 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120125 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120125 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120125 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120125 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120125 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120125 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20121026 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502008006217 Country of ref document: DE Effective date: 20121026 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120506 |
|
BERE | Be: lapsed |
Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWAN Effective date: 20121130 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121130 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121130 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081125 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 543065 Country of ref document: AT Kind code of ref document: T Effective date: 20131125 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20141120 Year of fee payment: 7 Ref country code: DE Payment date: 20141120 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131125 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20141118 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502008006217 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20151125 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20160729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160601 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151130 |