EP2212524A1 - Système de cycle de rankine organique (orc) en cascade utilisant de la chaleur résiduelle d'un moteur alternatif - Google Patents
Système de cycle de rankine organique (orc) en cascade utilisant de la chaleur résiduelle d'un moteur alternatifInfo
- Publication number
- EP2212524A1 EP2212524A1 EP07873010A EP07873010A EP2212524A1 EP 2212524 A1 EP2212524 A1 EP 2212524A1 EP 07873010 A EP07873010 A EP 07873010A EP 07873010 A EP07873010 A EP 07873010A EP 2212524 A1 EP2212524 A1 EP 2212524A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- working fluid
- organic working
- orc
- waste heat
- organic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000002918 waste heat Substances 0.000 title claims abstract description 53
- 239000012530 fluid Substances 0.000 claims abstract description 153
- 239000000498 cooling water Substances 0.000 claims abstract description 24
- 238000000034 method Methods 0.000 claims abstract description 22
- 239000007789 gas Substances 0.000 claims abstract description 19
- 238000006073 displacement reaction Methods 0.000 claims abstract description 12
- 230000008016 vaporization Effects 0.000 claims abstract description 11
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 15
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 10
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 claims description 10
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 claims description 8
- 238000011084 recovery Methods 0.000 claims description 8
- MSSNHSVIGIHOJA-UHFFFAOYSA-N pentafluoropropane Chemical compound FC(F)CC(F)(F)F MSSNHSVIGIHOJA-UHFFFAOYSA-N 0.000 claims description 6
- -1 siloxanes Chemical class 0.000 claims description 6
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 claims description 5
- 238000011144 upstream manufacturing Methods 0.000 claims description 3
- 239000008236 heating water Substances 0.000 claims description 2
- 238000009834 vaporization Methods 0.000 abstract description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000009833 condensation Methods 0.000 description 5
- 230000005494 condensation Effects 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000012080 ambient air Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000003570 air Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- YFCGDEUVHLPRCZ-UHFFFAOYSA-N [dimethyl(trimethylsilyloxy)silyl]oxy-dimethyl-trimethylsilyloxysilane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C YFCGDEUVHLPRCZ-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- UQEAIHBTYFGYIE-UHFFFAOYSA-N hexamethyldisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)C UQEAIHBTYFGYIE-UHFFFAOYSA-N 0.000 description 1
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02G—HOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
- F02G5/00—Profiting from waste heat of combustion engines, not otherwise provided for
- F02G5/02—Profiting from waste heat of exhaust gases
- F02G5/04—Profiting from waste heat of exhaust gases in combination with other waste heat from combustion engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
- F01K23/065—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/08—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02G—HOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
- F02G2262/00—Recuperating heat from exhaust gases of combustion engines and heat from lubrication circuits
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/14—Combined heat and power generation [CHP]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present disclosure relates to an organic Rankine cycle (ORC) system.
- the present disclosure relates to operating a cascaded ORC system using two waste heat sources from a reciprocating engine.
- Rankine cycle systems are commonly used for generating electrical power.
- the Rankine cycle system includes an evaporator or a boiler for evaporation of a motive fluid, a turbine that receives the vapor from the evaporator to drive a generator, a condenser for condensing the vapor, and a pump or other means for recycling the condensed fluid to the evaporator.
- the motive fluid in Rankine cycle systems is often water, and the turbine is thus driven by steam.
- An organic Rankine cycle (ORC) system operates similarly to a traditional Rankine cycle, except that an ORC system uses an organic fluid, instead of water, as the motive fluid.
- the ORC system uses a waste heat source to provide heat to vaporize the organic fluid in the evaporator.
- a reciprocating engine is a common source of waste heat for an ORC system.
- Usable waste heat from the reciprocating engine may include exhaust gas at temperatures near approximately 540 degrees Celsius (approximately 1000 degrees Fahrenheit), as well as cooling water at approximately 105 degrees Celsius (approximately 220 degrees Fahrenheit). Challenges arise in trying to use both of the waste heat sources from the reciprocating engine, particularly given the temperature difference between them. As such, the exhaust gas is typically preferred over the cooling water, given the potential for greater heat transfer.
- the ORC system To effectively utilize the high-temperature exhaust heat from the reciprocating engine, the ORC system typically uses an organic fluid with a high critical temperature, allowing boiling at elevated temperatures. However, expanding an organic fluid with a single turbine over a large pressure ratio causes the vapor exiting the turbine to be more superheated, thus limiting the amount of power captured by the turbine. The highly superheated fluid exiting the turbine may also require special condensation equipment. [0005] There is a need for an improved method and system of recovering waste heat from a reciprocating engine in order to increase efficiency of the reciprocating engine and the ORC system.
- a method and system for operating a cascaded organic Rankine cycle (ORC) system utilizes two waste heat sources from a positive-displacement engine, resulting in increased efficiency of the engine and the cascaded ORC system.
- a high temperature waste heat source from the positive-displacement engine is used in a first ORC system to vaporize a first working fluid.
- a low temperature waste heat source from the positive-displacement engine is used in a second ORC system to heat a second working fluid to a temperature less than the vaporization temperature.
- the second working fluid is then vaporized using heat from the first working fluid.
- the first working fluid has a higher critical temperature than the second working fluid.
- the positive-displacement engine is a reciprocating engine and the waste heat sources are exhaust gas and jacket cooling water.
- FIG. 1 is a schematic of an organic Rankine cycle (ORC) system designed to produce electrical power using waste heat.
- FIG. 2 is a schematic of a cascaded ORC system with a first ORC system and a second ORC system, designed to utilize two waste heat sources from a reciprocating engine.
- FIG. 3 is a T-s diagram for the cascaded ORC system of FIG. 2.
- a waste heat recovery system such as an organic Rankine cycle (ORC) system
- ORC organic Rankine cycle
- a reciprocating engine has two sources of waste heat that may be recoverable by the ORC system - exhaust gas (high temperature) and cooling water (low temperature).
- high temperature high temperature
- cooling water low temperature
- a first ORC system utilizes a high temperature working fluid to power a generator
- a second ORC system utilizes a low temperature working fluid to power a second generator.
- the first ORC system recovers heat from the exhaust gas of the reciprocating engine.
- the second ORC system recovers heat from the cooling water of the reciprocating engine, as well as the heat of condensation from the high temperature working fluid of the first ORC system.
- the cascaded ORC system and method described herein utilizes more of the waste heat from the reciprocating engine, and thus generates a greater amount of power per unit of waste heat from the reciprocating engine.
- FIG. 1 is a schematic of a single ORC system 10, which includes condenser
- Working fluid 22 circulates through system 10 and is used to generate electrical power. Liquid working fluid 22a from condenser 12 passes through pump 14, resulting in an increase in pressure. High pressure liquid fluid 22a enters evaporator 16, which utilizes heat source 24 to vaporize fluid 22. Heat source 24 may include, but is not limited to, any type of waste heat resource, including reciprocating engines, fuel cells, and microturbines, and other types of heat sources such as solar, geothermal or waste gas.
- Working fluid 22 exits evaporator 16 as a vapor (22b), at which point it passes into turbine 18. Vaporized working fluid 22b is used to drive turbine 18, which in turn powers generator 28 such that generator 28 produces electrical power.
- Vaporized working fluid 22b exiting turbine 18 is returned to condenser 12, where it is condensed back to liquid 22a.
- Heat sink 30 is used to provide cooling to condenser 12.
- working fluid 22 is preferably a high temperature fluid having a high critical temperature. In that case, heat source 24 is able to transfer sufficient heat to the working fluid, while maintaining the working fluid below the critical temperature in evaporator 16.
- a disadvantage of such a high temperature working fluid is that when it exits turbine 18, it is highly superheated. At least a portion of the heat from the superheated vapor is not converted into power, and thus turbine 18 has a low efficiency.
- the high temperature working fluid requires additional cooling in condenser 12, resulting in expensive equipment and typically a large amount of unrecoverable waste heat from the working fluid.
- heat source 24 is a low temperature heat source
- a low temperature working fluid may be used within system 10.
- ORC system 10 In the scenario in which heat source 24 is waste heat from a reciprocating engine, ORC system 10 typically uses either the exhaust gas (i.e. high temperature waste heat) or the jacket cooling water (i.e. low temperature waste heat), since it is difficult to use both. As such, some of the waste heat from the reciprocating engine is unrecoverable by ORC system 10.
- FIG. 2 is a schematic of cascaded ORC system 100 having first ORC system 102 and second ORC system 104, both of which recover waste heat from reciprocating engine 106.
- First ORC system 102 is similar to ORC system 10 of FIG. 1 and includes evaporator 110, turbine 112, condenser 114, and pump 116.
- First working fluid 118 is circulated through system 102 and used to drive turbine 112, which enables generator 120 to produce electrical power.
- Second ORC system 104 includes turbine 122, condenser 124, pump 126, heat exchanger 128, and evaporator 114.
- Second working fluid 130 is used in second ORC system 104 to drive turbine 122, which powers generator 132.
- Condenser 124 of second ORC system 104 uses heat sink 134 to provide cooling and condense vaporized working fluid 130 from turbine 122.
- Heat sink 134 may be water or air, and in some cases, heat sink 134 may be used to provide useful heating to an external source, as discussed further below.
- First working fluid 118 and second working fluid 130 are organic working fluids, examples of which are provided below.
- Condenser 114 of first ORC system 102 also functions as the evaporator of second ORC system 104.
- first working fluid 1 18 is a high temperature working fluid and second working fluid 130 is a low temperature working fluid.
- evaporator/condenser 114 is configured such that vaporized working fluid 1 18 from turbine 112 is condensed, thereby transferring heat to vaporize second working fluid 130.
- Reciprocating engine 106 has two sources of waste heat recoverable by system 100.
- the first source is exhaust gas ranging in temperature from approximately 475 to 540 degrees Celsius (approximately 885 to 1005 degrees Fahrenheit).
- the second source is jacket cooling water with a temperature range of approximately 100 to 1 10 degrees Celsius (approximately 212 to 230 degrees Fahrenheit). Heat from the exhaust gas is used by first ORC system 102. More specifically, exhaust gas is used by evaporator 1 10 to vaporize working fluid 1 18.
- Second ORC system 104 receives heat from the jacket cooling water. Heat exchanger 128 of system 104 is located between pump 126 and evaporator 1 14, and is designed to transfer heat from the jacket cooling water to liquid working fluid 130.
- jacket cooling water is a lower temperature waste heat source, as compared to the exhaust gas, the jacket cooling water is used to heat working fluid 130 to a temperature that is less than its vaporization temperature.
- working fluid 130 has a higher temperature at an outlet of heat exchanger 128 compared to its temperature at an inlet of heat exchanger 128.
- the jacket cooling water may be recycled back to reciprocating engine 106 after exiting heat exchanger 128.
- second working fluid 130 After passing through heat exchanger 128, second working fluid 130 passes through condenser/evaporator 114, which is designed to transfer heat between first working fluid 118 and second working fluid 130, such that first working fluid 118 condenses to a liquid and second working fluid 130 is vaporized.
- First working fluid 1 18 preferably has a condensation temperature that is suitable to boil second working fluid 130.
- Second working fluid 130 passes from evaporator 1 14 to turbine 122, and then to condenser 124, which may be a water-cooled condenser or an air-cooled condenser (i.e. heat sink 134 is water or air).
- heat sink 134 is water or air.
- the heated water may be used to provide heating to a source external to cascaded ORC system 100.
- heat sink 134 may be used to heat district heating water and/or provide environmental heating, for example, to agricultural crops or greenhouses.
- cascaded ORC system 100 it is possible to utilize essentially all of the waste heat from reciprocating engine 106.
- the high temperature waste heat source (the exhaust gas) is recovered by ORC system 102 which utilizes a high temperature working fluid.
- the low temperature waste heat source (the jacket cooling water) is recovered by ORC system 104, which utilizes a low temperature working fluid.
- the design of cascaded ORC system 100 results in greater efficiency overall since the heat from first working fluid 1 18 exiting turbine 112 may be transferred to second working fluid 130.
- An efficiency of second ORC system 104 is increased by preheating second working fluid 130 in heat exchanger 128.
- First working fluid 118 has a higher critical temperature than second working fluid 130. Because exhaust gas from reciprocating engine 106 is used in evaporator 1 10 to vaporize first working fluid 1 18, working fluid 1 18 preferably has a high critical temperature such that it is able to boil at a high temperature inside evaporator 1 10. Operating with the working fluid in the supercritical phase presents technical challenges that are preferably avoided by remaining below the critical temperature.
- second ORC system 104 uses lower temperature heat sources (i.e.
- siloxanes that are suitable for first working fluid 1 18 include, but are not limited to, MM hexamethyldisiloxane (C 6 H I gOSi 2 ), MDM octamefhyltrisiloxane (C 8 H 24 O 2 Si 3 ), and MD2M decamethyltetrasiloxane (C 10 H 3O O 3 Si 4 ).
- siloxanes may be preferred over toluene, isobutene, isopentane, and n- pentene, which are flammable.
- Second working fluid 130 may include, but is not limited to, Rl 23, Rl 34a,
- R236fa and R245fa are used in ORC system 104. If an ambient air temperature is cooler, thereby reducing a temperature of heat sink 34, then Rl 34 may be preferred; if the ambient air temperature is warmer, then R245fa may be preferred.
- first working fluid 118 and second working fluid 130 may include organic working fluids not listed above. Numerous combinations of first working fluid 1 18 and second working fluid 130 may be used. As stated above, cascaded ORC system 100 is preferably operated with first working fluid 118 having a higher critical temperature than second working fluid 130.
- FIG. 3 is a T-s diagram for cascaded ORC system 100 of FIG. 2.
- temperature T is plotted as a function of entropy S.
- FIG. 3 illustrates the thermal energy transfer from the exhaust gas of reciprocating engine 106 to first working fluid 118, and from the jacket cooling water of engine 106 to second working fluid 130.
- first working fluid 1 18 transfers heat to second working fluid 130, and second working fluid 130 then transfers heat to heat sink 134.
- Heat from the exhaust gas of reciprocating engine 106 is transferred to first working fluid 118, which increases a temperature of working fluid 118 until fluid 118 reaches its vaporization temperature, as shown in FIG. 3.
- Fluid 118 remains below the critical temperature Ti c ri t i cal - As vaporized fluid 118 expands in turbine 112, its temperature decreases, however fluid 118 remains in the vapor phase.
- condenser 114 which also functions as an evaporator for second ORC system 104, fluid 118 is desuperheated until it reaches its condensation temperature. The heat from fluid 118 is transferred to second working fluid 130 in condenser/evaporator 114. The temperature of fluid 130 remains below the critical temperature T 2 critical- [0029] Heat from first working fluid 118 is sufficient to vaporize second working fluid 130 inside condenser/evaporator 114.
- second working fluid 130 upstream of condenser/evaporator 114.
- jacket cooling water from reciprocating engine 106 is used to increase a temperature of working fluid 130 to a temperature below the vaporization temperature.
- second working fluid 130 shows a decrease in temperature after passing through turbine 122.
- superheated fluid 130 is condensed inside condenser/heater 124 using ambient air or cooling water from heat sink 134.
- heat from second working fluid 130 is transferred to heat sink 34, as shown in FIG. 3.
- heat sink 34 in some embodiments, may be used to provide heating to an external source, such as, for example, a greenhouse.
- cascaded ORC system 100 uses two waste heat sources from a reciprocating engine.
- the low temperature heat source is jacket cooling water.
- other types of positive-displacement engines, in addition to reciprocating engines, that require cooling water during engine operation may also be used to supply waste heat to system 100. This may include, but is not limited to, rotary engines, such as, for example, the Wankel engine.
- the cascaded ORC system described herein uses two distinct waste heat sources from a reciprocating engine. Since two ORC systems are used, the cascaded ORC system generates additional power. Because there is no change in the emission levels of the reciprocating engine, the cascaded ORC system results in a reduction in emissions from the reciprocating engine per unit of power generated. Moreover, the cascaded ORC system described herein reduces any waste heat from the first and second ORC systems. Thus, the method and system described herein results in improved efficiency of the reciprocating engine and each of the ORC systems.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2007/021318 WO2009045196A1 (fr) | 2007-10-04 | 2007-10-04 | Système de cycle de rankine organique (orc) en cascade utilisant de la chaleur résiduelle d'un moteur alternatif |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2212524A1 true EP2212524A1 (fr) | 2010-08-04 |
EP2212524A4 EP2212524A4 (fr) | 2012-04-18 |
Family
ID=40526480
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07873010A Withdrawn EP2212524A4 (fr) | 2007-10-04 | 2007-10-04 | Système de cycle de rankine organique (orc) en cascade utilisant de la chaleur résiduelle d'un moteur alternatif |
Country Status (4)
Country | Link |
---|---|
US (1) | US20100263380A1 (fr) |
EP (1) | EP2212524A4 (fr) |
JP (1) | JP2010540837A (fr) |
WO (1) | WO2009045196A1 (fr) |
Families Citing this family (115)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8561405B2 (en) | 2007-06-29 | 2013-10-22 | General Electric Company | System and method for recovering waste heat |
US8776517B2 (en) | 2008-03-31 | 2014-07-15 | Cummins Intellectual Properties, Inc. | Emissions-critical charge cooling using an organic rankine cycle |
US7866157B2 (en) | 2008-05-12 | 2011-01-11 | Cummins Inc. | Waste heat recovery system with constant power output |
US8522552B2 (en) * | 2009-02-20 | 2013-09-03 | American Thermal Power, Llc | Thermodynamic power generation system |
US20100212316A1 (en) * | 2009-02-20 | 2010-08-26 | Robert Waterstripe | Thermodynamic power generation system |
US8616323B1 (en) | 2009-03-11 | 2013-12-31 | Echogen Power Systems | Hybrid power systems |
US20100242479A1 (en) * | 2009-03-30 | 2010-09-30 | General Electric Company | Tri-generation system using cascading organic rankine cycle |
WO2010121255A1 (fr) | 2009-04-17 | 2010-10-21 | Echogen Power Systems | Système et procédé pour gérer des problèmes thermiques dans des moteurs à turbine à gaz |
US20100263842A1 (en) * | 2009-04-17 | 2010-10-21 | General Electric Company | Heat exchanger with surface-treated substrate |
DE102009020268B4 (de) * | 2009-05-07 | 2011-05-26 | Siemens Aktiengesellschaft | Verfahren zur Erzeugung elektrischer Energie sowie Verwendung eines Arbeitsmittels |
US8850814B2 (en) | 2009-06-11 | 2014-10-07 | Ormat Technologies, Inc. | Waste heat recovery system |
BRPI1011938B1 (pt) | 2009-06-22 | 2020-12-01 | Echogen Power Systems, Inc | sistema e método para gerenciar problemas térmicos em um ou mais processos industriais. |
US20100319346A1 (en) * | 2009-06-23 | 2010-12-23 | General Electric Company | System for recovering waste heat |
US8544274B2 (en) * | 2009-07-23 | 2013-10-01 | Cummins Intellectual Properties, Inc. | Energy recovery system using an organic rankine cycle |
CN101988397A (zh) * | 2009-07-31 | 2011-03-23 | 王世英 | 一种低品位热流原动机、发电系统及其方法 |
US9316404B2 (en) | 2009-08-04 | 2016-04-19 | Echogen Power Systems, Llc | Heat pump with integral solar collector |
US8627663B2 (en) | 2009-09-02 | 2014-01-14 | Cummins Intellectual Properties, Inc. | Energy recovery system and method using an organic rankine cycle with condenser pressure regulation |
US8869531B2 (en) | 2009-09-17 | 2014-10-28 | Echogen Power Systems, Llc | Heat engines with cascade cycles |
US8794002B2 (en) | 2009-09-17 | 2014-08-05 | Echogen Power Systems | Thermal energy conversion method |
US8813497B2 (en) | 2009-09-17 | 2014-08-26 | Echogen Power Systems, Llc | Automated mass management control |
US8613195B2 (en) * | 2009-09-17 | 2013-12-24 | Echogen Power Systems, Llc | Heat engine and heat to electricity systems and methods with working fluid mass management control |
US20110094227A1 (en) * | 2009-10-27 | 2011-04-28 | General Electric Company | Waste Heat Recovery System |
WO2011119650A2 (fr) * | 2010-03-23 | 2011-09-29 | Echogen Power Systems, Llc | Moteurs thermiques avec cycles en cascade |
US20120000201A1 (en) * | 2010-06-30 | 2012-01-05 | General Electric Company | System and method for generating and storing transient integrated organic rankine cycle energy |
WO2012021539A2 (fr) | 2010-08-09 | 2012-02-16 | Cummins Intellectual Properties, Inc. | Système de récupération de la chaleur résiduelle destiné à re-capturer l'énergie après des systèmes de traitement secondaire de moteurs |
US9470115B2 (en) | 2010-08-11 | 2016-10-18 | Cummins Intellectual Property, Inc. | Split radiator design for heat rejection optimization for a waste heat recovery system |
US8683801B2 (en) | 2010-08-13 | 2014-04-01 | Cummins Intellectual Properties, Inc. | Rankine cycle condenser pressure control using an energy conversion device bypass valve |
US8474262B2 (en) | 2010-08-24 | 2013-07-02 | Yakov Regelman | Advanced tandem organic rankine cycle |
JP2012082750A (ja) * | 2010-10-12 | 2012-04-26 | Mitsubishi Heavy Ind Ltd | 排熱回収発電装置およびこれを備えた船舶 |
US8904791B2 (en) | 2010-11-19 | 2014-12-09 | General Electric Company | Rankine cycle integrated with organic rankine cycle and absorption chiller cycle |
US8857186B2 (en) | 2010-11-29 | 2014-10-14 | Echogen Power Systems, L.L.C. | Heat engine cycles for high ambient conditions |
US8616001B2 (en) | 2010-11-29 | 2013-12-31 | Echogen Power Systems, Llc | Driven starter pump and start sequence |
US8783034B2 (en) | 2011-11-07 | 2014-07-22 | Echogen Power Systems, Llc | Hot day cycle |
DE112011104516B4 (de) | 2010-12-23 | 2017-01-19 | Cummins Intellectual Property, Inc. | System und Verfahren zur Regulierung einer EGR-Kühlung unter Verwendung eines Rankine-Kreisprozesses |
US8826662B2 (en) | 2010-12-23 | 2014-09-09 | Cummins Intellectual Property, Inc. | Rankine cycle system and method |
DE102012000100A1 (de) | 2011-01-06 | 2012-07-12 | Cummins Intellectual Property, Inc. | Rankine-kreisprozess-abwärmenutzungssystem |
US9021808B2 (en) | 2011-01-10 | 2015-05-05 | Cummins Intellectual Property, Inc. | Rankine cycle waste heat recovery system |
EP3214296B1 (fr) | 2011-01-20 | 2018-09-12 | Cummins Intellectual Properties, Inc. | Système récupérateur de chaleur résiduelle à cycle de rankine et procédé de régulation de température de rge améliorée |
US8707914B2 (en) | 2011-02-28 | 2014-04-29 | Cummins Intellectual Property, Inc. | Engine having integrated waste heat recovery |
US8650879B2 (en) * | 2011-04-20 | 2014-02-18 | General Electric Company | Integration of waste heat from charge air cooling into a cascaded organic rankine cycle system |
ITMI20110684A1 (it) * | 2011-04-21 | 2012-10-22 | Exergy Orc S R L | Impianto e processo per la produzione di energia tramite ciclo rankine organico |
KR102054779B1 (ko) * | 2011-08-19 | 2019-12-11 | 더 케무어스 컴퍼니 에프씨, 엘엘씨 | 열로부터 기계적 에너지를 발생시키기 위한 유기 랭킨 사이클용 방법 및 그 조성물 |
WO2013042142A1 (fr) * | 2011-09-19 | 2013-03-28 | Ing Enea Mattei S.P.A. | Unité de récupération d'énergie et de compression |
US9062898B2 (en) | 2011-10-03 | 2015-06-23 | Echogen Power Systems, Llc | Carbon dioxide refrigeration cycle |
DE102011054584A1 (de) | 2011-10-18 | 2013-04-18 | Frank Ricken | Verfahren und Vorrichtung zur Bereitstellung von Strom |
US20130160449A1 (en) * | 2011-12-22 | 2013-06-27 | Frederick J. Cogswell | Cascaded organic rankine cycle system |
US8984884B2 (en) * | 2012-01-04 | 2015-03-24 | General Electric Company | Waste heat recovery systems |
US9024460B2 (en) | 2012-01-04 | 2015-05-05 | General Electric Company | Waste heat recovery system generator encapsulation |
US9018778B2 (en) | 2012-01-04 | 2015-04-28 | General Electric Company | Waste heat recovery system generator varnishing |
WO2013116861A1 (fr) * | 2012-02-02 | 2013-08-08 | Electratherm, Inc. | Utilisation de chaleur améliorée dans des systèmes orc |
US10247045B2 (en) * | 2012-02-02 | 2019-04-02 | Bitxer US, Inc. | Heat utilization in ORC systems |
FR2988814B1 (fr) * | 2012-03-28 | 2017-12-01 | Ifp Energies Now | Methode de mutualisation de l'energie thermique et systeme de boucle d'echange thermique entre sites industriels et tertiaires |
US8754569B2 (en) * | 2012-03-28 | 2014-06-17 | Delta Electronics, Inc. | Thermo-magnetic power generation system |
EP2653669A1 (fr) * | 2012-04-16 | 2013-10-23 | Shizhu Wang | Dispositif de distribution d'énergie électrique et procédé connecté |
EP2653670A1 (fr) * | 2012-04-17 | 2013-10-23 | Siemens Aktiengesellschaft | Installation de stockage et de répartition d'énergie thermique avec un accumulateur thermique et un accumulateur de froid et leur procédé de fonctionnement |
CA2778101A1 (fr) * | 2012-05-24 | 2013-11-24 | Jean Pierre Hofman | Generation d'energie par differentiel de pression |
US8893495B2 (en) | 2012-07-16 | 2014-11-25 | Cummins Intellectual Property, Inc. | Reversible waste heat recovery system and method |
US9322300B2 (en) * | 2012-07-24 | 2016-04-26 | Access Energy Llc | Thermal cycle energy and pumping recovery system |
US9115603B2 (en) | 2012-07-24 | 2015-08-25 | Electratherm, Inc. | Multiple organic Rankine cycle system and method |
US9091278B2 (en) | 2012-08-20 | 2015-07-28 | Echogen Power Systems, Llc | Supercritical working fluid circuit with a turbo pump and a start pump in series configuration |
DE102012217339A1 (de) * | 2012-09-25 | 2014-03-27 | Duerr Cyplan Ltd. | Netzwerk für das Transportieren von Wärme |
WO2014051174A1 (fr) * | 2012-09-27 | 2014-04-03 | 볼보 컨스트럭션 이큅먼트 에이비 | Dispositif de production d'énergie électrique pour engins de chantier hybrides, ledit dispositif faisant appel à une chaleur résiduelle de moteur |
FI20126065A (fi) * | 2012-10-11 | 2013-12-02 | Waertsilae Finland Oy | Jäähdytysjärjestely kombimäntämoottorivoimalaitosta varten |
US9341084B2 (en) | 2012-10-12 | 2016-05-17 | Echogen Power Systems, Llc | Supercritical carbon dioxide power cycle for waste heat recovery |
US9118226B2 (en) | 2012-10-12 | 2015-08-25 | Echogen Power Systems, Llc | Heat engine system with a supercritical working fluid and processes thereof |
US9708973B2 (en) | 2012-10-24 | 2017-07-18 | General Electric Company | Integrated reformer and waste heat recovery system for power generation |
US9140209B2 (en) | 2012-11-16 | 2015-09-22 | Cummins Inc. | Rankine cycle waste heat recovery system |
CN103075213B (zh) * | 2013-01-27 | 2015-06-10 | 南京瑞柯徕姆环保科技有限公司 | 复叠式蒸汽朗肯联合循环发电装置 |
CN103075216B (zh) * | 2013-01-27 | 2015-03-04 | 南京瑞柯徕姆环保科技有限公司 | 布列顿-复叠式蒸汽朗肯联合循环发电装置 |
WO2014117068A1 (fr) | 2013-01-28 | 2014-07-31 | Echogen Power Systems, L.L.C. | Procédés permettant de réduire l'usure des composants d'un système de moteur thermique au démarrage |
US9752460B2 (en) | 2013-01-28 | 2017-09-05 | Echogen Power Systems, Llc | Process for controlling a power turbine throttle valve during a supercritical carbon dioxide rankine cycle |
WO2014123572A1 (fr) * | 2013-02-06 | 2014-08-14 | Volvo Truck Corporation | Procédé et appareil destinés à chauffer une machine de détente d'un appareil de récupération de chaleur perdue |
WO2014138035A1 (fr) | 2013-03-04 | 2014-09-12 | Echogen Power Systems, L.L.C. | Systèmes de moteur thermique possédant des circuits de dioxyde de carbone supercritique à haute énergie nette |
KR101395702B1 (ko) * | 2013-03-21 | 2014-05-19 | 주식회사 누리텍 | 용융탄산염형 연료전지용 유기 랭킨 사이클 |
US9540961B2 (en) | 2013-04-25 | 2017-01-10 | Access Energy Llc | Heat sources for thermal cycles |
US9845711B2 (en) | 2013-05-24 | 2017-12-19 | Cummins Inc. | Waste heat recovery system |
JP2015014222A (ja) * | 2013-07-04 | 2015-01-22 | 株式会社テイエルブイ | 蒸気タービン発電装置 |
CN104279013B (zh) * | 2013-07-08 | 2016-06-01 | 北京华航盛世能源技术有限公司 | 一种优化的有机朗肯循环低温余热发电系统 |
BE1021700B1 (nl) | 2013-07-09 | 2016-01-11 | P.T.I. | Inrichting voor energiebesparing |
CN103615310B (zh) * | 2013-12-09 | 2016-01-20 | 天津大学 | 内燃机冷却循环与排气能量回收orc的复合装置及控制方法 |
CN104712402B (zh) * | 2013-12-12 | 2017-04-05 | 霍特安热能技术(江苏)有限公司 | 利用发动机排气废热的有机朗肯循环发电系统 |
CN103670558B (zh) * | 2013-12-27 | 2015-09-02 | 天津大学 | 双压力多级膨胀再热的内燃机余热回收系统 |
DE102014201116B3 (de) * | 2014-01-22 | 2015-07-09 | Siemens Aktiengesellschaft | Vorrichtung und Verfahren für einen ORC-Kreisprozess |
JP6217426B2 (ja) * | 2014-02-07 | 2017-10-25 | いすゞ自動車株式会社 | 廃熱回収システム |
CN103982255B (zh) * | 2014-04-22 | 2015-08-19 | 浙江银轮机械股份有限公司 | 一种用于船舶主机废热发电orc系统 |
CN104165102A (zh) * | 2014-04-22 | 2014-11-26 | 浙江银轮机械股份有限公司 | 一种基于有机郎肯循环的发动机废热回收系统 |
US9874114B2 (en) * | 2014-07-17 | 2018-01-23 | Panasonic Intellectual Property Management Co., Ltd. | Cogenerating system |
JP6746566B2 (ja) | 2014-09-23 | 2020-08-26 | ザ ケマーズ カンパニー エフシー リミテッド ライアビリティ カンパニー | 高温熱ポンプ中における(2e)−1,1,1,4,5,5,5−ヘプタフルオロ−4−(トリフルオロメチル)ペンタ−2−エンの使用 |
ES2976304T3 (es) * | 2014-10-30 | 2024-07-29 | Chemours Co Fc Llc | Uso de (2E)-1,1,1,4,5,5,5-heptafluoro-4-(trifluorometil)pent-2-eno en ciclos de potencia |
KR20170077159A (ko) * | 2014-10-31 | 2017-07-05 | 수보드 베르마 | 증발 시의 잠열을 리사이클링하여 고효율 에너지 변환 사이클을 위한 시스템 |
US10570777B2 (en) | 2014-11-03 | 2020-02-25 | Echogen Power Systems, Llc | Active thrust management of a turbopump within a supercritical working fluid circuit in a heat engine system |
CN104929806A (zh) * | 2015-06-09 | 2015-09-23 | 同济大学 | 带有机朗肯循环余热回收发电的燃气内燃机热电联产系统 |
CN104895630A (zh) * | 2015-06-23 | 2015-09-09 | 天津大学 | 基于不同蒸发温度的多级有机朗肯循环发电系统 |
US9816401B2 (en) | 2015-08-24 | 2017-11-14 | Saudi Arabian Oil Company | Modified Goswami cycle based conversion of gas processing plant waste heat into power and cooling |
US9803511B2 (en) | 2015-08-24 | 2017-10-31 | Saudi Arabian Oil Company | Power generation using independent dual organic rankine cycles from waste heat systems in diesel hydrotreating-hydrocracking and atmospheric distillation-naphtha hydrotreating-aromatics facilities |
US9803505B2 (en) | 2015-08-24 | 2017-10-31 | Saudi Arabian Oil Company | Power generation from waste heat in integrated aromatics and naphtha block facilities |
US9803508B2 (en) | 2015-08-24 | 2017-10-31 | Saudi Arabian Oil Company | Power generation from waste heat in integrated crude oil diesel hydrotreating and aromatics facilities |
US9725652B2 (en) | 2015-08-24 | 2017-08-08 | Saudi Arabian Oil Company | Delayed coking plant combined heating and power generation |
US9803507B2 (en) | 2015-08-24 | 2017-10-31 | Saudi Arabian Oil Company | Power generation using independent dual organic Rankine cycles from waste heat systems in diesel hydrotreating-hydrocracking and continuous-catalytic-cracking-aromatics facilities |
US9803506B2 (en) | 2015-08-24 | 2017-10-31 | Saudi Arabian Oil Company | Power generation from waste heat in integrated crude oil hydrocracking and aromatics facilities |
US9745871B2 (en) | 2015-08-24 | 2017-08-29 | Saudi Arabian Oil Company | Kalina cycle based conversion of gas processing plant waste heat into power |
US9803513B2 (en) | 2015-08-24 | 2017-10-31 | Saudi Arabian Oil Company | Power generation from waste heat in integrated aromatics, crude distillation, and naphtha block facilities |
US9816759B2 (en) | 2015-08-24 | 2017-11-14 | Saudi Arabian Oil Company | Power generation using independent triple organic rankine cycles from waste heat in integrated crude oil refining and aromatics facilities |
KR102149133B1 (ko) * | 2015-09-24 | 2020-08-28 | 미쓰비시주코마린마시나리 가부시키가이샤 | 배열 회수 장치, 내연 기관 시스템과 선박 및 배열 회수 방법 |
GB2551818A (en) * | 2016-06-30 | 2018-01-03 | Bowman Power Group Ltd | A system and method for recovering energy |
US10883388B2 (en) | 2018-06-27 | 2021-01-05 | Echogen Power Systems Llc | Systems and methods for generating electricity via a pumped thermal energy storage system |
US10914266B2 (en) * | 2018-11-05 | 2021-02-09 | Volvo Car Corporation | Two stage compact evaporator for vehicle waste heat recovery system |
CA3097538C (fr) * | 2018-11-13 | 2021-04-27 | Lochterra Inc. | Systemes et procedes pour la capture de l'energie thermique, le transport a longue distance, le stockage et la distribution de l'energie thermique capturee et de l'energie generee a partir de ceux-ci |
IT201900006589A1 (it) * | 2019-05-07 | 2020-11-07 | Turboden Spa | Ciclo rankine organico a cascata ottimizzato |
WO2020242768A1 (fr) | 2019-05-31 | 2020-12-03 | Cummins Inc. | Système de récupération de chaleur perdue et commande |
US11905856B2 (en) * | 2019-07-03 | 2024-02-20 | Ormat Technologies, Inc. | Geothermal district heating power system |
US11435120B2 (en) | 2020-05-05 | 2022-09-06 | Echogen Power Systems (Delaware), Inc. | Split expansion heat pump cycle |
KR20230117402A (ko) | 2020-12-09 | 2023-08-08 | 수퍼크리티컬 스토리지 컴퍼니, 인크. | 3 저장조 전기 열 에너지 저장 시스템 |
CN114962055B (zh) * | 2022-05-26 | 2024-07-30 | 一汽解放汽车有限公司 | Orc余热回收系统、控制方法、装置、设备及存储介质 |
US20240230169A9 (en) * | 2022-10-21 | 2024-07-11 | Advent Technologies, LLC. | Rankine cycle for recovery of thermal waste heat in fuel cell |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1174590A2 (fr) * | 2000-07-17 | 2002-01-23 | Ormat Industries, Ltd. | Méthode et appareil pour produire de la puissance à partir de chaleur |
WO2009006006A2 (fr) * | 2007-06-29 | 2009-01-08 | General Electric Company | Système et procédé servant à récupérer de la chaleur résiduelle |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4760705A (en) * | 1983-05-31 | 1988-08-02 | Ormat Turbines Ltd. | Rankine cycle power plant with improved organic working fluid |
JPS61192816A (ja) * | 1985-02-22 | 1986-08-27 | Mitsubishi Heavy Ind Ltd | 複合型発電システム |
US4901531A (en) * | 1988-01-29 | 1990-02-20 | Cummins Engine Company, Inc. | Rankine-diesel integrated system |
FI913367A0 (fi) * | 1991-07-11 | 1991-07-11 | High Speed Tech Ltd Oy | Foerfarande och anordning foer att foerbaettra nyttighetsfoerhaollande av en orc-process. |
US6526754B1 (en) * | 1998-11-10 | 2003-03-04 | Ormat Industries Ltd. | Combined cycle power plant |
US6232679B1 (en) * | 1999-10-05 | 2001-05-15 | Peter Norton | Electricity generator and heat source for vehicles |
US6857268B2 (en) * | 2002-07-22 | 2005-02-22 | Wow Energy, Inc. | Cascading closed loop cycle (CCLC) |
US6880344B2 (en) * | 2002-11-13 | 2005-04-19 | Utc Power, Llc | Combined rankine and vapor compression cycles |
US7146813B2 (en) * | 2002-11-13 | 2006-12-12 | Utc Power, Llc | Power generation with a centrifugal compressor |
US7174716B2 (en) * | 2002-11-13 | 2007-02-13 | Utc Power Llc | Organic rankine cycle waste heat applications |
US7254949B2 (en) * | 2002-11-13 | 2007-08-14 | Utc Power Corporation | Turbine with vaned nozzles |
US7281379B2 (en) * | 2002-11-13 | 2007-10-16 | Utc Power Corporation | Dual-use radial turbomachine |
JP2004232571A (ja) * | 2003-01-31 | 2004-08-19 | Takeo Saito | 多種・多重サイクル発電システム |
US6986251B2 (en) * | 2003-06-17 | 2006-01-17 | Utc Power, Llc | Organic rankine cycle system for use with a reciprocating engine |
US6962051B2 (en) * | 2003-06-17 | 2005-11-08 | Utc Power, Llc | Control of flow through a vapor generator |
US6989989B2 (en) * | 2003-06-17 | 2006-01-24 | Utc Power Llc | Power converter cooling |
PT1668226E (pt) * | 2003-08-27 | 2008-04-18 | Ttl Dynamics Ltd | Sistema de recuperação de energia |
US7013644B2 (en) * | 2003-11-18 | 2006-03-21 | Utc Power, Llc | Organic rankine cycle system with shared heat exchanger for use with a reciprocating engine |
US7100380B2 (en) * | 2004-02-03 | 2006-09-05 | United Technologies Corporation | Organic rankine cycle fluid |
JP2005291112A (ja) * | 2004-03-31 | 2005-10-20 | Takeo Saito | 温度差発電装置 |
US7290393B2 (en) * | 2004-05-06 | 2007-11-06 | Utc Power Corporation | Method for synchronizing an induction generator of an ORC plant to a grid |
US7428816B2 (en) * | 2004-07-16 | 2008-09-30 | Honeywell International Inc. | Working fluids for thermal energy conversion of waste heat from fuel cells using Rankine cycle systems |
US7038329B1 (en) * | 2004-11-04 | 2006-05-02 | Utc Power, Llc | Quality power from induction generator feeding variable speed motors |
US7043912B1 (en) * | 2004-12-27 | 2006-05-16 | Utc Power, Llc | Apparatus for extracting exhaust heat from waste heat sources while preventing backflow and corrosion |
EP1869293B1 (fr) * | 2005-03-29 | 2013-05-08 | UTC Power Corporation | Cycles de rankine organiques en cascade utilises pour recuperer la chaleur |
JP2007002761A (ja) * | 2005-06-23 | 2007-01-11 | Ebara Corp | コージェネレーションシステムおよび発電装置 |
-
2007
- 2007-10-04 WO PCT/US2007/021318 patent/WO2009045196A1/fr active Application Filing
- 2007-10-04 JP JP2010527922A patent/JP2010540837A/ja active Pending
- 2007-10-04 US US12/738,028 patent/US20100263380A1/en not_active Abandoned
- 2007-10-04 EP EP07873010A patent/EP2212524A4/fr not_active Withdrawn
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1174590A2 (fr) * | 2000-07-17 | 2002-01-23 | Ormat Industries, Ltd. | Méthode et appareil pour produire de la puissance à partir de chaleur |
WO2009006006A2 (fr) * | 2007-06-29 | 2009-01-08 | General Electric Company | Système et procédé servant à récupérer de la chaleur résiduelle |
Non-Patent Citations (1)
Title |
---|
See also references of WO2009045196A1 * |
Also Published As
Publication number | Publication date |
---|---|
JP2010540837A (ja) | 2010-12-24 |
US20100263380A1 (en) | 2010-10-21 |
EP2212524A4 (fr) | 2012-04-18 |
WO2009045196A1 (fr) | 2009-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20100263380A1 (en) | Cascaded organic rankine cycle (orc) system using waste heat from a reciprocating engine | |
JP7173245B2 (ja) | 発電システム | |
US8752382B2 (en) | Dual reheat rankine cycle system and method thereof | |
RU2551458C2 (ru) | Комбинированная тепловая система с замкнутым контуром для рекуперации отработанного тепла и способ ее эксплуатации | |
EP2203630B1 (fr) | Système servant à récupérer de la chaleur résiduelle | |
US8850814B2 (en) | Waste heat recovery system | |
AU2013240243B2 (en) | System and method for recovery of waste heat from dual heat sources | |
US20100326131A1 (en) | Method for operating a thermodynamic cycle, and thermodynamic cycle | |
US9784248B2 (en) | Cascaded power plant using low and medium temperature source fluid | |
JP2003278598A (ja) | ランキンサイクルによる車輌の排熱回収方法及び装置 | |
JP2018021485A (ja) | 多段ランキンサイクルシステム、内燃機関、及び多段ランキンサイクルシステムの運転方法 | |
KR20030076503A (ko) | 증기 동력 발생 사이클 구성 방법 | |
UA54676A (uk) | Спосіб роботи парогазової енергетичної установки | |
MXPA98006482A (en) | Apparatus and method for producing energy using a geoterm fluid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20100503 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20120315 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F01K 23/04 20060101ALI20120309BHEP Ipc: F01K 1/00 20060101ALI20120309BHEP Ipc: F02G 5/04 20060101ALI20120309BHEP Ipc: F01K 25/08 20060101AFI20120309BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20121016 |