CN104895630A - 基于不同蒸发温度的多级有机朗肯循环发电系统 - Google Patents

基于不同蒸发温度的多级有机朗肯循环发电系统 Download PDF

Info

Publication number
CN104895630A
CN104895630A CN201510349067.0A CN201510349067A CN104895630A CN 104895630 A CN104895630 A CN 104895630A CN 201510349067 A CN201510349067 A CN 201510349067A CN 104895630 A CN104895630 A CN 104895630A
Authority
CN
China
Prior art keywords
orc
working medium
vaporizer
subtense angle
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510349067.0A
Other languages
English (en)
Inventor
朱家玲
胡开永
张伟
刘克涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201510349067.0A priority Critical patent/CN104895630A/zh
Publication of CN104895630A publication Critical patent/CN104895630A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

本发明公开了一种基于不同蒸发温度的多级有机朗肯循环发电系统,其系统组成为:热源供水系统通过热水管道将n个ORC子系统中蒸发器依次串联连在一起;冷却水供水系统并联接至n个ORC子系统中冷凝器;工质在各自的蒸发器内相变为汽态推动各自对应的汽轮机膨胀做功,液态工质经冷凝后通过各自对应的工质泵再返回各自的蒸发器,由此构成多级有机朗肯循环封闭系统。由于每个子系统使用的工质不同,所以可使得不同工质均工作在最佳蒸发温度的状态。从而提高了整个系统的热效率。与常规ORC系统相比降低了蒸发器内的传热温差,减小了不可逆损失,由于热源排出系统的温度比较低,可明显提高低品位能源的利用率,从而提高了整个系统的经济性。

Description

基于不同蒸发温度的多级有机朗肯循环发电系统
技术领域
本发明属于热能工程,具体涉及一种依据地下热水温度选择不同蒸发温度的多级有机朗肯循环热电转换系统。
背景技术
能源短缺、环境污染已经成为限制人类可持续发展的主要难题之一。目前世界各国都在努力减少对于传统化石能源的依赖。其中对于作为低品位能源的地热能利用,国际上最常用的方法是有机朗肯循环(Organic Rankine Cycle--简称ORC)发电技术。这是一种利用低沸点有机物作为工质的热力循环,其工作原理是:有机工质通过蒸发器从热源吸热产生相变,汽态工质推动汽轮机膨胀做功,通过发电机发电,从汽轮机排出的乏汽进入冷凝器冷凝相变为液态,然后进入工质泵加压再次进入蒸发器,从而形成一个封闭的循环。
传统有机朗肯循环存在的问题是:凡是有机工质都存在一个使系统效率达到最高的最佳蒸发温度,但是当热源为150℃时,会引起以下两个现象:(1)为了从热源吸收更多的热量,对热源排出蒸发器的温度设置比较低,增大了蒸发器内的换热温差,加大了不可逆损失,同时降低了蒸发温度,使系统没有工作在最佳蒸发温度状态;(2)将热源从蒸发器排出温度设置的比较高,可降低传热温差,减小不可逆损失(可以维持一个最佳的蒸发温度),但是热源排出温度较高,造成热源没有充分被利用的能源损失。
基于以上问题,本发明提出的一种改进的多级ORC系统,可充分提高热源的利用率和系统的整体热效率。
发明内容
本发明的目的是:提供了一种基于不同蒸发温度的多级有机朗肯循环发电系统,能够充分利用不同有机工质的最佳蒸发温度,可有效减少蒸发器的不可逆损失,降低热源流体的排出温度,从而提高系统的整体热效率。
本发明所采用的技术方案是:由蒸发器、汽轮机、冷凝器以及工质泵组成n个独立运行的ORC子系统。热源供水系统通过热水管道将n个ORC子系统中的第一蒸发器、第二蒸发器……第n蒸发器依次串联连在一起,热源供水从第一蒸发器进入,从最后第n蒸发器排出。冷却水供水系统并联接至n个ORC子系统中的第一冷凝器、第二冷凝蒸发器……第n冷凝器。每一个ORC子系统中循环的工质在各自的蒸发器内蒸发相变为汽态,进入各自对应的第一汽轮机、第二汽轮机……第n汽轮机膨胀做功,做功后的工质乏汽进入各自对应的第一冷凝器第二冷凝器……第n冷凝器冷凝为液态。液态工质通过各自对应的第一工质泵、第二工质泵……第n工质泵,加压后的工质再次进入各自的蒸发器产生相变,由此构成多级有机朗肯循环封闭系统。
因为n个ORC子循环系统所用的工质各不相同,即每个子循环系统工作的蒸发温度均为该系统所使用工质的最佳蒸发温度。该系统分设几个子系统,共用一个(地)热源的热水将多个子系统的蒸发器串接成为一个ORC循环发电系统。这样设计的目的,就是为了改善热源温度过高时所造成的(热源没有充分被利用)能源损失。传统ORC循环系统使用单一的有机工质或者混合工质,当热源温度过高时,为了能够充分利用热源的热量,必须舍弃一部分能量,使系统无法达到最大热效率。
本发明与传统ORC系统相比所具有的特点和有益效果是:
(1)几个独立运行的ORC子系统使用不同的有机工质,并且根据使用工质的特性分别工作在不同的蒸发温度,每一个蒸发温度下均可以实现该工质的最佳发电性能,从而提高了整个系统的效率;
(2)几个独立运行的ORC子系统蒸发器的换热温差较小,降低了蒸发器产生的不可逆损失,提高了整个系统的经济性;
(3)热源排出系统的温度比较低,提高了所利用的地热能,太阳能,生物质能和工业废热、废气等低品位能源的利用率。
附图说明
所示附图为本发明的技术原理和系统组成结构图。
具体实施方式
以下结合附图并通过实施例对本发明的原理与系统做进一步的说明。需要说明的是本实施例是叙述性的,而非是限定性的,不以此限定本发明的保护范围。
基于不同蒸发温度的多级有机朗肯循环发电系统,由蒸发器、汽轮机、冷凝器以及工质泵组成n个独立运行的ORC子系统。其系统组成为:热源供水系统E通过热水管道将n个ORC子系统中的第一蒸发器11、第二蒸发器21、……第n蒸发器n1依次串联连在一起,热源供水从第一蒸发器进入,从最后第n蒸发器排出。冷却水供水系统O并联接至n个ORC子系统中的第一冷凝器13、冷凝蒸发器23、……第n冷凝器n3。每一个ORC子系统中循环的工质在各自的蒸发器内蒸发相变为汽态,进入各自对应的第一汽轮机14、第二汽轮机24、……第n汽轮机n4膨胀做功,做功后的工质乏汽进入各自对应的第一冷凝器、第二冷凝器……第n冷凝器冷凝为液态。液态工质通过各自对应的第一工质泵12、第二工质泵22、……第n工质泵n2,加压后的工质再次进入各自的蒸发器产生相变,由此构成多级有机朗肯循环封闭系统。
多级有机朗肯循环封闭系统ORC子系统个数n大于或等于3,但n不大于6,每个ORC子系统独立运行,并且每个ORC子系统使用各自的工质。
每个独立运行的ORC子系统中蒸发器的蒸发温度由各自系统所使用工质的特性和热源温度决定。
独立运行的ORC子系统的数量根据热源供水系统E的供水进口温度、出口温度决定。
每个独立运行的ORC子系统中,蒸发器热源侧进、出口温度的设定区间,是该ORC子系统所使用工质的最佳蒸发温度。
每个独立运行的ORC子系统中冷凝器冷却水侧的进、出口管路均接至总冷却水系统。
作为实施例,本发明采用四个ORC子循环(n=4)。热源温度为150℃热水,流量为1kg/s,因为是并联连接,所以总冷却水进入各级冷凝器的温度相同,均为25℃,流量为2kg/s。
第一个ORC子循环中使用的工质为R123;第二个ORC子循环中使用的工质为R245fa,第三个ORC子循环中使用的工质为R600a,第四个ORC子循环中使用的工质为R134a。上述有机工质根据热源温度而选择,所以各自具有不同的最佳蒸发温度。
其系统循环过程为:150℃的地热水经过第一个ORC子循环的蒸发器,换热后的温度降为130℃。工质R123在1.3Mpa下由液相变为汽态,汽态工质进入第一汽轮机膨胀做功(汽轮机带动发动机发电),做功后的乏汽进入第一冷凝器冷凝为液态,液态工质进入第一工质泵进行加压,再次进入第一蒸发器从而形成第一个封闭的子循环。该子循环过程净发电量为11.95kW,热效率为14.1%,热源输入热量为84kW。
第二级ORC子循环系统中,第二蒸发器中热源的进口温度为130℃,换热后温度为110℃。工质R245fa在1.34Mpa下由液态变为汽态,汽态工质进入第二汽轮机膨胀做功发电,做功后的乏汽进入第二冷凝器冷凝为液态,液态工质进入第二工质泵进行加压,再次进入第二蒸发器从而形成第二个封闭的子循环。该子循环过程净发电量为9.95kW,热效率为11.4%,热源输入热量为84kW。
第三级ORC子循环系统中,第三蒸发器中热源进口温度为110℃,换热后温度为90℃。工质R600a在1.37Mpa下发生相变由液态变为汽态,汽态工质进入第三汽轮机膨胀做功发电,做功后的乏汽进入第三冷凝器冷凝为液态,液态工质进入第三工质泵进行加压,再次进入第三蒸发器从而形成第三个封闭的子循环。该子循环过程净发电量为7.41kW,热效率为8.6%,热源输入热量为84kW。
第四级ORC子循环系统中,第四蒸发器中热源的进口温度为90℃,换热后温度为60℃。工质R134a在1.31Mpa下由液态变为汽态,汽态工质进入第四汽轮机膨胀做功发电,做功后的乏汽进入冷凝器冷凝为液态,液态工质进入第四工质泵进行加压,再次进入第四蒸发器从而形成另一个封闭的子循环。该子循环过程净发电量为4.06kW,热效率为3.4%,热源输入热量为126kW。
作为对比,在相同热源和冷源条件下,使用R245fa作为工质的常规单级ORC循环系统,其净发电量为20.7kW,热效率为5.4%,热源输入热量为378kW。以上实施例中的四级ORC循环,总发电量为33.37kW,比常规单级ORC循环提高了61.2%,热效率为8.8%,比常规单级ORC循环提高了63.0%。
本发明根据热源温度将热源分成不同的温度区间进行利用,并且在不同的区间选择最佳有机工质,使其工作在发电性能最优的蒸发温度状态,从而提高了整个系统的热效率,得到更多的净发电量;由于蒸发器的蒸发温度和热源温度温差均比较小,所以减小了整个系统的不可逆损失,从而提高了所用热源的利用率。

Claims (6)

1.基于不同蒸发温度的多级有机朗肯循环发电系统,由蒸发器、汽轮机、冷凝器以及工质泵组成n个独立运行的ORC子系统,其特征在于:热源供水系统E通过热水管道将n个ORC子系统中的第一蒸发器(11)、第二蒸发器(21)……第n蒸发器(n1)依次串联连在一起,热源供水从第一蒸发器进入,从最后第n蒸发器排出,冷却水供水系统O并联接至n个ORC子系统中的第一冷凝器(13)、冷凝蒸发器(23)……第n冷凝器(n3),每一个ORC子系统中循环的工质在各自的蒸发器内蒸发相变为汽态,进入各自对应的第一汽轮机(14)、第二汽轮机(24)……第n汽轮机(n4)膨胀做功,做功后的工质乏汽进入各自对应的第一冷凝器、第二冷凝器……第n冷凝器冷凝为液态,液态工质通过各自对应的第一工质泵(12)、第二工质泵(22)……第n工质泵(n2),加压后的工质再次进入各自的蒸发器产生相变,由此构成多级有机朗肯循环封闭系统。
2.按照权利要求1所述的基于不同蒸发温度的多级有机朗肯循环发电系统,其特征在于:所述多级有机朗肯循环封闭系统ORC子系统个数n大于或等于3,但n不大于6,每个ORC子系统独立运行,并且每个ORC子系统使用各自的工质。
3.按照权利要求1或2所述的基于不同蒸发温度的多级有机朗肯循环发电系统,其特征在于:所述每个独立运行的ORC子系统中蒸发器的蒸发温度由各自系统所使用工质的特性和热源温度决定。
4.按照权利要求1或2所述的基于不同蒸发温度的多级有机朗肯循环发电系统,其特征在于:所述独立运行的ORC子系统的数量根据所述热源供水系统E的供水进口温度、出口温度决定。
5.按照权利要求1或2所述的基于不同蒸发温度的多级有机朗肯循环发电系统,其特征在于:所述每个独立运行的ORC子系统中,蒸发器热源侧进、出口温度的设定区间,是所述ORC子系统所使用工质的最佳蒸发温度。
6.按照权利要求1所述的基于不同蒸发温度的多级有机朗肯循环发电系统,其特征在于:所述每个独立运行的ORC子系统中冷凝器冷却水侧的进、出口管路均接至总冷却水系统。
CN201510349067.0A 2015-06-23 2015-06-23 基于不同蒸发温度的多级有机朗肯循环发电系统 Pending CN104895630A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510349067.0A CN104895630A (zh) 2015-06-23 2015-06-23 基于不同蒸发温度的多级有机朗肯循环发电系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510349067.0A CN104895630A (zh) 2015-06-23 2015-06-23 基于不同蒸发温度的多级有机朗肯循环发电系统

Publications (1)

Publication Number Publication Date
CN104895630A true CN104895630A (zh) 2015-09-09

Family

ID=54028542

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510349067.0A Pending CN104895630A (zh) 2015-06-23 2015-06-23 基于不同蒸发温度的多级有机朗肯循环发电系统

Country Status (1)

Country Link
CN (1) CN104895630A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105443174A (zh) * 2016-01-07 2016-03-30 上海维尔泰克螺杆机械有限公司 一种串级式有机朗肯循环系统
CN106121754A (zh) * 2016-06-29 2016-11-16 南京航空航天大学 梯级回收利用低品位热的orc系统及方法
CN107882601A (zh) * 2017-10-30 2018-04-06 北京兆阳光热技术有限公司 一种再热储热体储热取热热量平衡方法及光热换能系统
CN108019245A (zh) * 2016-12-15 2018-05-11 李华玉 多重联合循环动力装置
CN108979769A (zh) * 2018-08-03 2018-12-11 山东大学 基于双级orc和lng冷能利用的燃料电池联供发电系统
CN111075521A (zh) * 2019-12-18 2020-04-28 北京石油化工学院 一种带回热循环的高低压双工质orc发电系统
CN111636940A (zh) * 2020-06-03 2020-09-08 浙江理工大学 复叠式重力场做功方法及所用装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010540837A (ja) * 2007-10-04 2010-12-24 ユナイテッド テクノロジーズ コーポレイション 往復機関からの廃熱を利用するカスケード型有機ランキンサイクル(orc)システム
CN102242647A (zh) * 2011-04-20 2011-11-16 南志远 多台玻璃窑炉余热发电系统
US20110314818A1 (en) * 2008-08-04 2011-12-29 United Technologies Corporation Cascaded condenser for multi-unit geothermal orc
CN203822398U (zh) * 2014-05-05 2014-09-10 碧海舟(北京)石油化工设备有限公司 一种利用有机郎肯循环的余热发电系统
CN104329127A (zh) * 2014-11-10 2015-02-04 中国电力工程顾问集团华东电力设计院 多机组联合扩容系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010540837A (ja) * 2007-10-04 2010-12-24 ユナイテッド テクノロジーズ コーポレイション 往復機関からの廃熱を利用するカスケード型有機ランキンサイクル(orc)システム
US20110314818A1 (en) * 2008-08-04 2011-12-29 United Technologies Corporation Cascaded condenser for multi-unit geothermal orc
CN102242647A (zh) * 2011-04-20 2011-11-16 南志远 多台玻璃窑炉余热发电系统
CN203822398U (zh) * 2014-05-05 2014-09-10 碧海舟(北京)石油化工设备有限公司 一种利用有机郎肯循环的余热发电系统
CN104329127A (zh) * 2014-11-10 2015-02-04 中国电力工程顾问集团华东电力设计院 多机组联合扩容系统

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105443174A (zh) * 2016-01-07 2016-03-30 上海维尔泰克螺杆机械有限公司 一种串级式有机朗肯循环系统
CN106121754A (zh) * 2016-06-29 2016-11-16 南京航空航天大学 梯级回收利用低品位热的orc系统及方法
CN108019245A (zh) * 2016-12-15 2018-05-11 李华玉 多重联合循环动力装置
CN108019245B (zh) * 2016-12-15 2020-05-29 李华玉 多重联合循环动力装置
CN107882601A (zh) * 2017-10-30 2018-04-06 北京兆阳光热技术有限公司 一种再热储热体储热取热热量平衡方法及光热换能系统
CN108979769A (zh) * 2018-08-03 2018-12-11 山东大学 基于双级orc和lng冷能利用的燃料电池联供发电系统
CN108979769B (zh) * 2018-08-03 2020-04-28 山东大学 基于双级orc和lng冷能利用的燃料电池联供发电系统
CN111075521A (zh) * 2019-12-18 2020-04-28 北京石油化工学院 一种带回热循环的高低压双工质orc发电系统
CN111075521B (zh) * 2019-12-18 2022-09-20 北京石油化工学院 一种带回热循环的高低压双工质orc发电系统
CN111636940A (zh) * 2020-06-03 2020-09-08 浙江理工大学 复叠式重力场做功方法及所用装置
CN111636940B (zh) * 2020-06-03 2022-05-06 浙江理工大学 复叠式重力场做功方法及所用装置

Similar Documents

Publication Publication Date Title
Yağlı et al. Parametric optimization and exergetic analysis comparison of subcritical and supercritical organic Rankine cycle (ORC) for biogas fuelled combined heat and power (CHP) engine exhaust gas waste heat
CN104895630A (zh) 基于不同蒸发温度的多级有机朗肯循环发电系统
Shengjun et al. Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation
AU2009282872B2 (en) Solar thermal power generation using multiple working fluids in a Rankine cycle
Lu et al. Analysis of organic Rankine cycles using zeotropic mixtures as working fluids under different restrictive conditions
He et al. Performance research on modified KCS (Kalina cycle system) 11 without throttle valve
Carcasci et al. Thermodynamic analysis of an Organic Rankine Cycle for waste heat recovery from an aeroderivative intercooled gas turbine
CA2867120C (en) System and method for recovery of waste heat from dual heat sources
CN111022137B (zh) 基于有机朗肯循环和有机闪蒸循环的余热回收系统及方法
EP2021587A1 (en) A method and system for generating power from a heat source
CN102797525A (zh) 采用非共沸混合工质变组分的低温朗肯循环系统
Bao et al. Exergy analysis and parameter study on a novel auto-cascade Rankine cycle
CN101892879A (zh) 一种利用工质相变循环的火电厂余热发电装置
Özdemir Thermodynamic analysis of basic and regenerative organic rankine cycles using dry fluids from waste heat recovery
JP2017072124A (ja) 排熱回収システム
Sharma et al. Review and preliminary analysis of organic rankine cycle based on turbine inlet temperature
CN102865112B (zh) 背热循环发电及多级背热循环发电及多联产系统
CN110131005B (zh) 双压吸热非共沸有机闪蒸-朗肯循环中低温热能利用系统
CN103195518A (zh) 基于多级蒸发器串联的有机朗肯循环发电系统
Zeyghami et al. Effect of different binary working fluids on performance of combined flash binary cycle
Xiao et al. Slag-washing water of blast furnace power station with supercritical organic Rankine cycle
AU2015413548B2 (en) A system for high efficiency energy conversion cycle by recycling latent heat of vaporization
CN209293861U (zh) 一种循环发电系统
CN202900338U (zh) 背热循环发电及多级背热循环发电及多联产系统
KR20110115196A (ko) 재열과정을 포함한 해양 온도차 발전시스템

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150909