EP2207616B1 - Vorrichtung zur erzeugung von brennbarem produktgas aus kohlenstoffhaltigen einsatzstoffen - Google Patents

Vorrichtung zur erzeugung von brennbarem produktgas aus kohlenstoffhaltigen einsatzstoffen Download PDF

Info

Publication number
EP2207616B1
EP2207616B1 EP09763905A EP09763905A EP2207616B1 EP 2207616 B1 EP2207616 B1 EP 2207616B1 EP 09763905 A EP09763905 A EP 09763905A EP 09763905 A EP09763905 A EP 09763905A EP 2207616 B1 EP2207616 B1 EP 2207616B1
Authority
EP
European Patent Office
Prior art keywords
heat
liquid
transfer medium
loop
heat pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09763905A
Other languages
English (en)
French (fr)
Other versions
EP2207616A1 (de
Inventor
Georg Gallmetzer
Felix Nelles
Martin Kröner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Highterm Research GmbH
Original Assignee
Highterm Research GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Highterm Research GmbH filed Critical Highterm Research GmbH
Publication of EP2207616A1 publication Critical patent/EP2207616A1/de
Application granted granted Critical
Publication of EP2207616B1 publication Critical patent/EP2207616B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/06Continuous processes
    • C10J3/10Continuous processes using external heating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/482Gasifiers with stationary fluidised bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/043Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure forming loops, e.g. capillary pumped loops
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1246Heating the gasifier by external or indirect heating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1603Integration of gasification processes with another plant or parts within the plant with gas treatment
    • C10J2300/1606Combustion processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1625Integration of gasification processes with another plant or parts within the plant with solids treatment
    • C10J2300/1637Char combustion
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1853Steam reforming, i.e. injection of steam only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1892Heat exchange between at least two process streams with one stream being water/steam

Definitions

  • the invention relates to a device for producing combustible product gas from carbonaceous feedstocks by allothermic steam gasification according to the preamble of claim 1.
  • the pressure-charged allothermal steam gasification of carbonaceous fuels requires heat input into the gasification chamber at a temperature level of about 800-900 ° C.
  • heat pipe reformer as from the EP 1 187 892 B1 is known to be produced in a pressurized fluidized bed gasification chamber by allothermic steam gasification fuel gas from the carbonaceous feedstocks to be gasified. The necessary heat is passed from a fluidized bed by means of a réelleleitrohranssen in the carburetor or reformer. Due to the straight and tubular construction of heat pipes are in the from the EP 1 187 892 B1 known heat pipe reformer combustion chamber and reformer / gasification chamber arranged one above the other. The pressure vessel bottom is exposed to special stresses due to the high temperatures in the combustion chamber. Moreover, the soil is weakened by a variety of heat pipe bushings. The sealing of the bushings is also a problem.
  • both the line for liquid heat transfer medium and for vaporous heat transfer medium in the common tube shell is arranged.
  • the number of feedthroughs can be reduced to two, namely a liquid line and a steam line. If a plurality of such loop heat pipes is used, their separate running steam and liquid lines can be summarized in the carburetor pressure vessel to a common vapor or liquid line, which then enforce the gasification pressure vessel. Outside the carburetor pressure vessel then the two common lines can be split again.
  • the number of feedthroughs from or into the carburetor pressure vessel can be significantly reduced to a minimum of two.
  • Another advantage of the invention is that the spatial separation of the steam and liquid line of the loop heat pipes a larger Design freedom arises.
  • Carburetor or reformer and external heat source can be arranged and optimized completely independently.
  • claims 3 and 4 relate to different designs for loop heat pipes with separate running steam and liquid line.
  • the first heat carrier circuit or the associated heat pipe can be optimized with regard to the heat absorption in the heat source, while the second heat carrier circuit or the associated heat pipe can be optimized in terms of heat dissipation in the gasifier.
  • the pyrolysis residues are thermally utilized from the gasifier and on the other hand, the complete fuel supply into the fluidized bed combustion chamber can take place. An additional supply of fuel in the fluidized bed combustion chamber, with the exception of the startup is no longer necessary.
  • alkali metals and their alloys eg. B. Na, K, NaK, as a heat transfer medium in the loop heat pipes.
  • Fig. 1 shows the basic structure of a high-end reforming according to the present invention.
  • the high-temperature refomer comprises a pressurized carburetor or reformer 2 and an external heat source in the form of a combustion chamber 4.
  • the carburetor 2 comprises a carburetor pressure vessel 6, a fuel supply 8, a water supply 10 and a product gas discharge 12 at one temperature from 800 ° C to 900 ° C is produced by allothermic steam gasification of carbonaceous fuels in a known manner product gas.
  • the carburetor 2 and the external heat source 4 are connected to each other via a heat carrier circuit or a loop heat pipe 14.
  • the heat carrier circuit or the loop heat pipe 14 comprise a heat receiving side 16 and a heat-emitting side 18, which are connected to each other via a steam line 20 for vaporous heat transfer medium and a liquid line 22 for liquid heat transfer medium.
  • a lock 24 of the carburetor 2 is connected to the heat source 4.
  • About the lock 24 pyrolysis residues from the carburetor 2 of the combustion chamber 4 are supplied as fuel.
  • the combustion chamber 4 still has an air supply 26 and a flue gas outlet 28.
  • a hydrogen separation device 30 is arranged in the liquid line 22 between the carburetor 2 and the combustion chamber 4.
  • the hydrogen separation device 30 By the hydrogen separation device 30, the hydrogen and other foreign matter is separated from the liquid heat transfer medium and the remaining liquid heat transfer medium is returned to the combustion chamber 4, so that the heat carrier circuit is closed. Due to the high temperatures alkali metals or alloys thereof, z. As Na, K or NaK used.
  • Fig. 2 schematically shows a first, concrete embodiment of the invention, wherein for components corresponding to each other, the same reference numerals are used.
  • the combustion chamber 4 is a fluidized bed combustion chamber with circulating fluidized bed 32.
  • the combustion chamber 4 comprises a riser 34, a cyclone 36 and a lock 38 and a fluidized bed 40, which lead back into the riser 34.
  • the heat receiving side 16 of the loop heat pipe 14 comprises a first and a second shell and tube heat exchangers 42 and 44, which are connected in series and in which the liquid heat transfer medium is vaporized by absorbing heat.
  • the heat-emitting side 18 includes a third shell-and-tube heat exchanger 46 in which the vaporous heat exchange medium is recondensed by release of the previously received heat.
  • Fig. 2 has the combustion chamber 4 compared to the so-called heat pipe reformer after EP 1 187 892 B1 no limitation in the construction and operation.
  • all design and operational parameters can be optimally adapted to the requirements of high-temperature heat supply.
  • the use of the circulating fluidized bed 32 has the advantage of optimum combustion in the riser 34 and the optimal and material-conserving heat extraction from the fluidized bed 40- first shell and tube heat exchanger 42 - and membrane walls - second shell and tube heat exchanger 44 - in the turbulent Soil zone of the riser 34.
  • the exact structure of the combustion chamber 4 with circulating fluidized bed 32 is on " Handbook of Fludization and Fluid Particle Systems, "by Wen-Ching Yang, ISBN: 0-8247-0259-X , referenced.
  • the reformer or carburetor 2 can be designed without restrictions with respect to the combustion chamber 4, since combustion chamber 4 and carburetor 2 are not arranged as in the heat pipe reformer in a common container.
  • the implementation of the high-temperature steam and liquid line 20, 22 is moved to structurally favorable locations carburetor pressure vessel 6.
  • the liquid line 22 and the steam line 20 are guided laterally out of the barrel-shaped carburetor 2.
  • the lid and bottom of the carburetor pressure vessel 6 are free of the large number of heat pipe feedthroughs, as they are known from the heat pipe reformer. There are only weakenings through the steam supply 10 and the fuel supply 8, as well as product gas discharge 12 and lock 24 for discharging pyrolysis residues.
  • the reaction temperature in the gasifier can be substantially higher than the temperatures on the wall of the carburetor pressure vessel. As a result, stable constructions are achieved even when using less expensive materials with smaller wall thicknesses.
  • the pyrolysis residues of the carburettor 2 can be utilized directly in the combustion chamber 4 via the lock 24. With favorable process control, the pyrolysis residues are sufficient to cover the fuel requirement of the combustion chamber 4. Product gas leakage flows through the lock 24 can be safely and completely burned in the combustion chamber 4.
  • Fig. 3 shows a first embodiment of the high-temperature heat transfer circuit in Highterm reformer in the form of a pumped by capillary loop heat pipe 500 (Capillary Pumped Loop CPL), as shown in Publication, Heat Pipe Science and Technology, Amir Fahgri, 1995, page 583 is known.
  • the CPL 500 includes a heat receiving side Evaporator 516 and a heat-releasing side and a condenser 518, respectively.
  • Vaporizer 516 and condenser 518 are connected to each other via a vaporous vapor vapor manifold 520 and a liquid heat transfer medium liquid manifold 522. Steam manifold 520 and liquid manifold 522 are spaced apart from each other.
  • Both the evaporator 516 and the condenser 518 consist of a plurality of identical evaporator 524 or condenser elements 526 connected in parallel.
  • the evaporator elements 524 have a capillary structure 528 through which the liquid heat transfer medium is vaporized by absorbing heat. In the capacitor elements 526, the heat transfer medium condenses again with the release of heat.
  • the liquid manifold 522 is connected to a surge tank 532 via a surge line 530.
  • the expansion tank 532 ensures a steady level in the liquid collecting line 522.
  • the liquid flows back into the liquid collecting line 522 due to a small temperature gradient and thus also a pressure gradient.
  • the evaporation enthalpy recorded in the evaporator 516 (combustion chamber 4) is thus released again in the condenser 518 (carburettor 2).
  • the hydrogen separation device is integrated (in Fig. 3 not shown).
  • Fig. 4 shows a second embodiment of the high-temperature heat transfer circuit in Highterm reformer in the form of a loop heat pipe 600 (Loop Heat Pipe LHP), as it is known from Publication, Heat Pipe Science and Technology, Amir Fahgri, 1995, page 586 is known.
  • the LHP 600 includes a heat receiving side or evaporator 616 and a heat releasing side and a condenser 618, respectively.
  • Vaporizer 616 and condenser 618 are connected to each other via a steam line 620 for vaporous heat transfer medium and a liquid line 622 for liquid heat transfer medium. Steam line 620 and liquid line 622 are spaced apart from each other.
  • a capillary structure 628 is arranged, through which liquid Heat transfer medium is vaporized by absorption of heat.
  • the condenser 618 the heat transfer medium condenses again with the release of heat.
  • the capillary pressure differential in the capillary structure 628 be greater than the sum of the pressure losses from the vapor and liquid flow, the capillary structure 628, and the hydrostatic pressure. Ie. it must apply: ⁇ ⁇ p cap ⁇ Max ⁇ ⁇ p ⁇ + ⁇ ⁇ p l + ⁇ ⁇ p ⁇ + ⁇ ⁇ p G ,
  • Such a loop heat pipe is also from the WO / 2003/054469 known.
  • Fig. 6 shows a second embodiment of the high-temperature reformer according to the present invention with a two-stage high-temperature heat transfer circuit 700.
  • the high-temperature heat transfer circuit 700 includes a primary heat transfer circuit 701 and a secondary heat transfer circuit 702.
  • the primary heat transfer circuit 701 includes a heat receiving side 716 and a heat-releasing 718.
  • the heat receiving side 716 and the heat emitting side 718 are connected to each other via a steam line 720 for vaporous heat transfer medium and via a liquid line 722 for liquid heat transfer medium. Steam line 720 and liquid line 722 are spatially separated.
  • the heat releasing side 716 is disposed in the combustion chamber and the heat releasing side 718 is disposed in the carburetor.
  • the primary heat transfer circuit 701 may be through the loop heat pipes 500 and / or 600 in Fig. 3 and 4 will be realized.
  • the secondary heat transfer circuit 702 is implemented by a pulsed loop heat pipe (CLPHP), as shown in FIG Fig. 7 is shown.
  • the CLPHP 702 has a heat receiving side 736 and a heat releasing side 738.
  • the heat receiving side 736 and the heat releasing side 738 are interconnected via a closed meandering vapor / liquid conduit 740.
  • Both the heat releasing side 736 and the heat releasing side of the CLPHP 702 are disposed in the gas pressure vessel 706.
  • the heat receiving side 736 of the CLPHP 702 is integrated into the heat emitting side 718 of the primary heat transfer circuit 701.
  • the heat transfer medium is passed alternately via the vapor / liquid line 740 from the evaporator 736 in the condenser 738.
  • a temperature difference creates a pressure difference that causes the whole system to pulsate. This makes it possible to transport off hydrogen cushions and other inert gases convective and at a suitable location, eg. B. at the top of the condenser 738 via a degassing 730 deduct.
  • An advantage of the double heat carrier circuit is that can escape through the decoupling of the pulsating secondary heat transfer medium from the combustion chamber 4 in case of leaks less heat transfer medium.
  • Fig. 8 shows an exemplary structure of the hydrogen separation device 30 as can be used in the various embodiments of the high-temperature reformer.
  • the hydrogen separation device 30 in the liquid line 22, 522, 622, 722 comprises a collection container 300 in which a liquid level is set.
  • the collecting container 300 has a gas dome 302 in which vaporous heat transfer medium is located and in which hydrogen and other inert gases collect. From this gas dome 302 branches off a stub 304, which leads to a region with lower temperatures ends in a lock device 306.
  • materials such as EPDM (up to about 150 ° C.), etc. can be used for the valves 308, 310, 312, 314.
  • the temperature of the stub line 304 is decisive for the vapor pressure of the heat transfer medium.
  • a long stub 304 therefore results in an inert gas heat transfer separation.
  • the temperature of the stub line 304 may not be below the solidification temperature of the heat transfer medium to prevent clogging of the stub 304.
  • the degassing device 306 for degassing consists of 4 valves 308, 310, 312, 314, wherein in each case the first and second valves 308, 310 and the third and fourth valve, 312, 314 in series and the two pairs of rows 308, 310 and 312, 314 in parallel are switched.
  • the parallel connection results in a redundant lock system.
  • the degassing system or the hydrogen separation device 30 should be installed as possible at the coolest point of the heat transfer circuit.
  • a vacuum pump - not shown - generates a vacuum when valve 308 or 312 is closed and valve 310 or 314 is open, then valve 310 or 314 is closed and valve 308 or 312 is opened and closed again. Then this cycle starts again. In this way, hydrogen and other inert gases are eliminated from the heat transfer circuit.
  • Fig. 9 shows a third embodiment of the high-temperature reformer with a fluidized bed combustor 804 and a carburetor or reformer 802.
  • the carburetor 802 includes a carburetor pressure vessel 806 which is co-located with the fluidized bed combustor 804 in a common reactor vessel 805.
  • a loop heat pipe device 814 having a plurality of loop heat pipes according to FIGS Figures 3 and 4 used.
  • the plurality of loop heat pipes are assembled into an evaporator battery 816 and a capacitor battery 818.
  • Capacitor battery 818 and evaporator battery 816 are interconnected via a single steam line 820 and via a single fluid line 822.
  • the evaporator battery 816 is in the fluidized bed combustor 804 and the condenser battery 818 are disposed in the gasifier pressure vessel 805.
  • a degassing and filling tube 830 which leads out of the condenser battery 818 from the carburetor pressure vessel 806 and the common reactor vessel 805, hydrogen and other inert gases are withdrawn.
  • the degassing and filling tube 830 the filling of the loop heat pipe device 814 with heat transfer medium.
  • the advantage of this third embodiment of the invention is that the loop heat pipe device 814 can be integrated into an existing reactor design.
  • Fig. 10 shows an alternative embodiment of a heat pipe in the form of a so-called immersion heat pipe 900.
  • the immersion heat pipe 900 consists of an outer tube 902 with an open end 904 and a closed end 906.
  • the outer tube 902 is an open on both sides inner tube 908 is arranged a first open end 910 and a second open end 912.
  • Via the open end 904 of the outer tube 902 flows vaporous heat transfer medium and condenses on the way down to the closed end 906 of the outer tube 902.
  • the condensed heat transfer medium flows through the first open end 910 of the inner tube 908 back up and is on the second open end 912 of the inner tube 908 discharged from the immersion heat pipe 900.
  • a corresponding pressure gradient is necessary to promote the heat transfer medium condensate back up.
  • the supply of vaporous heat transfer medium via the open end 904 of the outer tube 902 and the discharge of the liquid heat transfer medium via the second open end 912 of the inner tube takes place transversely to the longitudinal extent of the outer and inner tubes 902, 908.
  • Meander-shaped heat exchanger pipe guides which are problematic in fluidized beds, in particular in the gasifier, can be avoided by the immersion heat pipe 900 described above since they disturb the structure and the stratification of the fluidized bed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Description

  • Die Erfindung betrifft eine Vorrichtung zur Erzeugung von brennbarem Produktgas aus kohlenstoffhaltigen Einsatzstoffen durch allotherme Wasserdampfvergasung nach dem Oberbegriff des Anspruch 1.
  • Die druckaufgeladene allotherme Wasserdampfvergasung von kohlenstoffhaltigen Brennstoffen erfordert Wärmezufuhr in die Vergasungskammer auf einem Temperaturniveau von ca. 800-900°C. Bei dem sogenannten Heatpipe-Reformer, wie aus der EP 1 187 892 B1 bekannt ist, werden in einer Druck aufgeladenen Wirbelschichtvergasungskammer durch allotherme Wasserdampfvergasung Brenngas aus den zu vergasenden kohlenstoffhaltigen Einsatzstoffen erzeugt. Die hierfür notwendige Wärme wird aus einer Wirbelschichtfeuerung mittels einer Wärmeleitrohranordnung in den Vergaser bzw. Reformer geleitet. Aufgrund der geraden und rohrförmigen Bauweise von Wärmerohren werden bei dem aus der EP 1 187 892 B1 bekannten Heatpipe-Reformer Brennkammer und Reformer/Vergasungskammer übereinander angeordnet. Der Druckbehälterboden ist Aufgrund der hohen Temperaturen in der Brennkammer besonderen Belastungen ausgesetzt. Noch dazu wird der Boden durch eine Vielzahl von WärmerohrDurchführungen geschwächt. Die Abdichtung der Durchführungen stellt ebenfalls ein Problem dar.
  • Bei den genannten Betriebsbedingungen diffundiert Wasserstoff durch den Metallmantel der Wärmerohre in das Innere des Wärmerohrs ein und sammelt sich im Bereich des Kondensators bzw. der Wärme abgebenden Seite. Im Bereich dieses Wasserstoffpolsters erfolgt kein Wärmeübergang mehr, so dass sich die durch das Wärmerohr übertragene Wärmeleistung verringert. Um diese Wasserstoffpolster zu vermeiden, ist es bekannt, das Eindiffundieren von Wasserstoff durch Beschichtungen der Wärmerohre oder durch Trennung von Vergasungs- und Wärmeübergangszone im Vergaser zu verhindern bzw. zu vermindern. Nach einem anderen Ansatz wird die Ausdiffusion von Wasserstoff durch erhöhten Innendruck und Spülkappen erhöht. Hierzu wird auf die DE 102006016005 A1 verwiesen.
  • Aus der EP 415231 A2 ist ein Wärmerohr mit einer zylindrischen Außenhülle bekannt, bei dem konzentrisch im Inneren der zylindrischen Außenhülle ein Steigrohr für dampförmiges Arbeitsmittel angeordnet ist. Aufgrund der Ineinanderschachtelung von Steigrohr und Außenhülle, kann nicht verhindert werden, dass auch in der eigentlichen Kondensatleitung dampförmiges Arbeitsmittel strömt.
  • Ausgehend von der EP 1 187 892 B1 ist es Aufgabe der vorliegenden Erfindung die Schwächung des Vergaserdruckbehälters durch die Vielzahl von Wärmerohrdurchführungen zu vermindern.
  • Die Lösung dieser Aufgabe erfolgt durch die Merkmale des Anspruch 1.
  • Bei herkömmlichen rohrförmigen Wärmerohren, wie sie beispielsweise aus der EP 415231 A2 bekannt sind, ist sowohl die Leitung für flüssiges Wärmeträgermedium als auch für dampfförmiges Wärmeträgermedium in der gemeinsamen Rohrhülle angeordnet. Dadurch, dass bei der vorliegenden Erfindung Loop-Wärmerohre eingesetzt werden, bei denen das flüssige Wärmeträgermedium räumlich getrennt von dem dampfförmigen Wärmeträgermedium geführt wird, lässt sich die Zahl der Durchführungen auf zwei reduzieren, nämlich eine Flüssigkeitsleitung und eine Dampfleitung. Wenn eine Mehrzahl von solchen Loop-Wärmerohren eingesetzt wird, können deren getrennt verlaufenden Dampf- und Flüssigkeitsleitungen im Vergaserdruckbehälter zu einer gemeinsamen Dampf- bzw. Flüssigkeitsleitung zusammengefasst werden, die dann den Vergaserdruckbehälter durchsetzen. Außerhalb des Vergaserdruckbehälters können dann die beiden gemeinsamen Leitungen wieder auf gespalten werden. Damit kann die Zahl der Durchführungen aus bzw. in den Vergaserdruckbehälter erheblich bis auf minimal zwei reduziert werden.
  • Ein weiterer Vorteil der Erfindung besteht darin, dass durch die räumliche Trennung von Dampf- und Flüssigkeitsleitung der Loop-Wärmerohre eine größere Designfreiheit entsteht. Vergaser bzw. Reformer und externe Wärmequelle können völlig unabhängig voneinander angeordnet und optimiert werden.
  • Durch die getrennte Führung von Dampf- und Flüssigkeitsleitung kann der Verlauf der Dampfleitung hinsichtlich der Anordnung einer Wasserstoff-Abscheideeinrichtung optimiert werden - Anspruch 2.
  • Die vorteilhaften Ausgestaltungen der Ansprüche 3 und 4 beziehen sich auf unterschiedliche Bauformen für Loop-Wärmerohre mit getrennt verlaufender Dampf- und Flüssigkeitsleitung.
  • Gemäß der vorteilhaften Ausgestaltung der Erfindung nach Anspruch 5 erfolgt die Wärmeübertragung von der externen Wärmequelle in den Vergaser durch zwei physikalisch getrennte in Reihe geschaltete Wärmeträgerkreisläufe mit Phasenwechsel. Auf diese Weise kann der erste Wärmeträgerkreislauf bzw. das zugehörige Wärmerohr hinsichtlich der Wärmeaufnahme in der Wärmequelle optimiert werden, während der zweite Wärmeträgerkreislauf bzw. das zugehörige Wärmerohr hinsichtlich der Wärmeabgabe in dem Vergaser optimiert werden kann.
  • Als besonders geeignete Kombination haben sich Loop-Wärmerohre mit getrennt verlaufender Dampf- und Flüssigkeitsleitung für die erste Stufe zur Aufnahme der Wärme in der Wärmequelle und gepulste Loop-Wärmerohre mit gemeinsamer Dampf/Flüssigkeitsleitung für die Abgabe der Wärme im Vergaser herausgestellt - Anspruch 6 und 7.
  • Durch die vorteilhafte Ausgestaltung der Erfindung nach Anspruch 10 werden zum einen die Pyrolysereste aus dem Vergaser thermisch verwertet und zum anderen kann dadurch die vollständige Brennstoffzufuhr in die Wirbelschicht-Brennkammer erfolgen. Eine zusätzliche Zuführung von Brennstoff in die Wirbelschicht-Brennkammer ist mit Ausnahme des Anfahrens nicht mehr notwendig.
  • Aufgrund der hohen Betriebstemperaturen eigenen sich besonders Alkalimetalle und deren Legierungen, z. B. Na, K, NaK, als Wärmeträgermedium in den Loop-Wärmerohren.
  • Die übrigen Unteransprüche beziehen sich auf weitere vorteilhafte Ausgestaltungen der Erfindung.
  • Weitere Einzelheiten, Merkmale und Vorteile ergaben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsformen anhand der Zeichnung.
  • Es zeigt
    • Fig. 1 zeigt den prinzipiellen Aufbau eines Highterm-Reformers gemäß der vorliegenden Erfindung;
    • Fig. 2 eine schematisch Darstellung einer ersten Ausführungsform der Erfindung im Highterm-Reformer;
    • Fig. 3 eine erste Ausführungsform des Hochtemperatur-Wärmeträgerkreislaufes im Highterm-Reformer in Form eines mittels Kapillarstruktur gepulsten Loop-Wärmerohrs, CPL;
    • Fig. 4 eine zweite Ausführungsform des Hochtemperatur-Wärmeträgerkreislaufes in Form eines Loop-Wärmerohrs, LHP;
    • Fig. 5 das Druck-Temperatur-Zustandsdiagramm zu dem LHP nach Fig. 4;
    • Fig. 6 eine zweite Ausführungsform des Highterm-Reformers gemäß der vorliegenden Erfindung mit zwei physikalisch getrennten Wärmeträgerkreisläufen;
    • Fig. 7 ein gepulstes Loop-Wärmerohr, CLPHP, wie es in dem Highterm-Reformer nach Fig. 7 als zweiter Wärmeträgerkreislauf verwendet wird;
    • Fig. 8 eine beispielhafte Ausgestaltung der Wasserstoff-Abscheideeinrichtung Highterm-Reformers;
    • Fig. 9 eine dritte Ausführungsform des Highterm-Reformers gemäß der vorliegenden Erfindung mit Vergaser und Brennkammer in einem gemeinsamen Behälter; und
    • Fig. 10 eine dritte Ausführungsform des Hochtemperatur-Wärmeträgerkreislaufes in Form von Tauch-Loop-Wärmerohren.
  • Fig. 1 zeigt den prinzipiellen Aufbau eines Highterm-Reformes gemäß der vorliegenden Erfindung. Der Highterm-Refomer umfasst einen druckaufgelandenen Vergaser bzw. Reformer 2 und eine externe Wärmequelle in Form einer Brennkammer 4. Der Vergaser 2 umfasst einen Vergaserdruckbehälter 6, ein Zuführeinrichtung 8 für Brennstoff, eine Wasser bzw. Wasserdampfzuführung 10 und eine Produktgasableitung 12. Bei einer Temperatur von 800°C bis 900°C wird durch allotherme Wasserdampfvergasung aus kohlenstoffhaltigen Brennstoffen in bekannter Weise Produktgas erzeugt. Der Vergaser 2 und die externe Wärmequelle 4 sind über einen Wärmeträgerkreislauf bzw. einem Loop-Wärmerohr 14 miteinander verbunden. Der Wärmeträgerkreislauf bzw. das Loop-Wärmerohr 14 umfassen eine Wärme aufnehmende Seite 16 und eine Wärme abgebende Seite 18, die über eine Dampfleitung 20 für dampfförmiges Wärmeträgermedium und eine Flüssigkeitsleitung 22 für flüssiges Wärmeträgermedium miteinander verbunden sind. Über eine Schleuse 24 ist der Vergaser 2 mit der Wärmequelle 4 verbunden. Über die Schleuse 24 werden Pyrolysereste aus dem Vergaser 2 der Brennkammer 4 als Brennstoff zugeführt. Die Brennkammer 4 weist noch eine Luftzuführung 26 und einen Rauchgasabzug 28 auf. In die Flüssigkeitsleitung 22 ist zwischen Vergaser 2 und Brennkammer 4 eine Wasserstoff-Abscheideeinrichtung 30 angeordnet.
  • Durch Verbrennung der Pyrolyserreste aus dem Vergaser 2 und/oder durch Verbrennung von zusätzlichem Brennstoff wird in der Brennkammer 4 Wärme erzeugt, die durch die Wärme aufnehmende Seite 16 des Loop-Wärmerohrs 14 dadurch aufgenommen wird, dass das über die Flüssigkeitsleitung 22 zugeführtes flüssiges Wärmeträgermedium verdampft. Das dampfförmige Wärmeträgermedium strömt über die Dampfleitung 20 in den Vergaser, kondensiert in der Wärme abgebenden Seite 18 des Loop-Wärmerohrs 14 und stellt dadurch die für die allotherme Wasserdampfvergsung notwendige Hochtemperaturwärme Wärme bereit. Das verflüssigte Wärmeträgermedium wird über die Flüssigkeitsleitung 22 zusammen mit im Vergaser in den Wärmeträgerkreislauf 14 eindiffundiertem Wasserstoff der Wasserstoff-Abscheideeinrichtung 30 zugeführt. Durch die Wasserstoff-Abscheideeinrichtung 30 wird der Wasserstoff und auch andere Fremdstoffe von dem flüssigen Wärmeträgermittel abgetrennt und das verbleibende flüssige Wärmeträgermedium wird wieder der Brennkammer 4 zugeführt, so dass der Wärmeträgerkreislauf geschlossen ist. Aufgrund der hohen Temperaturen werden Alkalimetalle oder Legierungen davon, z. B. Na, K oder NaK, verwendet.
  • Fig. 2 zeigt schematisch eine erste, konkrete Ausführungsform der Erfindung, wobei für einander entsprechende Komponenten die gleichen Bezugszeichen verwendet werden. Die Brennkammer 4 ist eine Wirbelschicht-Brennkammer mit zirkulierender Wirbelschicht 32. Die Brennkammer 4 umfasst ein Steigrohr 34, einen Zyklon 36 sowie eine Schleuse 38 und ein Fliesbett 40, die zurück in das Steigrohr 34 führen. Die Wärme aufnehmende Seite 16 des Loop-Wärmerohrs 14 umfasst einen ersten und einen zweiten Rohrbündelwärmetauscher 42 und 44, die in Reihe geschaltet sind und in denen das flüssige Wärmeträgermedium durch Aufnahme von Wärme verdampft wird. Die Wärme abgebende Seite 18 umfasst einen dritten Rohrbündelwärmetauscher 46 in dem das dampfförmige Wärmetauschermedium durch Abgabe der zuvor aufgenommenen Wärme wieder kondensiert.
  • Bei der Ausführungsform nach Fig. 2 hat die Brennkammer 4 im Vergleich zum sogenannten Heatpipe-Reformer nach der EP 1 187 892 B1 keinerlei Einschränkung in der Bauweise und Betriebsweise. Somit können sämtliche konstruktive und betriebliche Parameter optimal an die Anforderungen der Hochtemperatur-Wärmebereitstellung angepasst werden. Der Einsatz der zirkulierenden Wirbelschicht 32 hat den Vorteil der optimalen Verbrennung im Steigrohr 34 und der optimalen und Material-schonenden Wärmeauskopplung aus dem Fließbett 40- erster Rohrbündelwärmetauscher 42 - und über Membranwände- zweiter Rohrbündelwärmetauscher 44 - in der turbulenten Bodenzone des Steigrohres 34. Hinsichtlich des genauen Aufbaus der Brennkammer 4 mit zirkulierender Wirbelschicht 32 wird auf "Handbook of Fludization and Fluid-Particle Systems", von Wen-Ching Yang, ISBN: 0-8247-0259-X, verwiesen.
  • Auch der Reformer bzw. Vergaser 2 kann ohne Einschränkungen im Hinblick auf die Brennkammer 4 konzipiert werden, da Brennkammer 4 und Vergaser 2 nicht wie bei dem Heatpipe-Reformer in einem gemeinsamen Behälter angeordnet sind. Die Durchführung der Hochtemperatur-Dampf- und Flüssigkeitsleitung 20, 22 wird an konstruktiv günstige Stellen Vergaserdruckbehälters 6 verlegt. Bei der Ausführungsform nach Fig. 2 werden die Flüssigkeitsleitung 22 und die Dampfleitung 20 seitlich aus dem tonnenförmigen Vergaser 2 geführt. Deckel und Boden des Vergaserdruckbehälters 6 sind frei von der Vielzahl an Heatpipe-Durchführungen, wie sie aus dem Heatpipe-Reformer bekannt sind. Es gibt lediglich Schwächungen durch die Wasserdampfzuführung 10 und die Brennstoffzufuhr 8, sowie Produktgasableitung 12 und Schleuse 24 zum Abführen von Pyrolyserückständen.
  • Durch eine innen liegende thermische Isolierung des Vergaserdruckbehälters 6 kann die Reaktionstemperatur in dem Vergaser wesentlich höher sein als die Temperaturen an der Wand des Vergaserdruckbehälters. Dadurch werden auch bei Einsatz kostengünstigerer Werkstoffe mit geringeren Wandstärken stabile Konstruktionen erreicht.
  • Die Pyrolysereste des Vergasers 2 können über die Schleuse 24 direkt in der Brennkammer 4 verwertet werden. Bei günstiger Prozessführung reichen die Pyrolysereste aus, um den Brennstoffbedarf der Brennkammer 4 zu decken. Produktgas-Leckageströme über die Schleuse 24 können in der Brennkammer 4 sicher und vollständig abgebrannt werden.
  • Fig. 3 zeigt eine erste Ausführungsform des Hochtemperatur-Wärmeträgerkreislaufes im Highterm-Reformer in Form eines mittels Kapillarstruktur gepumptes Loop-Wärmerohr 500 (Capillary Pumped Loop CPL), wie es aus der Veröffentlichung, Heat Pipe Science and Technology, Amir Fahgri, 1995, Seite 583 bekannt ist. Die CPL 500 umfasst eine Wärme aufnehmende Seite bzw. einen Verdampfer 516 und eine Wärme abgebende Seite bzw. einen Kondensator 518. Verdampfer 516 und Kondensator 518 sind über eine Dampfsammelleitung 520 für dampfförmiges Wärmeträgermedium und eine Flüssigkeitssammelleitung 522 für flüssiges Wärmeträgermedium miteinander verbunden. Dampfsammelleitung 520 und Flüssigkeitssammelleitung 522 verlaufen räumlich getrennt voneinander. Sowohl der Verdampfer 516 als auch der Kondensator 518 bestehen aus mehreren identischen und parallel geschalteten Verdampfer- 524 bzw. Kondensatorelementen 526. Die Verdampferelemente 524 weisen eine Kapillarstruktur 528 auf, über die flüssiges Wärmeträgermedium durch Aufnahme von Wärme verdampft wird. In den Kondensatorelementen 526 kondensiert das Wärmeträgermedium unter Abgabe von Wärme wieder.
  • Die Flüssigkeitssammelleitung 522 ist über eine Ausgleichsleitung 530 mit einem Ausgleichsbehälter 532 verbunden. Der Ausgleichsbehälter 532 sorgt für einen stetigen Füllstand in der Flüssigkeitssammelleitung 522. Das flüssige strömt aufgrund eines geringen Temperaturgefälles und damit auch Druckgefälles in die Flüssigkeitsammelleitung 522 zurück. Die im Verdampfer 516 (Brennkammer 4) aufgenommene Verdampfungsenthalpie wird somit wieder im Kondensator 518 (Vergaser 2) abgegeben.
  • In die Flüssigkeitssammelleitung 522 wird die Wasserstoff-Abscheideeinrichtung integriert (in Fig. 3 nicht eingezeichnet).
  • Fig. 4 zeigt eine zweite Ausführungsform des Hochtemperatur-Wärmeträgerkreislaufes im Highterm-Reformer in Form eines Loop-Wärmerohr 600 (Loop Heat Pipe LHP), wie es aus der Veröffentlichung, Heat Pipe Science and Technology, Amir Fahgri, 1995, Seite 586 bekannt ist. Das LHP 600 umfasst eine Wärme aufnehmende Seite bzw. einen Verdampfer 616 und eine Wärme abgebende Seite bzw. einen Kondensator 618. Verdampfer 616 und Kondensator 618 sind über eine Dampfleitung 620 für dampfförmiges Wärmeträgermedium und eine Flüssigkeitsleitung 622 für flüssiges Wärmeträgermedium miteinander verbunden. Dampfleitung 620 und Flüssigkeitsleitung 622 verlaufen räumlich getrennt voneinander. Im Verdampfer 616 ist eine Kapillarstruktur 628 angeordnet, durch die flüssiges Wärmeträgermedium durch Aufnahme von Wärme verdampft wird. In dem Kondensator 618 kondensiert das Wärmeträgermedium unter Abgabe von Wärme wieder.
  • Im Zustand 1 - Fig. 5 - befindet sich das Wärmeträgermedium im flüssig-Dampf-Gleichgewicht (f-d-GGW) und wird in Zustand 2 im Verdampfer 616 überhitzt. Vom Zustand 2 nach 3 sinkt der Druck aufgrund von Strömungsverlusten. Zustand 3 über 4 nach 5 zeigt die vollständige Kondensation inkl. Unterkühlung des Kondensats (Zustand 5). Im Zustand 6 befindet sich das Wärmeträgermedium im oberen Bereich des Verdampfers 616 und wird durch den Verdampfer 616 auf Zustand 7 erwärmt (f-d-GGW) und im unteren Bereich des Verdampfer 616 dann auf die Temperatur 8 überhitzt. Für die bestimmungsgemäße Funktion der LHP 600 ist es notwendig, dass die Kapillardruckdifferenz in der Kapillarstruktur 628 größer als die Summe der Druckverluste von der Dampf- und Flüssigkeitsströmung, der Kapillarstruktur 628 und dem hydrostatischem Druck ist. D. h. es muss gelten: Δ p cap max Δ p υ + Δ p + Δ p ω + Δ p g .
    Figure imgb0001
  • Ein derartiges Loop-Wärmerohr ist auch aus der WO/2003/054469 bekannt.
  • Fig. 6 zeigt eine zweite Ausführungsform des Highterm-Reformers gemäß der vorliegenden Erfindung mit einem zweistufigen Hochtemperatur-Wärmeträgerkreislauf 700. Der Hochtemperatur-Wärmeträgerkreislauf 700 umfasst einen primären Wärmeträgerkreislauf 701 und einen sekundären Wärmeträgerkreislauf 702. Der primäre Wärmeträgerkreislauf 701 umfasst eine Wärme aufnehmende Seite 716 und eine Wärme abgebende Seite 718. Die Wärme aufnehmende Seite 716 und die Wärme abgebende Seite 718 sind über eine Dampfleitung 720 für dampfförmiges Wärmeträgermedium und über eine Flüssigkeitsleitung 722 für flüssiges Wärmeträgermedium miteinander verbunden. Dampfleitung 720 und Flüssigkeitsleitung 722 verlaufen räumlich getrennt voneinander. Die Wärme abgebende Seite 716 ist in der Brennkammer angeordnet und die Wärme abgebende Seite 718 ist im Vergaser angeordnet. Der primäre Wärmeträgerkreislauf 701 kann durch die Loop-Wärmerohre 500 und/oder 600 in Fig. 3 und 4 realisiert werden.
  • Der sekundäre Wärmeträgerkreislauf 702 wird durch ein gepulstes Loop-Wärmerohr (Closed Loop Pulsating Heat Pipe, CLPHP) realisiert, wie es in Fig. 7 dargestellt ist. Das CLPHP 702 weist eine Wärme aufnehmende Seite 736 und eine Wärme abgebende Seite 738 auf. Die Wärme aufnehmende Seite 736 und die Wärme abgebende Seite 738 sind über eine geschlossene, mäanderförmig verlaufende Dampf/Flüssigkeitsleitung 740 miteinander verbunden. Sowohl die Wärme abgebende Seite 736 als auch die Wärme abgebende Seite der CLPHP 702 ist in dem Vergaserdruckbehälter 706 angeordnet. Die Wärme aufnehmende Seite 736 des CLPHP 702 ist in die Wärme abgebende Seite 718 des primären Wärmeträgerkreislaufes 701 integriert.
  • Bei geschlossenen gepulsten Loop-Wärmerohr 702 wird das Wärmeträgermedium abwechselnd über die Dampf/Flüssigkeitsleitung 740 vom Verdampfer 736 in den Kondensator 738 geleitet. Durch eine Temperaturdifferenz entsteht eine Druckdifferenz, die das ganze System gepulst strömen lässt. Dadurch wird es möglich Wasserstoffpolster und andere Inertgase konvektiv abzutransportieren und an geeigneter Stelle, z. B. an der Oberseite des Kondensators 738 über eine Entgasung 730 abzuziehen.
  • Nachfolgend wird anhand von Fig. 8 eine beispielhafte Ausführungsform Wasserstoff-Abscheideinrichtung bzw. Entgasungseinrichtung 30, 730, 830 beschreiben. Ein Vorteil des zweifachen Wärmeträgerkreislaufes besteht darin, dass durch die Entkopplung des pulsierenden sekundären Wärmeträgerreislaufs von der Brennkammer 4 bei Leckagen weniger Wärmträgermedium austreten kann.
  • Fertigungstechnisch bedingt kann sich im Alkali-Flüssig-Dampf-Kreislauf Inertgas befinden. Während des Betriebs diffundiert Wasserstoff in den Kreislauf ein. Die Folgen einer Ansammlung von Inertgasen im System sind vielfältig und wirken sich je nach Kreislauf-System (CPL, LHP,...) unterschiedlich stark aus:
    • Ansammlungen von Inertgasen können zur Beeinträchtigung des bestimmungsgemäßen Betriebs führen. Beispielsweise führen Inertgasansammlungen in Rohrkrümmungen zur Unterbrechung der Strömung und damit zur Unterbrechung der Wärmeübertragung. Eine lokale Überhitzung im Verdampferteil könnte die Folge sein.
    • Eine permanente Eindiffusion von Wasserstoff führt zu einem steigenden Gesamtdruck im System. Dadurch kann, je nach System, auch der Dampfdruck von Alkali-Metall beeinflusst werden und damit auch die Verdampfungstemperatur. Mit Hilfe einer Entgasungsvorrichtung könnte es möglich sein die Verdampfungstemperatur des Alkali-Metall-Kreislaufs zu beeinflussen.
  • Die Entgasungsvorrichtung bzw. Wasserstoff-Abscheideeinrichtung 30 für einen Alkalimetall flüssig-Dampfkreislauf muss daher folgende Randbedingungen erfüllen:
    1. 1. Die Medienberührenden Armaturen müssen beständig gegen Alkalimetalle, Wasserstoff und ggf. Alkalihydroxide (Laugen) sein. Desweiteren müssen die Armaturen Temperaturbeständig sein.
    2. 2. Absperr-Armaturen und (Überdruck-)Ventile müssen über einen großen Temperaturbereich vakuumdicht sein.
    3. 3. Die Entgasungsvorrichtung muss gewährleisten, dass kein Wärmeträgermedium (Alkalimetall) ausgeschleust wird. Daher muss eine zuverlässige Gas-Flüssig-Trennung gesichert sein. Folglich muss auch eine Kondensatableitung vorgesehen werden.
    4. 4. Je nach eingesetztem Wärmeübertragermedium muss dessen Erstarrung im Entgasungsbereich vermieden werden.
  • Fig. 8 zeigt einen beispielhaften Aufbau der Wasserstoff-Abscheideeinrichtung 30 wie sie in den verschiedenen Ausführungsformen des Highterm-Reformers eingesetzt werden kann. Die Wasserstoff-Abscheideeinrichtung 30 in der Flüssigkeitsleitung 22, 522, 622, 722 umfasst einen Sammelbehälter 300 in dem sich ein Flüssigkeitspegel eingestellt ist. Der Sammelbehälter 300 weist einen Gasdom 302 auf, in dem sich dampfförmiges Wärmeträgermedium befindet und in dem sich Wasserstoff und andere Inertgase sammeln. Aus diesem Gasdom 302 zweigt eine Stichleitung 304 ab, die in einen Bereich mit tieferen Temperaturen führt in einer Schleuseneinrichtung 306 endet. Dadurch können für die Ventile 308, 310, 312, 314 beispielsweise Materialien wie EPDM (bis ca. 150°C) etc. eingesetzt werden. Die Temperatur der Stichleitung 304 ist ausschlaggebend für den Dampfdruck des Wärmeträgermediums. Eine lange Stichleitung 304 führt daher zu einer Inertgas-Wärmeträger-Trennung. Die Temperatur der Stichleitung 304 darf nicht unterhalb der Erstarrungstemperatur des Wärmeträgermediums liegen, um ein Verstopfen der Stichleitung 304 zu verhindern.
    Durch die Entgasung ist eine Druck und damit auch eine Temperaturregelung möglich. Die Drucksensitivität des Systems ist, wie bereits erwähnt, stark von dem Kreislaufsystem abhängig.
  • Die Schleuseneinrichtung 306 zur Entgasung besteht aus 4 Ventilen 308, 310, 312, 314 wobei jeweils das erste und zweite Ventile 308, 310 und das dritte und vierte Ventil , 312, 314 in Reihe und die zwei Reihenpaare 308, 310 und 312, 314 parallel geschaltet sind. Durch die Parallelschaltung ergibt sich ein redundantes Schleusensystem. Das Entgasungssystem bzw. die Wasserstoff-Abscheideeinrichtung 30 sollte möglichst an der kühlsten Stelle des Wärmeträgerkreislaufes installiert werden. Eine Vakuumpumpe - nicht dargestellt - erzeugt bei geschlossenem Ventil 308 oder 312 und geöffnetem Ventil 310 oder 314 ein Vakuum, dann wird Ventil 310 oder 314 geschlossen und Ventil 308 bzw. 312 geöffnet und wieder geschlossen. Daraufhin beginnt dieser Zyklus erneut. Auf diese Weise wird Wasserstoff und andere Inertgase aus dem Wärmeträgerkreislauf ausgeschieden.
  • Fig. 9 zeigt eine dritte Ausführungsform des Highterm-Reformers mit einer Wirbelschicht-Brennkammer 804 und einem Vergaser bzw. Reformer 802. Der Vergaser 802 umfasst einen Vergaserdruckbehälter 806, der zusammen mit der Wirbelschicht-Brennkammer 804 in einem gemeinsamen Reaktorbehälter 805 angeordnet ist. Als Hochtemperatur-Wärmekreislauf zur Übertragung der Wärme aus der Wirbelschicht-Brennkammer 802 in den Vergaser 804 wird eine Loop-Wärmerohre-Einrichtung 814 mit einer Mehrzahl von Loop-Wärmerohren gemäß den Figuren 3 und 4 eingesetzt. Die Mehrzahl der Loop-Wärmerohren werden zu einer Verdampfer-Batterie 816 und einer Kondensator-Baterie 818 zusammengesetzt. Kondensator-Baterie 818 und Verdampferbatterie 816 sind über eine einzige Dampfleitung 820 und über eine einzige Flüssigkeitsleitung 822 miteinander verbunden. Die Verdampfer-Batterie 816 ist in der Wirbelschicht-Brenkammer 804 und die Kondensator-Batterie 818 ist in dem Vergaserdruckbehälter 805 angeordnet. Über ein Entgasungs- und Befüllrohr 830, das aus der Kondensator-Batterie 818 aus dem Vergaserdruckbehälter 806 und den gemeinsamen Reaktorbehälter 805 herausführt, werden Wasserstoff und andere Inertgase abgezogen. Gleichzeitig erfolgt über das Entgasungs- und Befüllrohr 830 die Befüllung der Loop-Wärmerohr-Einrichtung 814 mit Wärmeträgermedium. Der Vorteil dieser dritten Ausführungsform der Erfindung besteht darin, dass die Loop-Wärmerohr-Einrichtung 814 in ein bestehendes Reaktordesign integriert werden kann.
  • Fig. 10 zeigt eine alternative Ausgestaltung eines Wärmerohrs in Form eines sogenannten Tauch-Wärmerohrs 900. Das Tauch-Wärmerohr 900 besteht aus einem Außenrohr 902 mit einem offenen Ende 904 und mit einem geschlossenen Ende 906. Inn dem Außenrohr 902 ist ein beidseitig offenes Innenrohr 908 angeordnet, das ein erstes offenes Ende 910 und ein zweites offenes Ende 912 aufweist. Über das offene Ende 904 des Außenrohres 902 strömt dampfförmiges Wärmeträgermedium ein und kondensiert auf dem Weg nach unten zum geschlossenen Ende 906 des Außenrohres 902. Das kondensierte Wärmeträgermittel strömt durch das erste offene Ende 910 des Innenrohres 908 wieder nach oben und wird über das zweite offene Ende 912 des Innenrohres 908 aus dem Tauch-Wärmerohr 900 abgeführt. Ein entsprechendes Druckgefälle ist notwendig um das Wärmeträgermedium-Kondensat wieder aufwärts zu fördern. Die Zuführung von dampfförmigem Wärmeträgermedium über das offene Ende 904 des Außenrohres 902 und die Ableitung des flüssigen Wärmeträgermediums über das zweite offene Ende 912 des Innenrohres erfolgt quer zur Längserstreckung von Außen- und Innenrohr 902, 908.
  • Durch das vorstehend beschrieben Tauch-Wärmerohr 900 können mäanderförmige Wärmeübertrager-Rohrführungen vermieden werden, die in Wirbelschichten, insbesondere im Vergaser problematisch sind, da sie den Aufbau und die Schichtung der Wirbelschicht stören.
  • Bezugszeichenliste
  • 2
    druckaufgelandener Vergaser bzw. Reformer
    4
    Wärmequelle bzw. Brennkammer
    6
    Vergaserdruckbehälter
    8
    Zuführeinrichtung für Brennstoff
    10
    Wasser- bzw. Wasserdampfzuführung
    12
    Produktgasableitung
    14
    Hochtemperatur-Wärmeträgerkreislauf bzw. Loop-Wärmerohr
    16
    Wärme aufnehmende Seite von 14
    18
    Wärme abgebende Seite von 14
    20
    Dampfleitung
    22
    Flüssigkeitsleitung
    24
    Schleuse für Pyrolysereste
    26
    Luftzuführung
    28
    Rauchgasabzug.
    30
    Wasserstoff-Abscheideeinrichtung
    32
    zirkulierende Wirbelschicht
    34
    Steigrohr
    36
    Zyklon
    38
    Schleuse
    40
    Fließbett
    42
    erster Rohrbündelwärmetauscher
    44
    zweiter Rohrbündelwärmetauscher
    46
    dritter Rohrbündelwärmetauscher
    300
    Sammelbehälter von 30
    302
    Gasdom
    304
    Stichleitung
    306
    Schleuseneinrichtung
    308
    erstes Ventil
    310
    zweites Ventil
    312
    drittes Ventil
    314
    viertes Ventil
    500
    mittels Kapillarstruktur gepumptes Loop-Wärmerohr
    516
    Wärme aufnehmende Seite bzw. Verdampfer von 500
    518
    Wärme abgebende Seite bzw. Kondensator von 500
    520
    Dampfsammelleitung
    522
    Flüssigkeitssammelleitung
    524
    Verdampferelement
    526
    Kondensatorelement
    528
    Kapillarstruktur von 524
    530
    Ausgleichsleitung
    532
    Ausgleichsbehälter
    600
    Loop-Wärmerohr, LHP
    616
    Wärme aufnehmende Seite bzw. Verdampfer von 600
    618
    Wärme abgebende Seite bzw. Kondensator von 600
    620
    Dampfleitung
    622
    Flüssigkeitsleitung
    628
    Kapillarstruktur von 616
    700
    zweistufiger Hochtemperatur-Wärmeträgerkreislauf
    701
    primärer Wärmeträgerkreislauf
    702
    sekundärer Wärmeträgerkreislauf, gepulstes Loop-Wärmerohr, CLPHP
    706
    Vergaserdruckbehälter
    716
    Wärme aufnehmende Seite von 701
    718
    Wärme abgebende Seite von 701
    720
    Dampfleitung
    722
    Flüssigkeitsleitung
    730
    Entgasungseinrichtung
    736
    Wärme aufnehmende Seite bzw. Verdampfer von 702
    738
    Wärme abgebende Seite bzw. Kondensator von 702
    740
    Dampf/Flüssigkeitsleitung
    802
    Vergaser bzw. Reformer
    804
    Wirbelschicht-Brennkammer
    805
    gemeinsamer Reaktorbehälter
    806
    Vergaserdruckbeälter
    814
    Loop-Wärmerohr-Einrichtung
    816
    Verdampfer-Batterie
    818
    Kondensator-Batterie
    820
    Dampfleitung
    822
    Kondensatleitung
    830
    Entgasungs- und Befüllrohr
    900
    Tauch-Wärmerohr
    902
    Außenrohr
    904
    offenes Ende von 902
    906
    geschlossenes Ende von 902
    908
    Innenrohr
    910
    erstes offenes Ende von 908
    912
    zweites offenes Ende von 908

Claims (11)

  1. Vorrichtung zur Erzeugung von brennbarem Produktgas aus kohlenstoffhaltigen Einsatzstoffen durch allotherme Wasserdampfvergasung, mit
    - einem druckaufgeladenen Vergaser (2), der einen Vergaserdruckbehälter (6), eine Zuführeinrichtung (8) für die kohlenstoffhaltigen Einsatzstoffe, eine Wasserdampfzuführung (10) und eine Produktgasableitung (12) umfasst,
    - einer externen Wärmequelle (4), und
    - einer Wärmetransporteinrichtung (14) mit einer Mehrzahl von Wärmerohren durch die Wärme durch ein einen Phasenwechsel durchlaufendes Wärmeträgermedium aus der externen Wärmequelle (4) in den Vergaser (2) transportiert wird,
    wobei die Wärmerohre (14) eine Wärme abgebende Seite (18), die in dem Vergaser (2) angeordnet ist, und eine Wärme aufnehmende Seite (16), die in der externen Wärmequelle (4) angeordnet ist, umfassen,
    dadurch gekennzeichnet,
    dass die Mehrzahl der Wärmerohre (14) Loop-Wärmerohre (500; 600; 701, 702; 814) sind, deren Wärme aufnehmende (16; 516; 616; 716; 816) und Wärme abgebende Seiten (18; 518; 618; 738; 818) über eine Flüssigkeitsleitung (22; 522; 622; 722; 822) für flüssiges Wärmeträgermedium und über eine Dampfleitung (20; 520; 620; 720; 820) für dampfförmiges Wärmeträgermedium miteinander verbunden sind, dass die Flüssigkeits- und Dampfleitungen einzelner Loop-Wärmerohre (500; 600; 701, 702; 814) zu gemeinsamen Flüssigkeits- und Dampfleitungen (22; 522; 622; 722; 822; 20; 520; 620; 720; 820) zusammengefasst sind und
    dass die gemeinsamen Flüssigkeitsleitungen (22; 522; 622; 722; 822) und die gemeinsamen Dampfleitungen (20; 520; 620; 720; 820) räumlich getrennte Leitungen sind.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass in den Flüssigkeitsleitungen (22; 522; 622; 722; 822) der Loop-Wärmerohre (500; 600; 701, 702; 814) eine Wasserstoff-Abscheideeinrichtung (30; 532; 730; 830) angeordnet ist.
  3. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Wärmetransporteinrichtung (14) wenigstens ein mittels Kapillarstruktur (528; 628) gepumptes Loop-Wärmerohr (500; 600; 701)umfasst.
  4. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Wärmetransporteinrichtung (14) wenigstens ein Tauch-Loop-Wärmerohr (900) umfasst.
  5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
    dass die Wärmetransporteinrichtung (14) wenigstens ein erstes Loop-Wärmerohr (701) umfasst, das eine Dampfleitung (720) für dampfförmiges Wärmeträgermedium und eine Flüssigkeitsleitung (722) für flüssiges Wärmeträgermedium aufweist, wobei Dampf- und Flüssigkeitsleitung räumlich getrennt voneinander angeordnet sind,
    dass die Wärmetransporteinrichtung (14) wenigstens ein zweites Wärmerohr (702) aufweist,
    dass die beiden Wärmerohre (701, 702) jeweils eine Wärme abgebende Seite (718, 738) und eine Wärme aufnehmende Seite (716, 736) aufweisen,
    dass die Wärme aufnehmende Seite (716) des wenigstens einen ersten Loop-Wärmeohrs (701) in der externen Wärmequelle (4) angeordnet ist, und
    dass die Wärme abgebende Seite (718) des wenigstens einen ersten Loop-Wärmerohrs (701) thermisch in die Wärme aufnehmende Seite (736) des wenigstens einen zweiten Wärmerohrs (702) integriert ist, und
    dass die Wärme abgebende Seite (738) des wenigstens einen zweiten Wärmerohrs (702) in dem Vergaserdruckbehälter (706) angeordnet ist.
  6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass das wenigstens eine zweite Wärmerohr (702) ein gepulstes Loop-Wärmerohr ist, das eine gemeinsame Dampf/Flüssigkeitsleitung (740) aufweist und das in dem Vergaserdruckbehälter (706) angeordnet ist.
  7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass die gemeinsame Dampf/Flüssigkeitsleitung (740) mäanderförmig ausgebildet ist, dass die Wärme abgebende Seite (738) des gepulsten Loop-Wärmerohrs (702) im oberen Bereich des Vergaserdruckbehälters (706) angeordnet ist, und dass die Wärme aufnehmende Seite (736) im Bodenbereich des Vergaserdruckbehälters (706) angeordnet ist.
  8. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die externe Wärmequelle (4) eine Wirbelschicht-Brennkammer ist.
  9. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Vergaser (2) als Wirbelschicht-Vergaser ausgelegt ist.
  10. Vorrichtung nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass der Vergaserdruckbehälter (6) über eine Schleuse (24) für Pyrolysereste mit der Wirbelschicht-Brennkammer (4) verbunden ist.
  11. Vorrichtung nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass Wirbelschicht-Vergaser (802) und Wrbelschicht-Brennkammer (804) in einem gemeinsamen Behälter (805) angeordnet sind.
EP09763905A 2008-11-18 2009-11-18 Vorrichtung zur erzeugung von brennbarem produktgas aus kohlenstoffhaltigen einsatzstoffen Not-in-force EP2207616B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202008015273 2008-11-18
PCT/EP2009/065389 WO2010057919A1 (de) 2008-11-18 2009-11-18 Vorrichtung zur erzeugung von brennbarem produktgas aus kohlenstoffhaltigen einsatzstoffen

Publications (2)

Publication Number Publication Date
EP2207616A1 EP2207616A1 (de) 2010-07-21
EP2207616B1 true EP2207616B1 (de) 2011-08-03

Family

ID=41571782

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09763905A Not-in-force EP2207616B1 (de) 2008-11-18 2009-11-18 Vorrichtung zur erzeugung von brennbarem produktgas aus kohlenstoffhaltigen einsatzstoffen

Country Status (7)

Country Link
US (1) US20110259556A1 (de)
EP (1) EP2207616B1 (de)
CN (1) CN102215948A (de)
AT (1) ATE518589T1 (de)
BR (1) BRPI0921897A2 (de)
CA (1) CA2743075C (de)
WO (1) WO2010057919A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009017854B4 (de) * 2009-04-17 2013-02-21 Highterm Research Gmbh Vorrichtung zur Erzeugung von Produktgas aus kohlenstoffhaltigen Einsatzstoffen mit Wärmerohren
DE102010043851A1 (de) 2010-11-12 2012-05-16 Highterm Research Gmbh Hochtemperatur-Wärmetransportvorrichtung
US8778212B2 (en) * 2012-05-22 2014-07-15 Cabot Microelectronics Corporation CMP composition containing zirconia particles and method of use
TWI580921B (zh) * 2014-05-09 2017-05-01 財團法人工業技術研究院 脈衝型多管式熱管
CN108458614A (zh) * 2018-04-13 2018-08-28 中国科学院理化技术研究所 一种回路热管
US11051428B2 (en) * 2019-10-31 2021-06-29 Hamilton Sunstrand Corporation Oscillating heat pipe integrated thermal management system for power electronics
FR3124585B1 (fr) * 2021-06-24 2023-11-10 Thales Sa Dispositif et procédé de contrôle passif du débit d’un fluide dans une boucle fluide diphasique à pompage mécanique
CN114214091B (zh) * 2021-12-20 2022-08-30 南京林业大学 生物质挥发分、水蒸气及生物质半焦三元气化反应制氢装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4474230A (en) * 1982-08-31 1984-10-02 Foster Wheeler Energy Corporation Fluidized bed reactor system
DE3929024A1 (de) 1989-09-01 1991-03-14 Deutsche Forsch Luft Raumfahrt Heatpipe
EP1187892B1 (de) * 1999-06-09 2004-12-29 Technische Universität München Lehrstuhl für Thermische Kraftanlagen Vorrichtung zur vergasung kohlenstoffhaltiger einsatzstoffe
US6810946B2 (en) 2001-12-21 2004-11-02 Tth Research, Inc. Loop heat pipe method and apparatus
DE102006016005A1 (de) 2006-04-05 2007-10-11 Bioage Gmbh Wärmerohr, Heatpipe-Reformer mit einem solchen Wärmerohr und Verfahren zum Betreiben eines solchen Heatpipe-Reformers

Also Published As

Publication number Publication date
US20110259556A1 (en) 2011-10-27
ATE518589T1 (de) 2011-08-15
CA2743075C (en) 2014-05-06
WO2010057919A1 (de) 2010-05-27
CN102215948A (zh) 2011-10-12
EP2207616A1 (de) 2010-07-21
CA2743075A1 (en) 2010-05-27
BRPI0921897A2 (pt) 2015-12-29

Similar Documents

Publication Publication Date Title
EP2207616B1 (de) Vorrichtung zur erzeugung von brennbarem produktgas aus kohlenstoffhaltigen einsatzstoffen
DE69724792T2 (de) Brennstoffzellensystem zur stromerzeugung, heizung und kühlung und ventilation
EP2005100B1 (de) Wärmerohr, heatpipe-reformer mit einem solchen wärmerohr und verfahren zum betreiben eines solchen heatpipe-reformers
DE1881622U (de) Vorrichtung zur dampferzeugung mit einem atomreaktor als waermequelle.
DE112005000369T5 (de) Integrierte Brennstoffverarbeitungsanlage für eine dezentrale Wasserstoffproktion
WO2006066545A1 (de) Reformer für eine brennstoffzelle
DE102006009062B4 (de) Kryoadsorptionssammelgefäß zur Verdampfungsverlustkompensation für Flüssiggasspeicherung
EP2596218A2 (de) Vorrichtung zum speichern von wärme
DE102006029524B4 (de) Stromgenerator/Wasserstoffgewinnungs-Kombinationsanlage
DE102007050799B3 (de) Einrichtung zur Befeuchtung und Erhitzung eines zu reformierenden Brenngases für eine Brennstoffzellenanlage
EP0008633B1 (de) Wärmetauscher für Hochdruck- und Hochtemperatureinsatz und Verfahren zu seiner Herstellung sowie Verwendung als Reaktor
DE102017001564A1 (de) Verfahren zum Starten einer Brennstoffzellenanordnung und Brennstoffzellenanordnung
DE2249581A1 (de) Waermetauscher
DE2804187C2 (de) Wärmeaustauscher mit in einer Platte eingelassenen hängenden U-Rohren zur Abkühlung von unter hohem Druck und hoher Temperatur stehenden Prozeßgasen
AT521206B1 (de) Verdampfer für ein Brennstoffzellensystem sowie Brennstoffzellensystem
EP2928818B1 (de) Reaktor zur freisetzung von wasserstoff
DE102009011847A1 (de) Verdampfersystem für Rauchgase in ORC-Prozessen
EP2588406A1 (de) Vorrichtung zur hci-synthese mit dampferzeugung
WO1982000330A1 (en) Installation for preventing the formation of cracks at the inner surface of the sleeve of a water supply conduit opening into pressure tanks
US3254705A (en) Steam generator
DE202009003094U1 (de) ORC-System für Verbrennungsmotoren
DE102008055947A1 (de) Ausdiffusionsheatpipe
EP3252375B1 (de) Kesselanlage, verfahren zum betreiben einer kesselanlage und verwendung einer kesselanlage
WO2023213925A1 (de) Dampferzeuger
DE102017107003A1 (de) Behältnis zum Betrieb von Hochtemperaturbrennstoffzellen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100525

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009001055

Country of ref document: DE

Effective date: 20111013

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110803

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111103

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111203

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111205

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111104

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

BERE Be: lapsed

Owner name: HIGHTERM RESEARCH G.M.B.H.

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

26N No opposition filed

Effective date: 20120504

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009001055

Country of ref document: DE

Effective date: 20120504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20131112

Year of fee payment: 5

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131118

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009001055

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009001055

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150602

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 518589

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141118