EP2198319B1 - Système et procédé de communication faisant appel à une antenne réseau à commande de phase active - Google Patents

Système et procédé de communication faisant appel à une antenne réseau à commande de phase active Download PDF

Info

Publication number
EP2198319B1
EP2198319B1 EP08808016.3A EP08808016A EP2198319B1 EP 2198319 B1 EP2198319 B1 EP 2198319B1 EP 08808016 A EP08808016 A EP 08808016A EP 2198319 B1 EP2198319 B1 EP 2198319B1
Authority
EP
European Patent Office
Prior art keywords
radiators
phased array
radiation
arrays
array antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08808016.3A
Other languages
German (de)
English (en)
Other versions
EP2198319A2 (fr
EP2198319A4 (fr
Inventor
Alberto Milano
Hillel Weinstein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beam Semiconductor Ltd
Original Assignee
Beam Semiconductor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beam Semiconductor Ltd filed Critical Beam Semiconductor Ltd
Publication of EP2198319A2 publication Critical patent/EP2198319A2/fr
Publication of EP2198319A4 publication Critical patent/EP2198319A4/fr
Application granted granted Critical
Publication of EP2198319B1 publication Critical patent/EP2198319B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array

Definitions

  • the present invention relates generally to the field of broadband access and more particularly to a wireless communication method and system using an active phased array antenna to be used in systems like WI-MAX, WIFI, WPAN, cellular communication and the like.
  • WI-MAX was defined as Worldwide Interoperability for Microwave Access by the WI-MAX forum that was acting to promote conformance and interoperability of the IEEE 802.16 standard.
  • MIMO Multiple In Multiple Out
  • MIMO suffers from some prominent drawbacks mainly due to its relative high cost.
  • MIMO as other technologies being in use for WIMAX WIFI, WPAN and cellular communications does not offer a system and method to cope with dynamic changes of required bandwidth and does not offer an efficient method to enable precise directional transmission and receiving.
  • WI-FI IEEE 802.11
  • WPAN IEEE802.153C
  • common cellular communication protocols and other methods and protocols as well.
  • the present invention is designed to solve similar problems for such and other like now known or later developed communications methods and protocols.
  • WO 2007/052247 relates to transmitter/receiver modules for phased array antennas and to imaging radars generally, and more particularly to push-push oscillators and injection locked push-push oscillators for phased array antennas to reduce the cost and improve the performance of conventional phased array antennas.
  • WO 2008/135971 relates to a broadband wireless area network communication system comprising at least one phased array antenna frame connected to a phased array antenna circuit adapted to control phase shifts to improve the antenna beam focus together with the ability of wide beam steering of the antenna.
  • a switchable four-sector shaped-beam antenna for millimeter-wave broadband access adapted to achieve 156 Mbps data transmission rate is described by Yasuhi Murakami et al. in a paper entitled "A Four-Sector Shaped-Beam Antenna for 60 GHz Wireless LANs" published in IEICE Trans. Electron. Vol. E82-C, No. 7 July 1999, pages 1293-1299 .
  • This antenna has a plateau configuration whose four side walls have four linearly arranged patch arrays antennas which excite a shaped-beam in the elevation plane with right-handed circular polarization.
  • WO 01/18912 relates to an antenna array presenting an optimum sparse design for radio base stations for communication systems, wherein the radiating elements of the array are arranged in a triangular lattice for improved beam scanning.
  • An aspect of an embodiment of the invention relates to a system and method for performing wireless communication between objects spaced a distance from a few meters to a number of kilometers by transmitting and receiving electronic signals via active phased array antenna systems. For example communication between a cellular station and plurality of cellular phone devices, WIMAX, WIFI, WPAN, cell phone communication between a control station and a car control unit, HDTV transmission from a TV Set Top Box (STB) to HDTV Receivers, and the like.
  • STB TV Set Top Box
  • an antenna unit consisting of four one-dimensional phased arrays of radiators enables communication (transmitting and receiving) with a plurality of devices, wherein the antenna unit is switching among plurality of radiation modes for enabling efficient transmission (or receiving) to specific devices that are located in a wide angle around the antenna unit.
  • the dimensional arrays of radiators are linear.
  • the phased array antenna unit is positioned in a vertical orientation.
  • the dimensional arrays of radiators are symmetric.
  • the dimensional arrays of radiators are linear and symmetric.
  • the even dimensional arrays of radiators are shifted with reference to the odd one dimensional arrays of radiators by about half of the distance between two adjacent radiators.
  • the one or more phased array antenna units comprise four or more radiators, wherein one of two or more groups of radiators is defined as a reference group and two or more of the four or more groups of radiators are controlled by the phased array circuit to transmit and receive with a programmable phase shift relative to said reference group.
  • each group of radiators comprises at least one dimensional array of radiators.
  • the programmable phase shift is +180 or -180 degrees.
  • the system is selectively switching between three or more radiation modes, where a radiation mode is defined according to the number of groups of radiators that transmit and receive each in a different phase shift and according to the programmable phase shift that is associated with each group of radiators.
  • selectively switching between the three or more radiation modes enables communication with objects over a substantially wide horizontal angle.
  • the wide horizontal angle is greater than 90 degrees.
  • selectively switching between the three or more radiation modes depends on signal level received in the three or more radiation modes.
  • the phased array circuit controls the phased array antenna unit to radiate in a vertical beam aperture.
  • the narrow vertical beam aperture is steered vertically according to a programmable pattern.
  • the phased array circuit includes two levels of PSIPPO; and the narrow vertical beam aperture is steered vertically according to a programmable pattern by providing control signals to the two levels of PSIPPO.
  • the communication system is used for outdoor communication.
  • the communication system is used for indoor communication.
  • the one or more phased array antenna units for transmission and reception of radiated electronic signals transmits or receives various now known or later developed communications protocols and methods.
  • Such can include, for example, WIMAX or WIFI or HDTV or cellular communication compliant data signals, or any combination thereof.
  • the system comprises four phased array antennas, positioned in a substantially rectangle structure to cover a 360 degrees of the area surrounding the antennas.
  • the applications describe circuits, which can be implemented as low cost and small sized circuits or manufactured as integrated chips to generate and control the signals transmitted and detected by phased array antennas.
  • the current application implements the concepts described in the above applications to provide suitable active phase array antennas for implementing the current invention as further described below.
  • Fig 1A shows a radiating part of an active phased array antenna (APAA) (referred to as “antenna unit”) 100 that includes four or more one-dimensional arrays of radiators (referred to as “radiators”) 110, 115, 120, 125, which can be implemented using microstrip technology, located on a rectangular casing 105, consisting on a dielectric substrate with the related base plate.
  • the entire antenna array specifically described in Fig. 1A consists of 64 radiators marked as A1 to A16, B1 to B16, C1 to C16 and D1 to D16. However, different numbers of radiators may be used depending on the required power output and precision.
  • Each radiator is shaped as a hexagonal patch, for example radiator A1, 130.
  • Each radiator has a feeder (an I/O port that conveys the electromagnetic wave to and from the radiator) 135, 145, 155, 165 either at the upper vertex of the radiator (e.g. A1 to A16, C1 to C16), or at the lower vertex of the radiator (e.g. B1 to B16, D1 to D16).
  • the hexagonal shape of the radiator has been shown by simulation to provide better results than a square radiator or a circular radiator, in terms of transmission gain and/or receiving gain and also by providing relatively good isolation between adjacent radiators. However, different geometrical shapes may be selected.
  • the one dimensional array of radiators that is shown in fig. 1A is linear (radiators are located along a straight line) and symmetric (equal distances between radiators), in another exemplary embodiments according to the invention the one dimensional array of radiators may be non linear or not symmetric.
  • the positioning of the radiator's feeder forms a symmetric structure, in the first and third one-dimensional array of radiators the radiator's feeders are located at the upper vertex of the hexagonal patch, while at the second and fourth one-dimensional array of radiators the radiator's feeders are located at the lower vertex of the patch. It should be noted that this symmetric positioning of the radiator's feeder optionally contributes to achieving a symmetrical radiation pattern.
  • radiator B1 140 is not shown under radiator A1 130 but between radiator A1 and A2.
  • Fig. 1A shows the antenna casing 105 in horizontal orientation
  • the antenna will be positioned vertically, i.e. radiators A1, B1, C1, and D1 will be located at the upper end of the antenna and radiators A16, B16, C16 and D16 will be positioned at the lower end of the antenna.
  • Fig. 1B shows the antenna casing 105 in horizontal orientation
  • the antenna dimensions depend on the wave's frequency and the dielectric constant of the substrate. However, for use in some applications, such as for example, WI-MAX application, the radiators dimensions will typically not exceed a few centimeters.
  • production of the multiple radiation modes by antenna 100 is defined by the relative phase shift to a signal among the four one-dimensional arrays of radiators 110, 115, 120, 125.
  • a first radiation mode is defined by providing the following phase shift pattern to the four one-dimensional arrays of radiators 110, 115, 120, 125.
  • the first one-dimensional array of radiators 110 gets a 0 degree phase shift - this array serves as a reference array.
  • the second one-dimensional array of radiators 115 gets the same phase shift of 0 degrees as the first array.
  • the same applies for the fourth one-dimensional array which is also shifted 180 degrees with reference to the first one-dimensional array of radiators.
  • the transmission and receiving is split between transmitting radiators and receiving radiators.
  • Deployment of different radiators for transmission and receiving may be carried out in various topologies, such as separating the functions to two different phased array units or alternatively define sub groups of the radiators in a phased array unit for transmission while the complementary sub group is used for receiving.
  • Fig. 2A shows a schematic view of the polar 205, and Cartesian representation 210 of the radiation pattern at the first radiation mode indicating on the azimuth coverage of the antenna, according to an exemplary embodiment of the invention.
  • the azimuth angle that is covered by beam 205 is a substantially planar shaped beam, which has a vertical dimension of about 5 degrees of aperture. This narrow aperture angle depends on the number of radiators in a single one dimensional array.
  • Fig. 2A further shows a Cartesian graph 210 which describes the antenna gain (dB) versus azimuth.
  • the system is able to conduct a vertical steering of the radiation pattern, giving the phase 0 or 180 degrees to the radiators Ak, Bk, Ck Dk; and adding phases equally linearly distributed to the radiators of each one dimensional array. This way the proper elevation angle will be covered. Azimuth coverage by three antenna radiation modes, together with elevation by electronic steering of the phased array antenna, will enable the system to cover a wide solid angle, with high power density of the transmitted signal.
  • Fig. 2A shows that the first radiation mode creates two main lobes that cover an angle of about 100 degrees .However, this first radiation mode provides best coverage at two maximum points (forming the two lobes) and weaker coverage at the mid section - between the two main lobes. Optionally, as described below other radiation modes will be used to enhance coverage in the areas where the beam 205 of the first radiation mode is not at its best.
  • the first radiation mode is achieved by providing the following phase shifts to the four one-dimensional arrays of radiators 110, 115, 120, 125.
  • the first one-dimensional array of radiators 110 which serves as a reference gets a 0 degrees phase shift
  • the second one-dimensional array of radiators 115 gets the same phase shift (i.e. 0 degrees) with reference to the first one-dimensional array of radiators 110.
  • the third one-dimensional array of radiators 120 gets a 180 degrees shift with reference to the first one-dimensional array of radiators 110.
  • the fourth one-dimensional array of radiators 125 also gets a 180 degrees shift with reference to the first one-dimensional array of radiators 110 (i.e. same phase shift as the third one-dimensional array of radiators).
  • Fig 2B shows the polar 230, and Cartesian 235 representation of the radiation pattern of the second radiation mode, so that the azimuth coverage of the second radiation mode can be appreciated, according to an exemplary embodiment of the invention.
  • the second radiation mode is achieved by providing the following phase shifts to the four one-dimensional arrays of radiators 110, 115, 120, 125.
  • the first one-dimensional array of radiators 110 which serves as a reference gets a 0 degrees phase shift
  • the second one-dimensional array of radiators 115 gets a 180 degrees phase shift with reference to the first one-dimensional array of radiators.
  • the third one-dimensional array of radiators 120 gets a 0 degrees shift, i.e. the same phase that is provided to the first one-dimensional array of radiators 110.
  • the fourth one-dimensional array of radiators 125 gets a phase shift of 180 degrees with reference to the first one-dimensional array 110.
  • Fig. 2B further shows a Cartesian graph 235 which describes the antenna gain (dB) versus azimuth.
  • Fig. 2B shows that the second radiation mode provides transmission and reception coverage in one main lobe.
  • the vertical beam angle of the second radiation mode has the same narrow aperture of about 5 degrees.
  • Fig 2C shows the polar 260, and Cartesian representation 265 of the radiation pattern of the third radiation mode, indicating on the azimuth coverage of the third radiation mode, according to an exemplary embodiment of the invention.
  • the third radiation mode is achieved by providing the following phase shifts to the four one-dimensional arrays of radiators:
  • the first one-dimensional array of radiators 110 which serves as a reference gets a 0 degrees phase shift
  • the second one-dimensional array of radiators 115 gets a 180 degrees phase shift with reference to the first one-dimensional array of radiators.
  • the third one-dimensional array 120 gets a 180 degrees shift.
  • the fourth one-dimensional array of radiators 125 gets a phase shift of 0 degrees with reference to the first one-dimensional array of radiators 110, i.e. the same phase that is provided to the first one-dimensional array of radiators 110.
  • Fig. 2C further shows a Cartesian graph 265 which describes the antenna gain (dB) versus azimuth.
  • Fig. 2C shows that the third radiation mode provides transmission and reception coverage in two main lobes which provide optimal coverage of the gap between the area covered by the first and second radiation modes.
  • the vertical beam angle of the third radiation mode has the same narrow aperture of about 5 degrees.
  • Fig. 2D shows the coverage that is provided by the summation of all the three modes. It shows that the summation of the three modes, polar view 280, and Cartesian view 285 provides a good coverage of a section that is greater than 90 degrees wide.
  • the APAA system will switch between less than three modes or more than three modes.
  • the APAA system may provide a phase shift that is greater or smaller than 180 degrees to the one-dimensional arrays of radiators.
  • the APAA system may include more or less than four one-dimensional arrays of radiators.
  • the APAA system may include various combinations of radiators other than one-dimensional arrays of radiators, where any sub-group (referred to as group) of the radiators will be associated with a programmable phase shift with reference to any reference sub-group.
  • the antenna unit may include eight one-dimensional arrays of radiators, wherein the first and second one-dimensional arrays of radiator will consist a first group of radiators, the third and fourth one-dimensional arrays of radiator will consist a second group of radiators, the fifth and sixth one-dimensional arrays of radiator will consist a third group of radiators, the seventh and eighth one-dimensional arrays of radiator will consist a fourth group of radiators.
  • the antenna unit may consist of N (integer practically greater than eight) radiators located at any possible geometry, where the system is selectively switching between radiation modes, wherein a radiation mode is defined by the number of groups and the phase shift that is associated with each group.
  • the system switches among the three radiation modes.
  • the switching may be a periodic switching pattern or any desired pattern.
  • the system is able to alter the switching pattern to accommodate dynamic situations, for example when receiving or transmitting sources join or leave the area that is covered by the system, or when different needs and priorities are required.
  • alteration of the switching pattern provides priority in coverage of one area over another, for example to increase the bandwidth to a specific client device.
  • Fig. 3A is an exemplary illustration of the base of a circuit for providing a radiation signal to an array of radiators, according to an exemplary embodiment of the invention.
  • the circuit uses an oscillator unit 305 whose output splits to eight branches through the splitting elements 306 - 312, called "manifold".
  • the signals then arrive to a first level of PSIPPO (phase shift push-push oscillator) 320 - 327.
  • PSIPPO phase shift push-push oscillator
  • the radiation pattern, (beam) will be a flat kind of "fan” as described in Fig.2A 2B and 2C and referenced by the numerals 205, 230, and 260 respectively, which has its symmetry axis perpendicular to the antenna surface.
  • the signals exiting the first level of PSIPPO are split by another level of splitting elements 330 - 337 and proceeds to a second level of PSIPPO 340 - 355 which contributes in steering the beam in elevation.
  • Fig. 3A shows the components of the system, starting from the Master Oscillator 305 at very low frequency, then the power splitters of the manifolds 306-312, the PSIPPO of the two levels 320-327 and 340-355, till the mixers 361a-361p that are behaving as Up-Converters or Down-Converters, depending on the position of the switches 380a-380d and 383a-383d located near the radiators and depicted in Fig. 3B .
  • the two levels of PSIPPO 320-327 and 340-355 are provided with control signals (as shown with the corresponding arrows) that can define a programmable pattern for steering the vertical beam aperture.
  • Fig. 3A In the general case, transmitting or receiving by a 16X4 radiators antenna would require the use of four circuits as shown in Fig 3A .
  • Fig. 3B using the schematic of Fig. 3B the system becomes less expensive and more effective.
  • Fig. 3B with the two levels of switched lines of the upper and lower paths, is able to deliver to the radiators Ak, Bk, Ck, Dk signals with phases of 0 degrees or phased by 180 degrees. That means: only one subsystem of Fig. 3A will be sufficient to feed all the signals required by the three antenna modes.
  • the signals coming from the second level of PSIPPO 340-355 are the pump signals able to Up-Convert, (or Down-Convert), the base band signals entering the mixers through the IF port, (or the RF signal coming from the radiators, entering the mixers through the RF port).
  • amplifiers 360a-360p can be provided between the second level of PSIPPO 340-355 and the mixers 361a-361p, respectively. The fact that the same signals, with the same phases, are used for transmitting and receiving operations, secures the same direction of the beam in transmission and reception.
  • Fig 3B shows a low cost, simple circuit that enables to provide a phase shifted signal to four one dimensional arrays of four radiators, each one belonging to one of the 4 different linear arrays, each containing 16 elements, at the same position in the array.
  • the circuit that is shown in fig. 3B is duplicated sixteen times, corresponding to the 16 positions of the patches in a single array, and is connected to each of the mixers 361a-361p via 362a-362p, respectively.
  • Fig. 3B includes three identical switch paths the first includes a delay element 373 and two switches 372 and 374.
  • the second switch path includes a delay element 378b and two switches 377b and 379b and the third switch path includes a delay element 378d and two switches 377d and 379d.
  • the circuit further includes four direction sub circuits each including the switches 380, 383 and the amplifiers 381, 382 wherein the index a-d indicates the sub circuit respectively.
  • a phase shift of 180 degrees should be provided to both the third and fourth one-dimensional arrays of radiators, while a phase shift of 0 degrees should be provided to both the first and second one-dimensional arrays of radiators. This is implemented by selecting the following paths in Fig. 3B :
  • delay elements 373, 378b and 378d are simple and low cost transmission lines, and paths 391a, 390a, 390b, 390 and 390d are also simple transmission lines.
  • the electrical difference between the first and the second group of lines is 180 degrees.
  • the usage of electronic switches and transmission lines, instead of using multiple subsystem of Fig. 3A reduces both cost and size of the entire system.
  • Fig. 4 shows an APAA system 400 according to an exemplary embodiment of the present invention.
  • the system consists of four phased array antenna units 410, 415, 420 and 425 each located on a different side of a pole 405.
  • each of the four phased array antenna units covers more than 90 degrees in azimuth in a way that all the four phased array antenna units cover 360 degrees.
  • Each phased array antenna unit switches among the three radiating modes as described with reference to Fig. 2A - 2C .
  • Simultaneously each of the four phased array antenna units also steers the elevation of the beam. Steering the beam vertically is controlled by the two arrays of PSIPPO 320 - 327 and 350 - 355 ( Fig. 3A ).
  • phased array units are controlled by a single phased array circuit.
  • each of, or part of the four phased array units is controlled and driven by a separate phased array circuit.
  • the system may detect a PC device 430 that transmits data to the phased array antenna unit 415, and a car control device 435 that also transmits data to the same phased array antenna unit 415.
  • Fig. 4 further shows an antenna of a repeater device 440 and a cell phone device 445 which are transmitting data that is received by the phased array antenna unit 410. Since the system is switching between the three radiation modes, each device transmission is intercepted at a different intensity at each of the three radiation modes. In an exemplary embodiment of the present invention, the system identifies for each device the best receiving mode among the three modes, when the received signal is maximal and allocates priority in transmitting and receiving to the device in the best receiving mode.
  • the system may reduce the time allocated for transmission and receiving in the second radiation mode and increase the time allocated to the first and third radiation modes.
  • the system allocates transmission and reception time slots also according to bandwidth requirements that are imposed by the transmitting devices.
  • the system allocates time slots for varying elevations considering the elevation where transmitting devices were best received.
  • each of the four phased array antenna units 410, 415, 420 and 425 there is a separate control circuit for each of the four phased array antenna units 410, 415, 420 and 425 thus enabling to optimize bandwidth needs separately for each of the four phased array antennas.
  • APAA APAA system
  • the present invention is not limited to active communication but is applicable for any suitable communication protocol or methods, to include for example, WIMAX, WI-FI, WPAN, as well as for HDTV (high definition T.V.) or cellular communication standards and protocols.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Radio Transmission System (AREA)

Claims (14)

  1. Système de communication sans fil (400) comprenant :
    - au moins une unité d'antenne réseau à commande de phase active (100, 410, 415, 420, 425) pour une émission et une réception d'une communication de données ;
    - un circuit de réseaux à commande de phase pour piloter et commander ladite au moins une unité d'antenne réseau à commande de phase, dans lequel ladite au moins une unité d'antenne réseau à commande de phase active comprend au moins quatre réseaux de dispositifs de rayonnement, chaque réseau de dispositifs de rayonnement comprenant au moins un réseau unidimensionnel de dispositifs de rayonnement (110, 115, 120, 125) et dans lequel ledit circuit de réseaux à commande de phase comprend une pluralité d'oscillateurs push-push verrouillés par injection décalés en phase (320-327, 340-355),
    caractérisé en ce que ladite au moins une unité d'antenne réseau à commande de phase active (100, 410, 415, 420, 425) est adaptée pour émettre ou recevoir un rayonnement électromagnétique par commutation sélective entre des modes de rayonnement, un mode de rayonnement étant défini par un certain nombre de réseaux de dispositifs de rayonnement et un déphasage associé à chaque réseau de dispositifs de rayonnement,
    dans lequel une commutation sélective entre les modes de rayonnement est configurée pour orienter un faisceau émis ou reçu par la au moins une unité d'antenne réseau à commande de phase active sur un angle horizontal supérieur à 90 degrés, et
    dans lequel la pluralité d'oscillateurs push-push verrouillés par injection décalés en phase sont configurés pour orienter un faisceau émis ou reçu par la au moins une unité d'antenne réseau à commande de phase active verticalement.
  2. Système selon la revendication 1, dans lequel la au moins une unité d'antenne réseau à commande de phase active est positionnée dans une orientation verticale.
  3. Système selon la revendication 1 ou 2, dans lequel lesdits au moins quatre réseaux de dispositifs de rayonnement (A1-A16 ; B1-B16 ; C1-C16 ; D1-D16) sont linéaires et chaque dispositif de rayonnement de chaque réseau de dispositifs de rayonnement est distant de manière égale d'un dispositif de rayonnement voisin, et dans lequel les au moins quatre réseaux de dispositifs de rayonnement comprennent deux ou plus de deux réseaux pairs de dispositifs de rayonnement (B1-B16 ; D1-D16) et deux ou plus de deux réseaux de dispositifs de rayonnement impairs (A1-A16 ; D1-D16), chaque réseau pair étant au voisinage d'au moins un réseau impair de dispositifs de rayonnement, chaque réseau pair de dispositifs de rayonnement (B1-B16 ; D1-D16) est décalé par rapport au réseau impair voisin respectif de dispositifs de rayonnement (A1-A16 ; C1-C16) d'environ la moitié de la distance entre deux dispositifs de rayonnement adjacents.
  4. Système selon l'une quelconque des revendications 1 à 3, dans lequel un réseau unidimensionnel de dispositifs de rayonnement du au moins un réseau unidimensionnel de dispositifs de rayonnement (110, 115, 120, 125) est défini en tant que groupe de référence et au moins deux réseaux unidimensionnels de dispositifs de rayonnement du au moins un réseau unidimensionnel de dispositifs de rayonnement sont commandés par ledit circuit de réseau à commande de phase pour émettre et recevoir avec un déphasage programmable par rapport audit groupe de référence.
  5. Système selon la revendication 4, dans lequel le système commute sélectivement entre au moins trois modes de rayonnement, le mode de rayonnement étant défini en outre en fonction dudit déphasage programmable qui est associé à chacun du au moins un réseau unidimensionnel de dispositifs de rayonnement (110, 115, 120, 125).
  6. Système selon la revendication 5, dans lequel ladite commutation sélective entre les au moins trois modes de rayonnement dépend du niveau de signal reçu dans les au moins trois modes de rayonnement.
  7. Système selon l'une quelconque des revendications 1 à 6, dans lequel ledit circuit de réseau à commande de phase commande ladite unité d'antenne réseau à commande de phase active (100, 410, 415, 420, 425) pour rayonner dans une ouverture de faisceau verticale.
  8. Système selon la revendication 7, dans lequel ledit circuit de réseau à commande de phase comprend deux niveaux d'oscillateurs push-push verrouillés par injection décalés en phase (320-327, 340-355) ; et
    dans lequel ladite ouverture de faisceau verticale est orientée verticalement selon un motif programmable en fournissant des signaux de commande auxdits deux niveaux d'oscillateurs push-push verrouillés par injection décalés en phase.
  9. Système selon l'une quelconque des revendications 1 à 8, dans lequel le système de communication est utilisé pour une communication extérieure ou en variante pour une communication intérieure.
  10. Système selon l'une quelconque des revendications 1 à 9, dans lequel la au moins une unité d'antenne réseau à commande de phase active pour l'émission et la réception d'un rayonnement électronique et le circuit de réseau à commande de phase sont adaptés à une émission et à une réception de signaux de données WIMAX ou WIFI ou WPAN ou HDTV ou conformes à une communication cellulaire.
  11. Système selon la revendication 1, dans lequel le système comprend quatre antennes réseau à commande de phase active (410, 415, 420, 425), positionnées dans une structure sensiblement rectangulaire (105, 405) pour couvrir sur 360 degrés la zone entourant les quatre unités d'antenne réseau à commande de phase.
  12. Procédé de communication par réseaux à commande de phase comprenant les étapes consistant à :
    a. fournir le système de communication sans fil (400) selon l'une quelconque des revendications 1 à 4 et 6 à 11,
    b. émettre ou recevoir un rayonnement électromagnétique, en utilisant ladite au moins une unité d'antenne réseau à commande de phase active (100, 410, 415, 420, 425), dans lequel ladite émission ou réception du rayonnement électromagnétique est effectuée en commutant sélectivement les modes de rayonnement, dans lequel le mode de rayonnement est défini par le déphasage qui est associé à chaque dispositif de rayonnement à tout instant.
  13. Système selon la revendication 1, dans lequel le circuit de réseau à commande de phase (300) comprend :
    a. un circuit oscillateur (305) pour fournir un signal de référence,
    b. au moins deux niveaux d'oscillateurs push-push (320-327, 340-355) verrouillés par injection décalés en phase pour orienter le faisceau (205, 230, 260) ;
    c. des convertisseurs élévateurs (361a-361p) pour convertir vers le haut un signal qui est transmis par les au moins quatre réseaux de dispositifs de rayonnement et des convertisseurs abaisseurs (361a-361p) pour convertir vers le bas un signal qui est reçu par les au moins quatre réseaux de dispositifs de rayonnement ; et
    d. des lignes de transmission (373, 378b, 378d, 391a, 390a, 390b, 390c, 390d) pour fournir sélectivement un déphasage au signal de référence qui est fourni auxdits convertisseurs élévateurs ou abaisseurs.
  14. Système selon la revendication 13, dans lequel au moins un niveau des au moins deux niveaux d'oscillateurs push-push verrouillés par injection décalés en phase est adapté pour fonctionner afin d'orienter le faisceau (205, 230, 260) verticalement conformément à un motif programmable.
EP08808016.3A 2007-09-23 2008-09-08 Système et procédé de communication faisant appel à une antenne réseau à commande de phase active Active EP2198319B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IL186186A IL186186A0 (en) 2006-10-03 2007-09-23 Communication system and method using an active phased array antenna
PCT/IL2008/001207 WO2009037692A2 (fr) 2007-09-23 2008-09-08 Système et procédé de communication faisant appel à une antenne réseau à commande de phase active

Publications (3)

Publication Number Publication Date
EP2198319A2 EP2198319A2 (fr) 2010-06-23
EP2198319A4 EP2198319A4 (fr) 2017-09-06
EP2198319B1 true EP2198319B1 (fr) 2019-04-03

Family

ID=40468552

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08808016.3A Active EP2198319B1 (fr) 2007-09-23 2008-09-08 Système et procédé de communication faisant appel à une antenne réseau à commande de phase active

Country Status (8)

Country Link
US (1) US8773306B2 (fr)
EP (1) EP2198319B1 (fr)
JP (1) JP5331811B2 (fr)
KR (2) KR101563309B1 (fr)
CN (1) CN101842714B (fr)
CA (1) CA2700465C (fr)
IL (1) IL186186A0 (fr)
WO (1) WO2009037692A2 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5314622B2 (ja) * 2009-03-03 2013-10-16 日立電線株式会社 移動通信用基地局アンテナ
WO2011059582A1 (fr) * 2009-11-12 2011-05-19 Sensis Corporation Unité d'émission/réception refroidie par l'air, de poids léger, et réseau à commande de phase active la comprenant
US9653804B2 (en) * 2011-06-15 2017-05-16 Raytheon Company Multi-aperture electronically scanned arrays and methods of use
EP2541675A1 (fr) * 2011-06-30 2013-01-02 France Telecom Réduction de l'interférence dans une station de base cellulaire
KR20140115231A (ko) * 2013-03-20 2014-09-30 삼성전자주식회사 안테나, 사용자 단말 장치, 및 안테나 제어 방법
JP6303348B2 (ja) 2013-09-11 2018-04-04 株式会社ソシオネクスト 移相器、プリディストータ、及びフェーズドアレイアンテナ
GB2540776B (en) * 2015-07-27 2018-10-10 Avanti Communications Group Plc Satellite communication
FR3048557B1 (fr) * 2016-03-07 2018-03-30 Valeo Comfort And Driving Assistance Equipement electronique d'aide au stationnement pour vehicule automobile
LU100837B1 (en) * 2018-06-12 2019-12-12 Iee Sa Antenna array system for monitoring vital signs of people
FR3098024B1 (fr) * 2019-06-27 2022-06-03 Thales Sa Formateur analogique multifaisceaux bidimensionnel de complexité réduite pour antennes réseaux actives reconfigurables
JP2022191769A (ja) * 2021-06-16 2022-12-28 株式会社デンソー 高周波装置用アンテナアレイ
CN113922927A (zh) * 2021-07-29 2022-01-11 之讯科技(深圳)有限公司 一种基于编码孔径的无线通信系统及方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3526898A (en) * 1967-04-03 1970-09-01 Raytheon Co Antenna with translational and rotational compensation
US3524186A (en) * 1968-07-16 1970-08-11 Gen Telephone & Elect Array antenna utilizing a plurality of active semiconductor elements
US3653046A (en) * 1970-06-09 1972-03-28 Bell Telephone Labor Inc Electronically scanned antenna array
US3832713A (en) * 1973-03-01 1974-08-27 Us Navy Microwave phase shifting apparatus
DE3177230D1 (de) * 1980-11-17 1990-12-06 Ball Corp Verfahren zum herstellen eines planar-phasenschiebers.
US5475392A (en) * 1993-09-30 1995-12-12 Hughes Aircraft Company Frequency translation of true time delay signals
US5523764A (en) * 1994-08-23 1996-06-04 Cornell Research Foundation Inc. Electronic beam steering of active arrays with phase-locked loops
JPH10271016A (ja) * 1997-03-21 1998-10-09 Kawasaki Steel Corp 符号/復号化器
US6175327B1 (en) 1999-01-16 2001-01-16 Sensors Systems, Inc. GPS receivers with adaptive antenna systems for suppressing interference signals
SE518207C2 (sv) * 1999-09-10 2002-09-10 Ericsson Telefon Ab L M Gles gruppantenn
US6538603B1 (en) * 2000-07-21 2003-03-25 Paratek Microwave, Inc. Phased array antennas incorporating voltage-tunable phase shifters
US20030206134A1 (en) * 2001-08-03 2003-11-06 Erik Lier Partially deployed active phased array antenna array system
US6600453B1 (en) 2002-01-31 2003-07-29 Raytheon Company Surface/traveling wave suppressor for antenna arrays of notch radiators
US20050041746A1 (en) * 2003-08-04 2005-02-24 Lowell Rosen Software-defined wideband holographic communications apparatus and methods
US7126422B2 (en) * 2004-01-28 2006-10-24 Ntt Docomo, Inc. Multi-band feed-forward amplifier and adjustment method therefor
JP4305841B2 (ja) * 2004-01-29 2009-07-29 日本電波工業株式会社 注入同期高周波発振器
IL171817A (en) * 2005-11-07 2013-03-24 Beam Networks Ltd Apparatus and methods for radar imaging based on injected push-push oscillators
IL182936A (en) * 2006-09-06 2012-03-29 Alberto Milano System and method of communication using a phase shift controlled antenna array

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN101842714B (zh) 2015-05-13
KR20100074176A (ko) 2010-07-01
JP2010541315A (ja) 2010-12-24
KR20150064225A (ko) 2015-06-10
CA2700465A1 (fr) 2009-03-26
KR101563309B1 (ko) 2015-10-23
US20100188289A1 (en) 2010-07-29
US8773306B2 (en) 2014-07-08
CA2700465C (fr) 2016-12-06
CN101842714A (zh) 2010-09-22
KR101667994B1 (ko) 2016-10-20
IL186186A0 (en) 2008-01-20
EP2198319A2 (fr) 2010-06-23
EP2198319A4 (fr) 2017-09-06
WO2009037692A2 (fr) 2009-03-26
WO2009037692A3 (fr) 2010-03-04
JP5331811B2 (ja) 2013-10-30

Similar Documents

Publication Publication Date Title
EP2198319B1 (fr) Système et procédé de communication faisant appel à une antenne réseau à commande de phase active
Ala-Laurinaho et al. 2-D beam-steerable integrated lens antenna system for 5G $ E $-band access and backhaul
US11689263B2 (en) Small cell beam-forming antennas
US9438278B2 (en) Multi-array antenna
EP2816664B1 (fr) Système d'antenne
CA2684919C (fr) Systeme et procede compatibles avec un reseau sans fil utilisant une antenne reseau a commande de phase
WO2014204070A1 (fr) Procédé et appareil de formation de faisceau dans un réseau d'antennes
EP3116060B1 (fr) Antenne à faisceaux multiples pour station de base de téléphonie mobile
WO2007047567A2 (fr) Dispositif et procede de commande de polarisation pour une antenne reseau a commande de phase
US20230344113A1 (en) Base station antenna
Rodwell 100-340GHz spatially multiplexed communications: IC, transceiver, and link design
US11342665B1 (en) Tunable patch antenna array including a dielectric plate
CN112787080B (zh) 天线模组及电子设备
US10425214B2 (en) Method and apparatus for millimeter-wave hybrid beamforming to form subsectors
EP1498986A1 (fr) Système d'antenne pour la génération et l'utilisation de plusieurs faisceaux étroits à partir de plusieurs antennes à faisceaux larges
CN213878438U (zh) 实现波束的空间-极化分离的天线装置
EP4220864A1 (fr) Antenne à ouverture commune à bande multifréquence et dispositif de communication
CN117239391A (zh) 天线、天线阵列及通信设备

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100329

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
19U Interruption of proceedings before grant

Effective date: 20150802

19W Proceedings resumed before grant after interruption of proceedings

Effective date: 20160502

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BEAM SEMICONDUCTOR LTD

A4 Supplementary search report drawn up and despatched

Effective date: 20170804

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 3/26 20060101ALI20170731BHEP

Ipc: H01Q 3/34 20060101ALI20170731BHEP

Ipc: H01Q 21/24 20060101ALI20170731BHEP

Ipc: H01Q 1/24 20060101ALI20170731BHEP

Ipc: H01Q 21/08 20060101ALI20170731BHEP

Ipc: H01Q 3/24 20060101AFI20170731BHEP

Ipc: H01Q 21/06 20060101ALN20170731BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180412

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 21/06 20060101ALN20181003BHEP

Ipc: H01Q 3/26 20060101ALI20181003BHEP

Ipc: H01Q 3/24 20060101AFI20181003BHEP

Ipc: H01Q 21/24 20060101ALI20181003BHEP

Ipc: H01Q 1/24 20060101ALI20181003BHEP

Ipc: H01Q 3/34 20060101ALI20181003BHEP

Ipc: H01Q 21/08 20060101ALI20181003BHEP

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 21/24 20060101ALI20181009BHEP

Ipc: H01Q 3/26 20060101ALI20181009BHEP

Ipc: H01Q 3/24 20060101AFI20181009BHEP

Ipc: H01Q 21/08 20060101ALI20181009BHEP

Ipc: H01Q 21/06 20060101ALN20181009BHEP

Ipc: H01Q 3/34 20060101ALI20181009BHEP

Ipc: H01Q 1/24 20060101ALI20181009BHEP

INTG Intention to grant announced

Effective date: 20181026

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 1/24 20060101ALI20181017BHEP

Ipc: H01Q 3/26 20060101ALI20181017BHEP

Ipc: H01Q 3/24 20060101AFI20181017BHEP

Ipc: H01Q 21/24 20060101ALI20181017BHEP

Ipc: H01Q 21/08 20060101ALI20181017BHEP

Ipc: H01Q 3/34 20060101ALI20181017BHEP

Ipc: H01Q 21/06 20060101ALN20181017BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602008059609

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: G01S0001000000

Ipc: H01Q0003240000

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTC Intention to grant announced (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 3/26 20060101ALI20190218BHEP

Ipc: H01Q 3/24 20060101AFI20190218BHEP

Ipc: H01Q 21/24 20060101ALI20190218BHEP

Ipc: H01Q 1/24 20060101ALI20190218BHEP

Ipc: H01Q 21/06 20060101ALN20190218BHEP

Ipc: H01Q 3/34 20060101ALI20190218BHEP

Ipc: H01Q 21/08 20060101ALI20190218BHEP

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

INTG Intention to grant announced

Effective date: 20190222

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1116899

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008059609

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190403

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1116899

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190803

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190704

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190803

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008059609

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

26N No opposition filed

Effective date: 20200106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190908

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190908

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080908

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230309

Year of fee payment: 15

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230513

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240318

Year of fee payment: 16

Ref country code: GB

Payment date: 20240308

Year of fee payment: 16