US20070209780A1 - Combined Fluid-Air Evaporator And Novel Switching Concept For A Heat Pump In A Ventilating Apparatus - Google Patents

Combined Fluid-Air Evaporator And Novel Switching Concept For A Heat Pump In A Ventilating Apparatus Download PDF

Info

Publication number
US20070209780A1
US20070209780A1 US10/553,864 US55386403A US2007209780A1 US 20070209780 A1 US20070209780 A1 US 20070209780A1 US 55386403 A US55386403 A US 55386403A US 2007209780 A1 US2007209780 A1 US 2007209780A1
Authority
US
United States
Prior art keywords
air
fluid
evaporator
flow
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/553,864
Inventor
Christian Bichler
Andreas Buhring
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Assigned to FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWANDTEN FORSCHUNG E.V reassignment FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWANDTEN FORSCHUNG E.V ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BICHLER, CHRISTIAN, BUHRING, ANDREAS
Assigned to FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWANDTEN FORSCHUNG E.V. reassignment FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWANDTEN FORSCHUNG E.V. CORRECTIVE ASSIGNMENT TO CORRECT THE DATE OF EXECUTION BY ASSIGNORS PREVIOUSLY RECORDED ON REEL 018005 FRAME 0598. ASSIGNOR(S) HEREBY CONFIRMS THE 12/12/2005. Assignors: BICHLER, CHRISTIAN, BUHRING, ANDREAS
Publication of US20070209780A1 publication Critical patent/US20070209780A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/006Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an air-to-air heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/14Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically both tubes being bent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F2012/007Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using a by-pass for bypassing the heat-exchanger
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Definitions

  • the present invention relates to a combined fluid-air evaporator, which is preferably usable as a refrigerant evaporator for a ventilation arrangement provided for buildings.
  • the term “fluid” comprises, in the expanded definition, all phase states of materials with the exception of the solid phase, and thus particularly the liquid phase and also the gas phase.
  • a preferred integration of the combined fluid-air evaporator with a heat pump is also described.
  • Ventilating apparatuses having installed heat pumps which are conceived for heating the intake air and an accumulator, such as an industrial water accumulator, and thus operate as used air heat pumps, are also known.
  • heat is transferred from the building used air to an outside air flow, which is typically cooler, using an air-air heat exchanger, before the building used air cooled during the heat transfer is fed to the evaporator of the heat pump, so that the cooled building used air is subjected to further heat absorption before it is released to the environment as exhaust air.
  • the used air flow flowing through the evaporator of the heat pump is additionally heated using gas heating or electrical heating.
  • This measure is not only connected to an energy input, which is relevant to cost, but rather additionally requires a constructively complex heating component which is to be provided in the flow direction of the used air flow before entering the evaporator of the heat pump.
  • passive precooling of the building intake air may also be achieved by thermally coupling warm intake air with the ground temperature, which is significantly lower than the air temperature, in the summertime.
  • a heat pump it is possible using a heat pump to increase the passive precooling described above because of the significantly higher cooling performance of the heat pump.
  • four-way valves or three-way valves having possible leaks are required within the complicated loop systems in which heat pumps are integrated.
  • the use of expensive solenoid valves is also known, through which the cooling loop becomes more complicated, more expensive, and more susceptible to breakdown.
  • the cooling loop upon changeover between heating and cooling operation of the heat pump, the cooling loop briefly becomes unstable, which results not only in reduction of the performance number of the heat pump, but rather in addition causes reduction of the service life of the compressor.
  • an air-water heat pump usually may only be operated efficiently down to outside temperatures of approximately ⁇ 5° C. (depending on the manufacturer). Thawing must be performed very often below the specified outside temperatures, however, through which the performance number of the heat pump worsens. In order to counteract this, it is expedient to heat further bivalently using an additional heat source, for example, in the form of electrical heaters or using oil or gas boiler heaters.
  • the present invention is based on the object of specifying an achievement of the object specified above, so that changing over between heating and cooling operation of a heat pump integrated in a building ventilation arrangement is possible using means which are as technically simple as possible to implement.
  • the icing occurring in the known heat pumps is to be largely avoided, and the operational reliability and also the service life of the components participating in the loop of heat pumps are particularly to be improved.
  • Claim 1 which describes a combined fluid-air evaporator, whose use as an evaporator element within a heat pump represents the refinement according to the present invention of a ventilator arrangement for buildings described in Claim 8 .
  • Features advantageously refining the idea according to the present invention may be taken from the subclaims and the further description with reference to the exemplary embodiments.
  • the achievement of the object according to the present invention is based on a novel evaporator concept, which is particularly suitable for use as a refrigerant evaporator within a heat pump.
  • the novel evaporator concept may be referred to as a combined fluid-air evaporator and has at least two separate duct systems, through which separate material flows may be directed. At least one of the two duct systems has a free surface, which is preferably to be brought into thermal contact with an air flow. Both duct systems are additionally at least partially in joint thermal contact.
  • the combined fluid-air evaporator according to the present invention thus differs from a typical air evaporator in that a further duct system is provided, through which a further, additional heat source, in the form of a material flow, preferably a liquid flow, may be used for the evaporation procedure.
  • the combined fluid-air evaporator is implemented as a coaxial pipe system, which provides a first pipeline, in which a second pipeline runs internally.
  • the internal pipeline thus separates a first duct system from the second duct system, which is formed by the volume enclosed by both pipes.
  • Separate material flows preferably separate liquid flows, which are in thermal contact with one another over the entire length of the pipe system via the pipe inner wall, may be introduced through both duct systems.
  • An alternative embodiment of the combined fluid-air evaporator according to the present invention provides a single pipeline, which has an internal partition wall that partitions the pipeline along its entire extension into two pipeline halves.
  • two material flows passing through the particular pipeline halves come into thermal contact with one another through the internal partition wall and, in addition, heat transfer between the individual fluid flows and an air flow flowing around the pipeline is ensured.
  • the combined fluid-air evaporator according to the present invention allows thermal contact between an air flow flowing around the external pipeline and two different fluid flows.
  • refrigerant is conducted through one of the two duct systems and an exothermic fluid, preferably in the form of a brine, i.e., a glycol-water mixture, for example, is conducted through the other duct system.
  • an exothermic fluid preferably in the form of a brine, i.e., a glycol-water mixture, for example.
  • Alternative exothermic fluid flows may be provided, for example, in the form of water flows from a lake, well, river, or even in the form of a wastewater flow.
  • the heat pump obtains a decisive advantage in regard to reduction of the icing danger at low operating temperatures.
  • the efficiency of the heat pump increases, since the evaporation temperature is elevated by the additional heat contribution in the evaporator, through which less energy is to be invested in the operation of the heat pump.
  • a used air flow directed out of the building comes into thermal contact via an air-air heat exchanger with a corresponding outside intake air flow, a combined fluid-air evaporator implemented according to the present invention being provided after the air-air heat exchanger in the flow direction, which the used air flow exiting from the air-air heat exchanger flows over.
  • the combined fluid-air evaporator implemented according to the present invention has, as described above, at least two separate duct systems, which are in thermal contact with one another and through which a refrigerant and an exothermic fluid are each conducted separately from one another, the refrigerant circulating in the loop of a heat pump whose condenser is positioned in the outside air flow after the air-air heat exchanger in the flow direction.
  • the exothermic fluid permeating the combined fluid-air evaporator in contrast, circulates in the loop of a heat accumulator system, which preferably has a geothermal collector.
  • aerothermal or hydrothermal collector systems are also suitable, using which the heat exploitation of bodies of water, wells, or wastewater is possible.
  • the main advantage of the ventilation arrangement described above is that the evaporator of the heat pump in the form of the combined fluid-air evaporator implemented according to the present invention has the refrigerant of the heat pump and also at least one further fluid flowing through it, whose heat content is transferred to the refrigerant of the heat pump through direct thermal coupling.
  • the evaporator of the heat pump in the form of the combined fluid-air evaporator implemented according to the present invention has the refrigerant of the heat pump and also at least one further fluid flowing through it, whose heat content is transferred to the refrigerant of the heat pump through direct thermal coupling.
  • the evaporation temperature may be raised, through which the energy input required for heat pump operation may be reduced and, above all, the cooling performance of the heat pump may thus be increased.
  • the ventilation arrangement implemented according to the present invention additionally offers manifold further advantages in regard to different types of operation as a function of the particular existing ambient temperature conditions. These are to be described in greater detail in the following with reference to the exemplary embodiments.
  • the suggested integration of the heat pump implemented according to the present invention also allows especially advantageous heating and/or cooling of old buildings, especially since different heat sources may be selected by the combined fluid-air evaporator depending on the outside temperature.
  • the outside air may be used for heating in the transition time (spring/autumn) and at low outside air temperatures, as occur in winter, a ground collector may be put online.
  • the current hottest heat source is used for the industrial water heating. Combinations of both heat sources are also conceivable. In this way, a constant higher evaporation temperature and, connected therewith, a higher heating performance, may be achieved.
  • the combined evaporator which is integrated in a typical air height and water heat pump, is naturally even more efficient than at high startup temperatures, as in old buildings.
  • Compact ventilation air conditioners having the combined evaporator are a very efficient solution for use in low energy houses and 3-liter houses due to the advantages described.
  • FIG. 1 shows a schematic illustration of a combined fluid-air evaporator implemented according to the present invention
  • FIG. 2 shows a schematic overall illustration of a ventilation arrangement for a building
  • FIG. 3 shows the illustration according to FIG. 2 having an additional solar collector loop
  • FIGS. 4 a, b show overall illustrations for a building ventilation arrangement in different operating states.
  • FIG. 1 shows a greatly simplified illustration of a combined fluid-air evaporator implemented according to the present invention, which comprises a coaxial pipeline system that has an external pipe 10 and an internal pipe 11 , running coaxially in the interior.
  • d 2 ⁇ d 1 applies for the pipe internal diameter d 1 of the pipeline 10 and the pipe internal diameter d 2 of the pipeline 11 .
  • the outer pipeline 10 has a free surface which is in bodily and therefore thermal contact with an air lamellar arrangement 9 .
  • an air lamellar arrangement 9 In regard to FIG. 1 , it is assumed that the lamellar bodies 9 intersect the plane of the drawing perpendicularly. An air flow also directed perpendicularly to the plane of the drawing comes into thermal contact with the lamellar bodies 9 , which finally causes a heat transfer to both fluid and/or liquid flows passing through the particular pipeline 10 and 11 .
  • the combined fluid-air evaporator is especially advantageously suitable as a refrigerant evaporator, an exothermic fluid, such as brine, being conducted through the pipeline 11 and a refrigerant being conducted through the pipeline 10 . Therefore, there is close thermal contact between the refrigerant, the exothermic fluid, and the air flowing around the lamellae 9 .
  • thermal coupling between the three material flows using alternative implementations of the combined fluid-air evaporator described above, for example, by providing two identically or differently dimensioned pipelines, which are in bodily and therefore in thermal contact on both sides with the lamellae arrangement 9 .
  • Pipelines which have an internal partition wall, through which a single pipeline may be partitioned into two different duct systems, are also conceivable.
  • further embodiments which implement thermal coupling of different fluid flows are also possible, such as semicircular pipes or pipes having an internal star profile that has multiple ducts.
  • the combined fluid-air evaporator implemented according to the present invention is especially advantageously suitable as a refrigerant evaporator unit in the framework of a heat pump, which is finally a part of a building ventilation arrangement that will be described in the following with reference to FIG. 2 .
  • the ventilation arrangement provided with the reference number 7 shown in FIG. 2 essentially comprises two separately directed flow ducts (see flow arrows), which are in thermal contact with one another via an air-air heat exchanger AAH through the transverse flow direction (dashed arrow).
  • air-air heat exchanger systems such as counterflow heat exchangers, for example, are also usable.
  • a used air flow UAF from the building interior thus enters the ventilation arrangement 7 , passes the air-air heat exchanger AAH, subsequently flows through the combined fluid-air evaporator 2 implemented according to the present invention and finally exits as exhaust air flow EAF out of the ventilation arrangement 7 into the environment.
  • an outside air flow OAF enters the ventilation arrangement 7 and flows through a fluid-air heat exchanger 1 before the outside air flow OAF passes the air-air heat exchanger AAH, in which the outside air flow OAF comes into thermal contact with the used air flow UAF.
  • the outside air flow OAF flows through a condenser 3 following the air-air heat exchanger AAH in the flow direction and finally enters the building interior as the intake air flow IAF.
  • the interconnection of the combined fluid-air evaporator 2 implemented according to the present invention which has both an exothermic fluid, preferably brine, that circulates in the loop of a collector 8 , such as a ground collector, supported by a pump 4 , and also a refrigerant, which passes through the refrigerant loop of a heat pump 6 , flowing through it, is of special interest in the ventilation arrangement 7 illustrated in FIG. 2 . Therefore, the combined fluid-air evaporator 2 is part of the heat pump 6 which additionally comprises the condenser 3 . Furthermore, in the exemplary embodiment shown, there is thermal coupling between the heat pump 6 and an industrial water accumulator 5 .
  • the ventilation arrangement illustrated in FIG. 2 allows different modes of operation, which may be switched differently with the aid of three-way valves A, B, C within the ground collector loop, for example.
  • the three-way valves illustrated in FIG. 2 may also alternatively be replaced by solenoid valves or similar units for deflecting or blocking fluid flows.
  • the combined evaporator may be connected to any arbitrary heat source instead of a ground collector, for example, to well water, lake water, wastewater, absorber fencing, solar collectors, etc.
  • a ground collector for example, to well water, lake water, wastewater, absorber fencing, solar collectors, etc.
  • different heat sources may be interconnected externally with one another as well, i.e., if there is too little area available for an adequately dimensioned ground collector, for example, the ground collector may be coupled with well water, for example, through an additional pump and a heat exchanger or even directly, by using a star profile.
  • switch position 0 is always open.
  • the following modes of operation result in regard to the three-way valves A, B, C.
  • Each three-way valve has the switch positions 1 , 2 , and 0 , 0 always being open.
  • valve A position 1 means: switch position 1 open, switch position 2 closed.
  • Valve A position 2 means: switch position 1 closed, switch position 2 open.
  • valve A is in position 1
  • valve B is in position 1
  • valve C is in position 2
  • the fluid-air heat exchanger 1 is used as an outside air preheater and, in addition, as a frost protection device for the following air-air heat exchanger AAH.
  • the used air flow UAF passing through the air-air heat exchanger AAH has a temperature which is above the ground collector temperature, in the event of a switch position A position 1 , B position 2 , C position 1 , heating of the ground collector 8 is possible. If the three-way valve A is in position 2 , B is in position 1 , and C is in position 1 , heating of the fluid-air heat exchanger 1 occurs. In contrast, if the three-way valve A is in position 1 , B is in position 1 , and C is in position 1 , there is heating of both the ground collector 8 and also heating of the fluid-air heat exchanger 1 .
  • the heat pump 6 uses the heat of the ground collector 8 and additionally the used air heat through the thermal coupling between used air UAF and the combined fluid-air evaporator 2 and outputs this heat to the accumulator 5 and/or the condenser 3 . If the three-way valve A is in position 1 , B is in position 1 , and C is in position 2 , the used air heat is employed for evaporation during heating operation. If the pump is on “off”, the positions of the three-way valves are not relevant. The position 2 is to be recommended for the three-way valve C merely so that no gravity circulation may occur.
  • the ground collector loop 8 is used for prior temperature control of the fluid-air heat exchanger 1 , and also for heating the combined fluid-air evaporator 2 .
  • the three-way valve A is to be put in position 1 , B in position 1 , and C in position 2 .
  • the combined fluid-air evaporator 2 may use the cold used air UAF if the used air temperature is lower than the ground collector temperature, in order to finally cool the fluid-air heat exchanger 1 .
  • the three-way valve A is in position 2 , B is in position 1 , and C is in position 1 . If the three-way valve A is in position 1 , B is in position 2 , and C is in position 1 , targeted cooling of the ground collector 8 is possible. If both the ground collector 8 and also the fluid heat exchanger 1 are to be cooled under these conditions, the three-way valve A is to be switched into position 1 , B into position 1 , and C into position 1 .
  • cooling using active accumulator heating may be performed if the three-way valve A is in position 2 , B is in position 1 , and C is in position 1 , heating of the industrial water accumulator 5 occurring and the combined fluid-air evaporator 2 being cooled by the heat pump.
  • the cooled fluid is now pumped to the fluid heat exchanger 1 , which may in turn actively cool the outside air.
  • the switch position A is in position 2 , B is in position 1 , and C is in position 1 , the combined fluid-air evaporator 2 is cooled by the heat pump 6 .
  • the cooled fluid is now pumped to the fluid-air heat exchanger 1 , which cools the outside air.
  • the industrial water accumulator 5 may not absorb any more heat, the heat arising at the condenser 3 may be dissipated in the direction of the exhaust air through corresponding mixing of the intake air flow. This is possible through appropriate flaps, for example, using which the intake air flow is conducted into the exhaust air.
  • the heat may be dissipated in a targeted way to the surrounding air by providing an additional condenser in the outside area. This would be necessary if there is no industrial water accumulator or no buffer accumulator and active cooling is nonetheless to be performed.
  • FIG. 3 shows an implementation of the ventilation arrangement expanded in relation to FIG. 2 through combination with a solar collector 14 , whose collector flow loop is coupled with the ground collector flow loop in the way indicated, through which additional heat is obtained for preheating the outside air OAF.
  • a solar collector 14 whose collector flow loop is coupled with the ground collector flow loop in the way indicated, through which additional heat is obtained for preheating the outside air OAF.
  • the heat flow of the collector flow may be coupled to the ground collector loop in order to additionally heat the fluid-air heat exchanger 1 , for example.
  • the solar collector loop shown in FIG. 3 may additionally be combined with the fluid loop of the combined fluid-air evaporator 2 by attaching a valve. However, this requires suitable valve measures, through which it would additionally be possible to thermally couple the solar collector loop, in combination or in an alternative position, with the fluid-air heat exchanger 1 and the combined fluid-air evaporator 2 .
  • FIGS. 4 a and 4 b A further operational possibility for the ventilation arrangement 7 is illustrated in FIGS. 4 a and 4 b , which provides a unit 12 deflecting the flow implemented in the form of a flap directly before the combined fluid-air evaporator 2 in the flow direction.
  • FIGS. 4 a and 4 b A further operational possibility for the ventilation arrangement 7 is illustrated in FIGS. 4 a and 4 b , which provides a unit 12 deflecting the flow implemented in the form of a flap directly before the combined fluid-air evaporator 2 in the flow direction.
  • the efficiency of the combined fluid-air evaporator 2 may conduct the cold used air flow past the combined fluid-air evaporator 2 via a bypass channel 13 by closing the flap 12 (see FIG. 4 b ).
  • the combined fluid-air evaporator 2 exclusively has its temperature controlled by the exothermic fluid which circulates in the loop of the ground collector 8 .
  • the bypass channel 13 is closed, through which free flow of the used air UAF through the combined fluid-air evaporator 2 is ensured. If heat pump 4 is switched to “on”, and the three-way valve A is in position 1 , B is in position 1 ( 2 is also possible), and C is in position 1 , simultaneous operation of the combined evaporator using used air and brine is possible.
  • the flap position 12 may also be constructed so that only the bypass channel 13 is closed or opened, for example, and there is always a flow through the combined evaporator. It is also possible to achieve partial flow through other flap constructions, for example, i.e., a part of the air through the bypass channel 13 and a part through the combined fluid-air evaporator 2 .
  • FIG. 5 a A further alternative embodiment variation for the ventilation arrangement is illustrated in FIG. 5 a .
  • the alternative refinement relates to the refrigerant loop of the heat pump 6 .
  • the refrigerant gas is compressed at a high temperature and is pumped, for example, to the condenser for industrial water heating 5 and/or to the air condenser 3 for air heating.
  • the refrigerant condenses there and, in most cases, reaches an internal heat exchanger within the heat pump 6 , the recuperator, which increases the suction gas temperature and therefore the degree of overheating after the evaporator in order to avoid liquid refrigerant not being suctioned into the compressor.
  • further components such as collectors and dryers are positioned downstream from the recuperator.
  • the refrigerant finally reaches an expansion unit, through which it is relaxed, through which temperature and pressure are reduced.
  • the refrigerant again absorbs heat from the heat source and reaches the compressor. The loop begins again.
  • refining the fluid-air heat exchanger 1 according to the exemplary embodiment in FIG. 5 suggests itself.
  • the preheating for the outside air OAF may thus be performed by a commercially available heat exchanger, which provides two loops 15 , 16 .
  • a schematic heat exchanger 1 is shown in FIG. 5 b , which the outside air OAF flows through and which has a loop 15 with the brine flowing through it and a loop 16 with the refrigerant flowing through it.
  • the loop 15 dissipates the heat or cold to the outside air flow OAF.
  • the loop 16 which the refrigerant flows through dissipates the heat from the refrigerant to the outside air flow OAF and thus increases the degree of undercooling.
  • a changeover of the heat pump in the refrigerant loop between cooling and heating operation is completely dispensed with, through which previously known weak points, such as providing four-way valves or solenoid valves, are dispensed with.
  • the changeover now occurs in the loop of the heat accumulator, for example, of the geothermal loop.
  • the energy invested in the heat pump may be exploited more efficiently.
  • Simpler heat pump construction is achieved through simpler pipe direction and the use of less refrigerant, since fewer pipes and valves are necessary. Through targeted heat exploitation of the used air, the energy may be converted more efficiently. If the ground collector 8 is laid out correspondingly large, the combined fluid-air evaporator may use the heat for evaporation effectively, through which the icing danger may be nearly excluded. The fluid-air heat exchanger 1 may be heated simultaneously, through which the icing danger may also be avoided at the fluid-air heat exchanger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Central Heating Systems (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)

Abstract

A combined fluid-air evaporator having at least two separate duct systems is described, through which separate material flows may be conducted, at least one of the two duct systems having a free surface which may be brought into thermal contact with an air flow, and the at least two duct systems being at least partially in thermal contact with one another. Furthermore, a ventilation arrangement for a building is described using the combined fluid-air evaporator, in which a used air flow directed out of the building, which is in thermal contact with an outside air flow via an air-air heat exchanger, comes into thermal contact with the combined fluid-air evaporator, through which a refrigerant and an exothermic fluid pass, the refrigerant circulating in the loop of a heat pump, whose condenser is connected downstream in the flow direction from the air-air heat exchanger in the heated outside air flow, and the exothermic fluid circulates in the loop of a heat accumulator system.

Description

    TECHNICAL AREA
  • The present invention relates to a combined fluid-air evaporator, which is preferably usable as a refrigerant evaporator for a ventilation arrangement provided for buildings. For this purpose, the term “fluid” comprises, in the expanded definition, all phase states of materials with the exception of the solid phase, and thus particularly the liquid phase and also the gas phase. A preferred integration of the combined fluid-air evaporator with a heat pump is also described.
  • BACKGROUND INFORMATION
  • In newly constructed apartment houses, strengthened ventilating apparatuses having heat reclamation are increasingly installed, which result in higher living comfort, since the required air exchange is ensured automatically and the temperature level of the intake air is significantly raised by the heat reclamation. Through the targeted exploitation of the used air heat to preheat the intake air using an air-air heat exchanger, the heating operation for a building may be reduced and therefore energy may be saved.
  • Ventilating apparatuses having installed heat pumps, which are conceived for heating the intake air and an accumulator, such as an industrial water accumulator, and thus operate as used air heat pumps, are also known. In a way known per se, heat is transferred from the building used air to an outside air flow, which is typically cooler, using an air-air heat exchanger, before the building used air cooled during the heat transfer is fed to the evaporator of the heat pump, so that the cooled building used air is subjected to further heat absorption before it is released to the environment as exhaust air. Particularly in the case of lower temperatures, at which the cooled building used air flows through the evaporator of the heat pump, icing frequently occurs within the evaporator, through which the function of the heat pump is disadvantageously influenced until breakdown, so that suitable measures are to be taken to counteract corresponding occurrences of icing.
  • For example, in the case of already occurring icing or for the purpose of prevention in times of elevated icing danger, the used air flow flowing through the evaporator of the heat pump is additionally heated using gas heating or electrical heating. This measure is not only connected to an energy input, which is relevant to cost, but rather additionally requires a constructively complex heating component which is to be provided in the flow direction of the used air flow before entering the evaporator of the heat pump.
  • In addition to the above wish for the most economic intake air heating possible, particularly during the cold time of year, there is additionally the wish for effective and economic cooling of the living spaces during summertime outside temperatures. A demand in this regard is reflected in the increasing sales numbers of at least slightly efficient split devices, which are suitable for both room cooling and also intake air heating.
  • If ground heat exchangers, in the form of air-ground registers or closed brine loops, are used, passive precooling of the building intake air may also be achieved by thermally coupling warm intake air with the ground temperature, which is significantly lower than the air temperature, in the summertime. In addition, it is possible using a heat pump to increase the passive precooling described above because of the significantly higher cooling performance of the heat pump. However, for this purpose four-way valves or three-way valves having possible leaks are required within the complicated loop systems in which heat pumps are integrated. The use of expensive solenoid valves is also known, through which the cooling loop becomes more complicated, more expensive, and more susceptible to breakdown. In addition, upon changeover between heating and cooling operation of the heat pump, the cooling loop briefly becomes unstable, which results not only in reduction of the performance number of the heat pump, but rather in addition causes reduction of the service life of the compressor.
  • However, above all in typical air-water heat pumps, the icing of the evaporator represents a large problem. The heat pump is not equipped with an air-air heat exchanger (as is the case in a compact ventilation air conditioner), and the air for the evaporator is thus not preheated by the room used air and icing frequently occurs at low outside temperatures, i.e., an air-water heat pump usually may only be operated efficiently down to outside temperatures of approximately −5° C. (depending on the manufacturer). Thawing must be performed very often below the specified outside temperatures, however, through which the performance number of the heat pump worsens. In order to counteract this, it is expedient to heat further bivalently using an additional heat source, for example, in the form of electrical heaters or using oil or gas boiler heaters.
  • DESCRIPTION OF THE INVENTION
  • The present invention is based on the object of specifying an achievement of the object specified above, so that changing over between heating and cooling operation of a heat pump integrated in a building ventilation arrangement is possible using means which are as technically simple as possible to implement. The icing occurring in the known heat pumps is to be largely avoided, and the operational reliability and also the service life of the components participating in the loop of heat pumps are particularly to be improved.
  • The achievement of the object on which the present invention is based is specified in Claim 1, which describes a combined fluid-air evaporator, whose use as an evaporator element within a heat pump represents the refinement according to the present invention of a ventilator arrangement for buildings described in Claim 8. Features advantageously refining the idea according to the present invention may be taken from the subclaims and the further description with reference to the exemplary embodiments.
  • The achievement of the object according to the present invention is based on a novel evaporator concept, which is particularly suitable for use as a refrigerant evaporator within a heat pump. The novel evaporator concept may be referred to as a combined fluid-air evaporator and has at least two separate duct systems, through which separate material flows may be directed. At least one of the two duct systems has a free surface, which is preferably to be brought into thermal contact with an air flow. Both duct systems are additionally at least partially in joint thermal contact.
  • The combined fluid-air evaporator according to the present invention thus differs from a typical air evaporator in that a further duct system is provided, through which a further, additional heat source, in the form of a material flow, preferably a liquid flow, may be used for the evaporation procedure.
  • In the simplest exemplary embodiment, the combined fluid-air evaporator is implemented as a coaxial pipe system, which provides a first pipeline, in which a second pipeline runs internally. The internal pipeline thus separates a first duct system from the second duct system, which is formed by the volume enclosed by both pipes.
  • Separate material flows, preferably separate liquid flows, which are in thermal contact with one another over the entire length of the pipe system via the pipe inner wall, may be introduced through both duct systems.
  • An alternative embodiment of the combined fluid-air evaporator according to the present invention provides a single pipeline, which has an internal partition wall that partitions the pipeline along its entire extension into two pipeline halves. In this case as well, two material flows passing through the particular pipeline halves come into thermal contact with one another through the internal partition wall and, in addition, heat transfer between the individual fluid flows and an air flow flowing around the pipeline is ensured.
  • Advantageous interconnections of the duct systems and/or applications of different fluid flows, as well as preferred technical applications, will be discussed in the following with reference to the exemplary embodiments. Finally, the combined fluid-air evaporator according to the present invention allows thermal contact between an air flow flowing around the external pipeline and two different fluid flows.
  • For the preferred use of the combined fluid-air evaporator implemented according to the present invention as a refrigerant evaporator, refrigerant is conducted through one of the two duct systems and an exothermic fluid, preferably in the form of a brine, i.e., a glycol-water mixture, for example, is conducted through the other duct system. Alternative exothermic fluid flows may be provided, for example, in the form of water flows from a lake, well, river, or even in the form of a wastewater flow.
  • With the aid of the refrigerant evaporator implemented according to the present invention, which may be integrated particularly advantageously as an evaporator unit in a heat pump unit, the heat pump obtains a decisive advantage in regard to reduction of the icing danger at low operating temperatures. In addition, the efficiency of the heat pump increases, since the evaporation temperature is elevated by the additional heat contribution in the evaporator, through which less energy is to be invested in the operation of the heat pump.
  • Through integration of a heat pump as described above in a ventilation arrangement for a building, multiple extremely interesting and technically simple building aeration and building ventilation constellations having different heating and cooling variations may be provided.
  • In a ventilation arrangement for a building implemented according to the present invention, a used air flow directed out of the building comes into thermal contact via an air-air heat exchanger with a corresponding outside intake air flow, a combined fluid-air evaporator implemented according to the present invention being provided after the air-air heat exchanger in the flow direction, which the used air flow exiting from the air-air heat exchanger flows over. The combined fluid-air evaporator implemented according to the present invention has, as described above, at least two separate duct systems, which are in thermal contact with one another and through which a refrigerant and an exothermic fluid are each conducted separately from one another, the refrigerant circulating in the loop of a heat pump whose condenser is positioned in the outside air flow after the air-air heat exchanger in the flow direction. The exothermic fluid permeating the combined fluid-air evaporator, in contrast, circulates in the loop of a heat accumulator system, which preferably has a geothermal collector. However, aerothermal or hydrothermal collector systems are also suitable, using which the heat exploitation of bodies of water, wells, or wastewater is possible.
  • The main advantage of the ventilation arrangement described above is that the evaporator of the heat pump in the form of the combined fluid-air evaporator implemented according to the present invention has the refrigerant of the heat pump and also at least one further fluid flowing through it, whose heat content is transferred to the refrigerant of the heat pump through direct thermal coupling. In this way, it is possible to significantly reduce the icing danger of the evaporator, particularly at cold ambient temperatures, and in addition the evaporation temperature may be raised, through which the energy input required for heat pump operation may be reduced and, above all, the cooling performance of the heat pump may thus be increased.
  • The ventilation arrangement implemented according to the present invention additionally offers manifold further advantages in regard to different types of operation as a function of the particular existing ambient temperature conditions. These are to be described in greater detail in the following with reference to the exemplary embodiments.
  • The suggested integration of the heat pump implemented according to the present invention also allows especially advantageous heating and/or cooling of old buildings, especially since different heat sources may be selected by the combined fluid-air evaporator depending on the outside temperature. For example, the outside air may be used for heating in the transition time (spring/autumn) and at low outside air temperatures, as occur in winter, a ground collector may be put online. The current hottest heat source is used for the industrial water heating. Combinations of both heat sources are also conceivable. In this way, a constant higher evaporation temperature and, connected therewith, a higher heating performance, may be achieved.
  • In old buildings, in spite of facade renovation of the building, a high startup temperature is still necessary because of the heating system (usually radiators having 70/55 design). The use of the combined evaporator according to the present invention would allow this requirement to be met more efficiently.
  • For heating a newer house which is equipped with a lower temperature heater (e.g., floor and/or wall heaters), the combined evaporator, which is integrated in a typical air height and water heat pump, is naturally even more efficient than at high startup temperatures, as in old buildings.
  • Compact ventilation air conditioners having the combined evaporator are a very efficient solution for use in low energy houses and 3-liter houses due to the advantages described.
  • BRIEF DESCRIPTION OF THE INVENTION
  • The present invention will be described in the following for exemplary purposes, without restriction of the general idea of the present invention, on the basis of exemplary embodiments with reference to the drawing.
  • FIG. 1 shows a schematic illustration of a combined fluid-air evaporator implemented according to the present invention,
  • FIG. 2 shows a schematic overall illustration of a ventilation arrangement for a building,
  • FIG. 3 shows the illustration according to FIG. 2 having an additional solar collector loop,
  • FIGS. 4 a, b show overall illustrations for a building ventilation arrangement in different operating states.
  • WAYS OF IMPLEMENTING THE INVENTION, COMMERCIAL APPLICABILITY
  • FIG. 1 shows a greatly simplified illustration of a combined fluid-air evaporator implemented according to the present invention, which comprises a coaxial pipeline system that has an external pipe 10 and an internal pipe 11, running coaxially in the interior. As is evident, the relationship d2<d1 applies for the pipe internal diameter d1 of the pipeline 10 and the pipe internal diameter d2 of the pipeline 11.
  • The outer pipeline 10 has a free surface which is in bodily and therefore thermal contact with an air lamellar arrangement 9. In regard to FIG. 1, it is assumed that the lamellar bodies 9 intersect the plane of the drawing perpendicularly. An air flow also directed perpendicularly to the plane of the drawing comes into thermal contact with the lamellar bodies 9, which finally causes a heat transfer to both fluid and/or liquid flows passing through the particular pipeline 10 and 11.
  • The combined fluid-air evaporator is especially advantageously suitable as a refrigerant evaporator, an exothermic fluid, such as brine, being conducted through the pipeline 11 and a refrigerant being conducted through the pipeline 10. Therefore, there is close thermal contact between the refrigerant, the exothermic fluid, and the air flowing around the lamellae 9.
  • Of course, it is also possible to implement the above thermal coupling between the three material flows using alternative implementations of the combined fluid-air evaporator described above, for example, by providing two identically or differently dimensioned pipelines, which are in bodily and therefore in thermal contact on both sides with the lamellae arrangement 9. Pipelines which have an internal partition wall, through which a single pipeline may be partitioned into two different duct systems, are also conceivable. Of course, further embodiments which implement thermal coupling of different fluid flows are also possible, such as semicircular pipes or pipes having an internal star profile that has multiple ducts.
  • The combined fluid-air evaporator implemented according to the present invention is especially advantageously suitable as a refrigerant evaporator unit in the framework of a heat pump, which is finally a part of a building ventilation arrangement that will be described in the following with reference to FIG. 2.
  • The ventilation arrangement provided with the reference number 7 shown in FIG. 2 essentially comprises two separately directed flow ducts (see flow arrows), which are in thermal contact with one another via an air-air heat exchanger AAH through the transverse flow direction (dashed arrow). Of course, other air-air heat exchanger systems, such as counterflow heat exchangers, for example, are also usable. A used air flow UAF from the building interior thus enters the ventilation arrangement 7, passes the air-air heat exchanger AAH, subsequently flows through the combined fluid-air evaporator 2 implemented according to the present invention and finally exits as exhaust air flow EAF out of the ventilation arrangement 7 into the environment. Furthermore, an outside air flow OAF enters the ventilation arrangement 7 and flows through a fluid-air heat exchanger 1 before the outside air flow OAF passes the air-air heat exchanger AAH, in which the outside air flow OAF comes into thermal contact with the used air flow UAF. Finally, the outside air flow OAF flows through a condenser 3 following the air-air heat exchanger AAH in the flow direction and finally enters the building interior as the intake air flow IAF.
  • The interconnection of the combined fluid-air evaporator 2 implemented according to the present invention, which has both an exothermic fluid, preferably brine, that circulates in the loop of a collector 8, such as a ground collector, supported by a pump 4, and also a refrigerant, which passes through the refrigerant loop of a heat pump 6, flowing through it, is of special interest in the ventilation arrangement 7 illustrated in FIG. 2. Therefore, the combined fluid-air evaporator 2 is part of the heat pump 6 which additionally comprises the condenser 3. Furthermore, in the exemplary embodiment shown, there is thermal coupling between the heat pump 6 and an industrial water accumulator 5.
  • The ventilation arrangement illustrated in FIG. 2 allows different modes of operation, which may be switched differently with the aid of three-way valves A, B, C within the ground collector loop, for example. The three-way valves illustrated in FIG. 2 may also alternatively be replaced by solenoid valves or similar units for deflecting or blocking fluid flows.
  • It is to be noted in principle that the combined evaporator may be connected to any arbitrary heat source instead of a ground collector, for example, to well water, lake water, wastewater, absorber fencing, solar collectors, etc. Furthermore, it is possible for different heat sources to be interconnected externally with one another as well, i.e., if there is too little area available for an adequately dimensioned ground collector, for example, the ground collector may be coupled with well water, for example, through an additional pump and a heat exchanger or even directly, by using a star profile.
  • Furthermore, it is assumed that the switch position 0 is always open. Thus, as a function of the switch position, the following modes of operation result in regard to the three-way valves A, B, C. Each three-way valve has the switch positions 1, 2, and 0, 0 always being open. For simplification of further speech, the following is assumed: “valve A position 1” means: switch position 1 open, switch position 2 closed. “Valve A position 2” means: switch position 1 closed, switch position 2 open.
  • If one assumes in the simplest case that the heat pump is switched off and the outside air temperature is lower than the ground collector temperature, the following modes of operation are possible:
  • It is assumed that valve A is in position 1, valve B is in position 1, and valve C is in position 2. In this case, the fluid-air heat exchanger 1 is used as an outside air preheater and, in addition, as a frost protection device for the following air-air heat exchanger AAH.
  • If the used air flow UAF passing through the air-air heat exchanger AAH has a temperature which is above the ground collector temperature, in the event of a switch position A position 1, B position 2, C position 1, heating of the ground collector 8 is possible. If the three-way valve A is in position 2, B is in position 1, and C is in position 1, heating of the fluid-air heat exchanger 1 occurs. In contrast, if the three-way valve A is in position 1, B is in position 1, and C is in position 1, there is heating of both the ground collector 8 and also heating of the fluid-air heat exchanger 1.
  • However, if it is assumed that the heat pump 6 is in operation, targeted heating of the industrial water accumulator 5 and/or the condenser 3 may be performed, for example. This is the case if the three-way valve A is in position 1, B is in position 2, and C is in position 1. For this purpose, the heat pump 6 uses the heat of the ground collector 8 and additionally the used air heat through the thermal coupling between used air UAF and the combined fluid-air evaporator 2 and outputs this heat to the accumulator 5 and/or the condenser 3. If the three-way valve A is in position 1, B is in position 1, and C is in position 2, the used air heat is employed for evaporation during heating operation. If the pump is on “off”, the positions of the three-way valves are not relevant. The position 2 is to be recommended for the three-way valve C merely so that no gravity circulation may occur.
  • If all three three-way valves A, B, C are each in position 1, the ground collector loop 8 is used for prior temperature control of the fluid-air heat exchanger 1, and also for heating the combined fluid-air evaporator 2.
  • If the ventilation arrangement is to be used for passive cooling in the summer months, the three-way valve A is to be put in position 1, B in position 1, and C in position 2.
  • In addition, the combined fluid-air evaporator 2 may use the cold used air UAF if the used air temperature is lower than the ground collector temperature, in order to finally cool the fluid-air heat exchanger 1. This is the case if the three-way valve A is in position 2, B is in position 1, and C is in position 1. If the three-way valve A is in position 1, B is in position 2, and C is in position 1, targeted cooling of the ground collector 8 is possible. If both the ground collector 8 and also the fluid heat exchanger 1 are to be cooled under these conditions, the three-way valve A is to be switched into position 1, B into position 1, and C into position 1.
  • If the three-way valves A, B, C are activated, cooling using active accumulator heating may be performed if the three-way valve A is in position 2, B is in position 1, and C is in position 1, heating of the industrial water accumulator 5 occurring and the combined fluid-air evaporator 2 being cooled by the heat pump. The cooled fluid is now pumped to the fluid heat exchanger 1, which may in turn actively cool the outside air.
  • If the switch position A is in position 2, B is in position 1, and C is in position 1, the combined fluid-air evaporator 2 is cooled by the heat pump 6. The cooled fluid is now pumped to the fluid-air heat exchanger 1, which cools the outside air. If the industrial water accumulator 5 may not absorb any more heat, the heat arising at the condenser 3 may be dissipated in the direction of the exhaust air through corresponding mixing of the intake air flow. This is possible through appropriate flaps, for example, using which the intake air flow is conducted into the exhaust air. If dissipation of the condenser heat through deflection into the exhaust air is not possible, as may be the case if the measures required for this purpose are too expensive, the heat may be dissipated in a targeted way to the surrounding air by providing an additional condenser in the outside area. This would be necessary if there is no industrial water accumulator or no buffer accumulator and active cooling is nonetheless to be performed.
  • FIG. 3 shows an implementation of the ventilation arrangement expanded in relation to FIG. 2 through combination with a solar collector 14, whose collector flow loop is coupled with the ground collector flow loop in the way indicated, through which additional heat is obtained for preheating the outside air OAF. If, for example, in the event of low solar radiation, the temperature increase achievable using a solar collector 14 is insufficient for heating the industrial water accumulator 5, via a corresponding valve position of valve D, the heat flow of the collector flow may be coupled to the ground collector loop in order to additionally heat the fluid-air heat exchanger 1, for example. The solar collector loop shown in FIG. 3 may additionally be combined with the fluid loop of the combined fluid-air evaporator 2 by attaching a valve. However, this requires suitable valve measures, through which it would additionally be possible to thermally couple the solar collector loop, in combination or in an alternative position, with the fluid-air heat exchanger 1 and the combined fluid-air evaporator 2.
  • A further operational possibility for the ventilation arrangement 7 is illustrated in FIGS. 4 a and 4 b, which provides a unit 12 deflecting the flow implemented in the form of a flap directly before the combined fluid-air evaporator 2 in the flow direction. For example, if there are very low outside air and used air temperatures, it may be advantageous for the efficiency of the combined fluid-air evaporator 2 to conduct the cold used air flow past the combined fluid-air evaporator 2 via a bypass channel 13 by closing the flap 12 (see FIG. 4 b). In this operating position, the combined fluid-air evaporator 2 exclusively has its temperature controlled by the exothermic fluid which circulates in the loop of the ground collector 8. In the flap position illustrated in FIG. 4 a, the bypass channel 13 is closed, through which free flow of the used air UAF through the combined fluid-air evaporator 2 is ensured. If heat pump 4 is switched to “on”, and the three-way valve A is in position 1, B is in position 1 (2 is also possible), and C is in position 1, simultaneous operation of the combined evaporator using used air and brine is possible. The flap position 12 may also be constructed so that only the bypass channel 13 is closed or opened, for example, and there is always a flow through the combined evaporator. It is also possible to achieve partial flow through other flap constructions, for example, i.e., a part of the air through the bypass channel 13 and a part through the combined fluid-air evaporator 2.
  • A further alternative embodiment variation for the ventilation arrangement is illustrated in FIG. 5 a. The alternative refinement relates to the refrigerant loop of the heat pump 6.
  • Normally, in the refrigerant loop of a heat pump, the refrigerant gas is compressed at a high temperature and is pumped, for example, to the condenser for industrial water heating 5 and/or to the air condenser 3 for air heating. The refrigerant condenses there and, in most cases, reaches an internal heat exchanger within the heat pump 6, the recuperator, which increases the suction gas temperature and therefore the degree of overheating after the evaporator in order to avoid liquid refrigerant not being suctioned into the compressor. Frequently, further components such as collectors and dryers are positioned downstream from the recuperator. The refrigerant finally reaches an expansion unit, through which it is relaxed, through which temperature and pressure are reduced. In the evaporator, the refrigerant again absorbs heat from the heat source and reaches the compressor. The loop begins again.
  • However, it has been shown that the refrigerant has significant heat energy before the expansion valve, which has remained unexploited until now. Therefore, it is advantageously suggested that an additional heat exchanger be provided between the recuperator and the expansion unit, through which heat is withdrawn from the refrigerant. In this way, the cooling performance of the heat pump may be increased largely without the use of additional electrical energy. The refrigerant must naturally flow through this additional heat exchanger in order to be able to transport off the heat.
  • Following this idea, refining the fluid-air heat exchanger 1 according to the exemplary embodiment in FIG. 5 suggests itself. The preheating for the outside air OAF may thus be performed by a commercially available heat exchanger, which provides two loops 15, 16. For this purpose, a schematic heat exchanger 1 is shown in FIG. 5 b, which the outside air OAF flows through and which has a loop 15 with the brine flowing through it and a loop 16 with the refrigerant flowing through it. The loop 15 dissipates the heat or cold to the outside air flow OAF. The loop 16 which the refrigerant flows through dissipates the heat from the refrigerant to the outside air flow OAF and thus increases the degree of undercooling.
  • An array of advantages is connected with the ventilation arrangement implemented according to the present invention as described above, which will be referred to in sequence in the following:
  • A changeover of the heat pump in the refrigerant loop between cooling and heating operation is completely dispensed with, through which previously known weak points, such as providing four-way valves or solenoid valves, are dispensed with. The changeover now occurs in the loop of the heat accumulator, for example, of the geothermal loop.
  • By dispensing with the previously required changeover of the heat pump between cooling and heating operation, a more stable cooling loop is ensured and a significantly higher performance number is possible.
  • The energy invested in the heat pump may be exploited more efficiently.
  • No energy losses arise in cooling operation, since the industrial water accumulator or another accumulator may be heated in this case. The heat may also be dissipated to a typical heater, however.
  • The possibility exists of using two or more heat sources, so that a largely constant temperature exists in the evaporator, which finally results in a higher performance number of the heat pump. A longer service life of the heat pump is also achievable, especially if the compressor output of the heat pump may be reduced.
  • Simpler heat pump construction is achieved through simpler pipe direction and the use of less refrigerant, since fewer pipes and valves are necessary. Through targeted heat exploitation of the used air, the energy may be converted more efficiently. If the ground collector 8 is laid out correspondingly large, the combined fluid-air evaporator may use the heat for evaporation effectively, through which the icing danger may be nearly excluded. The fluid-air heat exchanger 1 may be heated simultaneously, through which the icing danger may also be avoided at the fluid-air heat exchanger.
  • Incorporation of an additional solar collector is also easily possible, since the collector flow and also a ground collector flow are materially identical and may be operated under identical pressure conditions. Even in the case of different pressure levels and fluids in the solar collector loop and ground collector loop, both loops may be thermally coupled using plate heat exchangers.
  • LIST OF REFERENCE NUMBERS
    • 1 fluid-air heat exchanger
    • 2 combined fluid-air evaporator
    • 3 condenser
    • 4 pump
    • 5 industrial water accumulator
    • 6 heat pump
    • 7 ventilation device
    • 8 ground collector (heat accumulator)
    • 9 lamellae
    • 10 outer pipeline
    • 11 inner pipeline
    • 12 flap
    • 13 bypass line, used air bypass, bypass duct
    • 14 solar collector
    • 15 loop
    • 16 loop
    • A, B, C three-way valves
    • UAF used air flow
    • OAF outside air flow
    • EAF exhaust air flow
    • IAF intake air flow
    • AAH air-air heat exchanger

Claims (23)

1. A combined fluid-air evaporator having at least two separate duct systems, through which separate material flows may be directed, wherein at least one of the two duct systems has a free surface which may be brought into thermal contact with a directed air flow, and the at least two duct systems are at least partially in thermal contact with one another.
2. The combined fluid-air evaporator according to claim 1, wherein the at least two duct systems are implemented in the form of a first pipeline having a first pipe internal diameter d1, in whose pipe interior a second pipeline, having a second pipe internal diameter d2, with d2<d1, is provided, the first duct system being delimited by the second pipeline and the second duct system being delimited by the first and second pipeline, and the first pipeline having a free pipe outside.
3. The combined fluid-air evaporator according to claim 2, wherein lamellar plane elements are attached to the pipe outside of the first pipeline.
4. The combined fluid-air evaporator according to claim 1, wherein the at least two duct systems are implemented in the form of a shared pipeline, the pipeline having a pipe surface, and the pipeline has at least one internal partition wall, which divides the volume enclosed by the pipeline into at least two separate pipeline longitudinal parts and via which the at least two pipeline longitudinal parts are in thermal contact with one another.
5. The combined fluid-air evaporator according to claim 4, wherein lamellar plane elements are attached to the pipe surface and/or are in thermal contact therewith.
6. A use of the combined fluid-air evaporator according to claim 1 as a refrigerant evaporator, wherein a refrigerant is conducted through one duct system and an exothermic fluid is conducted through the other duct system, and the refrigerant comes into thermal contact both with the exothermic fluid and also, using the lamellar plane elements attached to the free surface, with the directed air flow.
7. A use of the combined air-fluid evaporator according to claim 2 as a refrigerant evaporator, wherein the exothermic fluid is conducted through the first duct system, and a refrigerant is conducted through the second duct system.
8. The use according to claim 6, wherein the refrigerant evaporator is part of a heat pump.
9. A ventilation arrangement for a building having heat absorption from a used air flow directed out of the building, which comes into thermal contact with an outside air flow via an air-air heat exchanger and is in thermal contact with a refrigerant evaporator according to claim 1, through which a refrigerant and an exothermic fluid pass, the refrigerant circulating in the loop of a heat pump.
10. The ventilation arrangement according to claim 9, wherein the heat pump has a condenser, which is connected downstream from the air-air heat exchanger in the flow direction in the heated outside air flow, and an intake air flow, which is directed into the building, arises downstream in the flow direction from the condenser.
11. The ventilation arrangement according to claim 9 wherein a first valve unit, through which the circulation of the fluid through the heat accumulator system may be regulated, is provided in the loop of the heat accumulator system.
12. The ventilation arrangement according to claim 9, wherein a fluid-air heat exchanger, which may be permeated by the fluid circulating in the loop of the heat accumulator system, is provided in the outside air flow in the flow direction before the air-air heat exchanger.
13. The ventilation arrangement according to claim 12, wherein a second valve unit, through which the inflow of the fluid to the fluid-air heat exchanger may be regulated, is provided in the loop of the heat accumulator system.
14. The ventilation arrangement according to claim 9, wherein an industrial water accumulator, which is thermally coupled to the heat pump, is provided in parallel or in series to the condenser.
15. The ventilation arrangement according to claim 9, wherein the heat accumulator system has a geothermal collector, aerothermal collector, and/or a hydrothermal collector.
16. The ventilation arrangement according to claim 9, wherein a solar collector is provided, which is permeated by a collector flow that may be connected to the fluid-air heat exchanger and/or the combined fluid-air evaporator alternatively or in combination with the fluid circulating in the loop of the heat accumulator system.
17. The ventilation arrangement according to claim 9, wherein a third valve unit, through which the inflow of the combined fluid-air evaporator may be regulated, is provided in the loop of the heat accumulator system.
18. The ventilation arrangement according to claim 11, wherein the valve unit is a three-way valve.
19. The ventilation arrangement according to claim 9, wherein a flow deflection unit is provided in the flow direction upstream from the combined fluid-air evaporator, which may be switched into at least two positions, a first position in which the entire used air flow permeates the combined fluid-air evaporator, and a second position, in which the entire used air flow is conducted past the combined fluid-air evaporator through a bypass channel as an exhaust air flow.
20. The ventilation arrangement according to claim 9, wherein a flow deflection unit is provided connected upstream in the flow direction from the combined fluid-air evaporator, which conducts the used air flow in a variably adjustable or a fixed predefined quantity ratio through the combined fluid-air evaporator and/or through a bypass channel past the combined fluid-air evaporator.
21. The ventilation arrangement according to claim 19, wherein the flow deflection unit is implemented as a flow flap.
22. The ventilation arrangement according to claim 19, wherein the flow deflection unit is implemented as a valve.
23. The ventilation arrangement according to claim 12, wherein the heat pump provides an expanded refrigerant loop, which is thermally coupled to the fluid-air heat exchanger.
US10/553,864 2003-04-23 2003-12-23 Combined Fluid-Air Evaporator And Novel Switching Concept For A Heat Pump In A Ventilating Apparatus Abandoned US20070209780A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10318457 2003-04-23
DE10318457.0 2003-04-23
PCT/EP2003/014836 WO2004094921A1 (en) 2003-04-23 2003-12-23 Combined fluid-air evaporator and novel switching concept for a heat pump in a ventilating apparatus

Publications (1)

Publication Number Publication Date
US20070209780A1 true US20070209780A1 (en) 2007-09-13

Family

ID=33304893

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/553,864 Abandoned US20070209780A1 (en) 2003-04-23 2003-12-23 Combined Fluid-Air Evaporator And Novel Switching Concept For A Heat Pump In A Ventilating Apparatus

Country Status (5)

Country Link
US (1) US20070209780A1 (en)
EP (1) EP1616133B1 (en)
AT (1) ATE412149T1 (en)
DE (1) DE50310683D1 (en)
WO (1) WO2004094921A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090252845A1 (en) * 2008-04-03 2009-10-08 Southwick Kenneth J Collider chamber apparatus and method of use
US20100187320A1 (en) * 2009-01-29 2010-07-29 Southwick Kenneth J Methods and systems for recovering and redistributing heat
US20100197215A1 (en) * 2007-03-23 2010-08-05 Viridian Concepts Ltd. Air flow in enclosed spaces
US20100288380A1 (en) * 2007-11-27 2010-11-18 Benoit Sicre Fluid distribution element for a fluid-conducting device, in particular for multichannel-like fluid-conducting appliances which are nested in each other
US20110149676A1 (en) * 2009-10-09 2011-06-23 Southwick Kenneth J Methods of and Systems for Introducing Acoustic Energy into a Fluid in a Collider Chamber Apparatus
DE102006007845B4 (en) 2006-02-17 2014-08-21 Menerga Gmbh Plant for heating a hall such as a swimming pool
US9188347B1 (en) 2012-09-01 2015-11-17 Home Energy Technologies, Inc. Remote distance transporting and integrating heat ejection connected to central heating ductwork (auxiliary heat ejectors)
EP3117906A1 (en) * 2015-07-17 2017-01-18 Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Spray booth with heat recovery
EP3745042A1 (en) * 2019-05-28 2020-12-02 C&M Holding B.V. Ventilation climate system and method for controlling a ventilation climate system
NL2023221B1 (en) * 2019-05-28 2020-12-07 C&M Holding B V Ventilation climate system and method for controlling a ventilation climate system

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006007848B4 (en) 2006-02-17 2022-03-17 Menerga Gmbh Installation for heating a facility such as a hall at a high temperature level that needs to be dehumidified, in particular a swimming pool hall
PT103572A (en) * 2006-09-27 2008-03-31 Univ Do Porto AIR TREATMENT, DEHUMIDIFICATION AND HEATING ENERGY EFFICIENT UNIT
DE102007041041B4 (en) * 2007-08-29 2015-07-16 Stiebel Eltron Gmbh & Co. Kg System for ventilating / heating rooms
NL1035438C2 (en) * 2008-05-19 2009-11-20 Kea Consult B V Air treatment system for room in building, has heat exchanger provided for heating air introduced into building, where heat exchanger is connected to cold-storage in floor of building
PL386661A1 (en) * 2008-12-02 2010-06-07 Krzysztof Tabędzki Method and system for thermal treatment of ventilation air
DE202009007774U1 (en) 2009-06-03 2009-10-08 Gerngroß, Gertraud Multifunctional heat pump for combining one or more heat sources by indirect or direct evaporation
AT510604B1 (en) * 2010-10-22 2012-05-15 Drexel Und Weiss Energieeffiziente Haustechniksyst METHOD FOR OPERATING A VENTILATION DEVICE
DE102017003355A1 (en) * 2017-04-06 2018-10-11 Stiebel Eltron Gmbh & Co. Kg heat pump system
FI128644B (en) * 2018-05-23 2020-09-30 At Air Oy Air treatment equipment, method for operating an air treatment equipment, and method for restoring an air treatment equipment
DE102020105044B3 (en) * 2020-02-26 2021-03-25 Helmut Klaus Gerhard Schwieterka Decentralized device for air conditioning and ventilation of individual interiors and system for air conditioning of interiors

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5291182A (en) * 1991-09-24 1994-03-01 Brian Wiseman Fluid flow direction detector
US5898995A (en) * 1997-09-24 1999-05-04 General Motors Corporation Method of manufacture of a primary heat exchanger jacketed by a secondary heat exchanger
US6347527B1 (en) * 1997-12-02 2002-02-19 Louis J. Bailey Integrated system for heating, cooling and heat recovery ventilation
US6355091B1 (en) * 2000-03-06 2002-03-12 Honeywell International Inc. Ventilating dehumidifying system using a wheel for both heat recovery and dehumidification
US6405793B1 (en) * 2000-05-03 2002-06-18 Delphi Technologies, Inc. Secondary loop system for passenger compartment heating and cooling
US20050061311A1 (en) * 2001-12-01 2005-03-24 Christensen Hans Jorgen Solar collector panel for heating ventilation air

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA805477B (en) * 1979-09-26 1981-08-26 Curtiss Wright Corp Heat exchange cooling system
DE3006318C2 (en) * 1980-02-20 1986-08-07 MLL Maximal Lärmschutz-Lüftungen GmbH Ventilation device
EP0938638A1 (en) * 1997-09-08 1999-09-01 Bionic Geotherm Systeme AG I.G. Suction and filtering system to obtain and process fresh air
DE19909286A1 (en) * 1999-03-03 2000-09-07 Behr Gmbh & Co Heating or air conditioning system for motor vehicle has cooling and refrigeration circuits, heat exchanger for transferring heat, heating arrangement for separate heating of coolant
DE10058273A1 (en) * 2000-11-23 2002-05-29 Woelfle Gmbh Ventilator comprises heat pump unit, service and drinking water accumulator, heating water accumulator, electric heater, heat exchanger, closeable connections.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5291182A (en) * 1991-09-24 1994-03-01 Brian Wiseman Fluid flow direction detector
US5898995A (en) * 1997-09-24 1999-05-04 General Motors Corporation Method of manufacture of a primary heat exchanger jacketed by a secondary heat exchanger
US6347527B1 (en) * 1997-12-02 2002-02-19 Louis J. Bailey Integrated system for heating, cooling and heat recovery ventilation
US6355091B1 (en) * 2000-03-06 2002-03-12 Honeywell International Inc. Ventilating dehumidifying system using a wheel for both heat recovery and dehumidification
US6405793B1 (en) * 2000-05-03 2002-06-18 Delphi Technologies, Inc. Secondary loop system for passenger compartment heating and cooling
US20050061311A1 (en) * 2001-12-01 2005-03-24 Christensen Hans Jorgen Solar collector panel for heating ventilation air

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006007845B4 (en) 2006-02-17 2014-08-21 Menerga Gmbh Plant for heating a hall such as a swimming pool
US20100197215A1 (en) * 2007-03-23 2010-08-05 Viridian Concepts Ltd. Air flow in enclosed spaces
US20100288380A1 (en) * 2007-11-27 2010-11-18 Benoit Sicre Fluid distribution element for a fluid-conducting device, in particular for multichannel-like fluid-conducting appliances which are nested in each other
US20090252845A1 (en) * 2008-04-03 2009-10-08 Southwick Kenneth J Collider chamber apparatus and method of use
US20100187320A1 (en) * 2009-01-29 2010-07-29 Southwick Kenneth J Methods and systems for recovering and redistributing heat
US20110149676A1 (en) * 2009-10-09 2011-06-23 Southwick Kenneth J Methods of and Systems for Introducing Acoustic Energy into a Fluid in a Collider Chamber Apparatus
US9188347B1 (en) 2012-09-01 2015-11-17 Home Energy Technologies, Inc. Remote distance transporting and integrating heat ejection connected to central heating ductwork (auxiliary heat ejectors)
EP3117906A1 (en) * 2015-07-17 2017-01-18 Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Spray booth with heat recovery
EP3745042A1 (en) * 2019-05-28 2020-12-02 C&M Holding B.V. Ventilation climate system and method for controlling a ventilation climate system
NL2023221B1 (en) * 2019-05-28 2020-12-07 C&M Holding B V Ventilation climate system and method for controlling a ventilation climate system

Also Published As

Publication number Publication date
WO2004094921A1 (en) 2004-11-04
ATE412149T1 (en) 2008-11-15
EP1616133B1 (en) 2008-10-22
DE50310683D1 (en) 2008-12-04
EP1616133A1 (en) 2006-01-18

Similar Documents

Publication Publication Date Title
US20070209780A1 (en) Combined Fluid-Air Evaporator And Novel Switching Concept For A Heat Pump In A Ventilating Apparatus
US7430878B2 (en) Air conditioning system and methods
CN102770715B (en) Air conditioner
US20200173671A1 (en) Liquid desiccant air-conditioning systems using antifreeze-free heat transfer fluids
US20140083648A1 (en) Dedicated outdoor air system with pre-heating and method for same
CN102753914B (en) Air conditioner and air-conditioning hot-water-supplying system
JP2009511848A (en) Phase change material heat exchanger
WO2018011071A1 (en) Heat pump apparatus module
JP3800210B2 (en) Water source heat pump unit
EP2489965A1 (en) Air-conditioning hot-water supply system
CN102483273A (en) Air conditioning device
JP4182494B2 (en) Large temperature difference air conditioning system
US10429102B2 (en) Two phase loop distributed HVACandR system
CN104823002A (en) Air conditioning device
US20090145149A1 (en) Hot water supply and air conditioning system using co2 heat pump
CN112460696A (en) Temperature and humidity independent control air conditioning system
CN104813112A (en) Air conditioning device
WO2012035573A1 (en) Air-conditioning device
US20160178219A1 (en) Combined hot water and space heating and conditioning system including heat pump
CN101163929B (en) Recuperative climate conditioning system
CN102753896B (en) Conditioner
RU2319078C2 (en) System of air conditioning for spaces
KR100954015B1 (en) HVAC for Bus
KR100946381B1 (en) Hybrid heat pump type cooling and heating apparatus
JP4419475B2 (en) Heating system and housing

Legal Events

Date Code Title Description
AS Assignment

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BICHLER, CHRISTIAN;BUHRING, ANDREAS;REEL/FRAME:018005/0598

Effective date: 20051212

AS Assignment

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWAND

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE DATE OF EXECUTION BY ASSIGNORS PREVIOUSLY RECORDED ON REEL 018005 FRAME 0598;ASSIGNORS:BICHLER, CHRISTIAN;BUHRING, ANDREAS;REEL/FRAME:019788/0844

Effective date: 20051215

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION