EP2201596A2 - Hochdruckentladungslampe - Google Patents

Hochdruckentladungslampe

Info

Publication number
EP2201596A2
EP2201596A2 EP08803097A EP08803097A EP2201596A2 EP 2201596 A2 EP2201596 A2 EP 2201596A2 EP 08803097 A EP08803097 A EP 08803097A EP 08803097 A EP08803097 A EP 08803097A EP 2201596 A2 EP2201596 A2 EP 2201596A2
Authority
EP
European Patent Office
Prior art keywords
discharge lamp
pressure discharge
ring structure
lamp according
discharge vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP08803097A
Other languages
English (en)
French (fr)
Other versions
EP2201596B1 (de
Inventor
Bernhard Schalk
Klaus Stockwald
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Osram GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram GmbH filed Critical Osram GmbH
Publication of EP2201596A2 publication Critical patent/EP2201596A2/de
Application granted granted Critical
Publication of EP2201596B1 publication Critical patent/EP2201596B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/52Cooling arrangements; Heating arrangements; Means for circulating gas or vapour within the discharge space
    • H01J61/523Heating or cooling particular parts of the lamp
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/82Lamps with high-pressure unconstricted discharge having a cold pressure > 400 Torr
    • H01J61/827Metal halide arc lamps

Definitions

  • the invention relates to a high-pressure discharge lamp according to the preamble of claim 1.
  • Such lamps are in particular high-pressure discharge lamps with a ceramic discharge vessel for general lighting.
  • US Pat. No. 4,970,431 discloses a sodium high-pressure discharge lamp in which the bulb of the discharge vessel is made of ceramic. At the cylindrical ends of the discharge vessel fin-like extensions are attached, which are used for heat dissipation.
  • EP-A 506 182 are coatings of graphite or carbon o.a. known, which are applied to ceramic discharge vessels at the ends to effect cooling.
  • the object of the present invention is to provide a high-pressure discharge lamp whose color spread is significantly reduced compared to previous lamps.
  • the high pressure discharge lamp is equipped with a ceramic elongate discharge vessel.
  • the discharge vessel defines a lamp axis and has a central portion and two end portions, each sealed by seals, with electrodes anchored in the seals extending into the discharge volume enveloped by the discharge vessel, and a charge containing metal halides in the discharge volume is housed.
  • at least one end region is seated in an annular structure which, as far as its basic body is concerned, extends outwards substantially parallel to the axis and is spaced from the seal.
  • the seals are preferably capillaries.
  • the invention relates in particular to lamps with an increased aspect ratio, or else lamps which have shortened structures for the seals.
  • the end region preferably has a tapering inner contour in the electrode rear space. That is, the central part of the discharge vessel has a maximum or constant inner diameter ID and the end regions have a smaller inner diameter.
  • the ring structure is preferably formed concentrically outside around the electrode construction or the seal at the end region.
  • the discharge vessel typically consists of aluminum-containing ceramics such as PCA or else YAG, AlN, or A1YO3.
  • a freestanding cooling structure spaced apart from the seal is used, which in particular is itself formed of ceramic and, in particular, can be an integral part of the end region.
  • it can also be a separate component made of translucent Ceramics act like Al 2 O 3 or AlN, for example also from steatite. The separate component is attached by means of cement or adhesive to the end of the discharge vessel.
  • the invention is particularly suitable for highly loaded metal halide lamps in which the ratio between the inner length IL and the maximum inner diameter ID of the discharge vessel, the so-called aspect ratio IL / ID, is between 1.5 and 8.
  • the temperature gradient of highly loaded burners which typically reach a wall load of at least 30 W / cm 2 in the axial length between the electrodes, can be selected by choosing the starting point for the electrodes -A-
  • Cooling structure can be influenced and adjusted.
  • the constancy of the color temperature and the yield of the resulting metal halide lamp can be significantly improved.
  • metal halide lamps which contain at least one of the halides of Ce, Pr or Nd, in particular together with halides of Na and / or Li. Otherwise, color temperature fluctuations due to distillation effects occur here.
  • the seals are advantageously designed as capillaries.
  • they can also be embodied differently, see, for example, DE-A 197 27 429, where a cermet pin is used.
  • DU outer diameter of the capillary
  • its wall thickness is about 0.3 to 3 mm.
  • the end face connecting the inner diameter with the outer diameter can be beveled.
  • the coating should be highly viscous. Suitable materials are in particular graphite or carbon, ie other carbon modifications such as DLC (diamond-like carbon).
  • the cooling behavior can also be controlled by covering a part of the ring like the end face with a coating of high emissivity.
  • PCA or any other common ceramic can be used as the material of the piston.
  • the choice of filling is subject to no particular restriction.
  • discharge vessels for high-pressure lamps with approximately uniform wall thickness distribution and slim-running end shapes have hitherto exhibited partially high color spread due to the high distribution of the metal halide filling in the interior of the discharge vessel.
  • the filling condenses in the area behind a line, which is determined by projection of the electrode tip on the inner burner surface.
  • the filling position on a zone of the surface in the interior of the discharge vessel, which corresponds to a narrow temperature range, and in the residual volumes of -eventuell existing capillaries into is not yet sufficiently precisely adjustable.
  • Previous discharge vessels often have a shape with increased wall thickness at the end surfaces, eg in cylindrical burner shapes, thereby creating an enlarged end surface.
  • Another problem is the increased by the wall thickness-dependent specific emission coefficient of the ceramic radiation of IR radiation during operation of the discharge vessel in the evacuated or gas-filled outer envelope.
  • Spherical discharge vessels or those with hemispherical end shapes or conically tapering end shapes or elliptically shaped end shapes and cylindrical center part with a relatively high aspect ratio of IL / ID of about 1.5 to 8 present particularly serious problems. Due to the tapering transition in the region of the seal, usually a capillary, partially insufficient cooling effects at the end of the discharge vessel and thus an insufficient determination of the temperature, which is not sufficient for a precise filling deposit in a narrow temperature range of the inner wall.
  • Figure 10 Another known solution (Figure 10) are fins or fin-like formations. Although these increase the cooling surface, but they form a thermal bridge between see burner end and sealing, especially when short cooling lengths are preferred and the cooling structure has an increased number of cooling fins.
  • the cooling structure is wholly or partially provided with a coating. It consists of a material having in the near infrared (NIR), in particular in the wavelength range between 1 and 3 microns, compared to the ceramic material of the cooling structure an increased hemispherical emissivity ⁇ in the temperature range 650-1000 0 C.
  • the coating should preferably be applied in the region of the transition between the end of the discharge vessel and the seal. High-temperature-resistant coatings with hemispherical emission coefficients ⁇ are suitable as coating materials, it being preferred for ⁇ that ⁇ ⁇ 0.6.
  • graphite mixtures of A12O3 with graphite, mixtures of A12O3 with carbides of the metals Ti, Ta, Hf, Zr, as well as of semi-metals such as Si. Also suitable are mixtures which additionally contain other metals for adjusting any desired electrical conductivity.
  • both measures can be suitably combined with each other, so that part of the surface radiation increase takes place via an enlargement of the surface by the ring structure and at the same time a part by the coating of parts of this ring structure or of the adjacent colder sealing areas.
  • the total mass of the discharge vessel increases only insignificantly by this type of annular cooling and thus remains below a critical value that would adversely affect the start-up behavior of the lamp during ignition. There is thus a sophisticated compromise between good ignition and effective cooling.
  • This measure allows a very high color stability under the conscious acceptance of a bad isotherm. This is done in departure from the previous objective of the best possible isotherm and allows the zone of condensation of the filling to be determined precisely by deliberately designing a temperature gradient.
  • the cooling effect can be controlled in particular by the maximum height of the annular cooling, in particular if it attaches to the end region of the discharge vessel, since, depending on the approach height, the discharge takes place from another temperature level.
  • FIG. 2 shows a detail of the discharge vessel from FIG. 1 in perspective (FIG. 2 a) and in a longitudinal section (FIG. 2 b);
  • Fig. 3-4 shows another embodiment of an end portion of a discharge vessel
  • FIG. 5-6 another embodiment of a discharge vessel
  • FIG. 7 shows a further embodiment of an end region of a discharge vessel
  • 11-13 further embodiments of an end region of a discharge vessel.
  • Figure 1 shows a metal halide lamp 1. It consists of a tubular discharge vessel 2 made of ceramic, in which two electrodes are inserted (not visible).
  • the discharge vessel has a central part 5 and two ends 4. At the ends sit two seals 6, which are designed here as capillaries.
  • the discharge vessel and the seals are made integrally from a material such as PCA.
  • the discharge vessel 2 is surrounded by an outer bulb 7, which terminates a base 8.
  • the discharge vessel 2 is in the outer bulb by means of a frame which includes a short and long power supply 11 a and II b, supported.
  • a ring cooling structure 10 which rotates about the seal.
  • FIG. 2a shows a ring cooling structure 10 in a perspective view in conjunction with a short seal 16.
  • FIG. 2b shows a longitudinal section of the region of a seal 16.
  • the ring cooling structure 10 sets in the tapering end region 4 of the discharge vessel 2 and surrounds the seal at some distance ,
  • FIG. 3 shows a ring cooling structure 13 which, instead of a constant inner diameter and outer diameter, has crescent-shaped or semicircular cut-out structures 19 which attach externally to the ring 13.
  • the inner diameter ID is constant
  • the outer diameter AD varies periodically.
  • small recesses 20 interrupt the ring structure 13, see Figure 4. This aims to increase the radiating surface.
  • the number of recesses is advantageously up to three, as shown here.
  • FIG. 5 shows a discharge vessel 2, in which the seal is realized by a capillary.
  • the cooling ring 13 has a recess 20.
  • recess here is meant an interruption whose angle length is very small in the Compared to the angular length of the remaining ring.
  • the recesses typically together make up at most 10% of the total angular length of 360 °. This value should be chosen as low as possible because the interruptions reduce the cooling capacity.
  • the cooling effect on the surface zone of the burner vessel can be set locally and tailored to the particular requirements.
  • the starting point of the cooling ring on the tapered end portion 4 is given by the inner diameter DRI, wherein DRI is in the range between 95% and 25% of the maximum diameter Dmax of the discharge vessel. Preferably, DRI is between 80% and 25% of Dmax.
  • the wall thickness TH of the tapered end portion 4 is often not constant as shown here.
  • the orientation of the annularly arranged cooling structure is selected (FIG. 6) such that the point of attachment of the ring structure lies outside the narrowest point E of the tapered end region 4.
  • the entrance of the capillary is formed as a flat surface 25 which is transverse to the lamp axis, whereby a narrowest point inevitably results.
  • DRA is the outer diameter of the ring structure.
  • the minimum wall thickness in the end region preferably has 20-80% of the maximum wall thickness in the end region, as occurs in particular at the beginning of the taper.
  • WD is the wall thickness in the center of the discharge vessel. If possible, the ring structure 13 should avoid that a wall thickness TH> WD occurs in the tapered end region 4, since otherwise an increased heat flow into the capillary cross-sectional area occurs and this can lead to increased heat conduction losses.
  • FIG. 7 shows an exemplary embodiment of a discharge vessel 30, in which the end 31 of the discharge vessel does not taper, but the discharge vessel has a constant diameter DD.
  • the capillary 6 is seated in a plug 32.
  • the ring structure is inserted as a further plug-like cylindrical part 33 between the plug 32 and the end 31 of the discharge vessel and sintered in each case with the plug 32 and the discharge vessel 30.
  • FIG. 11 shows an exemplary embodiment in which a ring structure 39 has an axially parallel main body 40 which surrounds a stopper and which has a radiating body which is inclined outward from the axis in the form of a protruding circumferential fin or even individual spikes 41. It can also be arranged several spines axially one behind the other on a base body.
  • the deflection of the radiation body against the longitudinal axis is about 90 ° in order to avoid back reflection on the capillary 6 as far as possible. It is advantageous that the projecting length AB clearly extends the diameter DU of the discharge vessel 38 in order to minimize any return reflection.
  • Figure 12 shows an embodiment in which the base body 40, a plate-like end portion is attached as a radiating 43, which forms approximately at an angle of 45 ° to the longitudinal axis.
  • Figure 13 shows an embodiment in which the problem of back reflection has been solved in another way.
  • the ring structure is tapering at the end remote from the discharge, so that its inner wall side, which faces the capillary, is chamfered (44) so that the emitted radiation reaches the outside obliquely after reflection at the capillary.
  • an IR-reflecting coating 50 is preferably also applied to at least one of the two capillary surfaces and / or the inner side of the ring structure.

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)

Abstract

An den Enden des keramischen Entladungsgefäßes einer Hochdruckentladungslampe ist jeweils eine Ringstruktur in der Nähe der Abdichtung angebracht, die zur Kühlung des Entladungsgefäßes dient. Sie umgibt die Abdichtung in gewissem Abstand.

Description

Hochdruckentladungslampe
Technisches Gebiet
Die Erfindung geht aus von einer Hochdruckentladungslampe gemäß dem Oberbegriff des Anspruchs 1. Derartige Lampen sind insbesondere Hochdruckentladungslampen mit keramischen Entladungsgefäß für die Allgemeinbeleuchtung.
Stand der Technik
Die US-A 4 970 431 offenbart eine Natrium- Hochdruckentladungslampe, bei der der Kolben des Entladungsgefäßes aus Keramik gefertigt ist. An den zylindrischen Enden des Entladungsgefäßes sind flossenartige Fortsätze aufgesteckt, die der Wärmeabfuhr dienen.
Aus der EP-A 506 182 sind Beschichtungen aus Graphit oder Carbon o.a. bekannt, die auf keramische Entladungsgefäße an den Enden aufgebracht sind, um eine Kühlung zu bewirken .
Darstellung der Erfindung
Die Aufgabe der vorliegenden Erfindung ist es, eine Hoch- druckentladungslampe bereitzustellen, deren Farbstreuung gegenüber bisherigen Lampen deutlich reduziert ist.
Diese Aufgabe wird gelöst durch die kennzeichnenden Merkmale des Anspruchs 1.
Besonders vorteilhafte Ausgestaltungen finden sich in den abhängigen Ansprüchen. Die Hochdruckentladungslampe ist mit einem keramischen längsgestreckten Entladungsgefäß ausgestattet. Das Entladungsgefäß definiert eine Lampenachse und besitzt einen zentralen Teil und zwei Endbereiche, die jeweils durch Abdichtungen verschlossen sind, wobei Elektroden in den Abdichtungen verankert sind, die sich in das vom Entladungsgefäß umhüllte Entladungsvolumen erstrecken, wobei außerdem eine Füllung, die Metallhalogenide enthält, im Entladungsvolumen untergebracht ist. Dabei sitzt an min- destens einem Endbereich eine ringförmige Struktur, die sich, was zumindest ihren Grundkörper betrifft, im wesentlichen achsparallel nach außen erstreckt und von der Abdichtung beabstandet ist. Die Abdichtungen sind bevorzugt Kapillaren.
Die Erfindung betrifft insbesondere Lampen mit erhöhtem Aspektverhältnis, oder auch Lampen, welche verkürzte Strukturen für die Abdichtungen aufweisen. Bevorzugt weist der Endenbereich eine sich verjüngende Innenkontur im Elektrodenrückraum auf. Das heißt, dass der zentrale Teil des Entladungsgefäßes einen maximalen oder konstanten Innendurchmesser ID besitzt und die Endbereiche einen kleineren Innendurchmesser aufweisen.
Die Ringstruktur ist bevorzugt konzentrisch außen um die Elektrodenkonstruktion bzw. die Abdichtung am Endenbe- reich angeformt. Das Entladungsgefäß besteht typisch aus aluminiumhaltiger Keramik wie PCA oder auch YAG, AlN, o- der A1YO3. Es wird eine freistehende, von der Abdichtung beabstandete Kühlungsstruktur verwendet, die insbesondere selbst aus Keramik geformt ist und insbesondere integra- ler Bestandteil des Endenbereichs sein kann. Es kann sich jedoch auch um ein separates Bauteil aus transluzenter Keramik handeln wie AI2O3 oder AlN, beispielsweise auch aus Steatit. Das separate Bauteil ist mittels Zement oder Kleber am Ende des Entladungsgefäßes befestigt.
Die Erfindung ist besonders geeignet für hochbelastete Metallhalogenidlampen, bei denen das Verhältnis zwischen der Innenlänge IL und dem maximalen Innendurchmesser ID des Entladungsgefäßes, das sog. Aspektverhältnis IL/ID, zwischen 1,5 und 8 liegt.
Es zeigt sich, dass bei diesen Brennerformen, insbesonde- re wenn sie zum Ende hin sich verjüngende Endenbereiche besitzen, eine lokale Endenkühlung sinnvoll ist. Diese verbessert die Füllungsverteilung im Brenner, weil sich die Füllung bevorzugt im Bereich hinter den Elektroden im sogenannten Elektroden-Rückraum ablagert und damit zu ei- ner verbesserten Farbstabilität als auch zu einer erhöhten Lichtausbeute führt. Insbesondere bei Verwendung von Na- und/oder Ce-haltigen Füllungen lassen sich extrem hohe Lichtausbeuten mit hoher Farbwiedergabe erzielen. Es zeigt sich, dass bei Anwendung eines geeigneten Betriebs- Verfahrens die Leistungskennlinie der Lampe günstig be- einflusst werden kann, so dass eine Lichtausbeute bis ü- ber 150 lm/W bei Beibehaltung eines Farbwiedergabeindex Ra > 80 langzeitstabil erzielt werden kann. Derartige Betriebsverfahren sind beispielsweise in EP 1560 472, EP 1 422 980, EP 1 729 324 und EP 1768 469 angegeben.
Unabhängig von der Formgebung der Wand zwischen den E- lektroden kann der Temperaturgradient bei hochbelasteten Brennern, die typisch eine Wandbelastung von mindestens 30 W/cm2 im Bereich der axialen Länge zwischen den Elekt- roden erreichen, durch die Wahl des Ansatzpunktes für die -A-
Kühlstruktur beeinflusst und eingestellt werden. Damit kann die Konstanz der Farbtemperatur und die Ausbeute der resultierenden Metallhalogenidlampe wesentlich verbessert werden .
Durch das Vermeiden eines Kontaktes zwischen Kühlstruktur und Abdichtung (meist eine Elektroden-Durchführungs- Kapillare) wird eine effektive Kühlung am Ansatzpunkt der Kühlstruktur gewährleistet und gleichzeitig ein Wärme- fluss auf die Abdichtung vermieden. Dies vermindert die Verluste an den Enden und erhöht den Temperaturgradienten im Bereich der Abdichtung.
Dies gilt insbesondere bei Metallhalogenidlampen, welche mindestens eines der Halogenide des Ce, Pr oder Nd, insbesondere zusammen mit Halogeniden des Na und/oder Li enthalten. Hier treten sonst Farbtemperaturschwankungen aufgrund von Destillationseffekten auf.
Bevorzugt ist auch die Anwendung bei Lampen mit hohem Aspektverhältnis von 2 bis 6 und bei Lampen mit Anregung von akustischen Resonanzen, die zur Aufhebung von longi- tudinaler Segregation in vertikaler Brennlage verwendet werden .
Insbesondere sind vorteilhaft die Abdichtungen als Kapillaren ausgeführt. Sie können aber auch anders ausgeführt sein, siehe beispielsweise DE-A 197 27 429, wo ein Cer- metstift verwendet wird.
Besonders gute Kühlwirkung lässt sich bei Lampen mit konstantem Innendurchmesser erzielen, wenn der Kühlring den gleichen maximalen Durchmesser wie der Endenbereich hat. Aber auch ein kleinerer Durchmesser kann ausreichen. Im allgemeinen hat der Kühlring einen Innendurchmesser von 1,1 bis 2 x DU (DU = Außendurchmesser der Kapillare) . Insbesondere ist seine Wandstärke etwa 0,3 bis 3 mm. Insbesondere kann die den Innendurchmesser mit dem Außen- durchmesser verbindende Stirnfläche abgeschrägt sein. Sie kann auch mit einer Beschichtung versehen sein. Die Be- schichtung sollte hochemissiv sein. Geeignete Materialien sind insbesondere Graphit oder Carbon, also andere Kohlenstoff-Modifikationen wie z.B. DLC (diamond-like car- bon) .
Generell kann das Kühlungsverhalten auch dadurch gesteuert werden, daß ein Teil des Ringes wie die Stirnfläche mit einer Beschichtung hoher Emissivität bedeckt ist.
Als Material des Kolbens kann PCA oder jede andere übli- che Keramik verwendet werden. Auch die Wahl der Füllung unterliegt keiner besonderen Einschränkung.
Entladungsgefäße für Hochdrucklampen mit annähernd gleichmäßiger Wanddickenverteilung und schlank auslaufenden Endenformen zeigen bisher abhängig von der Füllungs- Zusammensetzung eine teilweise hohe Farbstreuung durch die starke Verteilung der Metallhalogenid-Füllung im Inneren des Entladungsgefäßes. Typisch kondensiert die Füllung im Bereich hinter einer Linie, die durch Projektion der Elektrodenspitze auf die innere Brenner-Oberfläche bestimmt ist. Die Füllungspositionierung auf eine Zone der Oberfläche im Innern des Entladungsgefäßes, die einem engen Temperaturbereich entspricht, und in die Restvolumina der -eventuell vorhandenen- Kapillaren hinein ist bisher nicht hinreichend genau einstellbar. Bisherige Entladungsgefäße haben oft eine Form mit verstärkter Wanddicke an den Endflächen, z.B. bei zylindrischen Brennerformen, und erzeugen dadurch eine vergrößerte Endenoberfläche. Ein weiteres Problem ist die durch den wanddickenabhängigen spezifischen Emissionskoeffizienten der Keramik erhöhte Abstrahlung von IR-Strahlung beim Betrieb des Entladungsgefäßes im evakuierten oder gasgefüllten Außenkolben.
Hierdurch wird durch einen Wärmesenkeneffekt am Ende des Entladungsgefäßes der größte Teil der Füllung lokalisiert, die den Dampfdruck der verwendeten Metallhalogenide im Entladungsgefäß derart bestimmt, dass bei Keramiklampensystemen ein befriedigender Wert der Streuung der Farbtemperatur von höchstens 75 K für größere Lampengrup- pen gleicher Betriebsleistung einstellbar ist.
Bei kugeligen Entladungsgefäßen oder solchen mit Halbkugelendformen oder konisch zulaufenden Endenformen oder elliptisch ausgeformten Endenformen und zylindrischem Mittenteil mit einem relativ hohen Aspektverhältnis von IL/ID von etwa 1,5 bis 8 ergeben sich besonders gravierende Probleme. Aufgrund des sich verjüngenden Übergangs in den Bereich der Abdichtung, meist ein Kapillarbereich, ergeben sich teilweise unzureichende Kühlungseffekte am Ende des Entladungsgefäßes und damit eine unzureichende Festlegung der Temperatur, die für eine zielgenaue Füllungsablagerung in einem engen Temperaturbereich der Innenwandung nicht ausreicht.
Bei einer Brennergeometrie, die keine Kühlstruktur aufweist, siehe Figur 8, wird ein sehr kleiner Temperatur- gradient von Brennerkörper zur Verschluss-Struktur er- zeugt, was eine bevorzugte Destillation der Füllung in der Durchführungsstruktur zu Folge hat.
Bei einer Brennergeometrie, bei der die Abdichtung als massiver Stopfen ausgeführt ist, siehe Figur 9, wird ein vergrößerter Kühleffekt der Außenoberfläche erzeugt. Gleichzeitig wird aber auch eine große Wärmemenge in die angrenzende Abdichtung eingeführt, was eine vergrößerte Brennermasse und vergrößerte Wärmeleitungsverluste mit sich bringt.
Beide Lösungen haben Nachteile für die Leistungscharakteristik der Metallhalogenidlampe .
Eine weitere bekannte Lösung (Figur 10) sind Finnen oder flossenartige Ausformungen. Diese erhöhen zwar die kühlende Oberfläche, sie bilden jedoch eine Wärmebrücke zwi- sehen Brennerende und Abdichtung, insbesondere wenn kurze Kühlungslängen bevorzugt werden und die Kühlungsstruktur eine erhöhte Anzahl von Kühlrippen aufweist.
Diese Nachteile werden von der erfindungsgemäßen Kühlstruktur in Ringform vermieden. In einer bevorzugten Ausführungsform der Erfindung ist die Kühlstruktur ganz oder teilweise mit einer Beschichtung versehen. Sie besteht aus einem Material, das im Nahen Infrarot (NIR) , insbesondere im Wellenlängenbereich zwischen 1 und 3 μm, gegenüber dem keramischen Material der Kühlstruktur eine erhöhte hemisphärische Emissivität ε im Temperaturbereich zwischen 650 und 10000C aufweist. Die Beschichtung sollte vorzugsweise im Bereich des Überganges zwischen dem Ende des Entladungsgefäßes und der Abdichtung angebracht sein. AIs Beschichtungsmaterialien eignen sich hochtemperatur- feste Beschichtungen mit hemisphärischen Emissionskoeffizienten ε, wobei für ε bevorzugt gilt, dass ε ≥ 0,6. Darunter fällt Graphit, Mischungen von A12O3 mit Graphit, Mischungen von A12O3 mit Carbiden der Metalle Ti, Ta, Hf, Zr, sowie von Halbmetallen wie Si. Geeignet sich auch Mischungen, die noch zusätzlich andere Metalle zur Einstellung eventuell gewünschter elektrischer Leitfähigkeit enthalten .
Selbstverständlich können beide Maßnahmen miteinander geeignet kombiniert werden, so dass ein Teil der Oberflä- chenabstrahlungserhöhung über eine Vergrößerung der Oberfläche durch die Ringstruktur und gleichzeitig ein Teil durch die Beschichtung von Teilen dieser Ringstruktur o- der der angrenzenden kälteren Abdichtungsbereiche erfolgt.
Insgesamt ergeben sich eine Reihe von Vorteilen bei Verwendung eines integralen Kühlrings bei keramischen Entladungsgefäßen :
1. Effektivere Kühlung bei gleichzeitig relativ geringer zusätzlicher Keramikmasse;
2. Verringerung des longitudinalen Wärmeflusses in die Abdichtung;
3. deutlich vergrößerte Flexibilität der Oberflächen- einstellung im Endenbereich;
4. Verringerung der Abschattungseffekte im Raumwinkelbereich der Elektrodenzuführung; 5. Einstellbarkeit effektiver lokaler Thermostatwirkung mittels relativ kleiner Oberflächenbereiche.
Diese Eigenschaften sind insbesondere für hochbelastete Formen von Entladungsgefäßen mit kleiner Gesamtoberfläche und evtl. erhöhtem Aspektverhältnis wichtig, da unter diesen Voraussetzungen eine lokale Kühlung durch Wärme- fluss über relativ große Wandquerschnittsflächen schwierig wird.
Die Gesamtmasse des Entladungsgefäßes erhöht sich durch diese Art von Ringkühlung nur unwesentlich und bleibt damit unter einem kritischen Wert, der das Anlaufverhalten der Lampe bei der Zündung negativ beeinflussen würde. Es gibt somit einen ausgeklügelten Kompromiss zwischen guter Zündung und effektiver Kühlung. Diese Maßnahme erlaubt eine sehr hohe Farbstabilität unter der bewussten Inkaufnahme einer schlechten Isothermie. Dies geschieht in Abkehr von der bisherigen Zielsetzung möglichst guter Isothermie und erlaubt es, die Zone der Kondensation der Füllung exakt zu bestimmen durch bewusste Gestaltung ei- nes Temperaturgradienten.
Die Kühlwirkung lässt sich insbesondere steuern durch die maximale Höhe der Ringkühlung, insbesondere wenn sie am Endenbereich des Entladungsgefäß ansetzt, da je nach Ansatzhöhe die Ableitung von einem anderen Temperaturniveau aus erfolgt.
Ein besonderer Vorteil einer derartigen integralen Ringkühlung ist, dass sie nicht nur effektiv kühlt, sondern daß sie auch einfach herzustellen ist, wenn man moderne Fertigungsverfahren wie Spritzguss, Schlickerguss oder rapid prototyping verwendet. Kurze Beschreibung der Zeichnungen
Im Folgenden soll die Erfindung anhand mehrerer Ausführungsbeispiele näher erläutert werden. Die Figuren zeigen :
Fig. 1 eine Hochdruckentladungslampe mit Entladungsgefäß;
Fig. 2 ein Detail des Entladungsgefäßes aus Figur 1 in Perspektive (Fig. 2a) und in Längsschnitt (Fig 2b) ;
Fig. 3-4 ein weiteres Ausführungsbeispiel eines Endenbereichs eines Entladungsgefäßes;
Fig. 5-6 ein weiteres Ausführungsbeispiel eines Entladungsgefäßes;
Fig. 7 ein weiteres Ausführungsbeispiel eines Endenbereichs eines Entladungsgefäßes;
Figur 8-10 Ausführungsbeispiele eines Endenbereichs gemäß dem Stand der Technik;
Figur 11-13 weitere Ausführungsbeispiele eines Enden- Bereichs eines Entladungsgefäßes.
Bevorzugte Ausführungsform der Erfindung
Figur 1 zeigt eine Metallhalogenidlampe 1. Sie besteht aus einem rohrartigen Entladungsgefäß 2 aus Keramik, in das zwei Elektroden eingeführt sind (nicht sichtbar) . Das Entladungsgefäß hat einen zentralen Teil 5 und zwei Enden 4. An den Enden sitzen zwei Abdichtungen 6, die hier als Kapillaren ausgeführt sind. Bevorzugt ist das Entladungs- gefäß und die Abdichtungen integral aus einem Material wie PCA hergestellt.
Das Entladungsgefäß 2 ist von einem Außenkolben 7 umgeben, den ein Sockel 8 abschließt. Das Entladungsgefäß 2 ist im Außenkolben mittels eines Gestells, das eine kurze und lange Stromzuführung 11 a und IIb beinhaltet, gehaltert. An den Abdichtungen 6 sitzt jeweils eine Ringkühlungsstruktur 10, die um die Abdichtung umläuft.
Figur 2a zeigt eine Ringkühlungsstruktur 10 in perspekti- vischer Ansicht in Verbindung mit einer kurzen Abdichtung 16. Figur 2b zeigt einen Längsschnitt des Bereichs einer Abdichtung 16. Die Ringkühlungsstruktur 10 setzt im sich verjüngenden Endenbereich 4 des Entladungsgefäßes 2 an und umgibt die Abdichtung mit einigem Abstand.
Figur 3 zeigt eine Ringkühlungsstruktur 13, die statt eines konstanten Innendurchmessers und Außendurchmessers sichelförmig oder auch halbkreisförmig ausgeschnittene Strukturen 19 besitzt, die außen am Ring 13 ansetzen. Somit ist der Innendurchmesser ID zwar konstant, aber der Außendurchmesser AD variiert periodisch.
Schließlich ist es auch möglich, dass kleine Aussparungen 20 die Ringstruktur 13 unterbrechen, siehe Figur 4. Dies zielt darauf ab, die abstrahlende Oberfläche zu vergrößern. Die Anzahl der Aussparungen beträgt vorteilhaft bis drei, wie hier gezeigt.
Figur 5 zeigt ein Entladungsgefäß 2, bei dem die Abdichtung durch eine Kapillare realisiert ist. Der Kühlring 13 weist eine Aussparung 20 auf. Mit Aussparung ist hier eine Unterbrechung gemeint, deren Winkellänge sehr klein im Vergleich zur Winkellänge des verbleibenden Ringes ist.
Die Aussparungen machen zusammen typisch höchstens 10 % der gesamten Winkellänge von 360° aus. Dieser Wert ist deshalb möglichst niedrig zu wählen, weil die Unterbre- chungen die Kühlleistung mindern. Derartige konzentrische oder teilweise konzentrisch angeordnete
(teil) zylindrische Ansätze des Kühlrings im Bereich der sich verjüngenden Innenkontur bilden eine Kühlstruktur, ohne dass dies longitudinal in Richtung der Brennerachse einen Wärmefluss zum Brennerendenbereich bewirkt.
Durch Ansatzort, Wandstärke und Höhe des Kühlrings lässt sich der Kühleffekt auf der Oberflächenzone des Brennergefäßes lokal einstellen und auf die jeweiligen Erfordernisse maßschneidern .
Der Ansatzpunkt des Kühlrings auf dem sich verjüngenden Endenbereich 4 ist gegeben ist durch den Innendurchmesser DRI, wobei DRI im Bereich zwischen 95% und 25% des Maximaldurchmessers Dmax des Entladungsgefäßes liegt. Bevorzugt liegt DRI zwischen 80% und 25% von Dmax. Die Wand- stärke TH des sich verjüngenden Endenbereichs 4 ist häufig, wie hier gezeigt, nicht konstant. Bevorzugt wird die Orientierung der ringförmig angeordneten Kühlstruktur derart gewählt (Figur 6) , dass der Ansatzpunkt der Ringstruktur außerhalb der engsten Stelle E des sich verjün- genden Endenbereich 4 liegt. Häufig ist der Eingang der Kapillare als ebene Fläche 25 ausgebildet, die quer zur Lampenachse liegt, wodurch eine engste Stelle sich zwangsläufig ergibt. DRA ist der Außendurchmesser der Ringstruktur . Die minimale Wandstärke im Endenbereich besitzt bevorzugt 20-80% der maximalen Wandstärke im Endenbereich, wie sie insbesondere am Beginn der Verjüngung auftritt.
WD ist die Wandstärke im Zentrum des Entladungsgefäßes. Die Ringstruktur 13 sollte möglichst vermeiden, dass im sich verjüngenden Endenbereich 4 eine Wandstärke TH > WD auftritt, da sonst ein erhöhter Wärmefluss in die Kapillarquerschnittsfläche erfolgt und dies zu erhöhten Wärmeleitungsverlusten führen kann.
Figur 7 zeigt ein Ausführungsbeispiel eines Entladungsgefäßes 30, bei dem das Ende 31 des Entladungsgefäßes sich nicht verjüngt, sondern das Entladungsgefäß einen konstanten Durchmesser DD aufweist. Die Kapillare 6 sitzt in einem Stopfen 32. Die Ringstruktur ist als weiteres stop- fenartiges zylindrisches Teil 33 zwischen Stopfen 32 und Ende 31 des Entladungsgefäßes eingesetzt und jeweils mit Stopfen 32 und Entladungsgefäß 30 versintert.
Integrale Kühlstrukturen sollten in etwa achsparallel sein, damit sie leicht zu fertigen sind. Vorteilhaft sind jedoch in ihrer Geometrie modifizierte Kühlstrukturen, die von der Achsparallelität abweichen. Damit wird eine Rück-Reflexion auf das Ende des Entladungsgefäßes, insbesondere auf die Kapillare elegant und effektiv vermieden. Figur 11 zeigt ein Ausführungsbeispiel, bei dem eine Ringstruktur 39 einen achsparallelen Grundkörper 40 hat, der einen Stopfen umgibt, und der einen von der Achse nach außen geneigten Abstrahlungskörper in Gestalt einer abstehenden umlaufenden Finne oder auch einzelner Stacheln 41 hat. Es können auch mehrere Stacheln axial hintereinander auf einem Grundkörper angeordnet sein. Bevorzugt ist die Ablenkung des Abstrahlungskörpers gegen die Längsachse etwa 90°, um Rückreflexion auf die Kapillare 6 weitestgehend zu vermeiden. Vorteilhaft ist, dass die abstehende Länge AB deutlich den Durchmesser DU des Entladungsgefäßes 38 verlängert um jegliche Rückreflexion zu minimieren.
Figur 12 zeigt ein Ausführungsbeispiel, bei dem am Grundkörper 40 ein tellerartiges Endteil als Abstrahlkörper 43 angesetzt ist, das etwa einen Winkel von 45° zur Längsachse bildet.
Figur 13 zeigt ein Ausführungsbeispiel, bei dem das Problem der Rückreflexion auf andere Weise gelöst worden ist. Hier ist die Ringstruktur am entladungsfernen Ende spitz zulaufend, so dass ihre innenliegende Wandseite, die zur Kapillare zeigt, so abgeschrägt (44) ist, dass die abgegebene Strahlung nach Reflexion an der Kapillare schräg nach außen gelangt. Zur verbesserten Unterdrückung der schädlichen IR-Strahlung sind außerdem bevorzugt auf mindestens einer der beiden Flächen Kapillare und/oder Innenseite der Ringstruktur eine IR-reflektierende Beschichtung 50 wie an sich bekannt aufgebracht.

Claims

Ansprüche
1. Hochdruckentladungslampe mit einem keramischen längsgestreckten Entladungsgefäß mit einem zentralen Teil und zwei Enden und einer Achse, wobei die Enden durch Abdichtungen verschlossen ist, wobei Elektroden in den Abdichtungen verankert sind, die sich in das vom Entladungsgefäß umhüllte Entladungsvolumen erstrecken, wobei eine Füllung, die Metallhalogenide enthält, im Entladungsvolumen untergebracht ist, dadurch gekennzeichnet, dass an mindestens einem Ende eine Ringstruktur sitzt, die beabstandet von der Abdichtung ist und die um die Abdichtung herumläuft.
2. Hochdruckentladungslampe nach Anspruch 1, dadurch ge- kennzeichnet, dass zumindest ein Grundkörper (40) der Ringstruktur sich achsparallel nach außen erstreckt.
3. Hochdruckentladungslampe nach Anspruch 1, dadurch ge- kennzeichnet, dass das Ende sich verjüngt und die
Ringstruktur im sich verjüngenden Endenbereich ansetzt .
4. Hochdruckentladungslampe nach Anspruch 1, dadurch ge- kennzeichnet, dass das Entladungsgefäß ein Aspektverhältnis von 1,5 bis 8 besitzt.
5. Hochdruckentladungslampe nach Anspruch 1, dadurch ge- kennzeichnet, dass die Ringstruktur außerhalb der engsten Stelle des Endenbereichs ansetzt.
6. Hochdruckentladungslampe nach Anspruch 1, dadurch ge- kennzeichnet, dass der Außendurchmesser der Ringstruktur konstant ist oder periodisch variiert.
7. Hochdruckentladungslampe nach Anspruch 1, dadurch ge- kennzeichnet, dass die Abdichtungen als Kapillaren ausgeführt sind.
8. Hochdruckentladungslampe nach Anspruch 1, dadurch ge- kennzeichnet, dass die Ringstruktur maximal drei Unterbrechungen besitzt.
9. Hochdruckentladungslampe nach Anspruch 1, dadurch gekennzeichnet, dass die Wandstärke der Ringstruktur im Bereich von 0,5 bis 3 mm liegt.
10. Hochdruckentladungslampe nach Anspruch 9, dadurch gekennzeichnet, dass die Stirnseite der Ringstruktur abgeschrägt ist und insbesondere mit einer Beschich- tung versehen ist.
11. Hochdruckentladungslampe nach Anspruch 2, dadurch gekennzeichnet, dass die Ringstruktur einen achsparallelen Grundkörper sowie einen von der Längsachse nach außen geneigten Abstrahlkörper besitzt.
EP08803097A 2007-09-21 2008-08-19 Hochdruckentladungslampe Not-in-force EP2201596B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007045079A DE102007045079A1 (de) 2007-09-21 2007-09-21 Hochdruckentladungslampe
PCT/EP2008/060860 WO2009040193A2 (de) 2007-09-21 2008-08-19 Hochdruckentladungslampe

Publications (2)

Publication Number Publication Date
EP2201596A2 true EP2201596A2 (de) 2010-06-30
EP2201596B1 EP2201596B1 (de) 2012-12-05

Family

ID=40380269

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08803097A Not-in-force EP2201596B1 (de) 2007-09-21 2008-08-19 Hochdruckentladungslampe

Country Status (7)

Country Link
US (1) US20100308706A1 (de)
EP (1) EP2201596B1 (de)
JP (1) JP2010539665A (de)
CN (1) CN101802974A (de)
DE (1) DE102007045079A1 (de)
TW (1) TW200921749A (de)
WO (1) WO2009040193A2 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009029867A1 (de) * 2009-06-22 2010-12-23 Osram Gesellschaft mit beschränkter Haftung Hochdruckentladungslampe
DE102012213191A1 (de) * 2012-07-26 2014-01-30 Osram Gmbh 2hochdruckentladungslampe

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5753059A (en) * 1980-09-17 1982-03-29 Matsushita Electronics Corp High pressure sodium vapor lamp
GB8519582D0 (en) * 1985-08-03 1985-09-11 Emi Plc Thorn Discharge lamps
US4823050A (en) * 1986-09-18 1989-04-18 Gte Products Corporation Metal-halide arc tube and lamp having improved uniformity of azimuthal luminous intensity
US4970431A (en) 1987-11-03 1990-11-13 U.S. Philips Corporation High-pressure sodium discharge lamp with fins radially extending from the discharge vessel for controlling the wall temperature of the discharge vessel
US4983889A (en) * 1989-05-15 1991-01-08 General Electric Company Discharge lamp using acoustic resonant oscillations to ensure high efficiency
EP0506182B1 (de) 1991-03-28 1996-09-11 Koninklijke Philips Electronics N.V. Hochdruck-Gasentladungslampen
DE4242123A1 (de) * 1992-12-14 1994-06-16 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Hochdruckentladungslampe mit einem keramischen Entladungsgefäß
JP3189661B2 (ja) * 1996-02-05 2001-07-16 ウシオ電機株式会社 光源装置
JPH11238488A (ja) * 1997-06-06 1999-08-31 Toshiba Lighting & Technology Corp メタルハライド放電ランプ、メタルハライド放電ランプ点灯装置および照明装置
DE19727429A1 (de) 1997-06-27 1999-01-07 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Metallhalogenidlampe mit keramischem Entladungsgefäß
JPH11283573A (ja) * 1998-03-30 1999-10-15 Toshiba Lighting & Technology Corp 高圧放電ランプ及び照明装置
EP1182681B1 (de) * 2000-08-23 2006-03-01 General Electric Company Spritzgegossene Keramik-Metallhalogenidbogenröhre mit einem nicht-konischen Ende
EP1393347A1 (de) * 2001-05-10 2004-03-03 Koninklijke Philips Electronics N.V. Hochdruck-gasentladungslampe
US7233109B2 (en) * 2002-01-16 2007-06-19 Koninklijke Philips Electronics, N.V. Gas discharge lamp
CA2422433A1 (en) * 2002-05-16 2003-11-16 Walter P. Lapatovich Electric lamp with condensate reservoir and method of operation thereof
DE10253904A1 (de) * 2002-11-19 2004-06-03 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Betriebsverfahren und System für den Resonanzbetrieb von Hochdrucklampen im longitudinalen Mode
JP3855955B2 (ja) * 2003-03-28 2006-12-13 セイコーエプソン株式会社 光源装置及びプロジェクタ
JP4273912B2 (ja) * 2003-10-07 2009-06-03 ウシオ電機株式会社 光源装置
DE102004004828A1 (de) 2004-01-30 2005-08-18 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Betriebsverfahren für den Resonanzbetrieb von Hochdrucklampen im longitudinalen Mode und zugehöriges System und EVG
US7030543B2 (en) * 2004-02-24 2006-04-18 Osram Sylvania Inc. Reflector lamp having reduced seal temperature
DE102005025155A1 (de) * 2005-06-01 2006-12-07 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Hochdrucklampe und zugehöriges Betriebsverfahren für den Resonanzbetrieb von Hochdrucklampen im longitudinalen Mode und zugehöriges System
EP1768469B1 (de) 2005-09-23 2012-01-04 Osram AG Verfahren zum Betreiben einer Hochdruckentladungslampe
DE102006002261A1 (de) * 2006-01-17 2007-07-19 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Hochdruckentladungslampe
US7728495B2 (en) * 2007-08-01 2010-06-01 Osram Sylvania Inc. HID lamp with frit seal thermal control

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009040193A2 *

Also Published As

Publication number Publication date
JP2010539665A (ja) 2010-12-16
US20100308706A1 (en) 2010-12-09
EP2201596B1 (de) 2012-12-05
TW200921749A (en) 2009-05-16
DE102007045079A1 (de) 2009-04-02
WO2009040193A2 (de) 2009-04-02
WO2009040193A3 (de) 2009-06-04
CN101802974A (zh) 2010-08-11

Similar Documents

Publication Publication Date Title
EP0570772B1 (de) Hochdruckentladungslampe
DE69111799T2 (de) Kolbengeometrie für metallhalogenidentladungslampe mit geringer leistung.
DE4203183C2 (de) Glühkerze mit keramischer Heizeinrichtung
DE69805390T2 (de) Metalldampfentladungslampe
DE69600960T2 (de) Hochdruckentladungslampe
DE19645960A1 (de) Keramisches Entladungsgefäß
EP0703600B1 (de) Hochdruckentladungslampe
DE2623099A1 (de) Kurzbogenentladungslampe
EP0839381B1 (de) Reflektorlampe
EP1974367B1 (de) Hochdruckentladungslampe mit am ende des entladungsgefässes angebrachten kühllamellen
EP0602529B1 (de) Hochdruckentladungslampe mit einem keramischen Entladungsgefäss
EP0451647B1 (de) Hochdruckentladungslampe und Verfahren zu ihrer Herstellung
DE19727430A1 (de) Metallhalogenidlampe mit keramischem Entladungsgefäß
EP2020018A1 (de) Hochdruckentladungslampe
EP2201596B1 (de) Hochdruckentladungslampe
DE69109101T2 (de) Metallhalogenidentladungslampe mit bestimmtem schaftlastfaktor.
DE3110872C2 (de) Alkalimetalldampflampe
EP0825636B1 (de) Hochdruckentladungslampe
WO2010149458A1 (de) Hochdruckentladungslampe
DE69825035T2 (de) Hochdruck-Entladungslampe
DE20106002U1 (de) Metallhalogenidlampe mit keramischem Entladungsgefäß
DE69937710T2 (de) Zweiseitig gesockelte Metallhalogenidlampe niedriger Leistung
EP1730766A2 (de) Elektrodensystem für eine hochdruckentladungslampe
EP2281298B1 (de) Hochdruckentladungslampe
WO2005101455A2 (de) Hochdruckentladungslampe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100211

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: STOCKWALD, KLAUS

Inventor name: SCHALK, BERNHARD

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM AG

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 587667

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121215

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: OSRAM GMBH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008008838

Country of ref document: DE

Effective date: 20130131

REG Reference to a national code

Ref country code: AT

Ref legal event code: HC

Ref document number: 587667

Country of ref document: AT

Kind code of ref document: T

Owner name: OSRAM GMBH, DE

Effective date: 20130204

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: OSRAM GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130316

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130305

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20121205

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130405

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130305

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130405

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502008008838

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM AG, 81543 MUENCHEN, DE

Effective date: 20121212

Ref country code: DE

Ref legal event code: R081

Ref document number: 502008008838

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GMBH, 81543 MUENCHEN, DE

Effective date: 20130823

Ref country code: DE

Ref legal event code: R081

Ref document number: 502008008838

Country of ref document: DE

Owner name: LEDVANCE GMBH, DE

Free format text: FORMER OWNER: OSRAM GMBH, 81543 MUENCHEN, DE

Effective date: 20130823

Ref country code: DE

Ref legal event code: R081

Ref document number: 502008008838

Country of ref document: DE

Owner name: LEDVANCE GMBH, DE

Free format text: FORMER OWNER: OSRAM AG, 81543 MUENCHEN, DE

Effective date: 20121212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

26N No opposition filed

Effective date: 20130906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008008838

Country of ref document: DE

Effective date: 20130906

BERE Be: lapsed

Owner name: OSRAM A.G.

Effective date: 20130831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130819

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130902

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 587667

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080819

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130819

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502008008838

Country of ref document: DE

Owner name: LEDVANCE GMBH, DE

Free format text: FORMER OWNER: OSRAM GMBH, 80807 MUENCHEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20171030

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008008838

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190301