EP2202332A1 - Method for gas-dynamic acceleration of materials in powder form and device for implementing this method - Google Patents
Method for gas-dynamic acceleration of materials in powder form and device for implementing this method Download PDFInfo
- Publication number
- EP2202332A1 EP2202332A1 EP09180869A EP09180869A EP2202332A1 EP 2202332 A1 EP2202332 A1 EP 2202332A1 EP 09180869 A EP09180869 A EP 09180869A EP 09180869 A EP09180869 A EP 09180869A EP 2202332 A1 EP2202332 A1 EP 2202332A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- nozzle
- powder
- supersonic
- gas
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
- B05B7/14—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
- B05B7/1481—Spray pistols or apparatus for discharging particulate material
- B05B7/1486—Spray pistols or apparatus for discharging particulate material for spraying particulate material in dry state
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C24/00—Coating starting from inorganic powder
- C23C24/02—Coating starting from inorganic powder by application of pressure only
- C23C24/04—Impact or kinetic deposition of particles
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
- C23C4/126—Detonation spraying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
- B05B7/16—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
- B05B7/1606—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air
- B05B7/1613—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air comprising means for heating the atomising fluid before mixing with the material to be sprayed
- B05B7/162—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air comprising means for heating the atomising fluid before mixing with the material to be sprayed and heat being transferred from the atomising fluid to the material to be sprayed
- B05B7/1626—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air comprising means for heating the atomising fluid before mixing with the material to be sprayed and heat being transferred from the atomising fluid to the material to be sprayed at the moment of mixing
Definitions
- the present invention relates to a method and device for gasodynamic acceleration of powdered materials for use in mechanics and other industrial fields to form functional coatings providing different properties on the treated surfaces.
- the present invention can be implemented in processes using high velocity impacts between powder particles and a substrate surface such as sanding of surfaces, breaking up / granulating of powder particles, etc.
- the document UK No. 2257423 thus describes a system which comprises a projection module composed of an electric compressed gas heater and a supersonic nozzle connected to the outlet orifice of said heater and comprising a powder injection module in said nozzle, a module of control connected to the electric gas heater compressed by a flexible pipe and by an electric cable, a powder supply container whose outlet is connected to the powder injection module in the nozzle.
- said heater comprises a leather cover which envelops a metal frame leaving a free space between it and said frame, the free space being filled with a heat-insulating material and said frame having a heat exchanger and having vents for the circulation of a cooling gas inside the cover.
- the powder injection module in the nozzle provides, according to a preferred embodiment, the injection of the powder into the supercritical zone of the supersonic nozzle at oblique with respect to the longitudinal axis of the nozzle in order to to increase the efficiency of the projection process by a more uniform distribution of the powder material in the cross-section of the nozzle.
- the device provides for the use of nozzles having the round or rectangular cross section depending on the geometric shapes of the treated surfaces of a workpiece. Depending on the composition of the material used, the ratio between the length of the supersonic portion of the nozzle and the dimension of the minimum cross section of said nozzle may vary from 20 to 100.
- the disadvantage of this device is that the dimensions of the supersonic nozzle as an integral part are in no way related to the size of diameter and the density of the material of the projected particles. Therefore, by using this device, it is impossible to communicate to the particles during their movement in the supersonic part of the nozzle the optimum acceleration to reach the impact velocity on the surface of the maximum treated part susceptible of to be achieved by the projected particles in view of their size and density characteristics and, consequently, to ensure the maximum quality of the resulting coatings.
- the document UK No. 2288970 discloses a cold gasodynamic projection system of powder materials which comprises an electric compressed gas heater, a supersonic nozzle (called Laval) connected by an outlet orifice to said heater and having a groove located between the convergent and divergent portions of said nozzle, a powder injection module in the nozzle having injection points for injection of powder into the nozzle and located upstream of the nozzle after the groove, said injection module comprising at least one container of powder supply connected by pipes to said injection points of at least one powder material, and the geometric characteristics of the nozzle portion located upstream of the powder injection points and for accelerating the powder particles injected into the nozzle corresponding to the following conditions: 0.015 ⁇ B ( Jump / Sinj -1) / L ⁇ 0.03, where Sout is the cross sectional area of the nozzle to at its outlet end, Sinj is the cross-sectional area of the nozzle at the position of the powder injection points, L is the length of the portion of the nozzle intended to accelerate the injected powder particles in the nozzle
- the disadvantage of this device is that the dimensions of the supersonic nozzle as an integral part are in no way related to the size of the diameter and the density of the material of the projected particles. Therefore, by using this device, it is impossible to communicate to the particles during their movement in the supersonic part of the nozzle the optimum acceleration to reach the impact velocity on the surface of the maximum treated part susceptible of to be reached by the projected particles taking into account their size and density characteristics and, consequently, to ensure the maximum quality of the resulting coatings.
- the formula 0.015 ⁇ B (Jump / Sinj -1) / L ⁇ 0.03 used by this method and this device does not determine the ratio of the length of the nozzle portion for accelerating the powder particles to the minimum dimension of the cross-section at the position of the powder injection points.
- the document US 6,743,468 The closest known state of the art describes a method and device for depositing coatings on the surface of a workpiece by kinetic projection and thermal spraying using one and the same nozzle.
- the device according to this invention comprises a gas heater allowing the user to switch from the kinetic projection mode which is carried out without thermal softening of the particles to thermal projection mode with thermal softening of particles before the projection.
- Such a nozzle construction broadens the spectrum of applications of the method in kinetic projection.
- this device is unable to provide a high impact speed on the surface of a workpiece treated with particles having a size of less than 1 ⁇ m in diameter because particles of such dimensions would be slowed considerably in a compressible boundary layer formed by a supersonic jet impacting a target.
- the object of the present invention is to impart to the particles during their movement in the supersonic part of the nozzle the optimum acceleration to reach the impact velocity on the surface of the maximum treated part susceptible to to achieve the given gas parameters (composition, temperature and stagnation pressure) by means of the development and application of the nozzles having the optimal geometrical parameters, in particular the ratio between the length of the supersonic part and the critical section, specifically calculated for the use of particles having a size and density of the material constituting them.
- the outlet orifice of the nozzle used must have dimensions specially provided for this purpose.
- the supersonic part of such a nozzle must be shortened.
- the particles to be sprayed must be selected having a size that would allow them to reach the maximum impact velocity at the target surface likely to be reached.
- the particles of small dimensions are well accelerated in the nozzle, but strongly slowed in the compressible boundary layer.
- the present invention advantageously solves the problems mentioned above by proposing a cold gas-dynamic acceleration method of at least one powder material comprising feeding said powder material into a supersonic nozzle via an injection point, its acceleration by a supersonic gas flow and its deposition by impact on the surface of a workpiece, the method taking into account the size of the particles and the density of the material constituting them as well as the parameters of the gas in order to give the particles of powder entrained by the gas flow the maximum speed that can be reached at their impact on the surface of the treated part by accelerating the flow of gas and powder in the supersonic part of the nozzle whose length and transverse dimension correspond to the following conditions:
- the method according to the invention can use as compressed carrier gas: compressed air, compressed nitrogen, compressed helium or a mixture of these gases.
- the compressed gas is heated to temperatures between 300 and 9800 K.
- the powder materials used are, for example, made up of particles having a size of between 0.1 and 1000 ⁇ m.
- the method may use: metallic powder materials, nonmetallic powder materials, metal powder mixtures having values of ⁇ p d p near, non-metallic powder mixtures having values of ⁇ p d p near or mixtures of metallic and non-metallic powders having values of ⁇ p d p near.
- the present method is implemented by a cold gas-dynamic acceleration device of at least one powder material comprising a supersonic nozzle connected to a powder injector, a powder feeder connected by an outlet orifice to said powder injector.
- One of the advantages of the method and apparatus for the gas-powder spraying of proposed powder materials is that depending on the particle size and the density of the material constituting them selected for a separate technological operation as well as the pressure and gas temperature (for example, air, nitrogen, helium or the mixture of at least two of these gases), the dimensions of the supersonic part of the nozzle used may be calculated so as to ensure the maximum speed of the impact of the particles on the target surface that can be reached, and thereby to advantageously improve the quality of the deposit, the efficiency and the quality of the surface cleaning process, the efficiency of the fragmentation / granulation of particles.
- the pressure and gas temperature for example, air, nitrogen, helium or the mixture of at least two of these gases
- the particle size of the powder it is possible to vary the particle size of the powder by choosing the particle size of the desired powder material so as to ensure a high yield of deposition and high quality of the resulting coating, the successful completion of the sanding process of a surface having a fine grain structure corresponding to the size of the projected particles.
- the device for accelerating gasodynamic cold powder materials comprises a removable and exchangeable supersonic nozzle 1 connected to the outlet of an electric heater 2 and a powder injector in said nozzle 3, a powder dispenser 4 whose the outlet port is connected to said powder injector.
- the process is carried out as follows.
- the simulated ratios presented above are used to calculate the main dimensions of the nozzle: the length of the supersonic part and the critical section (the height for a flat nozzle and the diameter of the critical section for an axisymmetric nozzle). Particles entrained by a flow of gas in such a specially calculated nozzle are given the maximum speed that can be achieved at their impact on the surface of the treated part by accelerating the flow of gas and powder in the part. supersonic of said nozzle, flat or axisymmetric.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Nozzles (AREA)
Abstract
Description
La présente invention concerne une méthode et un dispositif d'accélération gazodynamique de matériaux en poudre en vue de l'utilisation dans la mécanique et d'autres domaines industriels pour former des revêtements fonctionnels apportant des propriétés différentes sur les surfaces traitées. En outre, la présente invention peut être mise en oeuvre dans les procédés utilisant les impacts à haute vitesse entre des particules de poudre et une surface de substrat tels que le sablage des surfaces, le morcèlement/granulation de particules de poudre, etc.The present invention relates to a method and device for gasodynamic acceleration of powdered materials for use in mechanics and other industrial fields to form functional coatings providing different properties on the treated surfaces. In addition, the present invention can be implemented in processes using high velocity impacts between powder particles and a substrate surface such as sanding of surfaces, breaking up / granulating of powder particles, etc.
On connait déjà des systèmes de projection gazodynamique des matériaux en poudre.Gasodynamic projection systems for powder materials are already known.
Le document
L'inconvénient de ce dispositif est que les dimensions de la buse supersonique en faisant partie intégrante ne sont aucunement liées à la taille de diamètre et la densité du matériau des particules projetées. De ce fait, en utilisant ce dispositif, il est impossible de communiquer aux particules au cours de leur mouvement dans la partie supersonique de la buse l'accélération optimale pour atteindre la vitesse d'impact à la surface de la pièce traitée maximale susceptible d'être atteinte par les particules projetées compte tenu de leurs caractéristiques de taille et de densité et, par conséquent, d'assurer la qualité maximale des revêtements résultants.The disadvantage of this device is that the dimensions of the supersonic nozzle as an integral part are in no way related to the size of diameter and the density of the material of the projected particles. Therefore, by using this device, it is impossible to communicate to the particles during their movement in the supersonic part of the nozzle the optimum acceleration to reach the impact velocity on the surface of the maximum treated part susceptible of to be achieved by the projected particles in view of their size and density characteristics and, consequently, to ensure the maximum quality of the resulting coatings.
Le document
Comme dans le cas précédant, l'inconvénient de ce dispositif est que les dimensions de la buse supersonique en faisant partie intégrante ne sont aucunement liées à la taille de diamètre et la densité du matériau des particules projetées. De ce fait, en utilisant ce dispositif, il est impossible de communiquer aux particules au cours de leur mouvement dans la partie supersonique de la buse l'accélération optimale pour atteindre la vitesse d'impact à la surface de la pièce traitée maximale susceptible d'être atteinte par les particules projetées compte tenu de leurs caractéristiques de taille et de densité et, par conséquent, d'assurer la qualité maximale des revêtements résultants. Or, le rapport typique des aires Sout et Sinj étant Sout/Sinj ≈ 2 - 4, la formule 0,015 < B(Saut/Sinj-1)/L < 0,03 utilisée par ce procédé et ce dispositif, en effet, ne détermine que le rapport entre la longueur de la partie de la buse destinée à accélérer les particules de poudre et la dimension minimale de la section transversale à l'endroit de la position des points d'injection de poudre. Par exemple, une buse ayant B = 0,1 mm, L = 5 mm et Sout/Sinj = 2 et, par cela, satisfaisant à la formule proposée ne permettrait pas de réaliser un revêtement à partir des particules ayant des tailles dans la gamme indiquée parce que le parcours d'accélération serait trop court pour que les particules puissent atteindre la vitesse nécessaire pour effectuer un dépôt.As in the previous case, the disadvantage of this device is that the dimensions of the supersonic nozzle as an integral part are in no way related to the size of the diameter and the density of the material of the projected particles. Therefore, by using this device, it is impossible to communicate to the particles during their movement in the supersonic part of the nozzle the optimum acceleration to reach the impact velocity on the surface of the maximum treated part susceptible of to be reached by the projected particles taking into account their size and density characteristics and, consequently, to ensure the maximum quality of the resulting coatings. However, since the typical ratio of the Sout and Sinj areas is Sout / Sinj ≈ 2 - 4, the formula 0.015 < B (Jump / Sinj -1) / L <0.03 used by this method and this device, in fact, does not determine the ratio of the length of the nozzle portion for accelerating the powder particles to the minimum dimension of the cross-section at the position of the powder injection points. For example, a nozzle having B = 0.1 mm, L = 5 mm and Sout / Sinj = 2 and thereby satisfying the proposed formula would not allow a coating to be made from particles having sizes in the range. indicated because the acceleration path would be too short for the particles to reach the speed necessary to make a deposit.
Le document
L'inconvénient de ce procédé et de ce dispositif est que les dimensions de la buse supersonique en faisant partie intégrante sont optimisées uniquement compte tenu de l'utilisation des particules ayant des tailles dans la gamme revendiquée dans le brevet (dp = 50 - 250 µm) et ne sont aucunement liées à la densité du matériau des particules. De ce fait, il est impossible, en mettant en oeuvre cette invention, de communiquer aux particules projetées au cours de leur mouvement dans la partie supersonique de la buse l'accélération optimale pour atteindre la vitesse d'impact à la surface de la pièce traitée maximale susceptible d'être atteinte si elles ont une taille distincte de celles revendiquées. Par exemple, ce dispositif est incapable d'assurer une haute vitesse d'impacte à la surface d'une pièce traitée aux particules ayant une taille de diamètre inférieure à 1 µm en raison du fait que les particules de telles dimensions seraient ralenties de façon considérable dans une couche limite compressible formée par un jet supersonique impactant une cible.The disadvantage of this method and this device is that the dimensions of the supersonic nozzle as an integral part are optimized only taking into account the use of particles having sizes in the range claimed in the patent ( d p = 50 - 250 μm) and are in no way related to the density of the material of the particles. Therefore, it is impossible, in carrying out this invention, to communicate to the particles projected during their movement in the supersonic part of the nozzle the optimum acceleration to reach the impact velocity on the surface of the treated part. maximum likely to be achieved if they are of a size distinct from those claimed. For example, this device is unable to provide a high impact speed on the surface of a workpiece treated with particles having a size of less than 1 μm in diameter because particles of such dimensions would be slowed considerably in a compressible boundary layer formed by a supersonic jet impacting a target.
Dans ce contexte technique, l'objectif de la présente invention est de communiquer aux particules au cours de leur mouvement dans la partie supersonique de la buse l'accélération optimale pour atteindre la vitesse d'impact à la surface de la pièce traitée maximale susceptible d'être atteinte aux paramètres de gaz donnés (composition, température et pression de stagnation) au moyen du développement et de l'application des buses ayant les paramètres géométriques optimales, notamment, le rapport entre la longueur de la partie supersonique et la section critique, calculés spécialement pour l'utilisation des particules ayant une taille et une densité du matériau les constituant concrètes.In this technical context, the object of the present invention is to impart to the particles during their movement in the supersonic part of the nozzle the optimum acceleration to reach the impact velocity on the surface of the maximum treated part susceptible to to achieve the given gas parameters (composition, temperature and stagnation pressure) by means of the development and application of the nozzles having the optimal geometrical parameters, in particular the ratio between the length of the supersonic part and the critical section, specifically calculated for the use of particles having a size and density of the material constituting them.
La présente invention offre les améliorations suivantes par rapport à l'état actuel de la technique :
- l'augmentation du rendement de déposition et de la qualité des revêtements déposés par la projection gazodynamique à froid ;
- la possibilité d'utiliser dans la projection gazodynamique à froid et le sablage des surfaces, selon une réalisation préférée, les particules ayant une taille inférieure à 1 µm et d'obtenir une résolution spatiale inférieure à 1 mm;
- l'augmentation du rendement des procédés de sablage des surfaces et de morcèlement/granulation de particules.
- the increase of the deposition efficiency and the quality of the coatings deposited by the cold gasodynamic projection;
- the possibility of using in the cold gasodynamic projection and sanding of the surfaces, according to a preferred embodiment, the particles having a size of less than 1 μm and of obtaining a spatial resolution of less than 1 mm;
- the increase in the efficiency of sand blasting and particle grinding / granulation processes.
Prenons un exemple. On souhaite déposer un revêtement à partir d'un matériau en poudre avec les particules ayant un diamètre d'environ 100 nm (nanoparticules). Il ne se formera pas de dépôt si l'on utilise une buse de projection gazodynamique traditionnelle, c'est-à-dire, avec la longueur de la partie supersonique d'environ 100 mm et le diamètre de la section critique d'environ 3 mm. Cela s'explique par le fait que les particules de si faibles dimensions n'atteindront pas de grandes vitesses d'impact à la surface de cible à cause d'un ralentissement considérable qu'elles subiront dans une couche limite compressible formée par un jet supersonique impactant une cible.Let's take an example. It is desired to deposit a coating from a powder material with particles having a diameter of about 100 nm (nanoparticles). Deposition will not occur if a traditional gas-jet projection nozzle is used, ie, with the length of the supersonic portion of about 100 mm and the diameter of the critical section of about 3 mm. mm. This is because particles of such small dimensions will not reach high impact velocities at the target surface due to considerable slowing down in a compressible boundary layer formed by a supersonic jet. impacting a target.
Il y a encore un aspect à considérer. Si l'on souhaite obtenir une haute résolution spatiale du procédé mise en oeuvre, comme, par exemple, le dépôt de cordons de moins de 1 mm de largeur ou la fabrication directe d'objets tridimensionnels par projection de poudres, l'orifice de sortie de la buse utilisée doit avoir des dimensions spécialement prévues à cet effet. La partie supersonique de telle buse doit être raccourcie. En fonction des dimensions choisies d'une buse, les particules à projeter doivent être sélectionnées ayant une taille qui leur permettrait d'atteindre la vitesse maximale d'impact à la surface de cible susceptible d'être atteinte. Or, les particules de faibles dimensions sont bien accélérées dans la buse, mais fortement ralenties dans la couche limite compressible. Les particules grosses, au contraire, ne subissent presque pas de ralentissement dans la couche limite compressible, mais en même temps, leur accélération dans la buse est difficile. C'est pourquoi il s'agit d'opter pour une taille de particules qui permettrait aux particules projetées d'atteindre la vitesse maximale d'impact à la surface de cible et, de ce fait, d'obtenir le rendement de déposition et la qualité des revêtements déposés maximaux ou d'autres caractéristiques performantes propres au procédé mis en oeuvre (sablage des surfaces, morcèlement/granulation de particules).There is one more aspect to consider. If it is desired to obtain a high spatial resolution of the process implemented, such as, for example, the deposition of cords of less than 1 mm in width or the direct manufacture of three-dimensional objects by powder spraying, the outlet orifice of the nozzle used must have dimensions specially provided for this purpose. The supersonic part of such a nozzle must be shortened. Depending on the chosen dimensions of a nozzle, the particles to be sprayed must be selected having a size that would allow them to reach the maximum impact velocity at the target surface likely to be reached. However, the particles of small dimensions are well accelerated in the nozzle, but strongly slowed in the compressible boundary layer. The coarse particles, on the contrary, undergo almost no slowing in the compressible boundary layer, but at the same time, their acceleration in the nozzle is difficult. Therefore, it is a matter of choosing a particle size that would allow the projected particles to reach the maximum impact velocity on the target surface and, thus, to obtain the deposition efficiency and the quality of the maximum deposited coatings or other performance characteristics specific to the process used (sanding of the surfaces, fragmentation / granulation of particles).
La présente invention résout avantageusement les problèmes évoqués ci-dessus en proposant une méthode d'accélération gazodynamique à froid d'au moins un matériau en poudre comprenant l'alimentation dudit matériau en poudre dans une buse supersonique via un point d'injection, son accélération par un flux de gaz supersonique et son dépôt par impact sur la surface d'une pièce, la méthode prenant en compte la taille des particules et la densité du matériau les constituant ainsi que les paramètres du gaz afin de conférer aux particules de poudre entraînées par le flux de gaz la vitesse maximale susceptible d'être atteinte à leur impact à la surface de la pièce traitée grâce à l'accélération du flux de gaz et de poudre dans la partie supersonique de la buse dont la longueur et la dimension transversale correspondent aux conditions suivantes :
où L est la longueur de la partie supersonique de la buse, ρp est la densité d'une particule dudit matériau, dp est le diamètre d'une particule, b = h est la hauteur de la buse, b = dcr est le diamètre de la section critique de la buse axisymétrique.The present invention advantageously solves the problems mentioned above by proposing a cold gas-dynamic acceleration method of at least one powder material comprising feeding said powder material into a supersonic nozzle via an injection point, its acceleration by a supersonic gas flow and its deposition by impact on the surface of a workpiece, the method taking into account the size of the particles and the density of the material constituting them as well as the parameters of the gas in order to give the particles of powder entrained by the gas flow the maximum speed that can be reached at their impact on the surface of the treated part by accelerating the flow of gas and powder in the supersonic part of the nozzle whose length and transverse dimension correspond to the following conditions:
where L is the length of the supersonic portion of the nozzle, ρ p is the density of a particle of said material, d p is the diameter of a particle, b = h is the height of the nozzle, b = d cr is the diameter of the critical section of the axisymmetric nozzle.
Les valeurs ci-dessus sont obtenues au moyen de la modélisation mathématique effectuée pour une large gamme de dimensions de particules et de buse, de pressions et de températures de gaz (air, azote, hélium) et comparée à des mesures expérimentales de la vitesse des particules de différentes tailles et de leur densité à l'orifice de sortie de la buse.The above values are obtained by means of mathematical modeling performed for a wide range of particle and nozzle dimensions, gas pressures and temperatures (air, nitrogen, helium) and compared with experimental measurements of the velocity of particles of different sizes and their density at the outlet orifice of the nozzle.
La méthode selon l'invention peut utiliser, comme gaz comprimé porteur : l'air comprimé, l'azote comprimé, l'hélium comprimé ou un mélange de ces gaz.The method according to the invention can use as compressed carrier gas: compressed air, compressed nitrogen, compressed helium or a mixture of these gases.
Selon une réalisation possible, le gaz comprimé est chauffé jusqu'à des températures entre 300 et 9800 K.According to one possible embodiment, the compressed gas is heated to temperatures between 300 and 9800 K.
Les matériaux en poudre utilisés sont par exemple constitués de particules ayant une taille comprise entre 0,1 et 1000 µm.The powder materials used are, for example, made up of particles having a size of between 0.1 and 1000 μm.
La méthode peut utiliser : des matériaux en poudre métalliques, des matériaux en poudre non métalliques, des mélanges de poudres métalliques ayant des valeurs de ρ pdp proches, des mélanges de poudres non métalliques ayant des valeurs de ρ pdp proches ou des mélanges de poudres métalliques et non métalliques ayant des valeurs de ρ pdp proches.The method may use: metallic powder materials, nonmetallic powder materials, metal powder mixtures having values of ρ p d p near, non-metallic powder mixtures having values of ρ p d p near or mixtures of metallic and non-metallic powders having values of ρ p d p near.
La présente méthode est mise en oeuvre par un dispositif d'accélération gazodynamique à froid d'au moins un matériau en poudre comprenant une buse supersonique reliée à un injecteur de poudre, un doseur de poudre relié par un orifice de sortie audit injecteur de poudre. Ce dispositif prévoit l'utilisation de buses plates ou axisymétriques démontables et échangeables, la longueur de la partie supersonique et la dimension typique de la section critique desdites buses correspondant aux conditions suivantes :
où L est la longueur de la partie supersonique de la buse, ρ p est la densité d'une particule dudit matériau, dp est le diamètre d'une particule, b = h est la hauteur de la buse, b = dcr est le diamètre de la section critique de la buse axisymétrique.The present method is implemented by a cold gas-dynamic acceleration device of at least one powder material comprising a supersonic nozzle connected to a powder injector, a powder feeder connected by an outlet orifice to said powder injector. This device provides for the use of dismountable and exchangeable flat or axisymmetric nozzles, the length of the supersonic portion and the typical dimension of the critical section of said nozzles corresponding to the following conditions:
where L is the length of the supersonic portion of the nozzle, ρ p is the density of a particle of said material, d p is the diameter of a particle, b = h is the height of the nozzle, b = dc r is the diameter of the critical section of the axisymmetric nozzle.
L'un des avantages de la méthode et du dispositif de projection gazodynamique de matériaux en poudre proposés est qu'en fonction de la taille des particules et de la densité du matériau les constituant sélectionnées en vue d'une opération technologique distincte ainsi que de la pression et de la température de gaz (par exemple, air, azote, hélium ou le mélange d'au moins deux de ces gaz), les dimensions de la partie supersonique de la buse utilisée peuvent être calculées de manière à assurer la vitesse maximale d'impact des particules à la surface de cible susceptible d'être atteinte, et, de ce fait, à améliorer avantageusement la qualité du dépôt, le rendement et la qualité du procédé de nettoyage des surfaces, le rendement du procédé de morcèlement/granulation de particules. En même temps, pour assurer la résolution spatiale désirée du procédé de projection ou de sablage des surfaces, il est possible de jouer sur la granulométrie de la poudre en choisissant la taille des particules du matériau en poudre souhaité de manière à assurer un haut rendement de déposition et une haute qualité du revêtement résultant, la bonne réalisation du procédé de sablage d'une surface ayant une structure à grains fins correspondante à la tailles des particules projetées.One of the advantages of the method and apparatus for the gas-powder spraying of proposed powder materials is that depending on the particle size and the density of the material constituting them selected for a separate technological operation as well as the pressure and gas temperature (for example, air, nitrogen, helium or the mixture of at least two of these gases), the dimensions of the supersonic part of the nozzle used may be calculated so as to ensure the maximum speed of the impact of the particles on the target surface that can be reached, and thereby to advantageously improve the quality of the deposit, the efficiency and the quality of the surface cleaning process, the efficiency of the fragmentation / granulation of particles. At the same time, to ensure the desired spatial resolution of the process of blasting or sanding the surfaces, it is possible to vary the particle size of the powder by choosing the particle size of the desired powder material so as to ensure a high yield of deposition and high quality of the resulting coating, the successful completion of the sanding process of a surface having a fine grain structure corresponding to the size of the projected particles.
Pour sa bonne compréhension, l'invention est décrite en référence à la figure unique du dessin ci-annexé représentant à titre d'exemple non limitatif une forme de réalisation d'un dispositif selon l'invention.For a good understanding, the invention is described with reference to the single figure of the attached drawing showing by way of non-limiting example an embodiment of a device according to the invention.
Le dispositif d'accélération gazodynamique à froid des matériaux en poudre comprend une buse supersonique démontable et échangeable 1 reliée à l'orifice de sortie d'un réchauffeur électrique 2 et à un injecteur de poudre dans ladite buse 3, un doseur de poudre 4 dont l'orifice de sortie est relié audit injecteur de poudre. La partie supersonique de ladite buse peut être, selon une forme de réalisation préférée, de forme plate ou axisymétrique, la buse ayant la longueur de la partie supersonique et la dimension typique de la section critique correspondant aux conditions suivantes :
où L est la longueur de la partie supersonique de la buse, ρ p est la densité d'une particule dudit matériau, dp est le diamètre d'une particule, b = h est la hauteur de la buse, b = dcr est le diamètre de la section critique de la buse axisymétrique.The device for accelerating gasodynamic cold powder materials comprises a removable and exchangeable supersonic nozzle 1 connected to the outlet of an electric heater 2 and a powder injector in said nozzle 3, a powder dispenser 4 whose the outlet port is connected to said powder injector. The supersonic portion of said nozzle may be, according to a preferred embodiment, of flat or axisymmetrical shape, the nozzle having the length of the supersonic portion and the typical dimension of the critical section corresponding to the following conditions:
where L is the length of the supersonic portion of the nozzle, ρ p is the density of a particle of said material, d p is the diameter of a particle, b = h is the height of the nozzle, b = d cr is the diameter of the critical section of the axisymmetric nozzle.
Le procédé est mis en oeuvre comme suit.The process is carried out as follows.
En fonction du procédé de projection/sablage/granulation de particules et du choix, à cet effet, de poudre (densité du matériau des particules et leur teilla moyenne) et de pression et de températures de gaz (par exemple, air, azote, hélium ou le mélange d'au moins deux de ces gaz), les rapports simulés présentés ci-dessus sont mis en oeuvre pour calculer les dimensions principales de la buse: la longueur de la partie supersonique et la section critique (la hauteur pour une buse plate et le diamètre de la section critique pour une buse axisymétrique). Les particules entraînées par un flux de gaz dans une telle buse spécialement calculée se voient conférer la vitesse maximale susceptible d'être atteinte à leur impact à la surface de la pièce traitée grâce à l'accélération du flux de gaz et de poudre dans la partie supersonique de ladite buse, plate ou axisymétrique.Depending on the method of projection / sanding / granulation of particles and the choice, for this purpose, of powder (density of the material of the particles and their mean teilla) and pressure and gas temperatures (for example, air, nitrogen, helium or the mixture of at least two of these gases), the simulated ratios presented above are used to calculate the main dimensions of the nozzle: the length of the supersonic part and the critical section (the height for a flat nozzle and the diameter of the critical section for an axisymmetric nozzle). Particles entrained by a flow of gas in such a specially calculated nozzle are given the maximum speed that can be achieved at their impact on the surface of the treated part by accelerating the flow of gas and powder in the part. supersonic of said nozzle, flat or axisymmetric.
L'utilisation des buses spécialement conçues pour une taille de diamètre concrète de particules d'un matériau en poudre souhaité permet d'obtenir la vitesse maximale d'impact des particules projetées à la surface de la pièce traitée.The use of the specially designed nozzles for a concrete particle size of particles of a desired powder material makes it possible to obtain the maximum impact speed of the particles projected on the surface of the treated part.
On décrit à présent, à titre d'exemples non limitatifs, des variantes d'utilisation de la présente invention avec les particules de différentes tailles.
- 1. Des particules de poudre de cuivre de 1 µm de diamètre moyen sont projetées par la méthode gazodynamique à froid. La pression de stagnation de l'azote ou de l'aire, selon une réalisation préférée, est de 2,0 MPa, la température de stagnation est de 700 K. Les rapport simulés pour une buse plate sont L = 4,35ρ pdp ± 50%, h = 0,065ρ pdp 50%. On introduit ρ p = 8940 kg/m3 et dp = 1.10-6 m et obtient les dimensions optimales de la buse L = 20 - 60 mm et h = 0,29 - 0,87 mm qui assureront la vitesse maximale d'impact des particules projetées à la surface de cible.
- 2. Pour les particules d'aluminium (ρ p = 2700 kg/m3) de la même taille projetées par une buse axisymétrique, on obtient L = 6 - 18 mm et dcr = 0,09 - 0,26 mm. La pression de stagnation de l'azote ou de l'aire est de 2,0 MPa, la température de stagnation est de 500 K.
- 3. On souhaite obtenir une résolution spatiale de 0,5 mm lors de projection de particules de cuivre. On choisi une buse avec 0,5 mm de diamètre d'orifice de sortie et, en conséquence, d'environ 0,3 mm de diamètre de section critique. La pression de stagnation de l'hélium est de 2,0 MPa, la température de stagnation est de 300 K. Selon la formule dcr = 0,065ρ pdp ± 50%, on obtient la taille nécessaire des particules de cuivre et, selon la formule L = 4,35ρpdp ± 50%, on calcule la longueur de la partie supersonique de la buse nécessaire pour communiquer aux particules l'accélération optimale. Dans ce cas, on obtient dp = (0,34 - 1,03)·10-6 m = 0,34 - 1,03 µm et L = 13,2 - 40 mm.
- 4. Pour le sablage d'une surface, prenons la poudre d'Al2O3 avec 10 µm de diamètre moyen de particules. La pression de stagnation de l'aire est de 0,6 MPa, la température de stagnation est de 300 K. Les rapports simulés pour une buse plate sont L = 4,35ρpdp ± 50%, h = 0,065ρpdp ± 50%. On introduit ρ p ≈ 4000 kg/m3 et dp = 10·10-6 m et obtient les dimensions optimales de la buse L ≈ 90 - 270 mm et h ≈ 1,2 - 3,7 mm qui assureront la vitesse maximale d'impact des particules projetées à la surface de cible.
- 1. Copper powder particles of 1 μm average diameter are projected by the cold gasodynamic method. The stagnation pressure of the nitrogen or the area, according to a preferred embodiment, is 2.0 MPa, the stagnation temperature is 700 K. The simulated ratios for a flat nozzle are L = 4.35 ρ p. p ± 50%, h = 0.065 ρ p d p 50%. We introduce ρ p = 8940 kg / m 3 and d p = 1.10 -6 m and obtain the optimal dimensions of the nozzle L = 20 - 60 mm and h = 0.29 - 0.87 mm which will ensure the maximum speed of impact of particles projected on the target surface.
- 2. For aluminum particles (ρ p = 2700 kg / m 3 ) of the same size projected by an axisymmetric nozzle, L = 6 - 18 mm and d cr = 0.09 - 0.26 mm are obtained. The stagnation pressure of the nitrogen or the area is 2.0 MPa, the stagnation temperature is 500 K.
- 3. It is desired to obtain a spatial resolution of 0.5 mm when spraying copper particles. A nozzle with a 0.5 mm diameter outlet orifice and, consequently, a diameter of about 0.3 mm in critical section is chosen. The helium stagnation pressure is 2.0 MPa, the stagnation temperature is 300 K. According to the formula a = 0.065 ρ p d p ± 50%, we obtain the necessary size of the copper particles, and according to the formula L = 4,35ρ p d p ± 50%, is calculated the length of the supersonic portion of the nozzle necessary to communicate to the particles the optimum acceleration. In this case, one obtains d p = (0.34 to 1.03) · 10 -6 m = 0.34 to 1.03 microns and L = 13.2 to 40 mm.
- 4. For sandblasting a surface, take Al 2 O 3 powder with 10 μm average particle diameter. The area of the stagnation pressure is 0.6 MPa, the stagnation temperature is 300 K. The reports simulated for a slot nozzle are 4,35ρ L = p d p ± 50%, h = p d 0,065ρ p ± 50%. We introduce ρ p ≈ 4000 kg / m 3 and d p = 10 · 10 -6 m and obtain the optimal dimensions of the nozzle L ≈ 90 - 270 mm and h ≈ 1.2 - 3.7 mm which will ensure the maximum speed impact of the particles projected on the target surface.
On souhaite obtenir une résolution spatiale de 1,0 mm lors de sablage d'une surface par projection de la poudre de SiC. On choisi une buse avec 0,1 mm de diamètre d'orifice de sortie et, en conséquence, d'environ 0,5 mm de diamètre de section critique. La pression de stagnation de l'air est de 1,0 MPa, la température de stagnation est de 300 K. Selon la formule dcr = 0,065ρ pdp ± 50%, on obtient la taille nécessaire des particules de carbure de silicium et, selon la formule L = 4,35ρ pdp ± 50%, on calcule la longueur de la partie supersonique de la buse nécessaire pour communiquer aux particules l'accélération optimale. Dans ce cas, on obtient :
Claims (13)
où L est la longueur de la partie supersonique de la buse, ρ p est la densité d'une particule dudit matériau, dp est le diamètre d'une particule, b = h est la hauteur de la buse, b = dcr est le diamètre de la section critique de la buse axisymétrique.Method for cold gasodynamic acceleration of at least one powder material comprising feeding said powder material into a supersonic nozzle via an injection point, its acceleration by a supersonic gas flow and its deposition by impact on the surface characterized in that it takes into account the size of the particles and the density of said material constituting them, as well as the parameters of the gas, in order to give the powder particles entrained by the gas flow the maximum speed likely to to achieve their impact on the surface of the treated part by accelerating the flow of gas and powder in the supersonic part of the nozzle whose length and transverse dimension correspond to the following conditions:
where L is the length of the supersonic portion of the nozzle, ρ p is the density of a particle of said material, d p is the diameter of a particle, b = h is the height of the nozzle, b = d cr is the diameter of the critical section of the axisymmetric nozzle.
où L est la longueur de la partie supersonique de la buse, ρ p est la densité d'une particule dudit matériau, dp est le diamètre d'une particule, b = h est la hauteur de la buse, b = dcr est le diamètre de la section critique de la buse axisymétrique.Cold gas-dynamic acceleration device of at least one powder material comprising a supersonic nozzle connected to a powder injector, a powder dispenser connected by an outlet orifice to said powder injector, characterized in that it provides for use of dismountable and exchangeable flat or axisymmetric nozzles, the length of the supersonic part and the typical dimension of the critical section of said nozzles corresponding to the following conditions:
where L is the length of the supersonic portion of the nozzle, ρ p is the density of a particle of said material, d p is the diameter of a particle, b = h is the height of the nozzle, b = d cr is the diameter of the critical section of the axisymmetric nozzle.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2008152548/02A RU2399694C1 (en) | 2008-12-29 | 2008-12-29 | Procedure for surface gas-dynamic processing with powder material and facility for its implementation |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2202332A1 true EP2202332A1 (en) | 2010-06-30 |
EP2202332B1 EP2202332B1 (en) | 2012-03-28 |
Family
ID=41800584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09180869A Revoked EP2202332B1 (en) | 2008-12-29 | 2009-12-29 | Method for gas-dynamic acceleration of materials in powder form and device for implementing this method |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP2202332B1 (en) |
AT (1) | ATE551442T1 (en) |
ES (1) | ES2382720T3 (en) |
RU (1) | RU2399694C1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018101520A1 (en) * | 2018-01-24 | 2019-07-25 | Karlsruher Institut für Technologie | two-fluid nozzle |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2468123C2 (en) * | 2010-10-01 | 2012-11-27 | Институт теоретической и прикладной механики им. С.А. Христиановича Сибирского отделения Российской академии наук (ИТПМ СО РАН) | Method for gas dynamic sputtering of powder materials and device for gas dynamic sputtering of powder materials (versions) |
RU2744008C1 (en) * | 2017-02-26 | 2021-03-01 | Интернэшнл Эдвансд Рисерч Сентер Фо Паудер Металерджи Энд Нью Материалз (Арси) | Improved device for cold gas-dynamic spraying and method of coating on substrate |
CN108745677B (en) * | 2018-07-25 | 2023-06-20 | 上海莘临科技发展有限公司 | Supersonic oxyacetylene explosion combustion nozzle and sand melting method |
RU2743944C1 (en) * | 2020-08-03 | 2021-03-01 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский авиационный институт (национальный исследовательский университет)" | Device for gas-dynamic coating |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4300723A (en) * | 1980-02-29 | 1981-11-17 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Controlled overspray spray nozzle |
US20040058064A1 (en) * | 2002-09-23 | 2004-03-25 | Delphi Technologies, Inc. | Spray system with combined kinetic spray and thermal spray ability |
DE10319481A1 (en) * | 2003-04-30 | 2004-11-18 | Linde Ag | Laval nozzle use for cold gas spraying, includes convergent section and divergent section such that portion of divergent section of nozzle has bell-shaped contour |
RU2257423C2 (en) | 2003-08-21 | 2005-07-27 | Общество с ограниченной ответственностью Обнинский центр порошкового напыления (ООО ОЦПН) | Portable apparatus for gasodynamic deposition of coatings |
RU2288970C1 (en) | 2005-05-20 | 2006-12-10 | Общество с ограниченной ответственностью Обнинский центр порошкового напыления (ООО ОЦПН) | Device for the gas-dynamic deposition of the coatings and the method for the gas-dynamic deposition of the coatings |
WO2008025815A1 (en) * | 2006-08-30 | 2008-03-06 | H.C. Starck Gmbh | Ceramic nozzle |
-
2008
- 2008-12-29 RU RU2008152548/02A patent/RU2399694C1/en not_active IP Right Cessation
-
2009
- 2009-12-29 ES ES09180869T patent/ES2382720T3/en active Active
- 2009-12-29 AT AT09180869T patent/ATE551442T1/en active
- 2009-12-29 EP EP09180869A patent/EP2202332B1/en not_active Revoked
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4300723A (en) * | 1980-02-29 | 1981-11-17 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Controlled overspray spray nozzle |
US20040058064A1 (en) * | 2002-09-23 | 2004-03-25 | Delphi Technologies, Inc. | Spray system with combined kinetic spray and thermal spray ability |
US6743468B2 (en) | 2002-09-23 | 2004-06-01 | Delphi Technologies, Inc. | Method of coating with combined kinetic spray and thermal spray |
DE10319481A1 (en) * | 2003-04-30 | 2004-11-18 | Linde Ag | Laval nozzle use for cold gas spraying, includes convergent section and divergent section such that portion of divergent section of nozzle has bell-shaped contour |
RU2257423C2 (en) | 2003-08-21 | 2005-07-27 | Общество с ограниченной ответственностью Обнинский центр порошкового напыления (ООО ОЦПН) | Portable apparatus for gasodynamic deposition of coatings |
RU2288970C1 (en) | 2005-05-20 | 2006-12-10 | Общество с ограниченной ответственностью Обнинский центр порошкового напыления (ООО ОЦПН) | Device for the gas-dynamic deposition of the coatings and the method for the gas-dynamic deposition of the coatings |
WO2008025815A1 (en) * | 2006-08-30 | 2008-03-06 | H.C. Starck Gmbh | Ceramic nozzle |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018101520A1 (en) * | 2018-01-24 | 2019-07-25 | Karlsruher Institut für Technologie | two-fluid nozzle |
Also Published As
Publication number | Publication date |
---|---|
ATE551442T1 (en) | 2012-04-15 |
RU2399694C1 (en) | 2010-09-20 |
ES2382720T3 (en) | 2012-06-12 |
RU2008152548A (en) | 2010-07-10 |
EP2202332B1 (en) | 2012-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2202332B1 (en) | Method for gas-dynamic acceleration of materials in powder form and device for implementing this method | |
JP4772860B2 (en) | Abrasion resistant metal matrix composite coating layer forming method and coating layer manufactured using the same | |
EP3787836A1 (en) | Device and method for the surface treatment of a material | |
FR2931086A1 (en) | ATOMIZER. | |
EP2390570B1 (en) | Combustion cold spray | |
EP1579921A2 (en) | Improved kinetic spray nozzle system design | |
US20070137560A1 (en) | Cold spray apparatus having powder preheating device | |
WO2002005969A2 (en) | Apparatus and method for synthesizing films and coatings by focused particle beam deposition | |
KR100776194B1 (en) | Nozzle for cold spray and cold spray apparatus using the same | |
EP2411554B1 (en) | Nozzle for a thermal spray gun and method of thermal spraying | |
WO2011065512A1 (en) | Cermet coating, spraying particles for forming same, method for forming cermet coating, and article with coating | |
US20060251821A1 (en) | Multi-sectioned pulsed detonation coating apparatus and method of using same | |
Champagne et al. | The effects of gas and metal characteristics on sprayed metal coatings | |
JP2006052449A (en) | Cold spray coating film formation method | |
US10279365B2 (en) | Thermal spray method integrating selected removal of particulates | |
TW202020190A (en) | Method for forming thermal spray coating | |
Tillmann et al. | Investigation of low-pressure cold-gas dynamic spraying of polyamide-12 (PA12) on steel surfaces | |
US6749900B2 (en) | Method and apparatus for low-pressure pulsed coating | |
EP0766595B1 (en) | Process for spraying a dispersible liquid material | |
EP3374543A1 (en) | Multilayer ceramic coating for high-temperature thermal protection, in particular for aeronautical application, and method for producing same | |
WO2013038084A1 (en) | Device for spraying dry ice, particularly frozen carbon dioxide, and nozzle for said device | |
WO1995007768A1 (en) | Method for the production of composite materials or coatings and system for implementing it | |
Shkodkin et al. | The basic principles of DYMET technology | |
FR2950280A1 (en) | Working method for e.g. peeling of coated/non-coated materials, involves distributing jet of cryogenic fluid by distribution nozzle at temperature not greater than minus specific degree Celsius and at pressure of specific bars | |
FR3048980A1 (en) | METHOD FOR REPAIRING A MAGNESIUM ALLOY PIECE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
17P | Request for examination filed |
Effective date: 20101004 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C23C 4/12 20060101ALI20111102BHEP Ipc: B05B 7/14 20060101ALI20111102BHEP Ipc: B05B 7/16 20060101ALN20111102BHEP Ipc: C23C 24/04 20060101AFI20111102BHEP |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B05B 7/16 20060101ALN20111104BHEP Ipc: C23C 4/12 20060101ALI20111104BHEP Ipc: C23C 24/04 20060101AFI20111104BHEP Ipc: B05B 7/14 20060101ALI20111104BHEP |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 551442 Country of ref document: AT Kind code of ref document: T Effective date: 20120415 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602009006112 Country of ref document: DE Effective date: 20120524 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2382720 Country of ref document: ES Kind code of ref document: T3 Effective date: 20120612 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20120328 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120328 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120328 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120628 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20120328 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120328 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120629 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120328 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 551442 Country of ref document: AT Kind code of ref document: T Effective date: 20120328 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120328 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120328 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120328 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120328 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120328 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120728 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120328 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120328 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120328 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120730 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAN | Information deleted related to communication of a notice of opposition and request to file observations + time limit |
Free format text: ORIGINAL CODE: EPIDOSDOBS2 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120328 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120328 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120328 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20121015 Year of fee payment: 4 Ref country code: FR Payment date: 20121017 Year of fee payment: 4 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
26 | Opposition filed |
Opponent name: SIEMENS AKTIENGESELLSCHAFT Effective date: 20121221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120328 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20121219 Year of fee payment: 4 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 602009006112 Country of ref document: DE Effective date: 20121221 |
|
BERE | Be: lapsed |
Owner name: ECOLE NATIONALE D'INGENIEURS DE SAINT ETIENNE Effective date: 20121231 Owner name: ETABLISSEMENT DE L'ACADEMIE DES SCIENCES DE RUSSIE Effective date: 20121231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121231 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120628 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121229 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120328 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120328 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121229 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120328 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602009006112 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091229 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20131229 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20140829 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602009006112 Country of ref document: DE Effective date: 20140701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140701 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131231 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131229 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131231 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20150327 |
|
RDAF | Communication despatched that patent is revoked |
Free format text: ORIGINAL CODE: EPIDOSNREV1 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131230 |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120328 |
|
27W | Patent revoked |
Effective date: 20150419 |