EP2206175A1 - Verwendung von diphenylamino-bis(phenoxy)- und bis(diphenylamino)-phenoxytriazinverbindungen - Google Patents

Verwendung von diphenylamino-bis(phenoxy)- und bis(diphenylamino)-phenoxytriazinverbindungen

Info

Publication number
EP2206175A1
EP2206175A1 EP08842691A EP08842691A EP2206175A1 EP 2206175 A1 EP2206175 A1 EP 2206175A1 EP 08842691 A EP08842691 A EP 08842691A EP 08842691 A EP08842691 A EP 08842691A EP 2206175 A1 EP2206175 A1 EP 2206175A1
Authority
EP
European Patent Office
Prior art keywords
alkyl
aryl
radicals
formula
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08842691A
Other languages
English (en)
French (fr)
Inventor
Evelyn Fuchs
Nicolle Langer
Christian Lennartz
Peter Strohriegl
Michael Rothmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP08842691A priority Critical patent/EP2206175A1/de
Publication of EP2206175A1 publication Critical patent/EP2206175A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/20Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the material in which the electroluminescent material is embedded
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present invention relates to an organic light-emitting diode containing at least one diphenylamino-bis (phenoxy) - or at least one bis (diphenylamino) - phenoxytriazine compound, a light-emitting layer containing at least one diphenylamino-bis (phenoxy) - or at least one bis (diphenylamino) - phenoxotriazine compound, the use of the abovementioned compounds as matrix material, hole / exciton blocker material, electron / exciton blocker material, hole injection material, electron injection material, hole conductor material and / or electron conductor material and a device selected from the group consisting of stationary screens, Mobile screens and lighting units contain at least one organic light-emitting diode according to the invention.
  • OLEDs organic light emitting diodes
  • the property of materials is used to emit light when excited by electric current.
  • OLEDs are of particular interest as an alternative to cathode ray tubes and to liquid crystal displays for the production of flat panel displays. Due to the very compact design and the intrinsically low power consumption, devices containing OLEDs are particularly suitable for mobile applications, for example for applications in mobile phones, laptops, etc., as well as for lighting.
  • OLEDs As light-emitting materials (emitters), phosphorescent materials (phosphorescence emitters) can be used in addition to fluorescent materials (fluorescence emitters).
  • the phosphorescence emitters are usually organometallic complexes which, in contrast to the fluorescence emitters which exhibit singlet emission, exhibit triplet emission (triplet emitters) (MA Baldow et al., Appl. Phys. Lett. 1999, 75, 4 to 6).
  • the triplet emitter phosphorescence emitter
  • the organometallic triplet emitters phosphorescent emitters
  • Such device compositions may contain, for example, special matrix materials in which the actual light emitter is present in distributed form.
  • the compositions may contain blocker materials, wherein hole, excitation and / or electron blockers may be present in the device compositions.
  • the device compositions may further comprise hole injection materials and / or electron injection materials and / or hole conductor materials and / or electron conductor materials.
  • JP-A 2002-193952 relates to amino-substituted triazine derivatives which are useful as light-emitting materials.
  • the compounds exhibit blue fluorescence with high intensity and are suitable for use in light-emitting elements.
  • the amino group is linked in the compounds according to JP-A 2002-193952 via a linker with the triazine skeleton.
  • the triazine skeleton may have other non-amino substituents. Diphenylamino-bis (phenoxy) - or bis (diphenylamino) -phenoxytriazine compounds are not mentioned in JP-A 2002-193952.
  • US Pat. No. 5,716,722 discloses OLEDs which, as hole transport material, have a compound with a triazine ring with at least one directly bound diphenylamino group. According to US 5,716,722 hole transport materials are to be provided, which are difficult to crystallize, since the crystallization in the hole transport layer can lead to short circuits, so that no light emission takes place in the crystallized areas. Diphenylamino-bis (phenoxy) - or bis (diphenylamino) - phenoxytriazine compounds are not mentioned in US 5,716,722.
  • US 2006/0051616 A1 relates to organic compounds which simultaneously fluoresce and phosphoresce.
  • the organic compounds may be triazine derivatives.
  • the specification in US 2006/0051616 A1 discloses carbazolyl-substituted triazine derivatives which, in addition to two carbazolyl substituents, may carry a halogen-substituted phenoxy radical.
  • the organic compounds can be used as emitter materials in organic light-emitting diodes.
  • Other uses of the method described in US 2006/0051616 A1 th organic compounds, for example as a matrix material, blocking material or injection material are not mentioned in US 2006/0051616 A1.
  • the object of the present invention is to provide materials which are suitable for use in OLEDs, in particular for use as matrix material, in particular as matrix material in the light-emitting layer, hole / exciton blocker material, electron / exciton blocker material, hole injection material, Electron injection material, hole conductor material and / or Elektronenleiterma- material which have improved amorphous properties compared to the materials mentioned in the prior art, that is, have a reduced tendency to crystallize, as well as the provision of OLEDs with an improved property profile, resulting in improved performance , eg a prolonged life, good luminance, high quantum yields, etc., shows.
  • an organic light-emitting diode containing at least one diphenylamino-bis (phenoxy) and / or bis (diphenylamino) -phenoxytriazine derivative of the general formula (I)
  • Dr ⁇ 8, Dr ⁇ 9, Dr ⁇ 10 are independently hydrogen, alkyl, aryl, heteroaryl, OH, O-alkyl, O- aryl, O-heteroaryl, SH, S-alkyl, S-aryl, halogen, pseudo-halogen, amino or further substituents with donor or acceptor action;
  • R 11 , R 12 , R 13 , R 14 , R 15 independently of one another are hydrogen, alkyl, aryl, heteroaryl, OH, O-alkyl, O-aryl, O-heteroaryl, SH, S-alkyl, S-aryl, pseudohalogen, Amino, further substituents with donor or acceptor action or a radical of the formula (i), (ii) or (iii)
  • R 34 , R 35 , R 36 , R 37 , R 38 , R 39 , R 40 , R 34 ' , R 35' , R 36 ' , R 37 and R 38' are independently hydrogen, alkyl, aryl, Heteroaryl, OH, O-alkyl, O-aryl, O-heteroaryl, SH, S-alkyl, S-aryl, halogen, pseudohalogen, amino or other substituents with donor or acceptor action;
  • D 16 D "I8 D 19 D 21 D 23 D 24 D 25 are independently hydrogen, alkyl, aryl, heteroaryl, OH, O-alkyl, O- aryl, O-heteroaryl, SH, S-alkyl, S-aryl, Halogen, pseudohalogen, amino or other donor or acceptor substituents; independently of one another are hydrogen, alkyl, aryl, heteroaryl, OH, O-alkyl, O-aryl, O-heteroaryl, SH, S-alkyl, S-aryl, pseudohalogen, amino, others
  • radicals R 34 " , R 35" , R 36 “ , R 37” , R 38 “ , R 39 ' R 40' R 34"' R 35 “' R 36”' R 37 “ and R 38” are each independently Hydrogen, alkyl, aryl, heteroaryl, OH, O-alkyl, O-aryl, O-heteroaryl, SH, S-alkyl, S-aryl, halogen, pseudohalogen, amino or other substituents with donor or acceptor action; n, m are independently 0 or 1, preferably 1.
  • the expression "further substituents with donor or acceptor action” is understood to mean the abovementioned substituents with donor or acceptor action which are not expressly mentioned in the definition of the radicals R 1 to R 30 .
  • the present invention thus relates to specifically substituted tris (diphenylamino) triazine compounds having at least one aryloxy group. It has been found that these compounds are distinguished by a particularly low crystallization tendency and are particularly suitable for use in OLEDs.
  • the compounds of the formula (I) can be used either as a matrix, in particular as a matrix in the light-emitting layer, as a hole / exciton blocker, as electron / exciton blocker, as hole injection materials, as electron injection materials, as Hole conductor and / or used as an electron conductor.
  • a hole / exciton blocker as a matrix in the light-emitting layer
  • electron / exciton blocker as hole injection materials
  • electron injection materials as Hole conductor and / or used as an electron conductor.
  • Corresponding layers of OLEDs are known to the person skilled in the art and are mentioned, for example, in WO 2005/113704 or WO 2005/019373.
  • Alkyl is to be understood as meaning substituted or unsubstituted C 1 -C 20 -alkyl radicals. Preference is given to C 1 to C 10 -alkyl radicals, particularly preferably C 1 to C 6 -alkyl radicals.
  • the alkyl radicals can be both straight-chain and branched.
  • the alkyl radicals may be substituted with one or more substituents selected from the group consisting of CrC 2 o-alkoxy, halogen, preferably F, and C 6 -C 3 o-aryl, which in turn may be substituted or unsubstituted substituted. Suitable aryl substituents as well as suitable alkoxy and halogen substituents are mentioned below.
  • alkyl groups are methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl and octyl, as well as C 6 -C 3 o-aryl, Ci-C 2O -AIkOXy- and / or halogen, especially F, substituted derivatives of the mentioned alkyl groups, for example CF 3 .
  • n-isomers of the radicals mentioned and branched isomers such as isopropyl, isobutyl, isopentyl, sec-butyl, tert-butyl, neopentyl, 3,3-dimethylbutyl, 3-ethylhexyl, etc. are included.
  • Preferred alkyl groups are methyl, ethyl, tert-butyl and CF 3 .
  • cycloalkyl substituted or unsubstituted C 3 -C 2 O-AI ky I radicals. Preference is given to C 3 - to Cio-alkyl radicals, more preferably C 3 - to C 8 -alkyl radicals.
  • the cycloalkyl radicals may carry one or more of the substituents mentioned with respect to the alkyl radicals.
  • cyclic alkyl groups which may likewise be unsubstituted or substituted by the radicals mentioned above with respect to the alkyl groups are cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl and cyclodecyl. If appropriate, these may also be polycyclic ring systems, such as decalinyl, norbornyl, bornanyl or adamantyl.
  • Suitable O-alkyl and S-alkyl groups are Ci-C 2 o-alkoxy and C 1 -C 20 - alkylthio, and derive respectively from the above-mentioned C 1 -C 20 - alkyl radicals from.
  • C 3 H 7 , C 4 H 9 and C 8 H 17 include both the n-isomers and branched isomers such as isopropyl, isobutyl, sec-butyl, tert-butyl and 2-ethylhexyl.
  • Particularly preferred alkoxy or alkylthio groups are methoxy, ethoxy, n-octyloxy, 2-ethylhexyloxy and SCH 3 .
  • Suitable halogen radicals or halogen substituents for the purposes of the present application are fluorine, chlorine, bromine and iodine, preferably fluorine, chlorine and bromine, particularly preferably fluorine and chlorine, very particularly preferably fluorine.
  • Suitable pseudohalogen radicals in the context of the present application are CN, SCN, OCN, N 3 and SeCN, CN and SCN being preferred. Most preferred is CN.
  • Suitable aryl radicals are C 6 -C 30 -aryl radicals which are derived from monocyclic, bicyclic or tricyclic aromatics which contain no ring heteroatoms. Unless they are monocyclic systems, the term aryl for the second ring also means the saturated form (perhydroform) or the partially unsaturated form (for example the dihydroform or tetrahyroform), provided the respective forms are known and stable. That is, in the present invention, the term aryl includes, for example, bicyclic or tricyclic radicals in which both both and all three radicals are aromatic, as well as bicyclic or tricyclic radicals in which only one ring is aromatic, and tricyclic radicals wherein two rings are aromatic.
  • aryl examples include: phenyl, naphthyl, indanyl, 1, 2-dihydronaphthenyl, 1, 4-dihydronaphthenyl, indenyl, anthracenyl, phenanthrenyl or 1, 2,3,4-tetrahydronaphthyl.
  • Particularly preferred are C 6 -C 10 -aryl radicals, for example phenyl or naphthyl, very particularly preferably C 6 -aryl radicals, for example phenyl.
  • the aryl radicals may be unsubstituted or substituted by one or more further radicals.
  • Suitable further radicals are selected from the group consisting of C 1 -C 20 -alkyl, C 6 -C 30 -aryl or substituents with donor or acceptor action, suitable substituents with donor or acceptor action being mentioned below.
  • the C 6 -C 3 are preferably unsubstituted o-aryl or substituted with one or more C 20 alkoxy groups, CN, CF 3, F or amino groups. Further preferred substitutions of the C 6 -C 30 aryl radicals are dependent on the intended use of the compounds of the general formula (I) and are mentioned below.
  • Suitable O-aryl and S-aryl groups are C 6 -C 30 aryloxy, C 6 -C 3 o-alkylthio groups and are derived respectively from the aforementioned C 6 -C 30 aryl residues from. Particularly preferred are phenoxy and phenylthio.
  • Heteroaryl is to be understood as meaning unsubstituted or substituted heteroaryl radicals having 5 to 30 ring atoms, which may be monocyclic, bicyclic or tricyclic, some of which can be derived from the abovementioned aryl, in which at least one carbon atom in the aryl skeleton is replaced by a heteroatom , Preferred heteroatoms are N, O and S. Particularly preferably, the heteroaryl radicals have 5 to 13 ring atoms. Especially preferred is the backbone of the heteroaryl radicals selected from systems such as pyridine and five-membered heteroaromatics such as thiophene, pyrrole, imidazole or furan.
  • backbones may optionally be fused with one or two six-membered aromatic radicals.
  • Suitable anellated heteroaromatics are carbazolyl, benzimidazolyl, benzofuryl, dibenzofuryl or dibenzothiophenyl.
  • the backbone may be substituted at one, several or all substitutable positions, suitable substituents being the same as those already mentioned under the definition of C 6 -C 30 -aryl.
  • the heteroaryl radicals are unsubstituted.
  • Suitable heteroaryl radicals are, for example, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, thiophen-2-yl, thiophen-3-yl, pyrrol-2-yl, pyrrol-3-yl, furan-2 - yl, furan-3-yl and imidazol-2-yl and the corresponding benzanell faced radicals, in particular carbazolyl, benzimidazolyl, benzofuryl, dibenzofuryl or dibenzothiophenyl.
  • Amino groups are radicals of the general formula -NR 31 R 32 , suitable radicals R 31 and R 32 being mentioned below.
  • suitable amino groups are diarylamino groups such as diphenylamino and dialkylamino groups such as dimethylamino, diethylamino and arylalkylamino groups such as phenylmethylamino.
  • Preferred substituents with donor or acceptor action are selected from the group consisting of:
  • C 1 to C 2 o-alkoxy preferably C 1 -C 6 -alkoxy, particularly preferably ethoxy or methoxy
  • C6-C 3 o-aryloxy preferably C 6 -Cio-aryloxy, most preferably phenyloxy
  • SiR 31 R 32 R 33 wherein R 31 , R 32 and R 33 are preferably each independently substituted or unsubstituted alkyl or substituted or unsubstituted phenyl; at least one of the radicals R 31 , R 32 or R 33 is particularly preferably substituted or unsubstituted phenyl, very particularly preferably at least one of the radicals R 31 , R 32 and R 33 is substituted phenyl, suitable substituents being mentioned above; Halogen radicals, preferably F, Cl, Br, particularly preferably F or Cl, very particularly preferably F, halogenated dC 2 o-alkyl radicals, preferably halogenated C 1 -C 6 -alkyl
  • CF 3 CH 2 F, CHF 2 or C 2 F 5 ;
  • Amino preferably dimethylamino, diethylamino or diphenylamino;
  • OH pseudohalogen radicals, preferably CN, SCN or OCN, more preferably CN, -C (O) OC r C 4 alkyl, preferably -C (O) OMe, P (O) R 2 , preferably P (O) Ph 2 or SO 2 R 2 , preferably SO 2 Ph.
  • Very particularly preferred substituents having donor or acceptor selected from the group consisting of methoxy, phenyloxy, halogenated CrC 4 - alkyl, preferably CF 3, CH 2 F, CHF 2, C 2 F 5, halogen, preferably F, CN, SiR 31 R 32 R 33 , where suitable radicals R 31 , R 32 and R 33 are already mentioned, diphenylamino, -C (O) -O-C 4 -alkyl, preferably -C (O) OMe, P (O) Ph 2 , SO 2 Ph.
  • the abovementioned groups with donor or acceptor action it should not be ruled out that further of the abovementioned radicals and groups may also have a donor or acceptor action.
  • the above-mentioned heteroaryl radicals are also donor or acceptor groups and the dC 2 o-alkyl radicals are donor-donating groups.
  • R 31 , R 32 and R 33 mentioned in the abovementioned groups with donor or acceptor action have the meanings already mentioned above, ie R 31 , R 32 , R 33 independently of one another:
  • Ci-C 20 alkyl or substituted or unsubstituted C6-C 3 o-aryl where suitable and preferred alkyl and aryl radicals are above overall Nannt.
  • the radicals R 31 , R 32 and R 33 are C 1 -C 6 -alkyl, z.
  • R 32 and R 33 are preferably each independently substituted or unsubstituted C 1 -C 20 -alkyl or substituted or unsubstituted phenyl; more preferably at least one of R 31 , R 32 or R 33 is substituted or unsubstituted phenyl, most preferably at least one of R 31 , R 32 and R 33 is substituted phenyl, suitable substituents being mentioned above.
  • the compounds of the formula (I) are preferably compounds which have 1 or 2 triazine groups, ie the compounds of the formula (I) preferably have one or no radical selected from the formulas (i), (ii) , (iii), (iv), (v) and (vi).
  • the present invention relates to compounds of the formula (I) in which at least one of the radicals R 1 to R 30 is not hydrogen.
  • Preference is given to compounds of the formula (I) in which at least one of the radicals R 2 , R 3 , R 4 , R 7 , R 8 , R 9 , R 12 , R 13 , R 14 , and / or at least one of the radicals R 17 , R 18 , R 19 , R 22 , R 23 , R 24 or R 27 , R 28 , R 29 is not hydrogen.
  • radicals R 1 to R 30 which are not hydrogen.
  • the radicals which are not hydrogen are preferably selected from the abovementioned radicals R 2 , R 3 , R 4 , R 7 , R 8 , R 9 , R 12 , R 13 , R 14 , R 17 , R 18 , R 19 , R 22 , R 23 , R 24 , R 27 , R 28 and R 29 are selected radicals.
  • all other radicals R 1 to R 30 are hydrogen.
  • compounds of formula (I) are particularly preferred wherein the o-positions of the phenyl radicals attached to the nitrogen atom or oxygen atom attached to the triazine skeleton carry hydrogen atoms.
  • the p and m positions are independently substituted with the aforementioned radicals (which may also be hydrogen atoms).
  • Another object of the present invention are therefore the organic light emitting diodes according to the invention, wherein the radicals R 1 , R 5 , R 6 , R 10 , R 11 , R 15 , R 16 , R 20 , R 21 , R 25 , R 26 and R 30 is hydrogen.
  • the groups A, D, E, G, L and M, R, T, U and V are preferably, independently of one another,
  • V CR 30 , N or P, or - if m 0 - additionally O or S; preferably CR 30 .
  • 0, 1, 2 or 3 of the groups A, D, E, G, L or M, R, T, U and V denote nitrogen and the remaining groups mean one of the carbon-containing group mentioned above in the definitions.
  • radicals R 11 , R 12 , R 13 , R 14 , R 15 are independently hydrogen, alkyl, aryl, heteroaryl, OH, O-alkyl, O-aryl, O-heteroaryl, SH, S-alkyl, S-aryl , Pseudohalogen, amino, another substituent with donor or acceptor action or a radical selected from the formulas (i), (ii) and (iii)
  • the compounds of formula (I) have one or no group selected from the formulas (i), (ii) and (iii), wherein - when a group selected from the formulas (i), (ii) and (iii) - one of the radicals R 12 , R 13 or R 14 , preferably R 12 or R 14 is a radical selected from the formulas (i), (ii) and (iii).
  • Particularly preferred formulas (ii) and (iii) are the following formulas (iia) and (iiia):
  • R 39 and R 40 and R 37 independently of one another denote hydrogen, CH 3 or CF 3 and R 34 and R 36 independently of one another denote hydrogen or CH 3 .
  • radicals R 26 , R 27 , R 28 , R 29 , R 30 independently of one another are hydrogen, alkyl, aryl, heteroaryl, OH, O-alkyl, O-aryl, O-heteroaryl, SH, S-alkyl, S-aryl , Pseudohalogen, amino, another substituent with donor or acceptor action or a radical of the formulas (iv), (v) or (vi)
  • R 34 " , R 35" , R 36 “ , R 37” , R 38 “ , R 39 ' , R 40' , R 34" , R 35 “ , R 36" , R 37 “ and R 38" independently of one another hydrogen, alkyl, aryl, heteroaryl, OH, O-alkyl, O-aryl, O-heteroaryl, SH, S-alkyl, S-aryl, halogen, pseudohalogen, amino or other substituents with donor or acceptor action; preferably hydrogen, alkyl, aryl, heteroaryl, OH, O-alkyl, O-aryl, O-heteroaryl, SH, S-alkyl, S-aryl, pseudohalogen, amino or another substituent with donor or acceptor action; particularly preferably hydrogen, alkyl, O-alkyl, O-aryl or pseudohalogen; very particularly preferably hydrogen, d- to C 6 alkyl, OC 1 - to C 6 - alkyl
  • radicals R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 and the radicals R 16 , R 17 , R 18 , R 19 , R 20 , R 21 , R 22 , R 23 , R 24 , R 25 and the radicals R 34 , R 35 , R 36 , R 37 , R 38 , R 39 , R 40 , R 34 ' , R 35' , R 36 ' , R 37 and R 38 ' and the radicals R 34 " , R 35" , R 36 “ , R 37" , R 38 " , R 39' , R 40 ' , R 34" , R 35 " , R 36” , R 37 “ and R 38 independently represent hydrogen, alkyl, aryl, heteroaryl, OH, O-alkyl, O-aryl, O-heteroaryl, SH, S-alkyl, S-aryl, halogen,
  • the radicals R 1 to R 40 are independently hydrogen, alkyl, halogen-substituted alkyl, pseudo-halogen, O-alkyl or O-aryl, preferably hydrogen, Cr to C ⁇ -alkyl, with one or more F atoms substituted C 1 to C 6 alkyl, C 2 - to C 6 alkyl or OC 6 aryl, particularly preferably methyl, CF 3 or O-methyl.
  • the compounds of the formula (I) used according to the invention in one embodiment are diphenylamino-bis (phenoxy) triazine compounds, i. the group X means
  • the compounds of the formula (I) are bis (diphenylamino) -phenoxytriazine compounds, ie the group X is
  • R 16 , R 17 , R 18 , R 19 , R 20 , R 21 , R 22 , R 23 , R 24 and R 25 have the meanings given above.
  • the compounds of the formula I have the following formulas (Ia), (Ib), (Ic), Id), (Ie) or (If):
  • R 3a , R 4a , R 7a , R 8a , R 9a , R 2b , R 3b , R 4b , R 7b , R 8b and R 9b independently of one another are hydrogen, alkyl, halogen-substituted alkyl, pseudohalogen, O-alkyl or O.
  • - Aryl preferably hydrogen, C 1 - to C 6 -alkyl, with one or more F atoms substituted C r to C 6 alkyl, Od to C ⁇ alkyl or OC 6 -aryl, more preferably methyl, CF 3 or O-methyl.
  • diphenylamino-bis (phenoxy) and bis (diphenylamino) -phenoxytriazine compounds of the general formula (I) is carried out according to methods known to the person skilled in the art, e.g. by nucleophilic substitution of 2,4,6-trichloro-1, 3,5-triazine with suitable Li-diarylamides, e.g. according to the method mentioned in H. Inomata et al., Chemistry of Materials 2004, 16, 1285 or with suitable phenates, e.g. according to the method mentioned in F.C. Schaefer et al., Journal of the American Chemical Society, 1951, 73, 2990.
  • the compounds of the formula (I) are outstandingly suitable for use as matrix materials in organic light-emitting diodes.
  • they are suitable as matrix materials in the light-emitting layer of the OLEDs, wherein the light-emitting layer preferably contains one or more triplet emitters as emitter compounds.
  • the compounds of the formula (I) are suitable as hole / exciton blocker material, electron / exciton blocker material, hole injection material, electron injection material, hole conductor material and / or electron conductor material, wherein they preferably together with at least one triplet emitter in the OLED invention are used.
  • the function of the compounds of the formula (I) as matrix material, preferably in the light-emitting layer, as hole / exciton blocker material, as electron / Excitonenblockermaterial, as a hole injection material, as an electron injection material, as a hole conductor material or as an electron conductor material is inter alia dependent on the electronic properties of the compounds of formula (I), ie the substitution pattern of the compounds of formula (I), as well as the Other of the electronic properties (relative positions of the HOMOs and LUMOs) of the respective layers used in the inventive OLED.
  • the LUMO of the block layer for electrons is higher in energy than the LUMO of the materials used in the light-emitting layer (both of the emitter material and optionally used matrix materials).
  • Suitable substitution patterns of the compounds of the formula (I) which are suitable as electron and / or exciton blocker materials are thus dependent inter alia on the electronic properties (in particular the position of the LUMO) of the materials used in the light-emitting layer.
  • the HOMO of the block layer for holes is lower in energy than the HOMOs of the materials present in the light-emitting layer (both of the emitter materials and of the optionally present matrix materials).
  • Suitable substitution patterns of the compounds of the formula (I) which are suitable as hole and / or exciton blocker materials are thus dependent inter alia on the electronic properties (in particular the position of the HOMOs) of the materials present in the light-emitting layer.
  • Comparable considerations concerning the relative position of the HOMOs and LUMOs of the different layers used in the OLED according to the invention apply to the further layers optionally used in the OLED and are known to the person skilled in the art.
  • the energies of the HOMOs and LUMOs of the materials used in the OLED according to the invention can be determined by different methods, for example by solution electrochemistry, eg cyclic voltammetry.
  • the position of the LUMO of a given material can be calculated from the HOMO determined by ultraviolet photon electron spectroscopy (UPS) and the band gap determined optically by absorption spectroscopy.
  • UPS ultraviolet photon electron spectroscopy
  • Another object of the present invention is thus the use of tris (diphenylamino) -triazine compounds of the formula (I) as a matrix material, preferably as a matrix material in a light-emitting layer of the organic light emitting diode, and / or as a hole / Excitonenblockermaterial, electron / Excitonenblockermaterial, hole injection material, electron injection material, hole conductor material and / or E- lektronenleitermaterial, wherein the compounds of formula (I) are preferably used together with at least one triplet emitter in the organic light emitting diode.
  • the compound of the formula (I) is preferably used as the matrix material, with the matrix material particularly preferably being used together with a triplet emitter.
  • the compounds of the formula (I) can be used in OLEDs both as matrix material and as hole / exciton blocker material, electron / exciton blocker material, hole injection material, electron injection material, hole conductor material and / or electron conductor material.
  • the matrix material, the hole / exciton blocker material, the electron / exciton blocker material, the hole injection material, the electron injection material, the hole conductor material and / or the electron conductor material may be the same or different compounds of the formula (I).
  • Another object of the present invention is a light-emitting layer containing at least one compound of formula (I) and at least one emitter compound, wherein the emitter compound is preferably a triplet emitter.
  • the use of the compounds of the formula (I) as matrix materials and / or as hole / exciton blocker material, electron / exciton blocker material, hole Injection material, electron injection material, hole conductor material and / or electrical conductor material should not preclude the fact that these compounds themselves also emit light.
  • the matrix materials used according to the invention and / or hole / exciton blocker materials, electron / exciton blocker materials, hole injection materials, electron injection materials, hole conductor materials and / or electron conductor materials of the formula (I) have a tendency to crystallize which is lower than that of conventional materials.
  • OLEDs organic light-emitting diodes
  • the organic light-emitting diodes (OLEDs) according to the invention are basically composed of several layers, for example: 1. anode 2. hole conductor layer
  • the OLED does not have all of the mentioned layers, for example an OLED with the layers (1) (anode), (3) (light-emitting layer) and (6) (cathode) is also suitable in which the functions of the layers (2) (hole conductor layer) and (4) (hole / exciton layer layer) and (5) (electron conductor layer) are taken over by the adjacent layers.
  • OLEDs comprising layers (1), (2), (3) and (6) or layers (1), (3), (4), (5) and (6) are also suitable.
  • the OLEDs between the anode (1) and the hole conductor layer (2) can have a block layer for electrons / excitons.
  • the compounds of formula I can be used as charge-transporting or -blocking materials. However, they are preferably used as matrix materials in the light-emitting layer.
  • the compounds of the formula I can be present as the sole matrix material-without further additives-in the light-emitting layer.
  • further compounds are present in the light-emitting layer.
  • a fluorescent dye may be present to alter the emission color of the emitter molecule present.
  • a diluent material can be used. This diluent material may be a polymer, for example, poly (N-) vinylcarbazole) or polysilane.
  • CBP N'-dicarbazolebiphenyl
  • the proportion of the at least one compound of the formula (I) in The light-emitting layer generally 10 to 99 wt .-%, preferably 50 to 99 wt .-%, particularly preferably 70 to 97 wt .-%.
  • the proportion of the emitter compound in the light-emitting layer is generally 1 to 90 wt .-%, preferablyl to 50 wt .-%, particularly preferably 3 to 30 wt .-%, wherein the proportions of the at least one compound of Formula (I) and the at least one emitter compound generally give 100 wt .-%.
  • the light-emitting layer may contain, in addition to the at least one compound of the formula (I) and the at least one emitter compound, further substances, for example further diluent material, suitable diluent material being mentioned above.
  • the individual of the abovementioned layers of the OLED can in turn be composed of 2 or more layers.
  • the hole-transporting layer may be composed of a layer into which holes are injected from the electrode and a layer that transports the holes away from the hole-injecting layer into the light-emitting layer.
  • the electron-transporting layer may also consist of several layers, for example a layer in which electrons are injected through the electrode and a layer which receives electrons from the electron-injecting layer and transports them into the light-emitting layer.
  • These mentioned layers are each selected according to factors such as energy level, temperature resistance and charge carrier mobility, as well as the energy difference of said layers with the organic layers or the metal electrodes.
  • the person skilled in the art is able to choose the structure of the OLEDs in such a way that it is optimally adapted to the organic compounds used according to the invention as emitter substances.
  • the HOMO (highest occupied molecular orbital) of the hole-transporting layer should be aligned with the working function of the anode and the LUMO (lowest unoccupied molecular orbital) of the electrode.
  • NEN-transporting layer should be aligned with the work function of the cathode.
  • the anode (1) is an electrode that provides positive charge carriers.
  • it may be constructed of materials including a metal, a mixture of various metals, a metal alloy, a metal oxide, or a mixture of various metal oxides.
  • the anode may be a conductive polymer.
  • Suitable metals include the metals of groups Ib, IVa, Va and VIa of the Periodic Table of the Elements and the transition metals of the group Villa.
  • mixed metal oxides of groups IIb, INb and IVb of the Periodic Table of the Elements for example indium tin oxide (ITO), are generally used.
  • the anode (1) contains an organic material, for example polyaniline, as described for example in Nature, Vol. 357, pages 477 to 479 (June 11, 1992). At least either the anode or the cathode should be at least partially transparent in order to be able to decouple the light formed.
  • the material used for the anode (1) is preferably ITO.
  • Suitable hole conductor materials for the layer (2) of the OLEDs according to the invention are disclosed, for example, in Kirk-Othmer Encyclopedia of Chemical Technology, 4th Edition, Vol. 18, pages 837 to 860, 1996. Both hole transporting molecules and polymers can be used as hole transport material.
  • Commonly used hole transporting molecules are selected from the group consisting of tris- [N- (1-naphthyl) -N- (phenylamino)] triphenylamine (1-naphDATA), 4,4'-bis [N- (1-naphthyl) -N-phenyl-amino] biphenyl ( ⁇ -NPD), N, N'-diphenyl-N, N'-bis (3-methylphenyl) - [1, 1'-biphenyl] -4,4'-diamine (TPD ), 1, 1-bis [(di-4-tolylamino) phenyl] cyclohexane (TAPC), N, N'-bis (4-methylphenyl) -N, N'-bis (4-ethylphenyl) - [1, 1 '- (3,3'-dimethyl) biphenyl] -4,4'-diamine (ETPD), tetrakis- (3-methylphen
  • hole transporting polymers are selected from the group consisting of polyvinyl carbazoles, (phenylmethyl) polysilanes and polyanilines. It is also possible to obtain hole transporting polymers by doping hole transporting molecules into polymers such as polystyrene and polycarbonate. Suitable hole-transporting molecules are the molecules already mentioned above.
  • carbene complexes can be used as hole conductor materials, wherein the band gap of the at least one hole conductor material is generally greater than the band gap of the emitter material used. In the context of the present application, band gap is to be understood as the triplet energy.
  • Suitable carbene complexes are, for example, carbene complexes, as described in WO 2005/019373 A2, WO 2006/056418 A2 and WO 2005/1 13704 and in the older European applications EP 06 1 12 228.9 and EP 06 1 12 198.4, which are not prepublished are.
  • the light-emitting layer (3) contains at least one emitter material.
  • it may be a fluorescence or phosphorescence emitter, suitable emitter materials being known to the person skilled in the art.
  • the at least one emitter material is a phosphorescence emitter.
  • the preferably used Phosphoreszenzmitter compounds are based on metal complexes, in particular the complexes of the metals Ru, Rh, Ir, Os, Pd and Pt, especially the complexes of Ir have gained importance.
  • the compounds of the formula I used according to the invention are particularly suitable for use together with such metal complexes.
  • the compounds of the formula (I) are used as matrix materials and / or hole / exciton and / or electron / exciton blocker materials.
  • they are suitable for use as matrix materials and / or hole / exciton and / or electron / exciton blocker materials together with complexes of Ru, Rh, Ir, Os, Pd and Pt, particularly preferred for use with complexes of the present invention Ir suitable.
  • Suitable metal complexes for use in the inventive OLEDs are e.g. in the documents WO 02/60910 A1, US 2001/0015432 A1, US 2001/0019782 A1, US 2002/0055014 A1, US 2002/0024293 A1, US 2002/0048689 A1, EP 1 191 612 A2, EP 1 191 613 A2 , EP 1 211 257 A2, US 2002/0094453 A1, WO 02/02714 A2, WO 00/70655 A2, WO 01/41512 A1, WO 02/15645 A1, WO 2005/019373 A2, WO 2005/1 13704 A2, WO 2006/1 15301 A1, WO 2006/067074 A1 and WO 2006/056418.
  • metal complexes are the commercially available metal complexes tris (2-phenylpyridine) iridium (III), iridium (III) tris (2- (4-tolyl) pyridinato-N, C 2 '), iridium (III) tris (1 phenylisoquinoline), iridium (III) to (2-2'-benzothienyl) pyridinato
  • triplet emitters are carbene complexes.
  • the compounds of the formula (I) are used in the light-emitting layer as matrix material together with carbene complexes as triplet emitters. Suitable carbene complexes are known to the person skilled in the art and are mentioned in some of the aforementioned applications and below.
  • the compounds of the formula (I) are used as hole / exciton blocker material together with carbene complexes as triplet emitters.
  • the compounds of the formula (I) can furthermore be used both as matrix materials and as hole / exciton blocker materials together with carbene complexes as triplet emitters.
  • Suitable metal complexes for use together with the compounds of formula I as matrix materials and / or hole / exciton and / or electron / exciton blocker materials in OLEDs are thus e.g. also carbene complexes, as described in WO 2005/019373 A2, WO 2006/056418 A2 and WO 2005/1 13704 and in the earlier unpublished PCT applications WO 2007/1 15970 and WO
  • the block layer for holes / excitons (4) can typically comprise hole blocker materials used in OLEDs, such as 2,9-dimethyl-4,7-diphenyl-1, 10-phenanthroline (bathocuproine, (BCP)), bis (2-methyl-8 -quinolinato) -4-phenyl-phenylato) -aluminium (III) (BAIq), phenothiazine-S, S-dioxide derivatives and 1,3,5-tris (N-phenyl-2-benzylimidazole) -benzene) (TPBI), wherein TPBI and BAIq are also suitable as electron-conducting materials.
  • hole blocker materials used in OLEDs such as 2,9-dimethyl-4,7-diphenyl-1, 10-phenanthroline (bathocuproine, (BCP)), bis (2-methyl-8 -quinolinato) -4-phenyl-phenylato) -aluminium (III) (BAIq), pheno
  • compounds containing aromatic or heteroaromatic groups containing groups via carbonyl groups can be used as a blocking layer for solvents.
  • cher / excitons (4) or as matrix materials in the light-emitting layer (3) are used.
  • the present invention relates to an OLED according to the invention comprising the layers (1) anode, (2) hole conductor layer, (3) light-emitting layer, (4) block layer for holes / excitons, (5) electron conductor layer and (6) cathode, and optionally further layers, wherein the block layer for holes / excitons contains at least one compound of formula (I).
  • the present invention relates to an OLED according to the invention comprising the layers (1) anode, (2) hole conductor layer, (3) light-emitting layer, (4) block layer for holes / excitons, (5) electron layer and 6) cathode, and optionally further layers, wherein the light-emitting layer (3) contains at least one compound of formula (I) and the block layer for holes / excitons at least one compound of formula (I).
  • the present invention relates to an OLED according to the invention comprising the layers (1) anode, (2) hole conductor layer and / or (2 ') blocking layer for electrons / excitons (the OLED can comprise both the layers (2) and (2') and either the layer (2) or the layer (2 ')), (3) light-emitting layer, (4) block layer for holes / excitons, (5) electron conductor layer and (6) cathode, and optionally further layers, wherein the block layer for electrons / excitons and / or the hole conductor layer and optionally the light-emitting layer (3) contains at least one compound of the formula (I).
  • hole conductor materials and electron conductor materials some may fulfill several functions.
  • the function as a hole / exciton blocker of the layer (5) is taken over, so that the layer (4) may be omitted.
  • the charge transport layers can also be electronically doped in order to improve the transport properties of the materials used, on the one hand to make the layer thicknesses more generous (avoidance of pinholes / short circuits) and on the other hand to minimize the operating voltage of the device.
  • the hole conductor materials can be doped with electron acceptors, for example phthalocyanines or arylamines such as TPD or TDTA can be doped with tetrafluorotetracyanchinodimethane (F4-TCNQ).
  • the electron conductor materials can be doped, for example, with alkali metals, for example Alq 3 with lithium.
  • the electronic doping is known to the person skilled in the art and described, for example, in W. Gao, A. Kahn, J.
  • the cathode (6) is an electrode which serves to introduce electrons or negative charge carriers.
  • Suitable materials for the cathode are selected from the group consisting of alkali metals of group Ia, for example Li, Cs, alkaline earth metals of group IIa, for example calcium, barium or magnesium, metals of group IIb of the Periodic Table of the Elements (old ILJPAC version) comprising the lanthanides and actinides, for example samarium.
  • metals such as aluminum or indium, as well as combinations of all the metals mentioned can be used.
  • lithium-containing organometallic compounds or LiF can be applied between the organic layer and the cathode to reduce the operating voltage.
  • the OLED according to the present invention may additionally contain further layers which are known to the person skilled in the art.
  • a layer can be applied between the layer (2) and the light-emitting layer (3), which facilitates the transport of the positive charge and / or adapts the band gap of the layers to one another.
  • this further layer can serve as a protective layer.
  • additional layers may be present between the light-emitting layer (3) and the layer (4) to facilitate the transport of the negative charge and / or to match the band gap between the layers.
  • this layer can serve as a protective layer.
  • the OLED according to the invention contains at least one of the further layers mentioned below:
  • Suitable materials for the individual layers are known to those skilled in the art and e.g. in WO 00/70655.
  • the layers used in the O-LED according to the invention are surface-treated in order to increase the efficiency of the charge carrier transport.
  • the selection of materials for each of said layers is preferably determined by obtaining an OLED having a high efficiency and lifetime.
  • the preparation of the OLEDs according to the invention can be carried out by methods known to the person skilled in the art.
  • the OLED according to the invention is produced by successive vapor deposition of the individual layers onto a suitable substrate.
  • Suitable substrates are for example glass, inorganic semiconductors or polymer films.
  • vapor deposition conventional techniques can be used such as thermal evaporation, chemical vapor deposition (CVD), physical vapor deposition (PVD) and others.
  • the organic layers of the OLED can be applied from solutions or dispersions in suitable solvents, using coating techniques known to those skilled in the art.
  • the various layers have the following thicknesses: anode (1) 50 to 500 nm, preferably 100 to 200 nm; Hole-conductive layer (2) 5 to 100 nm, preferably 20 to 80 nm, light-emitting layer (3) 1 to 100 nm, preferably 10 to 80 nm, block layer for holes / excitons (4) 2 to 100 nm , preferably 5 to 50 nm, electron-conducting layer (5) 5 to 100 nm, preferably 20 to 80 nm, cathode (6) 20 to 1000 nm, preferably 30 to 500 nm.
  • the relative position of the recombination zone of holes and electrons in The OLED according to the invention with respect to the cathode and thus the emission spectrum of the OLED can be influenced inter alia by the relative thickness of each layer.
  • This means the thickness of the electron transport layer should preferably be chosen so that the position of the recombination zone is tuned to the optical resonator property of the diode and thus to the emission wavelength of the emitter.
  • the ratio of the layer thicknesses of the individual layers in the OLED depends on the materials used. The layer thicknesses of any additional layers used are known to the person skilled in the art. It is possible that the electron-conducting layer and / or the hole-conducting layer have larger thicknesses than the specified layer thicknesses when they are electrically doped.
  • the light-emitting layer and / or at least one of the further layers optionally present in the OLED according to the invention contains at least one compound of the general formula (I). While the at least one compound of the general formula (I) is present in the light-emitting layer as the matrix material, the at least one compound of the general formula (I) in the at least one further layer of the inventive OLED can each alone or together with at least one of the others for the corresponding layers suitable materials mentioned above are used. It is also possible for the light-emitting layer to contain, in addition to the compound of the formula (I), one or more further matrix materials.
  • the efficiency of the OLEDs of the invention may be e.g. be improved by optimizing the individual layers.
  • highly efficient cathodes such as Ca or Ba, optionally in combination with an intermediate layer of LiF, can be used.
  • Shaped substrates and new hole-transporting materials, which cause a reduction in the operating voltage or an increase in the quantum efficiency, can also be used in the inventive OLEDs.
  • additional layers may be present in the OLEDs to adjust the energy levels of the various layers and to facilitate electroluminescence.
  • the OLEDs according to the invention can be used in all devices in which electroluminescence is useful. Suitable devices are preferably selected from stationary and mobile screens and lighting units. Stationary screens are e.g. Screens of computers, televisions, screens in printers, kitchen appliances and billboards, lights and signboards. Mobile screens are e.g. Screens in cell phones, laptops, digital cameras, vehicles, and destination displays on buses and trains.
  • the compounds of formula I can be used in OLEDs with inverse structure.
  • the compounds of the formula I used according to the invention in these inverse OLEDs are preferably used in turn as matrix materials in the light-emitting layer.
  • the construction of inverse OLEDs and the materials usually used therein are known to the person skilled in the art. The following examples further illustrate the invention.
  • AIIg. Method A 5.92 g (35 mmol) of diphenylamine are dissolved in a 250 ml 2-neck flask equipped with nitrogen inlet and septum in 100 ml of THF dried over potassium under a nitrogen atmosphere. The solution is then treated at room temperature over a period of 10 minutes with 21.8 ml (35 mmol) of n-butyllithium (1.6M in hexane) and stirred for a further 10 minutes. In a 500 ml 3-necked flask, equipped with nitrogen inlet, reflux condenser and septum, 1.84 g (10 mmol) of cyanuric chloride in 100 ml of potassium-dried THF under nitrogen atmosphere, dissolved.
  • the lithium-diphenylamine solution is added dropwise to the cyanuric chloride solution by means of a transfer cannula.
  • the reaction mixture is then refluxed for 6 hours. After cooling to room temperature, the solvent is evaporated and the residue is stirred for 10 minutes in 200 ml of water.
  • the white solid obtained by filtration is washed with diethyl ether, slurried in hot ethanol and filtered while hot. For further purification, the product is recrystallized in chlorobenzene and dried under high vacuum to obtain 3.55 g (61%) of 2,4,6-tris (diphenylamino) -1, 3,5-triazine (1) as a white solid.
  • AIIg. Method A 3.38 g (20 mmol) of diphenylamine are dissolved in a 250 ml 2-necked flask equipped with nitrogen inlet and septum in 100 ml of potassium-dried THF under a nitrogen atmosphere. Subsequently, the solution is treated at room temperature over a period of 10 minutes with 12.5 ml (20 mmol) of n-butyllithium (1.6M in hexane) and stirred for a further 10 minutes. In a 500 ml 3-necked flask, equipped with nitrogen inlet, reflux condenser and septum, 1.84 g (10 mmol) of cyanuric chloride in 100 ml of potassium-dried THF under a nitrogen atmosphere, dissolved.
  • the lithium diphenylamine solution is separated by means of a transfer cannula added drop by drop to the cyanuric chloride solution.
  • the reaction mixture is then refluxed for 6 hours. After cooling to room temperature, the solvent is evaporated and the residue is stirred for 10 minutes in 200 ml of water.
  • the white solid obtained by filtration is washed with diethyl ether, slurried in hot ethanol and filtered while hot.
  • the product is then purified by column chromatography with a hexane / THF eluant mixture (3/1, v / v) to give 3.48 g (77%) of 2,4-bis (diphenylamino) -6-chloro-1,3,5-triazine as a white solid.
  • Example e Substitution of 2,4-bis (diphenylamino) -6-chloro-1,3,5-triazine to give 2,4-bis (diphenylamino) -6-phenoxy-1,3,5-triazine ( 5) (according to the invention)
  • AIIg. Protocol B 2.25 g (5 mmol) of 2,4-bis (diphenylamino) -6-chloro-1,3,5-triazine are dissolved in 70 ml of acetone in a 250 ml 2-necked flask equipped with reflux condenser and dropping funnel. 0.61 g (6.5 mmol) of phenol are dissolved in 50 ml of acetone / water mixture (1/1, v / v) in a 100 ml flask, mixed with 0.23 g (5.75 mmol) of sodium hydroxide and stirred for 15 minutes at room temperature.
  • the sodium phenolate solution is added dropwise to the 2,4-bis (diphenylamino) -6-chloro-1,3,5-triazine solution over a period of 15 minutes.
  • the reaction solution is then boiled under reflux for 8 hours. After cooling to room temperature, 50 ml of water are added to the solution. The white solid is filtered off and washed twice with 30 ml of water.
  • the ITO substrate used as anode is first cleaned in an acetone / isopropanol mixture in an ultrasonic bath. To remove any organic residues, the substrate is cleaned for a further 10 minutes in the O 2 plasma.
  • the below-mentioned organic materials at a rate of about 0.5-5 nm / min at 10 "6 mbar are vapor-deposited on the cleaned substrate.
  • the hole conductor and exciton is N, N'-di (naphth-1-yl) -N , N'-diphenyl-benzidine ( ⁇ -NPD) (V1) is applied to the substrate at a thickness of 30 nm.
  • electroluminescence spectra are recorded at different currents or voltages. Furthermore, the current-voltage characteristic in combination with the emitted light quantity is measured with a luminance meter.
  • the ITO substrate used as anode is first cleaned in an acetone / isopropanol mixture in an ultrasonic bath. To remove any organic residues, the substrate is cleaned for a further 10 minutes in the O 2 plasma.
  • electroluminescence spectra are recorded at different currents or voltages. Furthermore, the current-voltage characteristic in combination with the emitted light quantity is measured with a luminance meter.

Abstract

Die vorliegende Erfindung betrifft eine organische Leuchtdiode enthaltend mindestens eine Diphenylamino-bis(phenoxy)- oder mindestens eine Bis(diphenylamino)-phenoxytriazinverbindung, eine Licht-emittierende Schicht enthaltend mindestens eine Diphenylamino-bis(phenoxy)- oder mindestens eine Bis(diphenylamino)-phenoxy-triazinverbindung, die Verwendung der vorstehend genannten Verbindungen als Matrixmaterial, Loch-/Excitonenblockermaterial, Elektronen-/Excitonenblockermaterial, Loch-Injektionsmaterial, Elektronen-Injektionsmaterial, Lochleitermaterial und/oder Elektronenleitermaterial sowie eine Vorrichtung ausgewählt aus der Gruppe bestehend aus stationären Bildschirmen, mobilen Bildschirmen und Beleuchtungseinheiten enthaltend mindestens eine erfindungsgemäße organische Leuchtdiode.

Description

Verwendung von Diphenylamino-bis(phenoxy)- und Bis(diphenylamino)- phenoxytriazinverbindungen
Beschreibung
Die vorliegende Erfindung betrifft eine organische Leuchtdiode enthaltend mindestens eine Diphenylamino-bis(phenoxy)- oder mindestens eine Bis(diphenylamino)- phenoxytriazinverbindung, eine Licht-emittierende Schicht enthaltend mindestens eine Diphenylamino-bis(phenoxy)- oder mindestens eine Bis(diphenylamino)-phenoxy- triazinverbindung, die Verwendung der vorstehend genannten Verbindungen als Matrixmaterial, Loch-/Excitonenblockermaterial, Elektronen-/Excitonenblockermaterial, Loch-Injektionsmaterial, Elektronen-Injektionsmaterial, Lochleitermaterial und/oder E- lektronenleitermaterial sowie eine Vorrichtung ausgewählt aus der Gruppe bestehend aus stationären Bildschirmen, mobilen Bildschirmen und Beleuchtungseinheiten enthal- tend mindestens eine erfindungsgemäße organische Leuchtdiode.
In organischen Leuchtdioden (OLED) wird die Eigenschaft von Materialien ausgenutzt, Licht zu emittieren, wenn sie durch elektrischen Strom angeregt werden. OLEDs sind insbesondere interessant als Alternative zu Kathodenstrahlröhren und zu Flüssigkris- talldisplays zur Herstellung von Flachbildschirmen. Aufgrund der sehr kompakten Bauweise und des intrinsisch niedrigen Stromverbrauchs eignen sich Vorrichtungen enthaltend OLEDs insbesondere für mobile Anwendungen, zum Beispiel für Anwendungen in Handys, Laptops, usw. sowie zur Beleuchtung.
Die Grundprinzipien der Funktionsweise von OLEDs sowie geeignete Aufbauten (Schichten) von OLEDs sind dem Fachmann bekannt und zum Beispiel in WO 2005/113704 und der darin zitierten Literatur genannt. Als Licht-emittierende Materialien (Emitter) können neben fluoreszierenden Materialien (Fluoreszenz-Emitter) phosphoreszierende Materialien (Phosphoreszenz-Emitter) eingesetzt werden. Bei den Phosphoreszenz-Emittern handelt es sich üblicherweise um metallorganische Komplexe, die im Gegensatz zu den Fluoreszenz-Emittern, die eine Singulett-Emission zeigen, eine Triplett-Emission zeigen (Triplett-Emitter) (M. A. Baldow et al., Appl. Phys. Lett. 1999, 75, 4 bis 6). Aus quantenmechanischen Gründen ist bei der Verwendung der Triplett-Emitter (Phosphoreszenz-Emitter) eine bis zu vierfache Quanten-, Energie- und Leistungseffizienz möglich. Um die Vorteile des Einsatzes der metallorganischen Triplett-Emitter (Phosphoreszenz-Emitter) in die Praxis umzusetzen, ist es erforderlich, Device-Kompositionen bereitzustellen, die eine hohe operative Lebensdauer, eine gute Effizienz, eine hohe Stabilität gegenüber Temperaturbelastung und eine niedrige Einsatz- und Betriebsspannung aufweisen. Solche Device-Kompositionen können zum Beispiel spezielle Matrixmaterialien enthalten, in denen der eigentliche Lichtemitter in verteilter Form vorliegt. Des Weiteren können die Kompositionen Blockermaterialien enthalten, wobei Loch-, Excitionen- und/oder Elektronenblocker in den Device-Kompositionen vorliegen können. Daneben oder alternativ können die Device-Kompositionen des Weiteren Loch- Injektionsmaterialien und/oder Elektronen-Injektionsmaterialien und/oder Lochleitermaterialien und/oder Elektronenleitermaterialien aufweisen. Dabei hat die Auswahl der vorstehend genannten Materialien, die in Kombination mit dem eigentlichen Lichtemitter eingesetzt werden, einen wesentlichen Einfluss unter anderem auf die Effizienz sowie die Lebensdauer der OLEDs.
Im Stand der Technik werden zahlreiche verschiedene Materialien für den Einsatz in OLEDs vorgeschlagen. Unter den vorgeschlagenen Materialien sind auch solche, die Diphenylamino-bis(phenoxy)- oder Bis(diphenylamino)-phenoxytriazinverbindung auf- weisen.
JP-A 2002-193952 betrifft mit einer Aminogruppe substituierte Triazinderivate, die als Licht-emittierende Materialien geeignet sind. Gemäß JP-A 2002-193952 zeigen die Verbindungen eine blaue Fluoreszenz mit hoher Intensität und sind für den Einsatz in Licht-emittierenden Elementen geeignet. Die Aminogruppe ist in den Verbindungen gemäß JP-A 2002-193952 über einen Linker mit dem Triazin-Gerüst verknüpft. Des Weiteren kann das Triazin-Gerüst weitere Nicht-Amino-Substituenten aufweisen. Diphenylamino-bis(phenoxy)- oder Bis(diphenylamino)-phenoxytriazinverbindungen sind in JP-A 2002-193952 nicht erwähnt.
In US 5,716,722 sind OLEDs offenbart, die als Lochtransportmaterial eine Verbindung mit einem Triazinring mit mindestens einer direkt gebundenen Diphenylaminogruppe aufweisen. Gemäß US 5,716,722 sollen Lochtransportmaterialien bereit gestellt werden, die schwer kristallisieren, da die Kristallisation in der Lochtransportschicht zu Kurzschlüssen führen kann, so dass in den kristallisierten Bereichen keine Lichtemission erfolgt. Diphenylamino-bis(phenoxy)- oder Bis(diphenylamino)- phenoxytriazinverbindungen sind in US 5,716,722 nicht erwähnt.
US 2006/0051616 A1 betrifft organische Verbindungen, die gleichzeitig fluoreszieren und phosphoreszieren. Bei den organischen Verbindungen kann es sich um Triazinderivate handeln. In der Beschreibung in US 2006/0051616 A1 sind Carbazolyl- substituierte Triazinderivate offenbart, die neben zwei Carbazolyl-Substituenten einen mit Halogen substituierten Phenoxyrest tragen können. Gemäß US 2006/0051616 A1 können die organischen Verbindungen als Emittermaterialien in organischen Leuchtdi- öden eingesetzt werden. Andere Verwendungen der in US 2006/0051616 A1 genann- ten organischen Verbindungen, z.B. als Matrixmaterial, Blockermaterial oder Injektionsmaterial, sind in US 2006/0051616 A1 nicht erwähnt.
Aufgabe der vorliegenden Erfindung ist die Bereitstellung von Materialien, die für den Einsatz in OLEDs geeignet sind, insbesondere für den Einsatz als Matrixmaterial, insbesondere als Matrixmaterial in der Licht-emittierenden Schicht, Loch- /Excitonenblockermaterial, Elektronen-/Excitonenblockermaterial, Loch-Injektionsmaterial, Elektronen-Injektionsmaterial, Lochleitermaterial und/oder Elektronenleiterma- terial, die gegenüber den im Stand der Technik genannten Materialien verbesserte amorphe Eigenschaften aufweisen, das heißt, eine verringerte Kristallisationsneigung aufweisen, sowie die Bereitstellung von OLEDs mit einem verbesserten Eigenschaftsprofil, das sich in einer verbesserten Performance, z.B. einer verlängerten Lebensdauer, gute Leuchtdichten, hohen Quantenausbeuten etc., zeigt.
Diese Aufgabe wird gelöst durch eine organische Leuchtdiode enthaltend mindestens ein Diphenylamino-bis(phenoxy)- und/oder Bis(diphenylamino)-phenoxytriazinderivat der allgemeinen Formel (I)
worin bedeuten:
CR , N oder P, oder - wenn n = 0 bedeutet - zusätzlich O oder S;
D CR , N oder P, oder - wenn n = 0 bedeutet - zusätzlich O oder S;
E CR , N oder P, oder - wenn n = 0 bedeutet - zusätzlich O oder S;
G CR14, N oder P, oder - wenn n = 0 bedeutet - zusätzlich O oder S; L CR15, N oder P, oder - wenn n = 0 bedeutet - zusätzlich O oder S; Dr\8, Dr\9, Dr\10 unabhängig voneinander Wasserstoff, Alkyl, Aryl, Heteroaryl, OH, O-Alkyl, O- Aryl, O-Heteroaryl, SH, S-Alkyl, S-Aryl, Halogen, Pseudohalogen, Amino oder weitere Substituenten mit Donor- oder Akzeptorwirkung;
R11, R12, R13, R14, R15 unabhängig voneinander Wasserstoff, Alkyl, Aryl, Heteroaryl, OH, O-Alkyl, O- Aryl, O-Heteroaryl, SH, S-Alkyl, S-Aryl, Pseudohalogen, Amino, weitere Substituenten mit Donor- oder Akzeptorwirkung oder ein Rest der Formel (i), (ii) oder (iii)
worin die Reste und Gruppen X', R1', R2', R3', R4', R5', R6', R7', R8', R9' und R10' in dem Rest der Formel (i), die Reste und Gruppen X'a, R1 a, R2 a, R3 a, R4'a, R5 a, R6 a, R7 a, R8 a, R9 a und R1O a in dem Rest der Formel (ii) und die Reste und Gruppen X'b, Rrb, R2'b, R3'b, R4'b, R5'b, R6'b, R7'b, R8'b, R9 b und R1O b in dem Rest der Formel (iii) unabhängig voneinander die bezüglich der Reste und Gruppen X, R1, R2, R3, R4, R5, R6, R7, R8, R9 und R10 genannten Bedeutungen aufweisen, und
die Reste R34, R35, R36, R37, R38, R39, R40, R34', R35', R36', R37und R38' bedeuten unabhängig voneinander Wasserstoff, Alkyl, Aryl, Heteroaryl, OH, O-Alkyl, O- Aryl, O-Heteroaryl, SH, S-Alkyl, S-Aryl, Halogen, Pseudohalogen, Amino oder weitere Substituenten mit Donor- oder Akzeptorwirkung;
X
m
M CR26, N oder P, oder - wenn m = 0 bedeutet - zusätzlich O oder S; R CR27, N oder P, oder - wenn m = 0 bedeutet - zusätzlich O oder S; T CR , N oder P, oder - wenn m = 0 bedeutet - zusätzlich O oder S;
U CR , N oder P, oder - wenn m = 0 bedeutet - zusätzlich O oder S;
V CR , N oder P, oder - wenn m = 0 bedeutet - zusätzlich O oder S;
D16 D"I8 D19 D21 D23 D24 D25 , unabhängig voneinander Wasserstoff, Alkyl, Aryl, Heteroaryl, OH, O-Alkyl, O- Aryl, O-Heteroaryl, SH, S-Alkyl, S-Aryl, Halogen, Pseudohalogen, Amino oder weitere Substituenten mit Donor- oder Akzeptorwirkung; unabhängig voneinander Wasserstoff, Alkyl, Aryl, Heteroaryl, OH, O-Alkyl, O- Aryl, O-Heteroaryl, SH, S-Alkyl, S-Aryl, Pseudohalogen, Amino, weitere
Substituenten mit Donor- oder Akzeptorwirkung; oder ein Rest der Formeln (iv), (v) oder (vi)
(iv)
worin die Reste und Gruppen X", R1 , Fr , FT , R4 , Rö , Rb , R' , Rö , Ra und R j10" in dem Rest der Formel (iv), die Reste und Gruppen X"a, R1"a, R2"a, R3"a, R4"a, R5"a, R6"a, R7"a, R8"a, R9 "a und R10 "a in dem Rest der Formel (v) und die Reste und Gruppen X"b, R1"b, R2"b, R3"b, R4"b, R5 "b, R6"b, R7 "b, R8 b, R9 "b und R10"b in dem Rest der Formel (vi) unabhängig voneinander die bezüglich der Reste und Gruppen X, R1, R2, R3, R4, R5, R6, R7, R8, R9 und R10 genannten Bedeutungen aufweisen, und
die Reste R34", R35", R36", R37", R38", R39' R40' R34"' R35"' R36"' R37"und R38 " bedeuten unabhängig voneinander Wasserstoff, Alkyl, Aryl, Heteroaryl, OH, O- Alkyl, O-Aryl, O-Heteroaryl, SH, S-Alkyl, S-Aryl, Halogen, Pseudohalogen, Amino oder weitere Substituenten mit Donor- oder Akzeptorwirkung; n, m unabhängig voneinander 0 oder 1 , bevorzugt 1 . Unter dem Ausdruck „weitere Substituenten mit Donor- oder Akzeptorwirkung" sind die nachstehend genannten Substituenten mit Donor- oder Akzeptorwirkung zu verstehen, die nicht bereits in der Definition der Reste R1 bis R30 ausdrücklich genannt sind.
Die vorliegende Erfindung betrifft somit speziell substituierte Tris(diphenylamino)- triazinverbindungen, die mindestens einen Aryloxyrest aufweisen. Es wurde gefunden, dass sich diese Verbindungen sich durch eine besonders geringe Kristallisationsneigung auszeichnen und für den Einsatz in OLEDs besonders geeignet sind.
In Abhängigkeit von ihrem Substitutionsmuster können die Verbindungen der Formel (I) entweder als Matrix, insbesondere als Matrix in der Licht-emittierenden Schicht, als Loch-/Excitonenblocker, als Elektronen-/Excitonenblocker, als Loch- Injektionsmaterialien, als Elektronen-Injektionsmaterialien, als Lochleiter und/oder als Elektronenleiter eingesetzt werden. Entsprechende Schichten von OLEDs sind dem Fachmann bekannt und zum Beispiel in WO 2005/113704 oder WO 2005/019373 genannt.
Unter Alkyl sind substituierte oder unsubstituierte CrC2o-Alkylreste zu verstehen. Be- vorzugt sind Cr bis Cio-Alkylreste, besonders bevorzugt d- bis Cβ-Alkylreste. Die Al- kylreste können sowohl geradkettig als auch verzweigt sein. Des Weiteren können die Alkylreste mit einem oder mehreren Substituenten ausgewählt aus der Gruppe bestehend aus CrC2o-Alkoxy, Halogen, bevorzugt F, und C6-C3o-Aryl, das wiederum substituiert oder unsubstituiert sein kann, substituiert sein. Geeignete Arylsubstituenten so- wie geeignete Alkoxy- und Halogensubstituenten sind nachstehend genannt. Beispiele für geeignete Alkylgruppen sind Methyl, Ethyl, Propyl, Butyl, Pentyl, Hexyl, Heptyl und Octyl sowie mit C6-C3o-Aryl-, Ci-C2O-AIkOXy- und/oder Halogen, insbesondere F, substituierte Derivate der genannten Alkylgruppen, zum Beispiel CF3. Dabei sind sowohl die n-lsomere der genannten Reste als auch verzweigte Isomere wie Isopropyl, Isobutyl, Isopentyl, sek-Butyl, tert-Butyl, Neopentyl, 3,3-Dimethylbutyl, 3-Ethylhexyl usw. mit umfasst. Bevorzugte Alkylgruppen sind Methyl, Ethyl, tert-Butyl und CF3.
Unter Cycloalkyl sind substituierte oder unsubstituierte C3-C2O-AI ky I reste zu verstehen. Bevorzugt sind C3- bis Cio-Alkylreste, besonders bevorzugt C3- bis C8-Alkylreste. Die Cycloalkylreste können einen oder mehrere der bezüglich der Alkylreste genannten Substituenten tragen. Beispiele für geeignete cyclische Alkylgruppen (Cycloalkylreste), die ebenfalls unsubstituiert oder mit den vorstehend bezüglich der Alkylgruppen genannten Resten substituiert sein können, sind Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, Cyclooctyl, Cyclononyl und Cyclodecyl. Gegebenenfalls kann es sich auch um polycyclische Ringsysteme handeln, wie Decalinyl, Norbornyl, Borna- nyl oder Adamantyl. Geeignete O-Alkyl- und S-Alkylgruppen sind Ci-C2o-Alkoxy- und C1-C20- Alkylthiogruppen und leiten sich entsprechend von den vorstehend genannten C1-C20- Alkylresten ab. Beispielsweise sind hier zu nennen OCH3, OC2H5, OC3H7, OC4H9 und OC8H17 sowie SCH3, SC2H5, SC3H7, SC4H9 und SC8H17. Dabei sind unter C3H7, C4H9 und C8H17 sowohl die n-lsomere als auch verzweigte Isomere wie iso-Propyl, iso-Butyl, sec-Butyl, tert-Butyl und 2-Ethylhexyl umfasst. Besonders bevorzugte Alkoxy- oder Alkylthio-Gruppen sind Methoxy, Ethoxy, n-Octyloxy, 2-Ethylhexyloxy und SCH3.
Geeignete Halogenreste oder Halogensubstituenten im Sinne der vorliegenden Anmeldung sind Fluor, Chlor, Brom und lod, bevorzugt Fluor, Chlor und Brom, besonders bevorzugt Fluor und Chlor, ganz besonders bevorzugt Fluor.
Geeignete Pseudohalogenreste im Sinne der vorliegenden Anmeldung sind CN, SCN, OCN, N3 und SeCN zu verstehen, wobei CN und SCN bevorzugt sind. Ganz besonders bevorzugt ist CN.
Als Arylreste sind C6-C30-Arylreste geeignet, die von monocyclischen, bicyclischen oder tricyclischen Aromaten abgeleitet sind, die keine Ringheteroatome enthalten. Sofern es sich nicht um monocyclische Systeme handelt, ist bei der Bezeichnung Aryl für den zweiten Ring auch die gesättigte Form (Perhydroform) oder die teilweise ungesättigte Form (beispielsweise die Dihydroform oder Tetrahyroform), sofern die jeweiligen Formen bekannt und stabil sind, möglich. Das heißt, die Bezeichnung Aryl umfasst in der vorliegenden Erfindung beispielsweise auch bicyclische oder tricyclische Reste, in de- nen sowohl beide als auch alle drei Reste aromatisch sind, als auch bicyclische oder tricyclische Reste, in denen nur ein Ring aromatisch ist, sowie tricyclische Reste, worin zwei Ringe aromatisch sind. Beispiele für Aryl sind: Phenyl, Naphthyl, Indanyl, 1 ,2- Dihydronaphthenyl, 1 ,4-Dihydronaphthenyl, Indenyl, Anthracenyl, Phenanthrenyl oder 1 ,2,3,4-Tetrahydronaphthyl. Besonders bevorzugt sind C6-C10-Arylreste, zum Beispiel Phenyl oder Naphthyl, ganz besonders bevorzugt C6-Arylreste, zum Beispiel Phenyl.
Die Arylreste können unsubstituiert sein oder mit einem oder mehreren weiteren Resten substituiert sein. Geeignete weitere Reste sind ausgewählt aus der Gruppe bestehend aus CrC20-Alkyl, C6-C30-Aryl oder Substituenten mit Donor- oder Akzeptorwir- kung, wobei geeignete Substituenten mit Donor- oder Akzeptorwirkung nachstehend genannt sind. Bevorzugt sind die C6-C3o-Arylreste unsubstituiert oder mit einer oder mehreren CrC20-Alkoxygruppen, CN, CF3, F oder Aminogruppen substituiert. Weitere bevorzugte Substitutionen der C6-C30-Arylreste sind abhängig von dem Einsatzzweck der Verbindungen der allgemeinen Formel (I) und sind nachstehend genannt. Geeignete O-Aryl- und S-Arylreste sind C6-C30-Aryloxy-, C6-C3o-Alkylthioreste und leiten sich entsprechend von den vorstehend genannten C6-C30-ArYl resten ab. Besonders bevorzugt sind Phenoxy und Phenylthio.
Unter Heteroaryl sind unsubstituierte oder substituierte Heteroarylreste mit 5 bis 30 Ringatomen, die monocyclisch, bicyclisch oder tricyclisch sein können, zu verstehen, die sich zum Teil vom vorstehend genannten Aryl ableiten lassen, in dem im Aryl- Grundgerüst mindestens ein Kohlenstoffatom durch ein Heteroatom ersetzt ist. Bevorzugte Heteroatome sind N, O und S. Besonders bevorzugt weisen die Heteroarylreste 5 bis 13 Ringatome auf. Insbesondere bevorzugt ist das Grundgerüst der Heteroarylreste ausgewählt aus Systemen wie Pyridin und fünfgliedrigen Heteroaromaten wie Thiophen, Pyrrol, Imidazol oder Furan. Diese Grundgerüste können gegebenenfalls mit einem oder zwei sechsgliedrigen aromatischen Resten anelliert sein. Geeignete anel- lierte Heteroaromaten sind Carbazolyl, Benzimidazolyl, Benzofuryl, Dibenzofuryl oder Dibenzothiophenyl. Das Grundgerüst kann an einer, mehreren oder allen substituierbaren Positionen substituiert sein, wobei geeignete Substituenten dieselben sind, die bereits unter der Definition von C6-C30-Aryl genannt wurden. Bevorzugt sind die Heteroarylreste jedoch unsubstituiert. Geeignete Heteroarylreste sind zum Beispiel Pyridin-2-yl, Pyridin-3-yl, Pyridin-4-yl, Thiophen-2-yl, Thiophen-3-yl, Pyrrol-2-yl, Pyrrol-3-yl, Furan-2- yl, Furan-3-yl und lmidazol-2-yl sowie die entsprechenden benzanellierten Reste, insbesondere Carbazolyl, Benzimidazolyl, Benzofuryl, Dibenzofuryl oder Dibenzothiophenyl.
Unter Aminogruppen sind Reste der allgemeinen Formel -NR31R32 zu verstehen, wobei geeignete Reste R31 und R32 nachstehend genannt sind. Beispiele für geeignete Aminogruppen sind Diarylaminogruppen wie Diphenylamino und Dialkylaminogruppen wie Dimethylamino, Diethylamino und Arylalkylaminogruppen wie Phenylmethylamino.
Unter Gruppen/Substituenten mit Donor- oder Akzeptorwirkung sind im Sinne der vor- liegenden Anmeldung die folgenden Gruppen zu verstehen:
Ci-C20-Alkoxy, C6-C30-Aryloxy, Ci-C20-Alkylthio, C6-C30-Arylthio, SiR31R32R33, Halogenresten, halogenierten Ci-C20-Alkylresten, Carbonyl (-CO(R31)), Carbonylthio (- C = O (SR31)), Carbonyloxy (- C = O(OR31)), Oxycarbonyl (- OC = 0(R31)), Thiocarbonyl (- SC = 0(R31)), Amino (-NR31R32), OH, Pseudohalogenresten, Amido (- C = O (NR31)), - NR31C = O (R32), Phosphonat (- P(O) (OR31)2, Phosphat (-OP(O) (OR31)2), Phosphin (- PR31R32), Phosphinoxid (-P(O)R31 2), Sulfat (-OS(O)2OR31), Sulfoxid (-S(O)R31), Sulfonat (-S(O)2OR31), Sulfonyl (-S(O)2R31), Sulfonamid (-S(O)2NR31R32), NO2, Boronsäurees- tern (-OB(OR31)2), Imino (-C = NR31R32)), Boranresten, Stannanresten, Hydrazinresten, Hydrazonresten, Oximresten, Nitroso-Gruppen, Diazo-Gruppen, Vinylgruppen, (=Sulfonat) und Boronsäuregruppen, Sulfoximine, Alane, Germane, Boroxime und Bo- razine.
Bevorzugte Substituenten mit Donor- oder Akzeptorwirkung sind ausgewählt aus der Gruppe bestehend aus:
Cr bis C2o-Alkoxy, bevorzugt d-Cβ-Alkoxy, besonders bevorzugt Ethoxy oder Metho- xy; C6-C3o-Aryloxy, bevorzugt C6-Cio-Aryloxy, besonders bevorzugt Phenyloxy; SiR31R32R33,wobei R31, R32 und R33 bevorzugt unabhängig voneinander substituiertes oder unsubstituiertes Alkyl oder substituiertes oder unsubstituiertes Phenyl bedeuten; besonders bevorzugt ist mindenstens einer der Reste R31, R32 oder R33 substituiertes oder unsubstituiertes Phenyl, ganz besonders bevorzugt ist mindenstens einer der Reste R31, R32 und R33 substituiertes Phenyl, wobei geeignete Substituenten vorstehend genannt sind; Halogenresten, bevorzugt F, Cl, Br, besonders bevorzugt F oder Cl, ganz besonders bevorzugt F, halogenierten d-C2o-Alkylresten, bevorzugt haloge- nierten Ci-C6-Alkylresten, ganz besonders bevorzugt fluorierten Ci-Cβ-Alkylresten, z. B. CF3, CH2F, CHF2 oder C2F5; Amino, bevorzugt Dimethylamino, Diethylamino oder Diphenylamino; OH, Pseudohalogenresten, bevorzugt CN, SCN oder OCN, besonders bevorzugt CN, -C(O)OCrC4-Alkyl, bevorzugt -C(O)OMe, P(O)R2, bevorzugt P(O)Ph2 oder SO2R2, bevorzugt SO2Ph.
Ganz besonders bevorzugte Substituenten mit Donor- oder Akzeptorwirkung sind ausgewählt aus der Gruppe bestehend aus Methoxy, Phenyloxy, halogeniertem CrC4- Alkyl, bevorzugt CF3, CH2F, CHF2, C2F5, Halogen, bevorzugt F, CN, SiR31R32R33, wobei geeignete Reste R31, R32 und R33 bereits genannt sind, Diphenylamino, -C(O)Od-C4- Alkyl, bevorzugt -C(O)OMe, P(O)Ph2, SO2Ph.
Durch die vorstehend genannten Gruppen mit Donor- oder Akzeptorwirkung soll nicht ausgeschlossen werden, dass auch weitere der vorstehend genannten Reste und Gruppen eine Donor- oder Akzeptorwirkung aufweisen können. Beispielsweise handelt es sich bei den vorstehend genannten Heteroarylresten ebenfalls um Gruppen mit Donor- oder Akzeptorwirkung und bei den d-C2o-Alkylresten handelt es sich um Gruppen mit Donorwirkung.
Die in den vorstehend genannten Gruppen mit Donor- oder Akzeptorwirkung erwähnten Reste R31, R32 und R33 haben die bereits vorstehend erwähnten Bedeutungen, d. h. R31, R32, R33 bedeuten unabhängig voneinander:
Substituiertes oder unsubstituiertes Ci-C20-Alkyl oder substituiertes oder unsubstituiertes C6-C3o-Aryl, wobei geeignete und bevorzugte Alkyl- und Arylreste vorstehend ge- nannt sind. Besonders bevorzugt bedeuten die Reste R31, R32 und R33 CrC6-Alkyl, z. B. Methyl, Ethyl oder i-Propyl, Phenyl. In einer bevorzugten Ausführungsform - im FaI- Ie von SiR31R32R33 - bedeuten R31, R32 und R33 bevorzugt unabhängig voneinander substituiertes oder unsubstituiertes Ci-C2o-Alkyl oder substituiertes oder unsubstituier- tes Phenyl; besonders bevorzugt ist mindestens einer der Reste R31, R32 oder R33 substituiertes oder unsubstituiertes Phenyl, ganz besonders bevorzugt ist mindestens einer der Reste R31, R32 und R33 substituiertes Phenyl, wobei geeignete Substituenten vorstehend genannt sind.
Bevorzugt handelt es sich bei den Verbindungen der Formel (I) um Verbindungen, die 1 oder 2 Triazingruppen aufweisen, d.h., die Verbindungen der Formel (I) weisen be- vorzugt einen oder keinen Rest ausgewählt aus den Formeln (i), (ii), (iii), (iv), (v) und (vi) auf.
In einer bevorzugten Ausführungsform betrifft die vorliegende Erfindung Verbindungen der Formel (I), worin mindestens einer der Reste R1 bis R30 nicht Wasserstoff ist. Be- vorzugt sind Verbindungen der Formel (I), worin mindestens einer der Reste R2, R3, R4, R7, R8, R9, R12, R13, R14, und/oder mindestens einer der Reste R17, R18, R19, R22, R23, R24 oder R27, R28, R29 nicht Wasserstoff bedeutet.
Besonders bevorzugt sind Verbindungen der Formel (I), die 1 bis 10, bevorzugt 1 , 2, 3, 4, 5 oder 6 Reste R1 bis R30 aufweisen, die nicht Wasserstoff bedeuten. Bevorzugt handelt es sich bei den Resten, die nicht Wasserstoff bedeuten, um aus den vorstehend genannten Resten R2, R3, R4, R7, R8, R9, R12, R13, R14, R17, R18, R19, R22, R23, R24, R27, R28 und R29 ausgewählte Reste. Besonders bevorzugt bedeuten alle übrigen Reste R1 bis R30 Wasserstoff. Somit sind Verbindungen der Formel (I) besonders bevorzugt, worin die o-Positionen der an das Stickstoffatom oder Sauerstoffatom, das mit dem Triazin-Gerüst verbunden ist, gebundenen Phenylreste Wasserstoffatome tragen. Die p- und m-Positionen sind unabhängig voneinander mit den vorstehend genannten Resten (wobei es sich ebenfalls um Wasserstoffatome handeln kann) substituiert. Ein weiterer Gegenstand der vorliegenden Erfindung sind daher die erfindungsgemäßen orga- nischen Leuchtdioden, worin die Reste R1, R5, R6, R10, R11, R15, R16, R20, R21, R25, R26 und R30 Wasserstoff bedeuten.
In den Verbindungen der Formel (I) bedeuten die Gruppen A, D, E, G, L und M, R, T, U und V bevorzugt unabhängig voneinander:
A CR11, N oder P, oder - wenn n = 0 bedeutet - zusätzlich O oder S; bevorzugt CR11;
D CR12, N oder P, oder - wenn n = 0 bedeutet - zusätzlich O oder S; bevorzugt CR12; E CR13, N oder P, oder - wenn n = 0 bedeutet - zusätzlich O oder S; bevorzugt CR13;
G CR14, N oder P, oder - wenn n = 0 bedeutet - zusätzlich O oder S; bevorzugt CR14;
L CR15, N oder P, oder - wenn n = 0 bedeutet - zusätzlich O oder S; bevorzugt CR15;
M CR26, N oder P, oder - wenn m = 0 bedeutet - zusätzlich O oder S; bevorzugt CR26;
R CR27, N oder P, oder - wenn m = 0 bedeutet - zusätzlich O oder S; bevorzugt
CR27;
T CR28, N oder P, oder - wenn m = 0 bedeutet - zusätzlich O oder S; bevorzugt
CR28;
U CR29, N oder P, oder - wenn m = 0 bedeutet - zusätzlich O oder S; bevorzugt CR29;
V CR30, N oder P, oder - wenn m = 0 bedeutet - zusätzlich O oder S; bevorzugt CR30.
Bevorzugt bedeuten 0, 1 , 2 oder 3 der Gruppen A, D, E, G, L bzw. M, R, T, U und V Stickstoff und die restlichen Gruppen bedeuten eine der vorstehend in den Definitionen genannte kohlenstoffhaltige Gruppe.
Die Reste R11, R12, R13, R14, R15 bedeuten unabhängig voneinander Wasserstoff, Alkyl, Aryl, Heteroaryl, OH, O-Alkyl, O-Aryl, O-Heteroaryl, SH, S-Alkyl, S-Aryl, Pseudohalo- gen, Amino, einen weiteren Substituenten mit Donor- oder Akzeptorwirkung oder einen Rest ausgewählt aus den Formeln (i), (ii) und (iii)
worin die Reste und Gruppen X', R1', R2', R3', R4', R5', R6', R7', R8', R9' und R10' in dem Rest der Formel (i), die Reste und Gruppen X'a, R1 a, R2 a, R3 a, R4 a, R5 a, R6 a, R7 a, R8 a, R9 a und R1O a in dem Rest der Formel (ii) und die Reste und Gruppen X'b, Rrb, R2'b, R3'b, R4'b, R5 b, R6 b, R7 b, R8 b, R9 b und R10 b in dem Rest der Formel (iii) unabhängig voneinander die bezüglich der Reste und Gruppen X, R1, R2, R3, R4, R5, R6, R7, R8, R9 und R10 genannten Bedeutungen aufweisen, und die Reste R34, R35, R36, R37, R38, R39, R40, R34', R35', R36 ', R37 und R38 bedeuten unabhängig voneinander Wasserstoff, Alkyl, Aryl, Heteroaryl, OH, O-Alkyl, O-Aryl, O-Heteroaryl, SH, S-Alkyl, S-Aryl, Halogen, Pseudo- halogen, Amino oder weitere Substituenten mit Donor- oder Akzeptorwirkung;
bevorzugt Wasserstoff, Alkyl, O-Alkyl, O-Aryl, Pseudohalogen oder einen Rest ausgewählt aus den Formeln (i), (ii) und (iii); besonders bevorzugt Wasserstoff, d- bis C6- Alkyl, O-d- bis C6-Alkyl, O-C6-Aryl oder einen Rest ausgewählt aus den Formeln (i), (ii) und (iii); ganz besonders bevorzugt Methyl, O-Methyl oder einen Rest ausgewählt aus den Formeln (i), (ii) und (iii). In einer bevorzugten Ausführungsform weisen die Verbindungen der Formel (I) einen oder keinen Rest ausgewählt aus den Formeln (i), (ii) und (iii) auf, wobei - wenn ein Rest ausgewählt aus den Formeln (i), (ii) und (iii) vorliegt - einer der Reste R12, R13 oder R14, bevorzugt R12 oder R14 ein Rest ausgewählt aus den Formeln (i), (ii) und (iii) ist.
Besonders bevorzugte Formeln (ii) und (iii) sind die nachstehend genannten Formeln (iia) und (iiia):
worin die Reste und Gruppen die vorstehend genannten Bedeutungen aufweisen. Bevorzugt bedeuten R39 und R40 sowie R37 unabhängig voneinander Wasserstoff, CH3 oder CF3 und R34 und R36 unabhängig voneinander Wasserstoff oder CH3.
Die Reste R26, R27, R28, R29, R30 bedeuten unabhängig voneinander Wasserstoff, Alkyl, Aryl, Heteroaryl, OH, O-Alkyl, O-Aryl, O-Heteroaryl, SH, S-Alkyl, S-Aryl, Pseudohalo- gen, Amino, einen weiteren Substituenten mit Donor- oder Akzeptorwirkung oder einen Rest der Formeln (iv), (v) oder (vi)
(iv)
worin die Reste und Gruppen X", R1 , R , FT , R4 , Rö , Rb , R' , Rö , Ra und Rηu in dem Rest der Formel (iv), die Reste und Gruppen X"a, R1"a, R2"a, R3"a, R4"a, R5"a, R6"a, R7"a, R8"a, R9 "a und R10 "a in dem Rest der Formel (v) und die Reste und Gruppen X"b, R1"b, R2"b, R3 "b, R4"b, R5 "b, R6 "b, R7 "b, R8 b, R9 "b und R10 "b in dem Rest der Formel (vi) unabhängig voneinander die bezüglich der Reste und Gruppen X, R1, R2, R3, R4, R5, R6, R7, R8, R9 und R10 genannten Bedeutungen aufweisen, und
die Reste R34", R35", R36", R37", R38", R39', R40', R34", R35", R36", R37 " und R38 " bedeuten unabhängig voneinander Wasserstoff, Alkyl, Aryl, Heteroaryl, OH, O-Alkyl, O-Aryl, O- Heteroaryl, SH, S-Alkyl, S-Aryl, Halogen, Pseudohalogen, Amino oder weitere Substi- tuenten mit Donor- oder Akzeptorwirkung; bevorzugt Wasserstoff, Alkyl, Aryl, Heteroaryl, OH, O-Alkyl, O-Aryl, O-Heteroaryl, SH, S-Alkyl, S-Aryl, Pseudohalogen, Amino oder einen weiteren Substituenten mit Donor- oder Akzeptorwirkung; besonders bevorzugt Wasserstoff, Alkyl, O-Alkyl, O-Aryl oder Pseudohalogen; ganz besonders bevorzugt Wasserstoff, d- bis C6-Alkyl, O-C1- bis C6- Alkyl oder O-Cβ-Aryl; insbesondere ganz besonders bevorzugt Methyl, O-Methyl.
Die Reste R1, R2, R3, R4, R5, R6, R7, R8, R9, R10 und die Reste R16, R17, R18, R19, R20, R21, R22, R23, R24, R25 sowie die Reste R34, R35, R36, R37, R38, R39, R40, R34', R35', R36', R37und R38' und die Reste R34", R35", R36", R37", R38", R39', R40', R34", R35", R36", R37"und R38 bedeuten unabhängig voneinander Wasserstoff, Alkyl, Aryl, Heteroaryl, OH, O- Alkyl, O-Aryl, O-Heteroaryl, SH, S-Alkyl, S-Aryl, Halogen, Pseudohalogen, Amino oder einen weiteren Substituenten mit Donor- oder Akzeptorwirkung; bevorzugt Wasserstoff, Alkyl, mit Halogen substituiertes Alkyl, O-Alkyl, O-Aryl oder Pseudohalogen; besonders bevorzugt Wasserstoff, d- bis C6-Alkyl, mit einem oder mehreren F-Atomen substitu- iertes d- bis C6-Alkyl, O-d- bis C6-Alkyl oder O-C6-Aryl; ganz besonders bevorzugt Methyl, CF3 oder O-Methyl.
In einer ganz besonders bevorzugten Ausführungsform bedeuten die Reste R1 bis R40 unabhängig voneinander Wasserstoff, Alkyl, mit Halogen substituiertes Alkyl, Pseudo- halogen, O-Alkyl oder O-Aryl, bevorzugt Wasserstoff, Cr bis Cβ-Alkyl, mit einem oder mehreren F-Atomen substituiertes d- bis C6-Alkyl, O-d- bis C6-Alkyl oder O-C6-Aryl, besonders bevorzugt Methyl, CF3 oder O-Methyl.
Bei den erfindungsgemäß eingesetzten Verbindungen der Formel (I) handelt es sich in einer Ausführungsform um Diphenylamino-bis(phenoxy)-triazinverbindungen, d.h. die Gruppe X bedeutet
m
Die Gruppen M, R, T, U und V weisen die vorstehend genannten Bedeutungen auf.
In einer weiteren Ausführungsform handelt es sich bei den Verbindungen der Formel (I) um Bis(diphenylamino)-phenoxytriazinverbindungen, d.h. die Gruppe X bedeutet
Die Reste R16, R17, R18, R19, R20, R21, R22, R23, R24 und R25 weisen die vorstehend genannten Bedeutungen auf.
In einer Ausführungsform weisen die Verbindungen der Formel I die folgenden Formeln (Ia), (Ib), (Ic), Id), (Ie) oder (If) auf:
worin die Reste R2, R3, R4, R7, R8, R9, R11, R12, R13, R14, R15, R17, R18, R19, R22, R23,
R 24 D27 D28 D29 D34 D36 D39 D40 D2' D3' D4' D7' D8' D9' D17' D18' D19' p22' D23' , FA J rA J rA 1 FA J rV J rX J rA J rV J rV J rX J rA J rA J rA J rA , rv , R24', R34', R36', R2a, R3a, R4a, R7a, R8a, R9a, R2b, R3b, R4b, R7b, R8b und R9b unabhängig voneinander die vorstehend genannten Bedeutungen aufweisen. Bevorzugt bedeuten
R 2 D3 D4 D7 D8 D9 D11 D12 D13 D14 D15 D17 D18 D19 D22 D23 D24 D27 D28 D29 , rA , rv , rv , rv , rv , rv , rv , rv , rv , r\ , r\ , rv , rv , rv , rv , rv ,
D34 D36 D39 D40 D2' D3' D4' D 7' D8' D9' D17' D18' D19' D22' D23' D24' D34' D36' D2'a rv , rv , rv ,
R3a, R4a, R7a, R8a, R9a, R2b, R3b, R4b, R7b, R8b und R9b unabhängig voneinander Wasserstoff, Alkyl, mit Halogen substituiertes Alkyl, Pseudohalogen, O-Alkyl oder O- Aryl, bevorzugt Wasserstoff, C1- bis C6-Alkyl, mit einem oder mehreren F-Atomen substituiertes Cr bis C6-Alkyl, O-d- bis Cδ-Alkyl oder O-C6-Aryl, besonders bevorzugt Methyl, CF3 oder O-Methyl.
Beispiele für geeignete Strukturen der vorstehend genannten Formeln sind:
Die Herstellung der erfindungsgemäß verwendeten Diphenylamino-bis(phenoxy)- und Bis(diphenylamino)-phenoxytriazinverbindungen der allgemeinen Formel (I) erfolgt gemäß dem Fachmann bekannten Verfahren, z.B. durch nucleophile Substitution von 2,4,6-Trichloro-1 ,3,5-triazin mit geeigneten Li-Diarylamiden, z.B. entsprechend dem in H. Inomata et al., Chemistry of Materials 2004, 16, 1285 genannten Verfahren bzw. mit geeigneten Phenolaten, z.B. entsprechend dem in F. C. Schaefer et al., Journal of the American Chemical Society, 1951 , 73, 2990 genannten Verfahren.
In dem folgenden Schema 1 ist am Beispiel der Herstellung einer Bis(diphenylamino)- phenoxytriazinverbindung der Formel I ein allgemeines Reaktionsschema gezeigt:
In dem folgenden Schema 2 ist am Beispiel der Herstellung einer Diphenylamino- bis(phenoxy)-triazinverbindung der Formel I ein allgemeines Reaktionsschema gezeigt:
Allgemeines Reaktionsschema 2:
Die Verbindungen der Formel (I) sind hervorragend für den Einsatz als Matrixmaterialien in organischen Leuchtdioden geeignet. Insbesondere sind sie als Matrixmaterialien in der Licht-emittierenden Schicht der OLEDs geeignet, wobei die Licht-emittierende Schicht als Emitter-Verbindungen bevorzugt einen oder mehrere Triplett-Emitter enthält.
Des Weiteren sind die Verbindungen der Formel (I) als Loch- /Excitonenblockermaterial, Elektronen-/Excitonenblockermaterial, Loch-Injektionsmaterial, Elektronen-Injektionsmaterial, Lochleitermaterial und/oder Elektronenleiterma- terial geeignet, wobei sie bevorzugt gemeinsam mit mindestens einem Triplett-Emitter in der erfindungsgemäßen OLED eingesetzt werden.
Die Funktion der Verbindungen der Formel (I) als Matrixmaterial, bevorzugt in der Licht -emittierenden Schicht, als Loch-/Excitonenblockermaterial, als Elektronen- /Excitonenblockermaterial, als Loch-Injektionsmaterial, als Elektronen- Injektionsmaterial, als Lochleitermaterial oder als Elektronenleitermaterial ist unter anderem abhängig von den elektronischen Eigenschaften der Verbindungen der Formel (I), d.h. von dem Substitutionsmuster der Verbindungen der Formel (I), sowie des Wei- teren von den elektronischen Eigenschaften (relative Lagen der HOMOs und LUMOs) der jeweiligen in der erfindungsgemäßen OLED eingesetzten Schichten. Somit ist es möglich, durch geeignete Substitution der Verbindungen der Formel (I) die HOMO und LUMO-Orbitallagen an die weiteren in der erfindungsgemäßen OLED eingesetzten Schichten anzupassen und so eine hohe Stabilität der OLED und damit eine lange o- perative Lebensdauer und gute Effizienzen zu erreichen.
Die Grundsätze betreffend die relativen Lagen von HOMO und LUMO in den einzelnen Schichten einer OLED sind dem Fachmann bekannt. Im Folgenden sind die Grundsätze beispielhaft bezüglich der Eigenschaften der Blockschicht für Elektronen und der Blockschicht für Löcher im Verhältnis zur Licht-emittierenden Schicht aufgeführt:
Das LUMO der Blockschicht für Elektronen liegt energetisch höher als das LUMO der in der Licht-emittierenden Schicht eingesetzten Materialien (sowohl des Emittermaterials auch gegebenenfalls eingesetzter Matrixmaterialien). Je größer die energetische Differenz der LUMOs der Blockschicht für Elektronen und der Materialien in der Lichtemittierenden Schicht ist, desto besser sind die Elektronen- und/oder Excitonen- blockierenden Eigenschaften der Blockschicht für Elektronen. Geeignete Substitutionsmuster der als Elektronen- und/oder Excitonenblockermaterialien geeigneten Verbindungen der Formel (I) sind somit unter anderem abhängig von den elektronischen Eigenschaften (insbesondere der Lage des LUMOs) der in der Licht-emittierenden Schicht eingesetzten Materialien.
Das HOMO der Blockschicht für Löcher liegt energetisch tiefer als die HOMOs der in der Licht-emittierenden Schicht vorliegenden Materialien (sowohl der Emittermateria- lien als auch der gegebenenfalls vorliegenden Matrixmaterialien). Je größer die energetische Differenz der HOMOs der Blockschicht für Löcher und der in der Lichtemittierenden Schicht vorliegenden Materialien ist, desto besser sind die Loch- und/oder Excitonen-blockierenden Eigenschaften der Blockschicht für Löcher. Geeignete Substitutionsmuster der als Loch- und/oder Excitonenblockermaterialien geeigne- ten Verbindungen der Formel (I) sind somit unter anderem abhängig von den elektronischen Eigenschaften (insbesondere der Lage der HOMOs) der in der Lichtemittierenden Schicht vorliegenden Materialien.
Vergleichbare Überlegungen betreffend die relative Lage der HOMOs und LUMOs der unterschiedlichen in der erfindungsgemäßen OLED eingesetzten Schichten gelten für die weiteren gegebenenfalls in der OLED eingesetzten Schichten und sind dem Fachmann bekannt. Die Energien der HOMOs und LUMOs der in der erfindungsgemäßen OLED eingesetzten Materialien können durch unterschiedliche Methoden bestimmt werden, z.B. durch Lösungselektrochemie, z.B. Cyclovoltametrie. Außerdem lässt sich die Lage des LU- MO eines bestimmten Materials aus dem durch Ultraviolett- Photonenelektronenspektroskopie (UPS) bestimmten HOMO und dem optisch durch Absorptionsspektroskopie bestimmten Bandabstand berechnen.
Ein weiterer Gegenstand der vorliegenden Erfindung ist somit die Verwendung der Tris(diphenylamino)-triazinverbindungen der Formel (I) als Matrixmaterial, bevorzugt als Matrixmaterial in einer Licht-emittierenden Schicht der organischen Leuchtdiode, und/oder als Loch-/Excitonenblockermaterial, Elektronen-/Excitonenblockermaterial, Loch-Injektionsmaterial, Elektronen-Injektionsmaterial, Lochleitermaterial und/oder E- lektronenleitermaterial, wobei die Verbindungen der Formel (I) bevorzugt gemeinsam mit mindestens einem Triplett-Emitter in der organischen Leuchtdiode eingesetzt werden.
Bevorzugt wird die Verbindung der Formel (I) in einer Ausführungsform als Matrixmaterial eingesetzt, wobei das Matrixmaterial besonders bevorzugt gemeinsam mit einem Triplett-Emitter eingesetzt wird.
Weiterhin können die Verbindungen der Formel (I) in OLEDs sowohl als Matrixmaterial als auch als Loch-/Excitonenblockermaterial, Elektronen-/Excitonenblockermaterial, Loch-Injektionsmaterial, Elektronen-Injektionsmaterial, Lochleitermaterial und/oder E- lektronenleitermaterial eingesetzt werden. Dabei kann es sich bei dem Matrixmaterial, dem Loch-/Excitonenblockermaterial, dem Elektronen-/Excitonenblockermaterial, dem Loch-Injektionsmaterial, dem Elektronen-Injektionsmaterial, dem Lochleitermaterial und/oder dem Elektronenleitermaterial um die gleichen oder verschiedene Verbindungen der Formel (I) handeln.
Ein weiterer Gegenstand der vorliegenden Erfindung ist eine Licht-emittierende Schicht, enthaltend mindestens eine Verbindung der Formel (I) und mindestens eine Emitter-Verbindung, wobei es sich bei der Emitter-Verbindung bevorzugt um einen Triplett-Emitter handelt.
Die Verwendung der Verbindungen der Formel (I) als Matrixmaterialien in der Lichtemittierenden Schicht eines OLEDs ist ebenfalls ein weiterer Gegenstand der vorliegenden Erfindung.
Die Verwendung der Verbindungen der Formel (I) als Matrixmaterialien und/oder als Loch-/Excitonenblockermaterial, Elektronen-/Excitonenblockermaterial, Loch- Injektionsmaterial, Elektronen-Injektionsmaterial, Lochleitermaterial und/oder Elektro- nenleitermaterial soll hierbei nicht ausschließen, dass diese Verbindungen selbst auch Licht emittieren. Die erfindungsgemäß verwendeten Matrixmaterialien und/oder Loch- /Excitonenblockermaterialien, Elektronen-/Excitonenblockermaterialien, Loch- Injektionsmaterialien, Elektronen-Injektionsmaterialien, Lochleitermaterialien und/oder Elektronenleitermaterialien der Formel (I) weisen eine gegenüber sonst üblichen Materialien verringerte Kristallisationsneigung auf. Unter Einsatz der Verbindungen der Formel (I) können OLEDs mit einem verbesserten Eigenschaftsprofil, das sich in einer verbesserten Performance, z.B. einer verlängerten Lebensdauer, gute Leuchtdichten, hohen Quantenausbeuten etc., zeigt, bereitgestellt werden
Die erfindungsgemäßen organischen Leuchtdioden (OLEDs) sind grundsätzlich aus mehreren Schichten aufgebaut, z.B.: 1. Anode 2. Lochleiterschicht
3. Licht-emittierende Schicht
4. Blockschicht für Löcher/Excitonen
5. Elektronenleiterschicht
6. Kathode
Es sind auch von dem vorstehend genannten Aufbau verschiedene Schichtenfolgen möglich, die dem Fachmann bekannt sind. Beispielsweise ist es möglich, dass das OLED nicht alle der genannten Schichten aufweist, zum Beispiel ist eine OLED mit den Schichten (1 ) (Anode), (3) (Licht-emittierende Schicht) und (6) (Kathode) ebenfalls ge- eignet, wobei die Funktionen der Schichten (2) (Lochleiterschicht) und (4) (Blockschicht für Löcher/Excitonen) und (5) (Elektronenleiterschicht) durch die angrenzenden Schichten übernommen werden. OLEDs, die die Schichten (1 ), (2), (3) und (6) bzw. die Schichten (1 ), (3), (4), (5) und (6) aufweisen, sind ebenfalls geeignet. Des Weiteren können die OLEDs zwischen der Anode (1 ) und der Lochleiterschicht (2) eine Block- schicht für Elektronen/Excitonen aufweisen.
Die Verbindungen der Formel I können als ladungstransportierende oder -blockierende Materialien eingesetzt werden. Sie finden aber vorzugsweise als Matrixmaterialien in der Licht-emittierenden Schicht Verwendung. Die Verbindungen der Formel I können als alleiniges Matrixmaterial - ohne weitere Zusätze - in der Licht-emittierenden Schicht vorliegen. Es ist jedoch ebenfalls möglich, dass neben den erfindungsgemäß eingesetzten Verbindungen der Formel I weitere Verbindungen in der Licht-emittierenden Schicht vorliegen. Beispielsweise kann ein fluoreszierender Farbstoff anwesend sein, um die Emissionsfarbe des vorhandenen Emittermoleküls zu verändern. Des Weiteren kann ein Verdünnungsmaterial eingesetzt werden. Dieses Verdünnungsmaterial kann ein Polymer sein, zum Beispiel PoIy(N- vinylcarbazol) oder Polysilan. Das Verdünnungsmaterial kann jedoch ebenfalls ein kleines Molekül sein, zum Beispiel 4,4'-N,N'-Dicarbazolbiphenyl (CBP = CDP) oder tertiäre aromatische Amine. Wenn ein Verdünnungsmaterial eingesetzt wird, beträgt der Anteil der erfindungsgemäß eingesetzten Verbindungen der Formel I in der Licht- emittierenden Schicht im Allgemeinen immer noch mindestens 40 Gew.-%, bevorzugt 50 bis 100 Gew.-% bezogen auf das Gesamtgewicht der Verbindungen der Formel I und Verdünnungsmittel.
Wird mindestens eine Verbindung der Formel (I) gemeinsam mit einer Emitter- Verbindung, bevorzugt gemeinsam mit einem Triplett-Emitter, in der Lichtemittierenden Schicht eines OLEDs eingesetzt, was besonders bevorzugt ist, beträgt der Anteil der mindestens einen Verbindung der Formel (I) in der Licht-emittierenden Schicht im Allgemeinen 10 bis 99 Gew.-%, bevorzugt 50 bis 99 Gew.-%, besonders bevorzugt 70 bis 97 Gew.-%. Der Anteil der Emitter-Verbindung in der Licht- emittierenden Schicht beträgt im Allgemeinen 1 bis 90 Gew.-%, bevorzugtl bis 50 Gew.-%, besonders bevorzugt 3 bis 30 Gew.-%, wobei die Anteile an der mindestens einen Verbindung der Formel (I) und der mindestens einen Emitter-Verbindung im Allgemeinen 100 Gew.-% ergeben. Es ist jedoch auch möglich, dass die Lichtemittierende Schicht neben der mindestens einen Verbindung der Formel (I) und der mindestens einen Emitter-Verbindung weitere Substanzen enthält, zum Beispiel weiteres Verdünnungsmaterial, wobei geeignetes Verdünnungsmaterial vorstehend genannt ist.
Die einzelnen der vorstehend genannten Schichten des OLEDs können wiederum aus 2 oder mehreren Schichten aufgebaut sein. Beispielsweise kann die Löcher-trans- portierende Schicht aus einer Schicht aufgebaut sein, in die aus der Elektrode Löcher injiziert werden, und einer Schicht, die die Löcher von der Loch injizierenden Schicht weg in die Licht-emittierende Schicht transportiert. Die Elektronen-transportierende Schicht kann ebenfalls aus mehreren Schichten bestehen, zum Beispiel einer Schicht, worin Elektronen durch die Elektrode injiziert werden, und einer Schicht, die aus der Elektronen-injizierenden Schicht Elektronen erhält und in die Licht-emittierende Schicht transportiert. Diese genannten Schichten werden jeweils nach Faktoren wie Energieniveau, Temperaturresistenz und Ladungsträgerbeweglichkeit, sowie Energiedifferenz der genannten Schichten mit den organischen Schichten oder den Metallelektroden ausgewählt. Der Fachmann ist in der Lage, den Aufbau der OLEDs so zu wählen, dass er optimal an die erfindungsgemäß als Emittersubstanzen verwendeten organischen Verbindungen angepasst ist.
Um besonders effiziente OLEDs zu erhalten, sollte das HOMO (höchstes besetztes Molekülorbital) der Loch-transportierenden Schicht mit der Arbeitsfunktion der Anode angeglichen sein und das LUMO (niedrigstes unbesetztes Molekülorbital) der Elektro- nen-transportierenden Schicht sollte mit der Arbeitsfunktion der Kathode angeglichen sein.
Die Anode (1 ) ist eine Elektrode, die positive Ladungsträger bereitstellt. Sie kann zum Beispiel aus Materialien aufgebaut sein, die ein Metall, eine Mischung verschiedener Metalle, eine Metalllegierung, ein Metalloxid oder eine Mischung verschiedener Metalloxide enthält. Alternativ kann die Anode ein leitendes Polymer sein. Geeignete Metalle umfassen die Metalle der Gruppen Ib, IVa, Va und VIa des Periodensystems der Elemente sowie die Übergangsmetalle der Gruppe Villa. Wenn die Anode lichtdurchlässig sein soll, werden im Allgemeinen gemischte Metalloxide der Gruppen IIb, INb und IVb des Periodensystems der Elemente (alte ILJPAC-Version) eingesetzt, zum Beispiel Indium-Zinn-Oxid (ITO). Es ist ebenfalls möglich, dass die Anode (1 ) ein organisches Material, zum Beispiel Polyanilin enthält, wie beispielsweise in Nature, Vol. 357, Seiten 477 bis 479 (11. Juni 1992) beschrieben ist. Zumindest entweder die Anode oder die Kathode sollten mindestens teilweise transparent sein, um das gebildete Licht auskoppeln zu können. Bevorzugt wird als Material für die Anode (1 ) ITO eingesetzt.
Geeignete Lochleitermaterialien für die Schicht (2) der erfindungsgemäßen OLEDs sind zum Beispiel in Kirk-Othmer Encyclopedia of Chemical Technologie, 4. Auflage, Vol. 18, Seiten 837 bis 860, 1996 offenbart. Sowohl Löcher transportierende Moleküle als auch Polymere können als Lochtransportmaterial eingesetzt werden. Üblicherweise eingesetzte Löcher transportierende Moleküle sind ausgewählt aus der Gruppe bestehend aus tris-[N-(1-naphthyl)-N-(phenylamino)]triphenylamin (1-NaphDATA), 4,4'- Bis[N-(1 -naphthyl)-N-phenyl-amino]biphenyl (α-NPD), N,N'-Diphenyl-N,N'-bis(3- methylphenyl)-[1 ,1 '-biphenyl]-4,4'-diamin (TPD), 1 ,1-Bis[(di-4-tolylamino)phenyl]- cyclohexan (TAPC), N,N'-Bis(4-methylphenyl)-N,N'-Bis(4-ethylphenyl)-[1 ,1 '-(3,3'- dimethyl)biphenyl]-4,4'-diamin (ETPD), Tetrakis-(3-methylphenyl)-N,N,N',N'-2,5- phenylendiamin (PDA), α-Phenyl-4-N,N-diphenylaminostyrol (TPS), p-(Diethylamino)- benzaldehyddiphenylhydrazon (DEH), Triphenylamin (TPA), Bis[4-(N,N-diethylamino)- 2-methylphenyl)(4-methyl-phenyl)methan (MPMP), 1-Phenyl-3-[p-(diethylamino)styryl]- 5-[p-(diethylamino)phenyl]pyrazolin (PPR oder DEASP), 1 ,2-trans-Bis(9H-carbazol-9- yl)cyclobutan (DCZB), N,N,N',N'-Tetrakis(4-methylphenyl)-(1 ,1 '-biphenyl)-4,4'-diamin (TTB), 4,4',4"-tris(N,N-Diphenylamino)triphenylamin (TDTA), Porphyrinverbindungen und Phthalocyaninen wie Kupferphthalocyanine. Üblicherweise eingesetzte Löcher transportierende Polymere sind ausgewählt aus der Gruppe bestehend aus Polyvinyl- carbazolen, (Phenylmethyl)polysilanen und Polyanilinen. Es ist ebenfalls möglich, Löcher transportierende Polymere durch Dotieren Löcher transportierender Moleküle in Polymere wie Polystyrol und Polycarbonat zu erhalten. Geeignete Löcher transportierende Moleküle sind die bereits vorstehend genannten Moleküle. Weiterhin können - in einer Ausführungsform - Carben-Komplexe als Lochleitermaterialien eingesetzt werden, wobei die Bandlücke des mindestens einen Lochleitermaterials im Allgemeinen größer ist als die Bandlücke des eingesetzten Emittermaterials. Dabei ist unter Bandlücke im Sinne der vorliegenden Anmeldung die Triplett-Energie zu ver- stehen. Geeignete Carben-Komplexe sind z.B. Carben-Komplexe, wie sie in WO 2005/019373 A2, WO 2006/056418 A2 und WO 2005/1 13704 und in den älteren nicht vorveröffentlichten Europäischen Anmeldungen EP 06 1 12 228.9 und EP 06 1 12 198.4 beschrieben sind.
Die Licht-emittierende Schicht (3) enthält mindestens ein Emittermaterial. Dabei kann es sich grundsätzlich um einen Fluoreszenz oder Phosphoreszenzemitter handeln, wobei geeignete Emittermaterialien dem Fachmann bekannt sind. Bevorzugt handelt es sich bei dem mindestens einen Emittermaterial um einen Phosphoreszenzemitter. Die bevorzugt eingesetzten Phosphoreszenzmitter-Verbindungen basieren auf Metall- komplexen, wobei insbesondere die Komplexe der Metalle Ru, Rh, Ir, Os, Pd und Pt, vor allem die Komplexe des Ir Bedeutung erlangt haben. Die erfindungsgemäß verwendeten Verbindungen der Formel I sind besonders für den Einsatz gemeinsam mit solchen Metallkomplexen geeignet. Dabei werden die Verbindungen der Formel (I) in einer bevorzugten Ausführungsform als Matrixmaterialien und/oder Loch/Excitonen- und/oder Elektronen/Excitonen-blockermaterialien eingesetzt. Insbesondere sind sie für die Verwendung als Matrixmaterialien und/oder Loch/Excitonen- und/oder Elektro- nen/Excitonen-blockermaterialien zusammen mit Komplexen des Ru, Rh, Ir, Os, Pd und Pt, besonders bevorzugt für die Verwendung zusammen mit Komplexen des Ir geeignet.
Geeignete Metallkomplexe zur Verwendung in den erfindungsgemäßen OLEDs sind z.B. in den Schriften WO 02/60910 A1 , US 2001/0015432 A1 , US 2001/0019782 A1 , US 2002/0055014 A1 , US 2002/0024293 A1 , US 2002/0048689 A1 , EP 1 191 612 A2, EP 1 191 613 A2, EP 1 211 257 A2, US 2002/0094453 A1 , WO 02/02714 A2, WO 00/70655 A2, WO 01/41512 A1 , WO 02/15645 A1 , WO 2005/019373 A2, WO 2005/1 13704 A2, WO 2006/1 15301 A1 , WO 2006/067074 A1 und WO 2006/056418 beschrieben.
Weitere geeignete Metallkomplexe sind die kommerziell erhältlichen Metallkomplexe Tris(2-phenylpyridin)iridium(lll), lridium(lll)tris(2-(4-tolyl)pyridinato-N,C2'), Iridi- um(lll)tris(1-phenylisochinolin), lridium(lll)bis(2-2'-benzo-thienyl)pyridinato-
N,C3')(acetylacetonat), lridium(lll)bis(2-(4,6-difluorophenyl)pyridinato-N,C2)picolinat, lridium(lll)bis(1-phenylisochinolin)(acetylacetaonat), lridium(lll)bis(di- benzo[f,h]chinoxalin)(acetylacetaonat), lridium(lll)bis(2-methyldi-benzo[f,h]chinoxalin)- (acetylacetonat) und Tris(3-methyl-1-phenyl-4-trimethyl-acetyl-5-pyrazolin)terbium(lll). Des Weiteren sind die folgenden kommerziell erhältlichen Materialien geeignet: Tris(dibenzoylacetonato)-mono(phenanthrolin)-europium(lll), Tris(dibenzoylmethan)- mono(phenanthrolin)europium(lll), Tris(dibenzoylmethan)-mono(5-aminophenan- throlin)europium(lll), Tris(di-2-naphthoylmethan)-mono(phenanthrolin)-europium(lll), Tris(4-bromobenzoylmethan)-mono(phenanthrolin)-europium(lll), Tris(di-biphenyl- methan)-mono(phenanthrolin)-europium(lll), Tris(dibenzoylmethan)-mono(4,7-diphenyl- phenanthrolin)-europium(lll), Tris(dibenzoylmethan)-mono(4,7-di-methylphenanthrolin)- europium(lll), Tris(dibenzoylmethan)-mono(4,7-dimethyl-phenanthrolin-disulfonsäure)- europium(lll)-dinatriumsalz, Tris[di(4-(2-(2-ethoxy-ethoxy)ethoxy)benzoylmethan)]- mono(phenanthrolin)-europium(lll) und Tris[di[4-(2-(2-ethoxyethoxy)ethoxy)benzoyl- methan)]mono-(5-aminophenanthrolin)-europium(lll).
Besonders bevorzugte Triplett-Emitter sind Carbenkomplexe. In einer bevorzugten Ausführungsform der vorliegenden Erfindung werden die Verbindungen der Formel (I) in der Licht-emittierenden Schicht als Matrixmaterial gemeinsam mit Carbenkomplexen als Triplett-Emitter eingesetzt. Geeignete Carbenkomplexe sind dem Fachmann bekannt und in einigen der vorstehend genannten Anmeldungen und nachstehend genannt. In einer weiteren bevorzugten Ausführungsform werden die Verbindungen der Formel (I) als Loch/Excitonen-Blockermaterial gemeinsam mit Carbenkomplexen als Triplett-Emitter eingesetzt. Die Verbindungen der Formel (I) können des Weiteren sowohl als Matrixmaterialien als auch als Loch/Excitonenblockermaterialien gemeinsam mit Carbenkomplexen als Triplett-Emitter eingesetzt werden.
Geeignete Metallkomplexe zur Verwendung zusammen mit den Verbindungen der Formel I als Matrixmaterialien und/oder Loch/Excitonen- und/oder Elektro- nen/Excitonen-Blockermaterialien in OLEDs sind somit z.B. auch Carben-Komplexe, wie sie in WO 2005/019373 A2, WO 2006/056418 A2 und WO 2005/1 13704 und in den älteren nicht vorveröffentlichten PCT Anmeldungen WO 2007/1 15970 und WO
2007/1 15981 beschrieben sind. Auf die Offenbarung der genannten WO- und EP- Anmeldungen wird hierbei explizit Bezug genommen und diese Offenbarungen sollen in den Inhalt der vorliegenden Anmeldung als mit einbezogen gelten.
Die Blockschicht für Löcher/Excitonen (4) kann üblicherweise in OLEDs eingesetzte Lochblockermaterialien aufweisen wie 2,9-Dimethyl-4,7-diphenyl-1 ,10-phenanthrolin (Bathocuproin, (BCP)), Bis-(2-methyl-8-chinolinato)-4-phenyl-phenylato)-aluminium(lll) (BAIq), Phenothiazin-S,S-dioxidderivate und 1 ,3,5-tris(N-Phenyl-2-benzylimidazol)- benzol) (TPBI), wobei TPBI und BAIq auch als Elektronen-leitende Materialien geeignet sind. In einer weiteren Ausführungsform können Verbindungen, die aromatische oder heteroaromatische über Carbonyl-Gruppen enthaltende Gruppen verbundene Ringe enthalten, wie sie in WO2006/100298 offenbart sind, als Blockschicht für Lö- cher/Excitonen (4) oder als Matrixmaterialien in der Licht-emittierenden Schicht (3) eingesetzt werden.
In einer bevorzugten Ausführungsform betrifft die vorliegende Erfindung eine erfin- dungsgemäße OLED umfassend die Schichten (1 ) Anode, (2) Lochleiterschicht, (3) Licht-emittierende Schicht, (4) Blockschicht für Löcher/Excitonen, (5) Elektronenleiter- schicht und (6) Kathode, sowie gegebenenfalls weitere Schichten, wobei die Blockschicht für Löcher/Excitonen mindestens eine Verbindung der Formel (I) enthält.
In einer weiteren bevorzugten Ausführungsform betrifft die vorliegende Erfindung eine erfindungsgemäße OLED umfassend die Schichten (1 ) Anode, (2) Lochleiterschicht, (3) Licht-emittierende Schicht, (4) Blockschicht für Löcher/Excitonen, (5) Elektronenlei- terschicht und (6) Kathode, sowie gegebenenfalls weitere Schichten, wobei die Lichtemittierende Schicht (3) mindestens eine Verbindung der Formel (I) und die Block- schicht für Löcher/Excitonen mindestens eine Verbindung der Formel (I) enthält.
In einer weiteren Ausführungsform betrifft die vorliegende Erfindung eine erfindungsgemäße OLED umfassend die Schichten (1 ) Anode, (2) Lochleiterschicht und/oder (2') Blockschicht für Elektronen/Excitonen (die OLED kann sowohl die Schichten (2) und (2') als auch entweder die Schicht (2) oder die Schicht (2') enthalten), (3) Lichtemittierende Schicht, (4) Blockschicht für Löcher/Excitonen, (5) Elektronenleiterschicht und (6) Kathode, sowie gegebenenfalls weitere Schichten, wobei die die Blockschicht für Elektronen/Excitonen und/oder die Lochleiterschicht und gegebenenfalls die Lichtemittierende Schicht (3) mindestens eine Verbindung der Formel (I) enthält.
Geeignete Elektronenleitermaterialien für die Schicht (5) der erfindungsgemäßen O- LEDs umfassen mit oxinoiden Verbindungen chelatisierte Metalle wie Tris(8-chino- linolato)aluminium (Alqß), Bis-(2-methyl-8-chinolinato)-4-phenyl-phenylato)- aluminium(lll) (BAIq), Verbindungen auf Phenanthrolinbasis wie 2,9-Dimethyl-4,7- diphenyl-1 ,10-phenanthrolin (DDPA = BCP) oder 4,7-Diphenyl-1 ,10-phenanthrolin (DPA) und Azolverbindungen wie 2-(4-Biphenylyl)-5-(4-t-butylphenyl)-1 ,3,4-oxadiazol (PBD) und 3-(4-Biphenylyl)-4-phenyl-5-(4-t-butylphenyl)-1 ,2,4-triazol (TAZ) und 2,2', 2"-(1 ,3,5-phenylen)tris-[1-phenyl-1 H-benzimidazol] (TPBI). Dabei kann die Schicht (5) sowohl zur Erleichterung des Elektronentransports dienen als auch als Pufferschicht oder als Sperrschicht, um ein Quenchen des Excitons an den Grenzflächen der Schichten des OLEDs zu vermeiden. Vorzugsweise verbessert die Schicht (5) die Beweglichkeit der Elektronen und reduziert ein Quenchen des Excitons. Bevorzugt geeignete Elektronenleitermaterialien sind TPBI und BAIq.
Von den vorstehend als Lochleitermaterialien und Elektronenleitermaterialien genannten Materialien können einige mehrere Funktionen erfüllen. Zum Beispiel sind einige der Elektronen leitenden Materialien gleichzeitig Löcher blockende Materialien, wenn sie ein tief liegendes HOMO aufweisen. Diese können z. B. in der Blockschicht für Lö- cher/Excitonen (4) eingesetzt werden. Es ist jedoch ebenfalls möglich, dass die Funktion als Loch/Excitonenblocker von der Schicht (5) mit übernommen wird, so dass die Schicht (4) entfallen kann.
Die Ladungstransportschichten können auch elektronisch dotiert sein, um die Transporteigenschaften der eingesetzten Materialien zu verbessern, um einerseits die Schichtdicken großzügiger zu gestalten (Vermeidung von Pinholes/Kurzschlüssen) und um andererseits die Betriebsspannung des Devices zu minimieren. Beispielsweise können die Lochleitermaterialien mit Elektronenakzeptoren dotiert werden, zum Beispiel können Phthalocyanine bzw. Arylamine wie TPD oder TDTA mit Tetrafluor- tetracyanchinodimethan (F4-TCNQ) dotiert werden. Die Elektronenleitermaterialien können zum Beispiel mit Alkalimetallen dotiert werden, beispielsweise AIq3 mit Lithium. Die elektronische Dotierung ist dem Fachmann bekannt und zum Beispiel in W. Gao, A. Kahn, J. Appl. Phys., Vol. 94, No. 1 , 1 JuIy 2003 (p-dotierte organische Schichten); A. G. Werner, F. Li, K. Harada, M. Pfeiffer, T. Fritz, K. Leo. Appl. Phys. Lett., Vol. 82, No. 25, 23 June 2003 und Pfeiffer et al., Organic Electronics 2003, 4, 89 - 103 offenbart.
Die Kathode (6) ist eine Elektrode, die zur Einführung von Elektronen oder negativen Ladungsträgern dient. Geeignete Materialien für die Kathode sind ausgewählt aus der Gruppe bestehend aus Alkalimetallen der Gruppe Ia, zum Beispiel Li, Cs, Erdalkalimetallen der Gruppe IIa, zum Beispiel Calcium, Barium oder Magnesium, Metallen der Gruppe IIb des Periodensystems der Elemente (alte ILJPAC-Version), umfassend die Lanthaniden und Aktiniden, zum Beispiel Samarium. Des Weiteren können auch Metalle wie Aluminium oder Indium, sowie Kombinationen aller genannten Metalle eingesetzt werden. Weiterhin können Lithium enthaltende organometallische Verbindungen oder LiF zwischen der organischen Schicht und der Kathode aufgebracht werden, um die Betriebsspannung (Operating Voltage) zu vermindern.
Das OLED gemäß der vorliegenden Erfindung kann zusätzlich weitere Schichten enthalten, die dem Fachmann bekannt sind. Beispielsweise kann zwischen der Schicht (2) und der Licht emittierenden Schicht (3) eine Schicht aufgebracht sein, die den Transport der positiven Ladung erleichtert und/oder die Bänderlücke der Schichten aneinan- der anpasst. Alternativ kann diese weitere Schicht als Schutzschicht dienen. In analoger Weise können zusätzliche Schichten zwischen der Licht emittierenden Schicht (3) und der Schicht (4) vorhanden sein, um den Transport der negativen Ladung zu erleichtern und/oder die Bänderlücke zwischen den Schichten aneinander anzupassen. Alternativ kann diese Schicht als Schutzschicht dienen. In einer bevorzugten Ausführungsform enthält das erfindungsgemäße OLED zusätzlich zu den Schichten (1 ) bis (6) mindestens eine der im Folgenden genannten weiteren Schichten:
~ eine Loch-Injektionsschicht zwischen der Anode (1 ) und der Löchertransportierenden Schicht (2); eine Blockschicht für Elektronen zwischen der Löcher-transportierenden Schicht (2) und der Licht-emittierenden Schicht (3); eine Elektronen-Injektionsschicht zwischen der Elektronen-transportierenden Schicht (5) und der Kathode (6).
Dem Fachmann ist bekannt, wie er (zum Beispiel auf Basis von elektrochemischen Untersuchungen) geeignete Materialien auswählen muss. Geeignete Materialien für die einzelnen Schichten sind dem Fachmann bekannt und z.B. in WO 00/70655 offenbart.
Des Weiteren ist es möglich, dass einige oder alle der in der erfindungsgemäßen O- LED eingesetzten Schichten oberflächenbehandelt sind, um die Effizienz des Ladungsträgertransports zu erhöhen. Die Auswahl der Materialien für jede der genannten Schichten ist bevorzugt dadurch bestimmt, ein OLED mit einer hohen Effizienz und Lebensdauer zu erhalten.
Die Herstellung des erfindungsgemäßen OLEDs kann nach dem Fachmann bekannten Methoden erfolgen. Im Allgemeinen wird das erfindungsgemäße OLED durch aufeinander folgende Dampfabscheidung (Vapor deposition) der einzelnen Schichten auf ein geeignetes Substrat hergestellt. Geeignete Substrate sind zum Beispiel Glas, anorganische Halbleiter oder Polymerfilme. Zur Dampfabscheidung können übliche Techniken eingesetzt werden wie thermische Verdampfung, Chemical Vapor Deposition (CVD), Physical Vapor Deposition (PVD) und andere. In einem alternativen Verfahren können die organischen Schichten der OLED aus Lösungen oder Dispersionen in geeigneten Lösungsmitteln aufgetragen werden, wobei dem Fachmann bekannte Beschichtungs- techniken angewendet werden.
Im Allgemeinen haben die verschiedenen Schichten folgende Dicken: Anode (1 ) 50 bis 500 nm, bevorzugt 100 bis 200 nm; Löcher-leitende Schicht (2) 5 bis 100 nm, bevor- zugt 20 bis 80 nm, Licht-emittierende Schicht (3) 1 bis 100 nm, bevorzugt 10 bis 80 nm, Blockschicht für Löcher/Excitonen (4) 2 bis 100 nm, bevorzugt 5 bis 50 nm, Elektronen-leitende Schicht (5) 5 bis 100 nm, bevorzugt 20 bis 80 nm, Kathode (6) 20 bis 1000 nm, bevorzugt 30 bis 500 nm. Die relative Lage der Rekombinationszone von Löchern und Elektronen in dem erfindungsgemäßen OLED in Bezug zur Kathode und somit das Emissionsspektrum des OLED können u. a. durch die relative Dicke jeder Schicht beeinflusst werden. Das bedeutet, die Dicke der Elektronentransportschicht sollte bevorzugt so gewählt werden, dass die Lage der Rekombinationszone auf die optische Resonatoreigenschaft der Diode und damit auf die Emissionswellenlänge des Emitters abgestimmt ist. Das Verhältnis der Schichtdicken der einzelnen Schichten in dem OLED ist von den eingesetzten Materialien abhängig. Die Schichtdicken von ge- gebenenfalls eingesetzten zusätzlichen Schichten sind dem Fachmann bekannt. Es ist möglich, dass die Elektronen-leitende Schicht und/oder die Löcher leitende Schicht größere Dicken als die angegebenen Schichtdicken aufweisen, wenn sie elektrisch dotiert sind.
Erfindungsgemäß enthält die Licht-emittierende Schicht und/oder mindestens eine der weiteren in der erfindungsgemäßen OLED gegebenenfalls vorliegenden Schichten mindestens eine Verbindung der allgemeinen Formel (I). Während die mindestens eine Verbindung der allgemeinen Formel (I) in der Licht-emittierenden Schicht als Matrixmaterial vorliegt, kann die mindestens eine Verbindung der allgemeinen Formel (I) in der mindestens einen weiteren Schicht der erfindungsgemäßen OLED jeweils allein oder gemeinsam mit mindestens einem der weiteren für die entsprechenden Schichten geeigneten vorstehend genannten Materialien eingesetzt werden. Es ist ebenfalls möglich, dass die Licht-Emittierende Schicht neben der Verbindung der Formel (I) ein oder mehrere weitere Matrixmaterialien enthält.
Die Effizienz der erfindungsgemäßen OLEDs kann z.B. durch Optimierung der einzelnen Schichten verbessert werden. Beispielsweise können hoch effiziente Kathoden wie Ca oder Ba, gegebenenfalls in Kombination mit einer Zwischenschicht aus LiF, eingesetzt werden. Geformte Substrate und neue Löcher-transpor-tierende Materialien, die eine Reduktion der Operationsspannung oder eine Erhöhung der Quanteneffizienz bewirken, sind ebenfalls in den erfindungsgemäßen OLEDs einsetzbar. Des Weiteren können zusätzliche Schichten in den OLEDs vorhanden sein, um die Energielevel der verschiedenen Schichten einzustellen und um Elektrolumineszenz zu erleichtern. Die erfindungsgemäßen OLEDs können in allen Vorrichtungen eingesetzt werden, wor- in Elektrolumineszenz nützlich ist. Geeignete Vorrichtungen sind bevorzugt ausgewählt aus stationären und mobilen Bildschirmen und Beleuchtungseinheiten. Stationäre Bildschirme sind z.B. Bildschirme von Computern, Fernsehern, Bildschirme in Druckern, Küchengeräten sowie Reklametafeln, Beleuchtungen und Hinweistafeln. Mobile Bildschirme sind z.B. Bildschirme in Handys, Laptops, Digitalkameras, Fahrzeugen sowie Zielanzeigen an Bussen und Bahnen.
Weiterhin können die Verbindungen der Formel I in OLEDs mit inverser Struktur eingesetzt werden. Bevorzugt werden die erfindungsgemäß eingesetzten Verbindungen der Formel I in diesen inversen OLEDs wiederum als Matrixmaterialien in der Licht- emittierenden Schicht eingesetzt. Der Aufbau von inversen OLEDs und die üblicherweise darin eingesetzten Materialien sind dem Fachmann bekannt. Die nachfolgenden Beispiele erläutern die Erfindung zusätzlich.
Beispiele
1.) Synthesen
Beispiel a): Dreifachsubstitution von 2,4,6-Trichloro-1 ,3,5-triazin (Cyanurchlorid) zur Darstellung von 2,4,6-Tris(diphenylamino)-1,3,5-triazin (1) (Vergleich)
AIIg. Vorschrift A: 5.92 g (35 mmol) Diphenylamin werden in einem 250 ml 2- Halskolben, bestückt mit Stickstoffeinlass und Septum, in 100 ml über Kalium getrock- netem THF unter Stickstoffatmosphäre, gelöst. Anschließend wird die Lösung bei Raumtemperatur über einen Zeitraum von 10 Minuten mit 21.8 ml (35 mmol) n- Buthyllithium (1.6M in Hexan) versetzt und weitere 10 Minuten gerührt. In einem 500 ml 3-Halskolben, bestückt mit Stickstoffeinlass, Rückflusskühler und Septum, werden 1.84 g (10 mmol) Cyanurchlorid in 100 ml über Kalium getrocknetem THF unter Stick- Stoffatmosphäre, gelöst. Die Lithium-Diphenylamin-Lösung wird mittels einer Transferkanüle tropfenweise zur Cyanurchlorid-Lösung zugeführt. Das Reaktionsgemisch wird anschließend 6 Stunden unter Rückfluss gekocht. Nach Abkühlen auf Raumtemperatur wird das Lösungsmittel verdampft und der Rückstand 10 Minuten in 200 ml Wasser gerührt. Der durch Filtration gewonnene weiße Feststoff wird mit Diethylether gewa- sehen, in heißem Ethanol aufgeschlämmt und heiß filtriert. Zur weiteren Reinigung wird das Produkt in Chlorbenzol umkristallisiert und im Hochvakuum getrocknet, um 3.55 g (61 %) 2,4,6-Tris(diphenylamino)-1 ,3,5-triazin (1) als weißen Feststoff zu erhalten. 1H-NMR (250 MHz, CDCI3) δ (ppm): 7.09-7.16 (m, 24H), 7.02-7.06 (m, 6H). EI-MS: m/z = 582 (M+) Beispiel b): Dreifachsubstitution von 2,4,6-Trichloro-1 ,3,5-triazin zur Darstellung von 2, 4, 6- Tris(3-methyldiphenylamino)- 1, 3, 5-triazin (2) (Vergleich)
6.41 g (35 mmol) 3-Methyldiphenylamin werden mit 1.84 g (10 mmol) Cyanurchlorid entsprechend Vorschrift A zur Reaktion gebracht und gereinigt, wobei 3.81 g (64%) 2,4, 6-Tris(3-methyldiphenylamino)-1 ,3,5-triazin (2) als weißer Feststoff erhalten werden. 1H-NMR (250 MHz, CDCI3) δ (ppm): 7.08-7.15 (m, 9H), 6.82-7.05 (m, 18H), 2.17 (s, 9H). EI-MS: m/z = 624 (M+).
Beispiel c): Zweifachsubstitution von 2,4,6-Trichloro-1 ,3,5-triazin (Cyanurchlorid) zur Darstellung von 2, 4-Bis(diphenylamino)-6-chloro- 1, 3, 5-triazin
AIIg. Vorschrift A: 3.38 g (20 mmol) Diphenylamin werden in einem 250 ml 2- Halskolben, bestückt mit Stickstoffeinlass und Septum, in 100 ml über Kalium getrocknetem THF unter Stickstoffatmosphäre, gelöst. Anschließend wird die Lösung bei Raumtemperatur über einen Zeitraum von 10 Minuten mit 12.5 ml (20 mmol) n- Butyllithium (1.6M in Hexan) versetzt und weitere 10 Minuten gerührt. In einem 500 ml 3-Halskolben, bestückt mit Stickstoffeinlass, Rückflusskühler und Septum, werden 1.84 g (10 mmol) Cyanurchlorid in 100 ml über Kalium getrocknetem THF unter Stickstoffatmosphäre, gelöst. Die Lithium-Diphenylamin-Lösung wird mittels einer Transfer- kanüle tropfenweise zur Cyanurchlorid-Lösung zugeführt. Das Reaktionsgemisch wird anschließend 6 Stunden unter Rückfluss gekocht. Nach Abkühlen auf Raumtemperatur wird das Lösungsmittel verdampft und der Rückstand 10 Minuten in 200 ml Wasser gerührt. Der durch Filtration gewonnene weiße Feststoff wird mit Diethylether gewaschen, in heißem Ethanol aufgeschlämmt und heiß filtriert. Anschließend wird das Produkt mittels Säulechromatographie mit einem Hexan/THF Elutionsmittelgemisch (3/1 , V/V) gereinigt, um 3.48 g (77%) 2,4-Bis(diphenylamino)-6-chloro-1 ,3,5-triazin als weißen Feststoff zu erhalten.
1H-NMR (250 MHz, CDCI3) δ (ppm): 7.22-7.33 (m, 8H), 7.05-7.21 (m, 12H). EI-MS: m/z = 448 (M+).
Substitution von 2,4-Bis(diphenylamino)-6-chloro-1,3,5-triazin zur Darstellung von 2,4- Bis(diphenylamino)-6-(3, 5-dimethylphenoxy)-1 ,3, 5-triazin (3) (erfindungsgemäß)
2.25 g (5 mmol) 2,4-Bis(diphenylamino)-6-chloro-1 ,3,5-triazin werden mit 0.79 g (6.5 mmol) 3,5-Dimethylphenol entsprechend Vorschrift B zur Reaktion gebracht und gereinigt, wobei 2.15 g (80%) 2,4-Bis(diphenylamino)-6-(3,5-dimethylphenoxy)-1 ,3,5-triazin (3) als weißer Feststoff erhalten werden.
1H-NMR (250 MHz, CDCI3) δ (ppm): 7.15-7.24 (m, 12H), 7.07-7.15 (m, 8H), 2.21 (s, 6H). EI-MS: m/z = 534 (M+).
Beispiel d):
Zweifachsubstitution von 2,4,6-Trichloro-1 ,3,5-triazin (Cyanurchlorid) zur Darstellung von 2, 4-Bis(phenoxy)-6-chloro- 1, 3, 5-triazin
3.76 g (20 mmol) Cyanurchlorid werden in einem 500 ml 2-Halskolben, bestückt mit Tropftrichter und Thermometer, in 100 ml Aceton gelöst und auf 100C gekühlt. In einem 250 ml Kolben werden 3.76 g (40 mmol) Phenol in 150 ml Aceton/Wasser Mischung (1/4, V/V) gelöst, mit 1.60 g (40 mmol) Natriumhydroxid versetzt und 15 Minuten bei Raumtemperatur gerührt. Anschließend wird die Natriumphenolat-Lösung der Cyanurchlorid Lösung über einen Zeitraum von 30 Minuten zugetropft, wobei die Lösungstemperatur 100C nicht übersteigen darf. Die Reaktionslösung wird nun 1 Stunde bei 100C gerührt und dann über einen Zeitraum von 2 Stunden auf Raumtemperatur erwärmt. Der entstandene weiße Feststoff wird abfiltriert und zweifach mit 50 ml Wasser gewaschen. Zur weiteren Reinigung wird das Produkt in einer Hexan/THF Mischung (1/1 , V/V) umkristallisiert und im Vakuum getrocknet, wobei 4.78 g (80%) 2,4- Bis(phenoxy)-6-chloro-1 ,3,5-triazin als weißer Feststoff erhalten werden. 1H-NMR (250 MHz, CDCI3) δ (ppm): 7.33-7.44 (m, 4H), 7.21-7.30 (m, 2H), 7.09-7.16 (d, 4H). EI-MS: m/z = 298 (M+).
Substitution von 2,4-Bis(phenoxy)-6-chloro-1,3,5-triazin zur Darstellung von 2,4- Bis(phenoxy)-6-(3-methyldiphenylamino)- 1, 3, 5-triazin (4) (erfindungsgemäß)
1.34 g (7.3 mmol) 3-Methyldiphenylamin werden mit 1.79 g (6 mmol) 2,4-Bis(phenoxy)- 6-chloro-1 ,3,5-triazin entsprechend AIIg. Vorschrift A zur Reaktion gebracht. Die Reinigung des Produkts erfolgt mittels Säulechromatographie mit einem Hexan/THF Eluti- onsmittelgemisch (10/1 , V/V), wobei 1.35 g (51 %) 2,4-Bis(phenoxy)-6-(3- methyldiphenylamino)-1 ,3,5-triazin (4) als weißer Feststoff erhalten werden. 1H-NMR (250 MHz, CDCI3) δ (ppm): 7.12-7.24 (m, 10H), 7.03-7.12 (m, 6H), 6.93-7.01 (m, 3H), 2.24 (s, 3H). EI-MS: m/z = 446 (M+).
Beispiel e): Substitution von 2,4-Bis(diphenylamino)-6-chloro-1,3,5-triazin zur Darstellung von 2,4-Bis(diphenylamino)-6-phenoxy-1,3,5-triazin (5) (erfindungsgemäß)
AIIg. Vorschrift B: 2.25 g (5 mmol) 2, 4-Bis(diphenylamino)-6-chloro-1 ,3,5-triazin werden in einem 250 ml 2-Halskolben, bestückt mit Rückflusskühler und Tropftrichter, in 70 ml Aceton gelöst. In einem 100 ml Kolben werden 0.61 g (6.5 mmol) Phenol in 50 ml Ace- ton/Wasser Mischung (1/1 , V/V) gelöst, mit 0.23 g (5.75 mmol) Natriumhydroxid versetzt und 15 Minuten bei Raumtemperatur gerührt. Anschließend wird die Natriumphe- nolat-Lösung zur 2,4-Bis(diphenylamino)-6-chloro-1 ,3,5-triazin-Lösung über einen Zeitraum von 15 Minuten zugetropft. Die Reaktionslösung wird nun 8 Stunden unter Rück- fluss gekocht. Nach Abkühlen auf Raumtemperatur werden der Lösung 50 ml Wasser zugesetzt. Der weiße Feststoff wird abfiltriert und zweifach mit 30 ml Wasser gewaschen. Das entstandene Produkt wird mittels Säulechromatographie mit einem He- xan/Ethylacetat Elutionsmittelgemisch (7/1 , V/V) gereinigt, wobei 1.65 g (65%) 2,4- Bis(diphenylamino)-6-phenoxy-1 ,3,5-triazin (5) als weißer Feststoff erhalten werden. 1H-NMR (250 MHz, CDCI3) δ (ppm): 7.10-7.23 (m, 20H), 6.99-7.08 (m, 5H). EI-MS: m/z = 506 (M+).
Beispiel f):
Zweifachsubstitution von 2,4, 6-Trichloro-1 ,3,5-triazin zur Darstellung von 2,4-Bis(3- methyldiphenylamino)-6-chloro-1,3,5-triazin
3.66 g (20 mmol) 3-Methyldiphenylamin werden mit 1.84 g (10 mmol) Cyanurchlorid entsprechend Vorschrift A zur Reaktion gebracht. Die Reinigung des Produkts erfolgt mittels Säulechromatographie mit einem Hexan/THF Elutionsmittelgemisch (7/1 , V/V), wobei 3.72 g (78%) 2,4-Bis(3-methyldiphenylamino)-6-chloro-1 ,3,5-triazin als weißer Feststoff erhalten werden.
1H-NMR (250 MHz, CDCI3) δ (ppm): 7.07-7.16 (m, 6H), 6.81-7.05 (m, 12H), 2.17 (s, 6H).
EI-MS: m/z = 477 (M+).
Substitution von 2,4-Bis(3-methyldiphenylamino)-6-chloro-1,3,5-triazin zur Darstellung von 2, 4-Bis(3-methyldiphenylamino)-6-(3, 5-dimethylphenoxy)-1 , 3, 5-triazin (6) (erfindungsgemäß)
2.39 g (5 mmol) 2,4-Bis(3-methyldiphenylamino)-6-chloro-1 ,3,5-triazin werden mit 0.79 g (6.5 mmol) 3,5-Dimethylphenol entsprechend Vorschrift B zur Reaktion gebracht und gereinigt, wobei 2.03 g (72%) 2,4-Bis(3-methyldiphenylamino)-6-(3,5- dimethylphenoxy)-1 ,3,5-triazin als weißer Feststoff (6) erhalten werden. 1H-NMR (250 MHz, CDCI3) δ (ppm): 7.04-7.19 (m, 12H), 6.88-7.01 (m, 6H), 6.64-6.72 (m, 3H), 2.21 (s, 6H), 2.19 (s, 6H). EI-MS: m/z = 562 (M+).
Beispiel g):
Zweifachsubstitution von 2,4,6-Trichloro-1 ,3,5-triazin zur Darstellung von 2,4-Bis(4,4'- dimethyldiphenylamino)-6-chloro- 1, 3, 5-triazin
3.95 g (20 mmol) 4,4'-Dimethyldiphenylamin werden mit 1.84 g (10 mmol) Cyanurchlo- rid entsprechend Vorschrift A zur Reaktion gebracht. Die Reinigung des Produkts erfolgt mittels Säulechromatographie mit einem Hexan/THF Elutionsmittelgemisch (4/1 , V/V), wobei 2.56 g (51%) 2,4-Bis(4,4'-dimethyldiphenylamino)-6-chloro-1 ,3,5-triazin als weißer Feststoff erhalten werden.
1H-NMR (250 MHz, CDCI3) δ (ppm): 6.88-7.05 (m, 16H), 2.22 (s, 12H). EI-MS: m/z = 505 (M+).
Substitution von 2,4-Bis(4,4'-dimethyldiphenylamino)-6-chloro-1, 3, 5-triazin zur Darstellung von 2, 4-Bis(4, 4 '-dimethyldiphenylamino)-6-(3, 5-dimethylphenoxy)-1 ,3, 5- triazin (7) (erfindungsgemäß)
2.53 g (5 mmol) 2,4-Bis(4,4'-dimethyldiphenylamino)-6-chloro-1 ,3,5-triazin werden mit 0.79 g (6.5 mmol) 3,5-Dimethylphenol entsprechend Vorschrift B zur Reaktion gebracht und mittels Sublimation gereinigt, wobei 2.66 g (90%) 2,4-Bis(4,4'- dimethyldiphenylamino)-6-(3,5-dimethylphenoxy)-1 ,3,5-triazin als weißer Feststoff erhalten werden.
1H-NMR (250 MHz, CDCI3) δ (ppm): 6.92-7.08 (m, 16H), 6.65-6.71 (m, 3H), 2.28 (s, 12H), 2.20 (s, 6H). EI-MS: m/z = 590 (M+).
Beispiel h):
Goldberg Reaktion zur Darstellung von 9-(4-Methoxyphenyl)-carbazol
CuI, DACy, Dioxan
3.35 g (20 mmol) Carbazol, 5.15 g (22 mmol) 4-lodanisol, 0.38 g (2 mmol) Kupferiodid und 4.24 g (20 mmol) Kaliumphosphat werden in einem 250 ml 2-Halskolben, bestückt mit Stickstoffeinlass und Rückflusskühler, in 70 ml trocknem Dioxan unter Stickstoffatmosphäre, gelöst. 0.23 g (2 mmol) trans-1 ,2-Diaminocyclohexan (DACy) werden zugegeben bevor die Reaktionslösung 24 Stunden bei 1 100C unter Rückfluss gerührt wird. Nach Abkühlen auf Raumtemperatur werden die anorganischen Salze über eine Alox N Säule abgetrennt. Das resultierende Filtrat wird eingeengt und das Produkt mittels Säulechromatographie mit einem Cyclohexan/THF Elutionsmittelgemisch (20/1 , V/V) gereinigt. 3.12 g (58%) 9-(4-Methoxyphenyl)-carbazol werden als weißer Feststoff erhalten.
1H-NMR (250 MHz, CDCI3) δ (ppm): 8.15 (d, 2H), 7.48-7.26 (m, 8H); 7.12 (m, 2H); 3.93 (s, 3H).
EI-MS: m/z = 273 (100, M+).
Etherspaltung zur Darstellung von 9-(4-Hydroxyphenyl)-carbazol
2.00 g (7.33 mmol) 9-(4-Methoxyphenyl)-carbazol werden in einem 100 ml 2- Halskolben, bestückt mit Stickstoffeinlass und Septum, in 40 ml trocknem Dichlor- methan unter Stickstoffatmosphäre, gelöst und auf -78°C gekühlt. Unter Rühren werden langsam 8 ml (8 mmol) Bortribromid-Lösung (1 M in CH2CI2) zugetropft. Die Reaktionslösung wird über einen Zeitraum von 12 Stunden auf Raumtemperatur erwärmt. Nach der Zugabe von 20 ml Wasser wird die organische Phase separiert, zweifach mit Wasser gewaschen und eingeengt. Das Produkt wird mittels Säulechromatographie mit einem Cyclohexan/THF Elutionsmittelgemisch (10/1 , V/V) gereinigt. 1.75 g (93%) 9-(4- Hydroxyphenyl)-carbazol werden als weißer Feststoff erhalten.
1H-NMR (250 MHz): δ (ppm) 8.04 (d, 2H); 7.34-7.14 (m, 8H), 6.96-6.92 (m, 2H); 4.97 (s, 1 H).
EI-MS: m/z = 259 (100, M+).
Substitution von 2,4-Bis(4,4'-dimethyldiphenylamino)-6-chloro-1,3,5-triazin zur Darstellung von 2, 4-Bis(4, 4 '-dimethyldiphenylamino)-6-(4-(carbazol-9-yl)-phenoxy)-1,3, 5- triazin (8) (erfindungsgemäß)
1.01 g (2 mmol) 2,4-Bis(4,4'-dimethyldiphenylamino)-6-chloro-1 ,3,5-triazin werden mit 0.63 g (2.4 mmol) 9-(4-Hydroxyphenyl)-carbazol entsprechend Vorschrift B zur Reaktion gebracht und mittels Säulechromatographie mit einem Hexan/THF Elutionsmittelgemisch (10/1 , V/V) gereinigt, wobei 1.10 g (76%) 2,4-Bis(4,4'-dimethyldiphenylamino)- 6-(4-(carbazol-9-yl)-phenoxy)-1 ,3,5-triazin (8) als weißer Feststoff erhalten werden. 1H-NMR (250 MHz, CDCI3) δ (ppm): 8.14 (d, 2H), 7.34-7.45 (m, 4H), 7.25-7.31 (m, 6H), 6.93-7.10 (m, 16H), 2.24 (s, 12H).
Beispiel h):
Goldberg Reaktion zur Darstellung von 9-(4-Methoxyphenyl)-carbazol
CuI, DACy, Dioxan
3.35 g (20 mmol) Carbazol, 5.15 g (22 mmol) 4-lodanisol, 0.38 g (2 mmol) Kupferiodid und 4.24 g (20 mmol) Kaliumphosphat werden in einem 250 ml 2-Halskolben, bestückt mit Stickstoffeinlass und Rückflusskühler, in 70 ml trocknem Dioxan unter Stickstoffatmosphäre, gelöst. 0.23 g (2 mmol) trans-1 ,2-Diaminocyclohexan (DACy) werden zugegeben bevor die Reaktionslösung 24 Stunden bei 1 100C unter Rückfluss gerührt wird. Nach Abkühlen auf Raumtemperatur werden die anorganischen Salze über eine Alox N Säule abgetrennt. Das resultierende Filtrat wird eingeengt und das Produkt mittels Säulechromatographie mit einem Cyclohexan/THF Elutionsmittelgemisch (20/1 , V/V) gereinigt. 3.12 g (58%) 9-(4-Methoxyphenyl)-carbazol werden als weißer Feststoff erhalten.
1H-NMR (250 MHz, CDCI3) δ (ppm): 8.15 (d, 2H), 7.48-7.26 (m, 8H); 7.12 (m, 2H); 3.93 (s, 3H).
EI-MS: m/z = 273 (100, M+).
Etherspaltung zur Darstellung von 9-(4-Hydroxyphenyl)-carbazol
2.00 g (7.33 mmol) 9-(4-Methoxyphenyl)-carbazol werden in einem 100 ml 2- Halskolben, bestückt mit Stickstoffeinlass und Septum, in 40 ml trocknem Dichlor- methan unter Stickstoffatmosphäre, gelöst und auf -78°C gekühlt. Unter Rühren werden langsam 8 ml (8 mmol) Bortribromid-Lösung (1 M in CH2CI2) zugetropft. Die Reaktionslösung wird über einen Zeitraum von 12 Stunden auf Raumtemperatur erwärmt. Nach der Zugabe von 20 ml Wasser wird die organische Phase separiert, zweifach mit Wasser gewaschen und eingeengt. Das Produkt wird mittels Säulechromatographie mit einem Cyclohexan/THF Elutionsmittelgemisch (10/1 , V/V) gereinigt. 1.75 g (93%) 9-(4- Hydroxyphenyl)-carbazol werden als weißer Feststoff erhalten.
1H-NMR (250 MHz): δ (ppm) 8.04 (d, 2H); 7.34-7.14 (m, 8H), 6.96-6.92 (m, 2H); 4.97 (s, 1 H). EI-MS: m/z = 259 (100, M+).
Substitution von 2,4-Bis(4,4'-dimethyldiphenylamino)-6-chloro-1,3,5-triazin zur Darstellung von 2, 4-Bis(4, 4 '-dimethyldiphenylamino)-6-(4-(carbazol-9-yl)-phenoxy)-1,3, 5- triazin (8) (erfindungsgemäß)
1.01 g (2 mmol) 2,4-Bis(4,4'-dimethyldiphenylamino)-6-chloro-1 ,3,5-triazin werden mit 0.63 g (2.4 mmol) 9-(4-Hydroxyphenyl)-carbazol entsprechend Vorschrift B zur Reakti- on gebracht und mittels Säulechromatographie mit einem Hexan/THF Elutionsmittelgemisch (10/1 , V/V) gereinigt, wobei 1.10 g (76%) 2,4-Bis(4,4'-dimethyldiphenylamino)- 6-(4-(carbazol-9-yl)-phenoxy)-1 ,3,5-triazin (8) als weißer Feststoff erhalten werden. 1H-NMR (250 MHz, CDCI3) δ (ppm): 8.14 (d, 2H), 7.34-7.45 (m, 4H), 7.25-7.31 (m, 6H), 6.93-7.10 (m, 16H), 2.24 (s, 12H).
Beispiel (i):
Goldberg Reaktion zur Darstellung von 3, 6-Dimethyl-9-(4-methoxyphenyl)-carbazol
\ CuI, DACy, Dioxan 3.91 g (20 mmol) 3,6-Dimethylcarbazol, 5.15 g (22 mmol) 4-lodanisol, 0.38 g (2 mmol) Kupferiodid und 4.24 g (20 mmol) Kaliumphosphat werden in einem 250 ml 2- Halskolben, bestückt mit Stickstoffeinlass und Rückflusskühler, in 70 ml trocknem Dio- xan unter Stickstoffatmosphäre, vorgelegt. 0.23 g (2 mmol) trans-1 ,2- Diaminocyclohexan (DACy) werden zugegeben bevor die Reaktionslösung 24 Stunden bei 1 100C unter Rückfluss gerührt wird. Nach Abkühlen auf Raumtemperatur werden die anorganischen Salze über eine Alox N Säule abgetrennt. Das resultierende Filtrat wird eingeengt und das Produkt mittels Säulenchromatographie mit einem Cyclohe- xan/THF Elutionsmittelgemisch (20/1 , V/V) gereinigt. 4.45 g (74%) 3,6-Dimethyl-9-(4- methoxyphenyl)-carbazol werden als weißer Feststoff erhalten.
1H-NMR (250 MHz, CDCI3) δ (ppm): 7.89 (s, 2H), 7.46-7.40 (m, 2H), 7.22-7.18 (m, 4H), 7.12-7.06 (m, 2H), 3.91 (s, 3H), 2.54 (s, 6H).
EI-MS: m/z = 301 (100, M+).
Etherspaltung zur Darstellung von 3, 6-Dimethyl-9-(4-hydroxyphenyl)-carbazol
1.52 g (5.0 mmol) 3,6-Dimethyl-9-(4-methoxyphenyl)-carbazol werden in einem 100 ml 2-Halskolben, bestückt mit Stickstoffeinlass und Septum, in 40 ml trocknem Dichlor- methan unter Stickstoffatmosphäre, gelöst und auf -78°C gekühlt. Unter Rühren wer- den langsam 5.5 ml (5.5 mmol) Bortribromid-Lösung (1 M in CH2CI2) zugetropft. Die Reaktionslösung wird über einen Zeitraum von 12 Stunden auf Raumtemperatur erwärmt. Nach der Zugabe von 20 ml Wasser wird die organische Phase separiert, zweifach mit Wasser gewaschen und eingeengt. Das Produkt wird mittels Säulenchromatographie mit einem Cyclohexan/THF Elutionsmittelgemisch (10/1 , V/V) gereinigt. 1.43 g (99%) 3,6-Dimethyl-9-(4-hydroxyphenyl)-carbazol werden als weißer Feststoff erhalten.
1H-NMR (250 MHz): δ (ppm) 7.89 (s, 2H), 7.40-7.35 (m, 2H), 7.22-7.18 (m, 4H), 7.04- 6.98 (m, 2H), 5.07 (s, 1 H), 2.54 (s, 6H).
EI-MS: m/z = 273 (100, M+).
Substitution von 2,4-Bis(diphenylamino)-6-chloro-1,3,5-triazin zur Darstellung von 2,4- Bis(diphenylamino)-6-(4-(3, 6-dimethyl-carbazol-9-yl)-phenoxy)-1, 3, 5-triazin (9)
2.07 g (4.6 mmol) 2,4-Bis(diphenylamino)-6-chloro-1 ,3,5-triazin werden mit 1.38 g (4.8 mmol) 3,6-Dimethyl-9-(4-hydroxyphenyl)-carbazol entsprechend Vorschrift B zur Reaktion gebracht und mittels Säulenchromatographie mit einem Hexan/THF Elutionsmittel- gemisch (10/1 , V/V) gereinigt, wobei 2.61 g (81 %) 2,4-Bis(diphenyl-amino)-6-(4-(3,6- dimethyl-carbazol-9-yl)-phenoxy)-1 ,3,5-triazin (9) als weißer Feststoff erhalten werden. 1H-NMR (250 MHz, CDCI3) δ (ppm): 7.90 (s, 2H), 7.34-7.30 (m, 2H), 7.25-7.18 (m, 20H), 7.17-7.12 (m, 6H), 2.56 (s, 6H).
2.) Thermische Eigenschaften
Alle in der nachfolgenden Tabelle aufgeführten thermischen Daten wurden mittels 'dif- ferential scanning calorimetry' (DSC) an einem Perkin-Elmer DSC-7 Kalorimeter mit einer Heiz- bzw. Kühlrate von 10K/min unter Inertgas gemessen.
Die chemischen Strukturformeln der einzelnen Triazinderivate sind nachstehend aufgeführt.
Thermische Eigenschaften von Diphenylamino-bis(phenoxy)- und Bis(diphenylamino)-phenoxytriazinverbindungen der allgemeinen Formel
(I)
Kristallisation
Bsp. Verbindung Tm[°C]1) TC[°C]2) τrec[°c]3) Tg[0Cf der Filme h) 1 (Vergleich) 309 265 208 - Sofort i) 2 (Vergleich) 175 102 119 - 1 Tag k) 3 (erfindungsgemäß) 183 - 116 54 > 90 Tage
I) 4 (erfindungsgemäß) 143 - - 40 > 90 Tage 1 ) Schmelzpunkt
2) Kristallisationstemperatur
3) Rekristallisationstemperatur 4) Glasübergangstemperatur lamino)-1 ,3,5-triazin (1)
ldiphenylamino)-1 ,3,5-triazin
)-6-(3,5-dimethyl- (3) (erfindungsgemäß)
2,4-Bis(phenoxy)-6-(3-methyldiphenylamino)- 1 ,3,5-triazin (4) (erfindungsgemäß) M = 446 g/mol 3.) Dioden
Beispiel m):
Herstellung einer OLED enthaltend 2,4-Bis(diphenylamino)-6-(3,5-dimethylphenoxy)- 1 ,3,5-triazin (3) als Matrixmaterial (erfindungsgemäß)
Das als Anode verwendete ITO-Substrat wird zuerst in einem Aceton/Isopropanol- Gemisch im Ultraschallbad gereinigt. Zur Beseitigung möglicher organischer Rückstände wird das Substrat weitere 10 Minuten im O2-Plasma gereinigt.
Danach werden die nachfolgend genannten organischen Materialien mit einer Rate von ca. 0.5-5 nm/min bei 10"6 mbar auf das gereinigte Substrat aufgedampft. Als Lochleiter und Excitonenblocker wird N,N'-Di(naphth-1-yl)-N,N'-diphenyl-benzidin (α-NPD) (V1 ) mit einer Dicke von 30 nm auf das Substrat aufgebracht.
α-NPD (V1 )
Anschließend wird eine Mischung aus 10 Gew.-% der Verbindung lridium(lll)-bis[(4,6- difluorophenyl)-pyridinato-N,C2']picolinat (Flrpic) (V2) und 90 Gew.-% der Verbindung 2,4-Bis(diphenylamino)-6-(3,5-dimethylphenoxy)-1 ,3,5-triazin (3) in einer Dicke von 30 nm aufgedampft, wobei erstere Verbindung als Emitter, letztere als Matrixmaterial fungiert.
Flrpic (V2)
Als nächstes wird der Elektronentransporter und Excitonen- /Lochblocker Bis(2-methyl- 8- quinolinolato)-4-(phenylphenolato)aluminium(lll) (BAIq) (V3) in einer Dicke von 30 nm, anschließend eine 1 nm dicke Lithiumfluorid-Schicht und abschließend eine 200 nm dicke Aluminium-Elektrode aufgedampft.
BAIq (V3)
N,N'-Di(naphth-1-yl)-N!N'-diphenyl-benzidin (α-NPD) (V1 ), lridium(lll)-bis[(4,6- difluorophenyl)-pyridinato-N,C2']picolinat (Flrpic) (V2) und Bis(2-methyl-8- quinolinola- to)-4-(phenylphenolato)aluminium(lll) (BAIq) (V3) sind kommerziell erhältlich.
Zur Charakterisierung der OLED werden Elektrolumineszenz-Spektren bei verschiede- nen Strömen bzw. Spannungen aufgenommen. Weiterhin wird die Strom-Spannungs- Kennlinie in Kombination mit der abgestrahlten Lichtmenge mit einem Luminanzmeter gemessen.
Für die beschriebene OLED ergeben sich die folgenden elektrooptischen Daten:
Beispiel n):
Herstellung einer OLED enthaltend 2,4-Bis(phenoxy)-6-(3-methyldiphenylamino)-1,3,5- triazin (4) als Matrixmaterial (erfindungsgemäß)
Das als Anode verwendete ITO-Substrat wird zuerst in einem Aceton/Isopropanol- Gemisch im Ultraschallbad gereinigt. Zur Beseitigung möglicher organischer Rückstände wird das Substrat weitere 10 Minuten im O2-Plasma gereinigt.
Danach werden die nachfolgend genannten organischen Materialien mit einer Rate von ca. 0.5-5 nm/min bei etwa 10"6 mbar auf das gereinigte Substrat aufgedampft. Als Lochleiter und Excitonenblocker wird N,N'-Di(naphth-1-yl)-N,N'-diphenyl-benzidin (α-NPD) (V1 ) mit einer Dicke von 30 nm auf das Substrat aufgebracht.
Anschließend wird eine Mischung aus 10 Gew.-% der Verbindung lridium(lll)-bis[(4,6- difluorophenyl)-pyridinato-N,C2']picolinat (Flrpic) (V2) und 90 Gew.-% der Verbindung 2,4-Bis(phenoxy)-6-(3-methyldiphenylamino)-1 ,3,5-triazin (4) in einer Dicke von 30 nm aufgedampft, wobei erstere Verbindung als Emitter, letztere als Matrixmaterial fungiert.
Als nächstes wird der Elektronentransporter und Excitonen- /Lochblocker Bis(2-methyl- 8- quinolinolato)-4-(phenylphenolato)aluminium(lll) (BAIq) (V3) in einer Dicke von 30 nm, anschließend eine 1 nm dicke Lithiumfluorid-Schicht und abschließend eine 200 nm dicke Aluminium-Elektrode aufgedampft.
Zur Charakterisierung der OLED werden Elektrolumineszenz-Spektren bei verschiedenen Strömen bzw. Spannungen aufgenommen. Weiterhin wird die Strom-Spannungs- Kennlinie in Kombination mit der abgestrahlten Lichtmenge mit einem Luminanzmeter gemessen.
Für die beschriebene OLED ergeben sich die folgenden elektrooptischen Daten:

Claims

Patentansprüche
1. Organischen Leuchtdiode enthaltend mindestens eine Diphenylamino- bis(phenoxy)- und/oder Bis(diphenylamino)-phenoxytriazinverbindung der allge- meinen Formel (I)
worin bedeuten:
CR , N oder P, oder - wenn n = 0 bedeutet - zusätzlich O oder S;
D CR , N oder P, oder - wenn n = 0 bedeutet - zusätzlich O oder S;
CR , N oder P, oder - wenn n = 0 bedeutet - zusätzlich O oder S;
G CR , N oder P, oder - wenn n = 0 bedeutet - zusätzlich O oder S;
L CR15, N oder P, oder - wenn n = 0 bedeutet - zusätzlich O oder S;
RI DZ D3 D4 Db Db D/ nü n 9S D[D10 unabhängig voneinander Wasserstoff, Alkyl, Aryl, Heteroaryl, OH, O-Alkyl, O-Aryl, O-Heteroaryl, SH, S-Alkyl, S-Aryl, Halogen, Pseudohalogen, Amino oder weitere Substituenten mit Donor- oder Akzeptorwirkung;
R11, R12, R13, R14, R15 unabhängig voneinander Wasserstoff, Alkyl, Aryl, Heteroaryl, OH, O-Alkyl, O-Aryl, O-Heteroaryl, SH, S-Alkyl, S-Aryl, Pseudohalogen, Amino, weitere Substituenten mit Donor- oder Akzeptorwirkung oder ein Rest der Formel (i), (ii) oder (iii) worin die Reste und Gruppen X', R1', R2', R3', R4', R5', R6', R7', R8', R9' und R10' in dem Rest der Formel (i), die Reste und Gruppen X'a, R1a, R2a, R3a, R4a, R5a, R6a, R7a, R8a, R9a und R1Oa in dem Rest der Formel (ii) und die Reste und Gruppen X'b, Rrb, R2b, R3b, R4'b, R5b, R6b, R7b, R8b, R9b und R1Ob in dem Rest der Formel (iii) unabhängig voneinander die bezüglich der Reste und Gruppen X, R1, R2, R3, R4, R5, R6, R7, R8, R9 und R10 genannten Bedeutungen aufweisen, und
die Reste R34, R35, R36, R37, R38, R39, R40, R34' R35', R36' R37und R38' bedeuten unabhängig voneinander Wasserstoff, Alkyl, Aryl, Heteroaryl, OH, O- Alkyl, O-Aryl, O-Heteroaryl, SH, S-Alkyl, S-Aryl, Halogen, Pseudohalogen, Amino oder weitere Substituenten mit Donor- oder Akzeptorwirkung;
X
m
M CR , N oder P, oder - wenn m = 0 bedeutet - zusätzlich O oder S;
CR , N oder P, oder - wenn m = 0 bedeutet - zusätzlich O oder S;
T CR , N oder P, oder - wenn m = 0 bedeutet - zusätzlich O oder S;
U CR , N oder P, oder - wenn m = 0 bedeutet - zusätzlich O oder S;
V CR , N oder P, oder - wenn m = 0 bedeutet - zusätzlich O oder S;
D16 D17 D18 D19 D20 D21 D22 D23 D24 D25 Ix , ΓΛ , ΓΛ , ΓΛ , ΓΛ , ΓΛ , ΓΛ , ΓΛ , ΓΛ , ΓΛ unabhängig voneinander Wasserstoff, Alkyl, Aryl, Heteroaryl, OH, O-Alkyl, O-Aryl, O-Heteroaryl, SH, S-Alkyl, S-Aryl, Halogen, Pseudohalogen, Amino oder weitere Substituenten mit Donor- oder Akzeptorwirkung; unabhängig voneinander Wasserstoff, Alkyl, Aryl, Heteroaryl, OH, O-Alkyl, O-Aryl, O-Heteroaryl, SH, S-Alkyl, S-Aryl, Pseudohalogen, Amino, weitere Substituenten mit Donor- oder Akzeptorwirkung; oder ein Rest der Formeln (iv), (v) oder (vi)
worin die Reste und Gruppen X", R1 ", R2 ", R3", R4 ", R5", R6", R7", R8", R9" und R10 in dem Rest der Formel (iv), die Reste und Gruppen X"a, R1 a, R2"a, R3"a, R4"a, R5"a, R6"a, R7"a, R8"a, R9 "a und R10 "a in dem Rest der Formel (V) und die Reste und Gruppen X"b, Rrb, R2"b, R3"b, R4"b, R5"b, R6"b, R7"b, R8 b, R9 b und R10 b in dem Rest der Formel (vi) unabhängig voneinander die bezüglich der Reste und Gruppen X, R1, R2, R3, R4, R5, R6, R7, R8, R9 und R10 genannten Bedeutungen aufweisen, und
die Reste R34", R35", R36", R37", R38", R39' R40' R34", R35"' R36"' R37"und R38 " bedeuten unabhängig voneinander Wasserstoff, Alkyl, Aryl, Heteroaryl, OH, O-Alkyl, O-Aryl, O-Heteroaryl, SH, S-Alkyl, S-Aryl, Halogen, Pseudohalo- gen, Amino oder weitere Substituenten mit Donor- oder Akzeptorwirkung;
n, m unabhängig voneinander 0 oder 1 , bevorzugt 1 .
Organische Leuchtdiode nach Anspruch 1 , dadurch gekennzeichnet, dass mindestens einer der Reste R2, R3, R4, R7, R8, R9, R12, R13, R14, und/oder mindestens einer der Reste R17, R18, R19, R22, R23, R24 oder R27, R28, R29 nicht Wasserstoff bedeutet.
Organische Leuchtdiode nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Verbindung der Formel (I) 1 bis 10, bevorzugt 1 ,
2,
3, 4, 5 oder 6 Reste R1 bis R30 aufweist, die nicht Wasserstoff bedeuten und alle übrigen Reste R1 bis R30 Wasserstoff bedeuten.
4. Organische Leuchtdiode nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Reste R1, R5, R6, R10, R11, R15, R16, R20, R21, R25, R26 und R30 Wasserstoff bedeuten.
5. Organische Leuchtdiode nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Reste R1 bis R40 unabhängig voneinander Wasserstoff, mit Halogen substituiertes Alkyl, Pseudohalogen, O-Alkyl oder O-Aryl, bevorzugt Wasserstoff, Cr bis Cβ-Alkyl, mit einem oder mehreren F-Atomen substituiertes d- bis C6-Alkyl, O-d- bis C6-Alkyl oder O-C6-Aryl, besonders bevorzugt Methyl, CF3 oder O-Methyl, bedeuten.
6. Organische Leuchtdiode nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Verbindungen der Formel (I) als Matrixmaterial und/oder Loch- /Excitonenblockermaterial und/oder Elektronen-/Excitonenblockermaterial und/oder Loch-Injektionsmaterial und/oder Elektronen-Injektionsmaterial und/oder Lochleitermaterial und/oder Elektronenleitermaterial eingesetzt werden.
7. Organische Leuchtdiode nach Anspruch 6, dadurch gekennzeichnet, dass die Verbindungen der Formel (I) als Matrixmaterialien in der Licht-emittierenden Schicht eingesetzt werden.
8. Organische Leuchtdiode nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Verbindungen der Formel (I) gemeinsam mit mindestens einem Triplett-Emitter in der organischen Leuchtdiode eingesetzt werden.
9. Verwendung von Verbindungen der Formel (I) gemäß einem der Ansprüche 1 bis 5 in organischen Leuchtdioden.
10. Licht-emittierende Schicht enthaltend mindestens eine Verbindung der Formel (I) gemäß einem der Ansprüche 1 bis 5, bevorzugt gemeinsam mit mindestens einem Triplett-Emitter.
1 1. Blockschicht für Elektronen, Blockschicht für Löcher, Loch-Injektionsschicht, E- lektronen-lnjektionsschicht, Lochleiterschicht und/oder Elektronenleiterschicht enthaltend mindestens eine Verbindung der Formel (I) gemäß einem der Ansprüche 1 bis 5.
12. Organische Leuchtdiode enthaltend mindestens eine Licht-emittierende Schicht gemäß Anspruch 10 und/oder mindestens eine Blockschicht für Elektronen, Blockschicht für Löcher, Loch-Injektionsschicht, Elektronen-Injektionsschicht,
Lochleiterschicht und/oder Elektronenleiterschicht gemäß Anspruch 11.
13. Vorrichtung ausgewählt aus der Gruppe bestehend aus stationären Bildschirmen wie Bildschirmen von Computern, Fernsehern, Bildschirmen in Druckern, Küchengeräten sowie Reklametafeln, Beleuchtungen, Hinweistafeln und mobilen Bildschirmen wie Bildschirmen in Handys, Laptops, Digitalkameras, Fahrzeugen sowie Zielanzeigen an Bussen und Bahnen und Beleuchtungseinheiten enthaltend mindestens eine organische Leuchtdiode gemäß einem der Ansprüche 1 bis 8 oder 12.
EP08842691A 2007-10-24 2008-10-21 Verwendung von diphenylamino-bis(phenoxy)- und bis(diphenylamino)-phenoxytriazinverbindungen Withdrawn EP2206175A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08842691A EP2206175A1 (de) 2007-10-24 2008-10-21 Verwendung von diphenylamino-bis(phenoxy)- und bis(diphenylamino)-phenoxytriazinverbindungen

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP07119142 2007-10-24
PCT/EP2008/064178 WO2009053346A1 (de) 2007-10-24 2008-10-21 Verwendung von diphenylamino-bis(phenoxy)- und bis(diphenylamino)-phenoxytriazinverbindungen
EP08842691A EP2206175A1 (de) 2007-10-24 2008-10-21 Verwendung von diphenylamino-bis(phenoxy)- und bis(diphenylamino)-phenoxytriazinverbindungen

Publications (1)

Publication Number Publication Date
EP2206175A1 true EP2206175A1 (de) 2010-07-14

Family

ID=40120132

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08842691A Withdrawn EP2206175A1 (de) 2007-10-24 2008-10-21 Verwendung von diphenylamino-bis(phenoxy)- und bis(diphenylamino)-phenoxytriazinverbindungen

Country Status (6)

Country Link
US (1) US20100258790A1 (de)
EP (1) EP2206175A1 (de)
JP (1) JP2011502189A (de)
KR (1) KR20100092451A (de)
CN (1) CN101884122B (de)
WO (1) WO2009053346A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100308308A1 (en) * 2007-10-24 2010-12-09 Basf Se Use of substituted tris(diphenylamino)triazine compounds in oleds
US10991892B2 (en) * 2012-07-23 2021-04-27 Merck Patent Gmbh Materials for organic electroluminescent devices
EP2941469A2 (de) * 2013-01-03 2015-11-11 Merck Patent GmbH Materialien für elektronische vorrichtungen
KR102129508B1 (ko) * 2017-07-14 2020-07-02 삼성에스디아이 주식회사 유기 광전자 소자용 조성물, 유기 광전자 소자 및 표시 장치

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060051616A1 (en) * 2004-09-08 2006-03-09 Canon Kabushiki Kaisha Organic compound and organic light-emitting device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3966680A (en) * 1973-12-13 1976-06-29 Minnesota Mining And Manufacturing Company Phenoxy-s-triazine chain coupler for polyesterification and novel polyesters
JP3691101B2 (ja) * 1995-01-24 2005-08-31 三洋電機株式会社 有機エレクトロルミネッセンス素子
US6821645B2 (en) * 1999-12-27 2004-11-23 Fuji Photo Film Co., Ltd. Light-emitting material comprising orthometalated iridium complex, light-emitting device, high efficiency red light-emitting device, and novel iridium complex
US6565994B2 (en) * 2000-02-10 2003-05-20 Fuji Photo Film Co., Ltd. Light emitting device material comprising iridium complex and light emitting device using same material
US7306856B2 (en) * 2000-07-17 2007-12-11 Fujifilm Corporation Light-emitting element and iridium complex
JP4344494B2 (ja) * 2000-08-24 2009-10-14 富士フイルム株式会社 発光素子及び新規重合体子
JP4067286B2 (ja) * 2000-09-21 2008-03-26 富士フイルム株式会社 発光素子及びイリジウム錯体
JP4086499B2 (ja) * 2000-11-29 2008-05-14 キヤノン株式会社 金属配位化合物、発光素子及び表示装置
CN100505377C (zh) * 2001-08-29 2009-06-24 普林斯顿大学理事会 具有含金属配合物的载流子阻挡层的有机发光元件
JP4365199B2 (ja) * 2002-12-27 2009-11-18 富士フイルム株式会社 有機電界発光素子
DE10338550A1 (de) * 2003-08-19 2005-03-31 Basf Ag Übergangsmetallkomplexe mit Carbenliganden als Emitter für organische Licht-emittierende Dioden (OLEDs)
US20060073360A1 (en) * 2004-09-28 2006-04-06 Fuji Photo Film Co., Ltd. Organic electroluminescent device
JP4655590B2 (ja) * 2004-11-08 2011-03-23 Jsr株式会社 発光剤およびその製造方法、発光性組成物並びに有機エレクトロルミネッセンス素子
CN1749254A (zh) * 2005-09-01 2006-03-22 复旦大学 含杂原子双螺环材料及其合成方法和应用
US20100308308A1 (en) * 2007-10-24 2010-12-09 Basf Se Use of substituted tris(diphenylamino)triazine compounds in oleds

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060051616A1 (en) * 2004-09-08 2006-03-09 Canon Kabushiki Kaisha Organic compound and organic light-emitting device

Also Published As

Publication number Publication date
CN101884122A (zh) 2010-11-10
KR20100092451A (ko) 2010-08-20
US20100258790A1 (en) 2010-10-14
WO2009053346A1 (de) 2009-04-30
JP2011502189A (ja) 2011-01-20
CN101884122B (zh) 2012-06-06

Similar Documents

Publication Publication Date Title
EP2173834B1 (de) ORGANISCHE LEUCHTDIODEN ENTHALTEND MINDESTENS EINE DISILYLVERBINDUNG AUSGEWÄHLT AUS DISILYLCARBAZOLEN, DISILYLDIBENZOFURANEN und DISILYLDIBENZOTHIOPHENEN
EP2150556B1 (de) Silane enthaltend phenothiazin-s-oxid oder phenothiazin-s,s-dioxid-gruppen und deren verwendung in oleds
EP2165377B1 (de) Organische leuchtdioden enthaltend carben-übergangsmetall-komplex-emitter und mindestens eine verbindung ausgewählt aus disilylcarbazolen; disilyldibenzofuranen, disilyldibenzothiophenen, disilyldibenzophospholen, disilyldibenzothiophen-s-oxiden und disilyldibenzothiophen-s,s-dioxiden
EP3457452B1 (de) Oled-anzeige mit verlängerter lebensdauer
DE112011101663B4 (de) Azaborinverbindungen als Hostmaterialien und Dotiermittel für Pholeds
EP2195868B1 (de) Verwendung von acridinderivaten als matrixmaterialien und/oder elektronenblocker in oleds
DE112011103404B4 (de) Neuartige 3,9-verknüpfte Oligocarbazole und OLEDs, die diese neuartigen Oligocarbazole enthalten
EP2513125B1 (de) Metallkomplexe, enthaltend diazabenzimidazolcarben-liganden und deren verwendung in oleds
DE112010005815B4 (de) Bicarbazolverbindungen für OLEDs
EP2488540B1 (de) Dinukleare platin-carben-komplexe und deren verwendung in oleds
EP2521197B1 (de) Organisches elektrolumineszenzelement
KR101631079B1 (ko) 유기 전계 발광 소자
WO2006056416A1 (de) Verwendung von phenothiazin-s-oxiden und -s,s-dioxiden als matrixmaterialien für organische leuchtdioden
DE102004057086A1 (de) Phenothiazine, -S-oxide und S,S-dioxide sowie Phenoxazine als Emitter für OLED
WO2016124704A1 (de) Blaue fluoreszenzemitter
WO2009053278A1 (de) Verwendung von substituierten tris(diphenylamino)-triazinverbindungen in oleds
EP2301091B1 (de) Verwendung von cyclischen phosphazenverbindungen in organischen leuchtdioden
EP2206175A1 (de) Verwendung von diphenylamino-bis(phenoxy)- und bis(diphenylamino)-phenoxytriazinverbindungen
KR101960977B1 (ko) N-사이클로알킬알킬 트리스카바졸
JP2023011540A (ja) 多環化合物及びこれを用いた有機発光素子

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100525

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20110516

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140501