EP2193184A1 - Verfahren zur reinigung des rohgases aus einer feststoffvergasung - Google Patents

Verfahren zur reinigung des rohgases aus einer feststoffvergasung

Info

Publication number
EP2193184A1
EP2193184A1 EP08802648A EP08802648A EP2193184A1 EP 2193184 A1 EP2193184 A1 EP 2193184A1 EP 08802648 A EP08802648 A EP 08802648A EP 08802648 A EP08802648 A EP 08802648A EP 2193184 A1 EP2193184 A1 EP 2193184A1
Authority
EP
European Patent Office
Prior art keywords
sorbent
solid
gas
raw gas
solids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08802648A
Other languages
English (en)
French (fr)
Inventor
Johannes Kowoll
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Industrial Solutions AG
Original Assignee
Uhde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uhde GmbH filed Critical Uhde GmbH
Publication of EP2193184A1 publication Critical patent/EP2193184A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • B01D53/08Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds according to the "moving bed" method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • B01D53/10Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds with dispersed adsorbents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • C10K1/004Sulfur containing contaminants, e.g. hydrogen sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/04Purifying combustible gases containing carbon monoxide by cooling to condense non-gaseous materials
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • C10K1/10Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids
    • C10K1/101Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids with water only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • C10K1/10Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids
    • C10K1/12Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids alkaline-reacting including the revival of the used wash liquors
    • C10K1/14Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids alkaline-reacting including the revival of the used wash liquors organic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • C10K1/10Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids
    • C10K1/12Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids alkaline-reacting including the revival of the used wash liquors
    • C10K1/14Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids alkaline-reacting including the revival of the used wash liquors organic
    • C10K1/143Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids alkaline-reacting including the revival of the used wash liquors organic containing amino groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/20Purifying combustible gases containing carbon monoxide by treating with solids; Regenerating spent purifying masses
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0073Selection or treatment of the reducing gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/402Alkaline earth metal or magnesium compounds of magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/20Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • B01D2257/2045Hydrochloric acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • B01D2257/2047Hydrofluoric acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/308Carbonoxysulfide COS
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0903Feed preparation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0943Coke
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0983Additives
    • C10J2300/0996Calcium-containing inorganic materials, e.g. lime
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin

Definitions

  • the invention relates to a method for purifying a dust-containing gas, which is prepared in a gasification reaction of solid carbonaceous materials by reaction with an oxygen or water vapor and oxygen-containing gas at elevated temperature, wherein a crude gas is obtained, mainly from carbon monoxide and hydrogen, and the actual purification step is carried out by adding a solid sorbent to the hot gas stream immediately after production.
  • the resulting purified gas is a synthesis gas and is used for chemical syntheses, for hydrogen production and for the production of metals from metal ores by the direct reduction process.
  • the preparation of the raw gas required for this purpose is usually carried out at a temperature of 1200 to 2500 0 C in a suitable reactor.
  • a suitable reactor There are several types and embodiments for this purpose.
  • the solid carbonaceous material is placed in a reaction vessel equipped with feeders for the fuel and the oxygen-containing reaction gas.
  • the raw gas and solid impurities which usually consist of ash or slag depending on the composition of the fuel, are produced in a chemical reaction.
  • the crude gas and solid impurities can leave the reactor by separate reaction guides. The raw gas obtained then leads even smaller amounts of solid and liquefied accompanying substances with it.
  • the raw gas is carried out of the reactor and passed into a reaction space, where it is mixed to dissipate the high internal energy with colder gas and cooled down.
  • This process is also called quenching process.
  • Conventional apparatuses are those in which the raw gas is passed into a reactor chamber directed downwards or upwards, also called a quenching space, for mixing with the colder gas and mixed with the gas.
  • the liquefied slag particles contained therein solidify and are continued with the raw gas in the form of slag particles.
  • the cleaning process depending on the application of the synthesis gas may be different.
  • the raw gas exported from the quench chamber has, depending on the starting material and manufacturing process, a temperature of 600 ° C to 1000 0 C.
  • the gas is cooled and purified for many purposes.
  • this is energy intensive and associated with high investment and running costs, especially if the synthesis gas for the subsequent use needs to be reheated.
  • An example is the production of iron by the direct reduction process, in which a synthesis gas, which comprises predominantly hydrogen and carbon monoxide, is used for the production of pig iron by reduction of iron ore.
  • the synthesis gas must be used at high temperatures to effectively reduce the iron ore.
  • the production of iron by the direct reduction process is often carried out, since this manufacturing method also allows the operation of small plants, which can thus produce at low cost. Even chemical syntheses often require a hot syngas.
  • the addition of limestone has the consequence that the flow temperature of most slags is significantly lowered.
  • the flow temperature of slags in ordinary gasification reactions may be 1200 ° C or above.
  • the flow temperature drops to values of 500 to 600 0 C.
  • the slag solidifies much later in the process and can be easily discharged.
  • the cleaning of the slagging gasifier can therefore be carried out at much prolonged intervals. In this procedure, the dedusting of the raw gas must be carried out before the addition of the sorbent and before the sintering of the slag to avoid clogging of the dust filter.
  • the crude gas obtained is usually first cooled to 1000 to 600 0 C, then dedusted and freed in a subsequent step of sulfur compounds and halogens.
  • the invention has for its object to provide a coal gasification process available, which manages without cooling the quenched gas and still provides a largely by-products liberated synthesis gas.
  • the synthesized gas produced should be able to be made available at a high temperature, without having to make use of further process steps of cooling, cleaning and reheating.
  • the cleaning and absorption of pollutants in the raw gas should be done easily and without energy-intensive cooling.
  • the synthesis gas thus produced should also be as free as possible of sulfur compounds.
  • the object is achieved in that the crude gas obtained from the coal gasification process after the gasification process and during or immediately after the process of quenching a solid absorbent for acidic and sulfur-containing impurities is added.
  • the method is particularly suitable for a coal gasification process in which the raw gas and the slag are carried out separately from the gasification reaction vessel, so that the raw gas obtained from the outset contains only slightly admixed solid or liquefied foreign components.
  • the added absorbent can be any of the solids that are preferred to be basic in order to obtain the desired effect. In order to allow a better chemical absorption of non-acid sulfur-containing gases from the raw gas obtained, metal salts may be added to the basic absorbent, in particular iron ores to develop the desired effect.
  • Claimed is in particular a process for the preparation and purification of a raw gas with synthesis gas character, wherein • the raw gas is produced by gasification of a solid carbonaceous material with an oxygen-containing or water vapor and oxygen-containing gas in a suitable reactor, wherein
  • Fuel comprises acidic or basic or sulfur-containing or halogen-containing gaseous pollutants, and •
  • the raw gas may also include solid, ash or slag-containing substances, where
  • the raw gas is passed from the gasification reactor in a downwardly or upwardly leading reaction space, where a colder gas or a vaporized liquid or a liquid is added, whereby the raw gas can react to dissipate the high internal energy, and which is characterized that
  • the dusty raw gas is added during or after the addition of the colder gas or vaporized liquid for cleaning with a solid sorbent, which is entrained with the raw gas in the gas flow direction and transported and reacts with the acidic or basic or sulfur-containing or halogen-containing substances within a short time and converting these substances into a solid and bound form.
  • the sorbent is added together with the gas for cooling.
  • a suitable addition point for this is the space immediately behind the outlet opening of the gasification reactor.
  • the addition is advantageously in the form of a smoke, wherein smoke denotes a heterogeneous mixture of solid and gas.
  • the smoke is formed by a mixture of solid sorbent and the gas or steam to cool the raw gas.
  • the smoke is introduced by way of example through an opening at the edge of the carburetor exit into the gas stream, whereby the smoke is entrained with the raw gas stream and the sorbent contained therein can react with the pollutants contained in the raw gas.
  • the reaction of the sorbent with the steam is usually fast.
  • By swirling the smoke is distributed throughout the gas stream.
  • By adding in the edge area of the cool smoke shields the surrounding wall against the radiant heat of the raw gas obtained. This minimizes the heat loss of the raw gas.
  • the sorbent is added separately from the gas or steam for cooling the raw gas, with separate therefor Feeding devices are provided. Suitable addition points for this purpose is also the space immediately behind the outlet opening of the gasification reactor. The smoke then forms only when the sorbent is mixed with the gases.
  • the delivery of the solid sorbent into the gas is preferably carried out pneumatically in all cases. But it can be performed arbitrarily, for example by a conveyor belt.
  • Suitable solid, carbonaceous fuels for the gasification reaction are all solid, carbonaceous materials that can form a carbon monoxide and hydrogen-containing crude gas with an oxygen or water vapor and oxygen-containing gas by a gasification reaction.
  • the fuel is preferably coal or petroleum coke. It is also possible to use a preferably pretreated, cellulose-containing biological fuel. Examples include wood or pressed plant material.
  • the supplied reaction gas usually comprises oxygen or water vapor and oxygen. But it may also contain other gases, carbon dioxide being exemplified here.
  • the gasification reaction generally produces a crude gas which essentially contains carbon monoxide, hydrogen or else carbon dioxide and which is suitable for synthesis gas production.
  • the crude gas obtained is mixed with a colder medium to dissipate the high internal energy.
  • Typical media for carrying out the quenching process are cooled synthesis gas, recycled process gases, steam, nitrogen or carbon dioxide.
  • the crude gas thus obtained has a temperature of 600 to 1000 0 C at a pressure of 0.3 to 7 MPa in a typical embodiment of the invention after mixing with the quench gas. At this temperature, the sorbent is added to the crude gas obtained, so that the sorption process can develop optimal activity.
  • the reaction time of the absorption process is short and is usually less than 1 s.
  • the sorbent should have a solid and fine-grained, possibly also powdery form for the addition.
  • a preferred grain size on addition is 1 to 0.01 mm, and ideally 0.1 to 0.03 mm.
  • the sorbent is then injected with a delivery gas.
  • the sorbent is mixed with the quench medium or the foreign gas prior to addition by suitable devices and then injected with the medium to be pumped into the quench chamber.
  • the sorbent is added directly behind the quench to the cooled raw gas.
  • the addition of sorbent to the cooled raw gas is particularly advantageous if the proportion of impurities in the raw gas is lower, since then a comparatively shorter reaction distance is needed.
  • the sorbent contains compounds which react quickly and intensively with the added acidic and sulfur-containing constituents.
  • examples of such compounds are calcium and magnesium carbonates as mono- or polybasic salts, dolomite or limestone being mentioned as natural representatives of these salts.
  • the salts can be used in natural or calcined form.
  • transition-containing components can be added to the sorbents.
  • transition metal compounds are zinc or iron salts, such as zinc or iron ore.
  • a preferred transition metal additive for absorbing the sulfur compounds is iron oxide or iron ore.
  • solid, oxidizing substances to the sorbent which react with the sulfidic constituents to form sulfates and thereby convert them into insoluble solids.
  • calcium sulfide can be converted into easily separable and recoverable calcium sulfate.
  • solid oxidizing sorbents are peroxides or persulfates.
  • quenching medium may not react with the sorbent. If the sorbent is added separately from the quench medium, the delivery medium must be inert to the sorbent.
  • Typical acidic or basic gases from the gasification process are hydrogen sulfide (H 2 S), carbon dioxide sulfide (COS), sulfur dioxide (SO 2 ), hydrogen chloride (HCl) or hydrogen fluoride (HF).
  • H 2 S hydrogen sulfide
  • COS carbon dioxide sulfide
  • SO 2 sulfur dioxide
  • HCl hydrogen chloride
  • HF hydrogen fluoride
  • the basic sorbent reacts with the acidic constituents to form calcium or magnesium salts.
  • the transition metal-containing salts react with the hydrogen sulfide to sulfides or hydrogen sulfides.
  • the crude gas is passed through a particle bed which contains the sorbent in particulate form, for example as pellets.
  • the bed of particles must be periodically cleaned or regenerated to purify it from the fly ash ingredients or cooled slag constituents trapped in the particle bed.
  • the particles in the particle bed should have a larger average particle size than the fly ash.
  • the particles in the particle bed have an average particle size greater than 0.2 mm.
  • the synthesis gas prepared and purified according to the invention can be used for all purposes in which a purified synthesis gas is needed. It is preferably used in the direct reduction of metal ores. Possible applications are also the synthesis of chemicals or the provision of hydrogen. A subsequent process which makes use of a synthesis gas prepared and purified according to the invention is expressly claimed.
  • the crude gas obtained with the reacted sorbent without a further purification step.
  • examples include iron production processes by direct reduction starting from a low-sulfur iron, especially when the proportion of sorbent in the raw gas is low.
  • the resulting synthesis or generator gas is required in a substantially freed state from solids.
  • the solids thus obtained must be removed from the bound, absorbed pollutants by a further process step from the raw gas.
  • filter devices can be used which are customary for the solids filtration of gases.
  • the filter device should be designed such that the temperature of the gas obtained is only slightly changed by the solids purification process.
  • the resulting solid contains the loaded sorbent and the ash constituents entrained in the coal gasification process and solidified slag particles.
  • the process step of solids deposition takes place after the quenching process and after the addition of the sorbent. It is also possible to carry out a solid separation several times in the course of the process. This is particularly useful if the raw gas is heavily solids laden after production by coal gasification. For this one can perform a solid separation after the coal gasification reaction and another after the addition of the sorbent. In general, however, especially when using advantageous coal gasification reactors, only a solid separation after the process of sorption is necessary.
  • the sorbent is added directly to the process of solids separation. This is particularly advantageous if the entrained pollutants to be absorbed in the raw gas are solid or solidified nature. Then the sorption takes place in the solids separator and the sorbed components are discharged from the process with the other constituents. By adding the sorbent, the sinterability of the fly ash is lowered, which allows separators to be used at a significantly higher temperature.
  • the separated solid is usually separated after the discharge in its constituents.
  • various methods exist such as the use of classifying devices.
  • the solid or solidified by-products obtained in the form of ash or slag and the reacted sorbent or a predominantly the reacted sorbent particle fraction.
  • the ash and slag can be recycled or disposed of.
  • the sorbent may be reused by suitable regeneration procedures. Examples of suitable regeneration processes are washing, drying and calcining. Suitable steps for the regeneration of the solid sorbent may also be hydrogenation, wherein the bound sulfur can be removed as hydrogen sulfide.
  • the regeneration of the basic sorbent can also be carried out by passing a water vapor or oxygen-containing gas.
  • the thus regenerated sorbent can then be recycled back into a process for re-sorption. It is also possible to reuse the sorbent in the coal gasification reaction. For this purpose, it is either added directly to the coal gasification reactor or pretreatment for the fuel. For this purpose, the sorbent is finely ground, for example, with the fuel or dried. But it is also possible to give the sorbent in a subsequent process.
  • the flow temperature of most slags is lowered, whereby the gasification or smelting temperature can be reduced and the efficiency of the gasification or smelting is increased.
  • the sorption material can act as slag remover after the regeneration during iron production and can favorably influence the smelting process.
  • the subsequent process can itself produce a gas laden with solids. This is advantageously passed again into a solids separator and cleaned. The resulting solid may be combined with the separated solid from the coal gasification reaction and also fed to the stated purposes.
  • the loading of the reacted sorbent at a correct dosage is such that regeneration is inevitable for reuse.
  • the loading of the sorbent for example, when using a clean coal only small, then a large part can be reused without further regeneration.
  • the use of the sorbent is then supplied for the same purposes as would be the case with regeneration, for example for reuse in the coal gasification process or for use in a sequential process.
  • the sorbent may also be ground or dried prior to reuse.
  • a device which is suitable for carrying out the process according to the invention is also claimed. Claimed is in particular a device for carrying out the method according to the invention, wherein
  • It consists of a refractory reaction vessel which is suitable for the calcination of solid, carbon-containing fuels by reaction with an oxygen or water vapor and oxygen-containing gas, and
  • This reaction vessel is followed by a reaction space, which is equipped with feeders for a solid sorbent and gaseous or vaporous substances for cooling the raw gas, and
  • the solid sorbent and gaseous and vaporous material supply means are designed in the form of at least one opening which opens outwards in the direction of the gas stream and comprises means for pressurizing the sorbent in admixture with the cooling gas under pressure into the gas stream Promote and initiate product gases.
  • the opening for adding the solid sorbent is designed such that an addition of the sorbent into the gas stream of the raw gas takes place in the flow direction. If the addition of the sorbent together with the raw gas in the form of a smoke, so the opening is also designed so that an addition of the smoke takes place in the flow direction.
  • the shape of the opening on the carburetor wall side preferably prefers a slot, but it can also be a collar or an annular nozzle.
  • the shaping can be arbitrary, in order to allow a feed of the roughness or of the sorbent into the raw gas stream in the flow direction.
  • the device according to the invention also includes, by way of example, atomizing devices, screw conveyors or gas pressure pumps.
  • the claimed device also includes a gasification reactor, which is equipped with at least one opening for separate discharge of the solid reaction product and at least one further opening for separate discharge of the gaseous reaction product.
  • a gasification reactor which is equipped with at least one opening for separate discharge of the solid reaction product and at least one further opening for separate discharge of the gaseous reaction product.
  • the gasification reactor in a preferred embodiment, includes a separate orifice for carrying out the slag and other resulting solids, which are then sent for further use or disposal.
  • the gasification reactor also contains a separate opening for the execution of the raw gas, whereby special devices ensure that the raw gas contains as few slag and ash constituents as possible.
  • part of a device according to the invention may be mills, dryers or fluidized bed devices for fuel pretreatment.
  • reaction space which serves to mix the raw gas with a quench medium to dissipate the high internal energy after the gasification process.
  • nozzles for introducing the quenching medium and the sorbent are introduced into the reaction space. If the sorbent is fed in the quench space after the addition of the quench medium, the quench space contains additional injection or introduction devices for feeding the sorbent.
  • the nozzles are advantageously provided with a mixing device for the addition of the solid sorbent in the gas or vapor stream.
  • the nozzles are equipped in front of the mixing device with a suitable sorbent feeding means. These may be, for example, screw conveyors or pneumatic propulsion conveyors.
  • a suitable sorbent feeding means may be, for example, screw conveyors or pneumatic propulsion conveyors.
  • sorbent nozzle or conveyors for the sorbent in the process flow also be mounted behind the quench or in a downstream solids separator.
  • part of a device according to the invention may be mills, dryers or fluidized beds for sorbent pretreatment.
  • the apparatus includes a solids separator, into which the raw gas passes after the reaction with the sorbents and in which the solid components are filtered out of the gas.
  • the apparatus may contain other apparatus which allow, for example, a solid treatment of the separated solids. These include, for example, classifying devices such as sifter or sifter devices which can separate ash or slag constituents from the abreacted sorbent.
  • Suitable Feststoffabscheidervoriquesen are in particular centrifugal, also called cyclones.
  • suitable solids separator devices may also be temperature-resistant cloth filters, ceramic filter elements, filter candles or an electric deduster.
  • the process step of the solids separation usually takes place directly behind the quenching and sorption process. It is also possible to give the solids-laden, hot raw gas via pipelines in the process step of the solids separation. It is also possible to carry out the solids separation by filtration. This process step is preferably carried out before the addition of the sorbent, since the sintering temperature of the slag otherwise drops and this clogs the filtration devices.
  • the apparatus may also contain apparatuses which allow regeneration of the sorbent after separation of the solid from the sorbent.
  • apparatuses which allow regeneration of the sorbent after separation of the solid from the sorbent.
  • These include, for example, washing kettles or drying and quenching facilities. These device components are usually located in the process flow behind the quench and behind the solids separation.
  • the regenerated sorbent is returned in a preferred embodiment of the invention by suitable devices back into the process of coal gasification. This can be done at the point of fuel pretreatment or directly into the coal gasification reactor.
  • the device for carrying out the method according to the invention may also contain devices which allow further use of the sorbent in a subsequent process. If the subsequent process in turn produces a gas laden with solids, then the device according to the invention can also contain apparatuses for separating solids and recycling the separated solid.
  • the gas obtained from the quenching process before or after the separation of solids it is possible to subject the gas obtained from the quenching process before or after the separation of solids to a washing process with a washing liquid.
  • the crude gas provided with solids or laden sorbent may preferably be washed with water to wash out loaded sorbent or solid from the raw gas.
  • washing liquids are ethanolamines or alkylated polyalkylene glycols.
  • the invention enables efficient and rapid purification of a synthesis or generator gas originating from a coal gasification process by adding a solid sorbent immediately after the coal gasification reaction.
  • a rapid reaction of the added sorbent with raw gases containing acidic or sulfur-containing or halogen-containing substances or a combination of these substances these interfering substances can be removed quickly and efficiently from the raw gas. This eliminates the energy and time consuming associated with a cooling washing process and the subsequent reheating of the gas.
  • the resulting sorbent can be inexpensively used or regenerated.
  • FIG. 1 shows a process flow according to the invention for carrying out a process with the addition of a solid sorbent to a crude gas stream of a gasification reaction.
  • FIG. 2 shows a device according to the invention for adding a solid sorbent to the crude gas stream of a gasification reaction.
  • FIG.1 shows a greatly simplified scheme for performing the method with the addition of the sorbent to the raw gas stream in the mixing chamber during quenching.
  • the solid carbonaceous fuel (1) is placed in a device for grinding and drying (2) to prepare for the gasification process.
  • the thereby resulting small-particle or fine-grained fuel is added via suitable conveyors (2a) in a gasification reactor.
  • a further supply line and devices for spraying an oxygen or water vapor and oxygen-containing reaction gas (3) is introduced into the gasification reactor (4), in which the actual gasification reaction takes place for the production of synthesis gas.
  • the reactor (4) is equipped in an advantageous embodiment with a separate discharge device for solid and liquefied gasification products, which allow the resulting in the gasification process slag with the other solid components separately from the raw gas from the reactor (5).
  • the crude gas obtained is passed from the reactor in vertically downwardly directed flow into a mixing or quenching chamber (6). It is also possible to constructively connect the mixing or quenching chamber to the reactor. In the quench the hot raw gas is provided to dissipate the high internal energy with a lower tempered foreign gas (7).
  • the sorbent can be mixed again in the pretreatment with the fuel (13a) and added to the gasification reaction (2a). If the sorbent is suitable, it is also possible to add it directly to the gasification reactor (13b).
  • the dedusted raw gas (12) of the coal gasification reaction is passed to the subsequent process (17). There it is used in various processes. It is possible to use the loaded sorbent depending on the nature of the subsequent process (16). During the follow-up process, some of the gas is consumed while the sorptive onsffen changes only little. The remainder of the solids or dust-containing gas (18) is subjected to another purification by solids separation (19). The resulting solid can be given depending on the nature and loading in the process of solid regeneration (19a).
  • the sorbent-laden solid is discharged after use in the subsequent process (20).
  • the fresh sorbent (8) is added immediately after the mixing or quenching in the process or placed in the solids separator, the rest of the plant design changes little.
  • FIG. Fig. 2 shows the exit opening of a gasification reactor (4a) which carries out the raw gas (21) in an upward direction from the gasification reactor.
  • the raw gas passes through a constriction (4b), which increases the velocity of the gas stream.
  • Behind the constriction is an opening (23) through which the solid sorbent (8) is introduced together with an inert gas in the form of a smoke (22).
  • the smoke is entrained with the raw gas (9) and thereby performs a cleaning effect.
  • the smoke is entrained with the purified raw gas along the pipe to Rohgasausment (24).
  • Gasification reactor a outlet opening of a gasification reactor b constriction at the outlet opening of the gasification reactor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Dispersion Chemistry (AREA)
  • Industrial Gases (AREA)

Abstract

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Herstellung und Reinigung eines Rohgases zur Synthesegasherstellung aus einem festen kohlenstoffhaltigen Brennstoff durch eine Kohlevergasungsreaktion, wobei der Brennstoff direkt nach der Herstellung mit einem Quenchmedium (7) zur Abführung der hohen inneren Energie gemischt wird und noch in dem Mischraum (6) oder hinter dem Mischraum mit einer festen basischen Erdalkalimetallverbindung oder eine übergangsmetallhaltige Verbindung umfassenden Sorptionsmittel (8) in Kontakt gebracht wird, so dass die im Rohgas und aus der Vergasungsreaktion stammenden sauren oder basischen oder schwefelhaltigen oder halogenhaltigen Bestandteile absorbiert werden und sich hinter der Zugabe Vorrichtung für das Sorptionsmittel eine feststoffabscheidende Vorrichtung (10) befindet, mit der die festen oder verfestigten Bestandteile aus dem System ausgeschleust werden und das basische und übergangsmetallhaltige Sorptionsmittel im Gemisch oder nach einer Abtrennung von den Asche- und Schlackebestandteilen regeneriert werden und in den Prozess zurückgeführt werden kann, so dass man zur Reinigung des Rohgases auf ein energieintensives Herunterkühlen des Rohgases verzichten kann und dieses so gereinigte Synthesegas in einem Folgeprozess ohne weiteres Aufheizen verwenden kann.

Description

Verfahren zur Reinigung des Rohgases aus einer Feststoffvergasung
[0001] Die Erfindung betrifft ein Verfahren zur Reinigung eines staubhaltigen Gases, das in einer Vergasungsreaktion aus festen kohlenstoffhaltigen Materialien durch Umsetzung mit einem Sauerstoff- oder wasserdampf- und sauerstoffhaltigen Gas bei erhöhter Temperatur hergestellt wird, wobei man ein Rohgas erhält, das überwiegend aus Kohlenmonoxid und Wasserstoff besteht und der eigentliche Reinigungsschritt durch Zugabe eines festen Sorptionsmittels in den heißen Gasstrom unmittelbar nach der Herstellung erfolgt. Das so gereinigte erhaltene Gas ist ein Synthesegas und wird für chemische Synthesen, für die Wasserstoffgewinnung und für die Herstellung von Metallen aus Metallerzen durch das Direktreduktionsverfahren eingesetzt.
[0002] Die Herstellung des hierfür benötigten Rohgases erfolgt üblicherweise, bei einer Temperatur von 1200 bis 2500 0C in einem hierfür geeigneten Reaktor. Hierfür existieren mehrere Bauarten und Ausführungsformen. Üblicherweise gibt man das feste kohlenstoffhaltige Material in ein Reaktionsgefäß, das mit Zuführungseinrichtungen für den Brennstoff und das sauerstoffhaltige Reaktionsgas ausgestattet ist. Bei der Vergasungsreaktion entstehen in einer chemischen Reaktion das Rohgas und feste Begleitstoffe, die je nach Zusammensetzung des Brennstoffes in der Regel aus Asche oder Schlacke bestehen. In einer besonders vorteilhaften Ausführung des Reaktionsgefäßes können das Rohgas und die festen Begleitstoffe den Reaktor durch getrennte Reaktionsführungen verlassen. Das erhaltene Rohgas führt dann noch geringere Mengen fester und verflüssigter Begleitstoffe mit sich.
[0003] Das Rohgas wird aus dem Reaktor ausgeführt und in einen Reaktionsraum geleitet, wo es zur Abführung der hohen inneren Energie mit kälterem Gas vermischt und heruntergekühlt wird. Dieser Prozess wird auch als Quenchprozess bezeichnet. Dies kann in verschiedener Art und Weise geschehen. Üblich sind dabei Vorrichtungen, in denen das Rohgas in einen vom Reaktor abwärts oder aufwärts gerichteten Reaktionsraum, auch Quenchraum genannt, zum Vermischen mit dem kälteren Gas geleitet und mit dem Gas vermischt wird. Bei diesem Prozess verfestigen sich die darin enthaltenen verflüssigten Schlackepartikel und werden mit dem Rohgas in Form von Schlackepartikeln weitergeführt. Nach dem Quenchprozess wird das erhaltene Rohgas
BESTATIGUNGSKOPIE weiter gereinigt, wobei der Reinigungsprozess je nach Anwendung des Synthesegases unterschiedlich geartet sein kann.
[0004] Bei der Herstellung von Synthesegas erhält man ein Gas, das im Wesentlichen aus Kohlenmonoxid und Wasserstoff besteht, aber auch aus begleitenden Schadstoffen. Viele der Begleitstoffe besitzen basischen oder sauren Charakter und wirken korrosiv. Da die Schadstoffe für viele Zwecke der Weiterverwendung stören, müssen sie aus dem erhaltenen Rohgas entfernt werden. Bei der Herstellung von Chemikalien können die korrosiven Bestandteile Anlagenteile angreifen oder mit den Chemikalien reagieren, so dass die erwünschten Prozesse erschwert oder unterdrückt wer- den. Für viele Zwecke ist auch die Anwesenheit von schwefelhaltigen Fremdstoffen problematisch, weil diese unerwünschte chemische Reaktionen eingehen können. So ist beispielsweise bei der Herstellung von Eisen durch das Direktreduktionsverfahren ein Schwefelgehalt des Synthesegases von großem Nachteil, weil der Schwefel den Reduktionsprozess stört und sich im Roheisen Sulfide bilden oder zurückbleiben kön- nen.
[0005] Das aus dem Quenchraum ausgeführte Rohgas hat je nach Ausgangsstoff und Herstellungsprozess eine Temperatur von 600°C bis 10000C. Für viele Zwecke wird das Gas heruntergekühlt und gereinigt. Dies ist jedoch energieintensiv und mit hohen investiven und laufenden Kosten verbunden, insbesondere dann, wenn das Synthesegas für den anschließenden Verwendungszweck wieder aufgeheizt werden muss. Ein Beispiel ist die Herstellung von Eisen durch den Direktreduktionsprozess, bei dem ein Synthesegas, das überwiegend Wasserstoff und Kohlenmonoxid umfasst, zur Herstellung von Roheisen durch Reduktion von Eisenerz eingesetzt wird. Für diesen Zweck muss das Synthesegas bei hohen Temperaturen eingesetzt werden, um die Eisenerze wirksam zu reduzieren. Die Herstellung von Eisen durch den Direktreduktionsprozess wird häufig durchgeführt, da diese Herstellungsmethode auch den Betrieb kleiner Anlagen erlaubt, die so zu niedrigen Kosten produzieren können. Auch chemische Synthesen benötigen häufig ein heißes Synthesegas.
[0006] Bei der Verwendung von Synthesegas für die Reduktion von Metallerzen ist es notwendig, ein Synthesegas zur Verfügung zu stellen, das frei von Schwefelverbindungen und sauren Halogenverbindungen ist. Die DE 3101291 A1 beschreibt einen Prozess zur Herstellung von Eisenerz durch den Direktreduktionsprozess. Feingemahlene Kohle wird in Gegenwart eines sauerstoffhaltigen Gases in einem Fliessbettver- gasungsreaktor zu einem reduzierenden Generatorgas umgesetzt, wobei die Kohle vor der Umsetzung mit einem festen Schwefelakzeptor versehen wird. Das so erzeugte heiße und weitgehend schwefelfreie Generatorgas wird als Reduktionsgas zur Erzeugung von Eisenschwamm aus Eisenerz in einem Direktreduktionsschachtofen eingesetzt. Durch Rückführung des gereinigten Gases aus dem Schachtofen kommt der Prozess im Wesentlichen ohne einen aufwendigen Kühlungs- und Erhitzungsschritt von Prozessgasen aus. Als Schwefelakzeptor wird beispielsweise Kalkstein verwendet, der in dem Reaktionsgefäß bei der Vergasungsreaktion mit den in der Kohle enthaltenen sauren Schwefelverbindungen reagiert.
[0007] Bei der Durchführung der Kohlevergasungsreaktion bei Temperaturen über 12000C besteht das Problem, dass sich Halogen- und Schwefelverbindungen zersetzen und mit Wasserstoff und Kohlenmonoxid reagieren. Bei dieser Reaktion reagiert ein Großteil des Schwefels zu Schwefelwasserstoff (H2S) und Carbonylsulfid (COS). Die Halogenverbindungen reagieren überwiegend zu den entsprechenden Halogenwasserstoffen. Zur Neutralisation dieser Stoffe wird der Reaktion üblicherweise Kalkstein zugegeben.
[0008] Die Zugabe von Kalkstein hat zur Folge, dass die Fliesstemperatur der meisten Schlacken deutlich abgesenkt wird. Die Fliesstemperatur von Schlacken in gewöhnlichen Vergasungsreaktionen kann bei 1200 °C oder darüber liegen. Durch die Zugabe von Kalkstein oder ähnlichen Mineralien sinkt die Fliesstemperatur auf Werte von 500 bis 6000C ab. Dadurch erstarrt die Schlacke wesentlich später im Prozess und kann leichter ausgeschleust werden. Die Reinigung des verschlackenden Vergasers kann daher in erheblich verlängerten Intervallen durchgeführt werden. Bei dieser Verfahrensweise muss die Entstaubung des Rohgases vor der Zugabe des Sorptionsmittels und vor der Sinterung der Schlacke durchgeführt werden, um ein Zusetzen der Staubfilter zu vermeiden. Aus diesem Grund wird das erhaltene Rohgas üblicherweise zunächst auf 1000 bis 6000C abgekühlt, dann entstaubt und in einem nachfolgenden Schritt von Schwefelverbindungen und Halogenen befreit. [0009] Der Erfindung liegt die Aufgabe zugrunde, einen Kohlevergasungsprozess zur Verfügung zu stellen, der ohne eine Abkühlung des gequenchten Gases auskommt und trotzdem ein weitgehend von Nebenprodukten befreites Synthesegas liefert. Das hergestellte Synthesegas soll mit hoher Temperatur zur Verfügung gestellt werden können, ohne Gebrauch von weiteren Verfahrensschritten der Kühlung, der Reinigung und der erneuten Aufheizung machen zu müssen. Die Reinigung und Absorption von Schadstoffen im Rohgas soll einfach und ohne eine energieaufwendige Kühlung erfolgen. Das so hergestellte Synthesegas soll außerdem möglichst frei von Schwefelverbindungen sein.
[0010] Die Aufgabe wird erfindungsgemäß dadurch gelöst, dass dem aus dem Kohlevergasungsprozess erhaltene Rohgas nach dem Vergasungsprozess und während oder unmittelbar nach dem Prozess des Quenchens ein festes Absorptionsmittel für saure und schwefelhaltige Verunreinigungen zugegeben wird. Das Verfahren eignet sich insbesondere für ein Kohlevergasungsverfahren, bei dem das Rohgas und die Schlacke getrennt aus dem Vergasungsreaktionsgefäß ausgeführt werden, so dass das erhaltene Rohgas von vornherein nur wenig beigemischte feste oder verflüssigte Fremdbestandteile enthält. Bei dem zugegebenen Absorptionsmittel kann es sich um beliebige Feststoffe handeln, die zum Erhalt der gewünschten Wirkung bevorzugt basischer Natur sind. Um eine bessere chemische Absorption nichtsaurer schwefelhaltiger Gase aus dem erhaltenen Rohgas zu ermöglichen, können dem basischen Absorptionsmittel Metallsalze beigemischt sein, wobei insbesondere Eisenerze die gewünschte Wirkung entfalten.
[0011] Beansprucht wird insbesondere ein Verfahren zur Herstellung und Reinigung eines Rohgases mit Synthesegascharakter, wobei • das Rohgas durch Vergasung eines festen kohlenstoffhaltigen Materials mit einem sauerstoffhaltigen oder wasserdampf- und sauerstoffhaltigen Gas in einem hierfür geeigneten Reaktor hergestellt wird, wobei
• ein Rohgas entsteht, das bedingt durch die Zusammensetzung des
Brennstoffes saure oder basische oder schwefelhaltige oder halogenhalti- ge gasförmige Schadstoffe umfasst, und • das Rohgas außerdem noch feste, asche- oder schlackehaltige Stoffe umfassen kann, wobei
• das Rohgas aus dem Vergasungsreaktor in einem abwärts- oder aufwärtsführenden Reaktionsraum geleitet wird, wo ein kälteres Gas oder ei- ne verdampfte Flüssigkeit oder eine Flüssigkeit zugegeben wird, womit das Rohgas zur Abführung der hohen inneren Energie abreagieren kann, und das dadurch gekennzeichnet ist, dass
• das staubhaltige Rohgas während oder nach der Zugabe des kälteren Gases oder der verdampften Flüssigkeit zur Reinigung mit einem festen Sorptionsmittel versetzt wird, das mit dem Rohgas in Gasströmungsrichtung mitgerissen und transportiert wird und mit den sauren oder basischen oder schwefelhaltigen oder halogenhaltigen Stoffen innerhalb kurzer Zeit reagiert und diese Stoffe in eine feste und gebundene Form überführt.
[0012] In einer bevorzugten Ausführungsform der Erfindung wird das Sorptionsmittel gemeinsam mit dem Gas zur Kühlung zugegeben. Eine geeignete Zugabestelle hierfür ist der Raum unmittelbar hinter der Austrittsöffnung des Vergasungsreaktors. Die Zugabe geschieht vorteilhaft in Form eines Rauches, wobei Rauch ein heterogenes Gemisch von Feststoff und Gas bezeichnet. Der Rauch wird durch ein Gemisch von festem Sorptionsmittel und dem Gas oder dem Dampf zur Kühlung des Rohgases gebildet. Bei einer gemeinsamen Zuführung von Gas zur Kühlung und Sorptionsmittel wird der Rauch beispielhaft durch eine Öffnung am Rand des Vergaseraustritts in den Gasstrom eingeleitet, wodurch der Rauch mit dem Rohgasstrom mitgerissen wird und das darin enthaltene Sorptionsmittel mit den in dem Rohgas enthaltenen Schadstoffen reagieren kann. Die Reaktion des Sorptionsmittels mit dem Dampf erfolgt in der Regel schnell. Durch Verwirbelung wird der Rauch in dem gesamten Gasstrom verteilt. Durch die Zugabe im Randbereich schirmt der kühle Rauch die umgebende Wand gegen die Strahlungswärme des erhaltenen Rohgases ab. Dadurch wird der Wärmeverlust des Rohgases minimiert.
[0013] In einer weiteren Ausführungsform wird das Sorptionsmittel getrennt von dem Gas oder Dampf zur Kühlung des Rohgases zugegeben, wobei hierfür getrennte Zuführungsvorrichtungen vorgesehen sind. Geeignete Zugabestellen hierfür ist auch hier der Raum unmittelbar hinter der Austrittsöffnung des Vergasungsreaktors. Der Rauch bildet sich dann erst bei der Vermischung des Sorptionsmittels mit den Gasen. Die Zuförderung des festen Sorptionsmittels in das Gas erfolgt in allen Fällen bevor- zugt pneumatisch. Sie kann aber beliebig ausgeführt werden, beispielsweise auch durch ein Förderband.
[0014] Als feste, kohlenstoffhaltige Brennstoffe für die Vergasungsreaktion eignen sich alle festen, kohlenstoffhaltigen Materialien, die mit einem Sauerstoff- oder wasserdampf- und sauerstoffhaltigen Gas durch eine Vergasungsreaktion ein kohlenmonoxid- und wasserstoffhaltiges Rohgas bilden können. Bevorzugt handelt es sich bei dem Brennstoff um Kohle oder Petrolkoks. Es ist auch möglich, ein vorzugsweise vorbehandeltes, cellulosehaltiges biologisches Brennmaterial einzusetzen. Beispiele hierfür sind Holz oder gepresstes Pflanzenmaterial.
[0015] Das zugeführte Reaktionsgas umfasst üblicherweise Sauerstoff oder Was- serdampf und Sauerstoff. Es kann aber auch weitere Gase enthalten, wobei hier beispielhaft Kohlendioxid genannt ist. Bei der Vergasungsreaktion entsteht in der Regel ein Rohgas, das im Wesentlichen Kohlenmonoxid, Wasserstoff oder auch Kohlendioxid enthält und das zur Synthesegasherstellung geeignet ist.
[0016] Nach der Kohlevergasungsreaktion wird das erhaltene Rohgas zur Abfüh- rung der hohen inneren Energie mit einem kälteren Medium vermischt. Typische Medien zur Durchführung des Quenchprozesses sind gekühltes Synthesegas, zurückgeführte Prozessgase, Wasserdampf, Stickstoff oder Kohlendioxid. Das so erhaltene Rohgas besitzt in einer typischen Ausführung der Erfindung nach dem Vermischen mit dem Quenchgas eine Temperatur von 600 bis 1000 0C bei einem Druck von 0,3 bis 7 MPa. Bei dieser Temperatur wird das Sorptionsmittel dem erhaltenen Rohgas zugegeben, so dass der Sorptionsprozess eine optimale Wirksamkeit entfalten kann. Die Reaktionszeit des Absorptionsprozesses ist kurz und beträgt in der Regel weniger als 1 s.
[0017] Das Sorptionsmittel sollte für die Zugabe eine feste und feinkörnige, gegebenenfalls auch pulvrige Form besitzen. Eine bevorzugte Korngröße bei der Zugabe liegt bei 1 bis 0,01 mm und idealerweise bei 0,1 bis 0,03 mm. [0018] Es ist möglich, das Sorptionsmittel getrennt von dem Quenchmedium zuzugeben. In diesem Fall wird das Sorptionsmittel dann mit einem Förderungsgas ein- gedüst. Man kann das Sorptionsmittel jedoch vorteilhaft zusammen mit dem Quenchmedium in den Quenchraum eindüsen. Das Sorptionsmittel wird hierzu mit dem Quenchmedium oder dem Fremdgas vor der Zugabe durch geeignete Vorrichtungen vermischt und dann mit dem Fördermedium in den Quenchraum eingedüst.
[0019] In einer weiteren Ausführung der Erfindung wird das Sorptionsmittel direkt hinter dem Quenchraum zu dem heruntergekühlten Rohgas gegeben. Die Zugabe von Sorptionsmittel zu dem gekühlten Rohgas ist insbesondere dann vorteilhaft, wenn der Anteil an Verunreinigungen im Rohgas geringer ist, da dann eine vergleichsweise kürzere Reaktionsstrecke benötigt wird.
[0020] Als basische Bestandteile enthält das Sorptionsmittel Verbindungen, die schnell und intensiv mit den beigefügten sauren und schwefelhaltigen Bestandteilen reagieren. Beispiele für solche Verbindungen sind Calcium- und Magnesiumcarbonate als einfach oder mehrfach basische Salze, wobei Dolomit oder Kalkstein als natürliche Vertreter dieser Salze genannt seien. Die Salze können in natürlicher oder kalzinierter Form eingesetzt werden.
[0021] Zur chemischen Absorption von schwefelhaltigen Gasbestandteilen können den Sorptionsmitteln übergangshaltige Bestandteile beigemischt werden. Häufig ver- wendete Übergangsmetallverbindungen sind Zink- oder Eisensalze, wie Zinkspat oder Eisenerz. Ein bevorzugter Übergangsmetallzusatz zur Absorption der Schwefelverbindungen ist Eisenoxid oder Eisenerz. Es ist auch möglich, dem Sorptionsmittel feste, o- xidierende Stoffe zuzusetzen, die mit den sulfidischen Bestandteilen zu Sulfaten reagieren und diese dadurch in unlösliche Feststoffe umwandeln. So kann beispielsweise Calciumsulfid in leicht abtrennbares und verwertbares Calciumsulfat umgewandelt werden. Beispiele für feste, oxidierende Sorptionsmittel sind Peroxide oder Persulfate.
[0022] Es versteht sich, dass das zum Quenchen vorgesehene Medium nicht mit dem Sorptionsmittel reagieren darf. Gibt man das Sorptionsmittel separat von dem Quenchmedium zu, dann muss das Förderungsmedium inert gegenüber dem Sorpti- onsmittel sein. Typische saure oder basische Begleitgase aus dem Vergasungspro- zess sind Schwefelwasserstoff (H2S), Kohlenstoffoxidsulfid (COS), Schwefeldioxid (SO2), Chlorwasserstoff (HCl) oder Fluorwasserstoff (HF). Das basische Sorptionsmittel reagiert mit den sauren Bestandteilen je nach Zusammensetzung zu Calcium- oder Magnesiumsalzen. Die übergangsmetallhaltigen Salze reagieren mit dem Schwefelwasserstoff zu Sulfiden oder Hydrogensulfiden.
[0023] In einer weiteren Ausführung der Erfindung wird das Rohgas durch ein Teilchenbett geleitet, das das Sorptionsmittel in stückiger Form, z.B als Pellets, enthält. In diesem Fall muss das Teilchenbett jedoch periodisch gereinigt oder regeneriert werden, um es von den im Teilchenbett festgehaltenen Flugaschebestandteilen oder erkalteten Schlackebestandteilen zu reinigen. Außerdem ist es dann notwendig, das Sorpti- onsmittel periodisch durch Entnahme und Regeneration zu reaktivieren. Zur besseren Handhabung sollten die Teilchen in dem Teilchenbett eine größere mittlere Partikelgröße besitzen als die Flugasche. Vorzugsweise besitzen die Teilchen in dem Teilchenbett eine mittlere Partikelgröße von mehr als 0,2 mm.
[0024] Das erfindungsgemäß hergestellte und gereinigte Synthesegas kann für al- Ie Zwecke verwendet werden, in denen ein gereinigtes Synthesegas benötigt wird. Bevorzugt wird es in der Direktreduktion von Metallerzen verwendet. Mögliche Anwendungen sind aber auch die Synthese von Chemikalien oder die Bereitstellung von Wasserstoff. Ein Folgeprozess, der Gebrauch von einem erfindungsgemäß hergestellten und gereinigten Synthesegas macht, wird ausdrücklich mit beansprucht.
[0025] Für einige Verwendungszwecke ist es möglich, das erhaltene Rohgas mit dem abreagierten Sorbens ohne einen weiteren Reinigungsschritt direkt weiterzuver- wenden. Beispiele hierfür sind Eisenherstellungsprozesse durch Direktreduktion ausgehend von einem schwefelarmen Eisen, insbesondere dann, wenn der Anteil an Sorptionsmittel am Rohgas gering ist. Meist jedoch wird das erhaltene Synthese- oder Ge- neratorgas in einem von Feststoffen weitgehend befreiten Zustand benötigt. Hierzu müssen die so erhaltenen Feststoffe von den gebundenen, absorbierten Schadstoffen durch einen weiteren Verfahrensschritt aus dem Rohgas entfernt werden. Hierbei können Filtereinrichtungen zur Anwendung kommen, die für die Feststofffiltration von Gasen üblich sind.
[0026] Als Beispiele für geeignete Vorrichtungen sind Fliehkraftabscheider, Filterkerzen, Filtertücher oder Elektrostaubabscheider genannt. Um die Wärmeenthalpie des Rohgases bei Ausführung des erfindungsgemäßen Verfahrens voll nutzen zu können, sollte die Filtereinrichtung so gestaltet sein, dass die Temperatur des erhaltenen Gases durch den Feststoffreinigungsprozess nur wenig geändert wird. Der so erhaltene Feststoff enthält das beladene Sorptionsmittel und die aus dem Kohlevergasungsprozess mitgeführten Aschebestandteile und verfestigte Schlackepartikel.
[0027] In einer Ausführung der Erfindung erfolgt der Verfahrensschritt der Fest- stoffabscheidung nach dem Vorgang des Quenchens und nach dem Vorgang der Zugabe des Sorptionsmittels. Es ist auch möglich, eine Feststoffabscheidung im Verlauf des Prozesses mehrmals durchzuführen. Dies ist insbesondere dann sinnvoll, wenn das Rohgas nach der Herstellung durch Kohlevergasung stark feststoffbeladen ist. Dazu kann man eine Feststoffabscheidung nach der Kohlevergasungsreaktion und eine weitere nach der Zugabe des Sorptionsmittels ausführen. In der Regel ist jedoch, insbesondere bei der Verwendung von vorteilhaften Kohlevergasungsreaktoren, nur eine Feststoffabscheidung nach dem Vorgang der Sorption notwendig.
[0028] In einer weiteren Ausführung der Erfindung wird das Sorptionsmittel direkt in den Prozess der Feststoffabscheidung gegeben. Dies ist insbesondere dann vorteilhaft, wenn die mitgeführten zu absorbierenden Schadstoffe im Rohgas fester oder verfestigter Natur sind. Dann findet die Sorption im Feststoffabscheider statt und die sor- bierten Bestandteile werden mit den übrigen Bestandteilen aus dem Prozess ausge- schleust. Durch die Zugabe des Sorptionsmittels wird die Sinterfähigkeit der Flugasche gesenkt, wodurch Abscheider bei deutlich höherer Temperatur eingesetzt werden können.
[0029] Der abgeschiedene Feststoff wird nach der Ausschleusung meist in seine Bestandteile aufgetrennt. Hierzu existieren verschiedene Verfahren, wie beispielsweise die Verwendung von klassierenden Einrichtungen. Man erhält die festen oder verfestigten Nebenprodukte, die in Form von Asche oder Schlacke anfallen und das abreagierte Sorptionsmittel oder eine überwiegend das abreagierte Sorptionsmittel umfassende Partikelfraktion. Die Asche und die Schlacke können einer Weiterverwendung zugeführt oder entsorgt werden. Das Sorptionsmittel kann durch geeignete Verfahren zur Regeneration wiederverwendet werden. Beispiele für geeignete Regenerationsprozesse sind Waschen, Trocknen und Kalzinieren. Geeignete Schritte zur Regeneration des festen Sorptionsmittels können auch Hydrierschritte sein, wobei der gebundene Schwefel als Schwefelwasserstoff entfernt werden kann. Die Regeneration des basischen Sorptionsmittels kann auch durch Überleiten eines wasserdampf- oder sauerstoffhaltigen Gases erfolgen.
[0030] Das so regenerierte Sorptionsmittel kann dann wieder in einen Prozess für eine erneute Sorption zurückgeführt werden. Es ist auch möglich, das Sorptionsmittel in der Kohlevergasungsreaktion wiederzuverwenden. Hierzu wird es entweder direkt dem Kohlevergasungsreaktor oder aber der Vorbehandlung für den Brennstoff zugegeben. Dazu wird das Sorptionsmittel beispielsweise mit dem Brennstoff kleingemah- len oder getrocknet. Es ist aber auch möglich, das Sorptionsmittel in einen Folgepro- zess zu geben.
[0031] Durch die Zugabe von Sorptionsmittel wird die Fließtemperatur der meisten Schlacken gesenkt, wodurch die Vergasungs- oder Verhüttungstemperatur verringert werden kann und der Wirkungsgrad der Vergasung oder Verhüttung erhöht wird. Ist der Folgeprozess beispielhaft die Herstellung von Eisen durch einen Direktreduktions- prozess, kann das Sorptionsgut nach der Regeneration bei der Eisenherstellung als Schlackebildner wirken und der den Verhüttungsprozess günstig beeinflussen. Der Folgeprozess kann je nach Beschaffenheit auch selbst ein feststoffbeladenes Gas produzieren. Dieses wird vorteilhaft erneut in einen Feststoffabscheider geführt und gerei- nigt. Der so erhaltene Feststoff kann mit dem abgeschiedenen Feststoff aus der Kohlevergasungsreaktion vereinigt werden und ebenfalls den genannten Zwecken zugeführt werden.
[0032] In der Regel ist die Beladung des abreagierten Sorptionsmittels bei einer richtigen Dosierung so, dass eine Regeneration für eine Wiederverwendung unum- gänglich ist. Ist jedoch die Beladung des Sorptionsmittels beispielsweise bei Verwendung einer sauberen Kohle nur gering, so kann ein großer Teil auch ohne eine weitere Regeneration erneut verwendet werden. Die Verwendung des Sorptionsmittels wird dann denselben Zwecken zugeführt, wie es mit einer Regeneration der Fall wäre, beispielsweise für eine erneute Verwendung im Kohlevergasungsprozess oder für die Verwendung in einem Folgeprozess. Je Konditionierung kann das Sorptionsmittel vor der Wiederverwendung auch gemahlen oder getrocknet werden. [0033] Beansprucht wird auch eine Vorrichtung, die sich zur Ausführung des erfindungsgemäßen Prozesses eignet. Beansprucht wird insbesondere eine Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens, wobei
• diese aus einem feuerfesten Reaktionsgefäß besteht, das zur Verga- sung von festen, kohlenstoffhaltigen Brennstoffen durch Umsetzung mit einem Sauerstoff- oder wasserdampf- und sauerstoffhaltigen Gas geeignet ist, und
• sich an dieses Reaktionsgefäß ein Reaktionsraum anschließt, der mit Zuführungseinrichtungen für ein festes Sorptionsmittel und gasförmige oder dampfförmige Stoffe zur Kühlung des Rohgases ausgestattet ist, und
• die Zuführungseinrichtung für das feste Sorptionsmittel und die gas- und dampfförmigen Stoffe in Form mindestens einer Öffnung gestaltet ist, die sich vergaserauswärts in Richtung des Gasstromes öffnet und Vorrichtungen umfasst, mit denen sich das Sorptionsmittel im Gemisch mit dem Kühlgas unter Druck in den Gasstrom des Produktgases fördern und einleiten lässt.
[0034] Die Öffnung zur Zugabe des festen Sorptionsmittels ist so gestaltet, dass eine Zugabe des Sorptionsmittels in den Gasstrom des Rohgases in Strömungsrich- tung erfolgt. Erfolgt die Zugabe des Sorptionsmittels zusammen mit dem Rohgas in Form eines Rauches, so ist die Öffnung ebenfalls so gestaltet, dass eine Zugabe des Rauches in Strömungsrichtung erfolgt. Die Ausformung der Öffnung vergaserwandsei- tig bevorzugt ein Schlitz, es kann sich aber auch um einen Kragen oder eine ringförmige Düse handeln. Die Formgebung kann beliebig sein, um eine Zuführung des Rau- ches oder des Sorptionsmittels in den Rohgasstrom in Strömungsrichtung zu ermöglichen.
[0035] Auf der wandauswärtsgerichteten Seite der Öffnung befinden sich Zuführungsvorrichtungen, die eine Zuförderung des Sorptionsmittels in den Gasstrom ermöglichen. Die Förderung des festen Sorptionsmittels in den Gasstrom erfolgt bevor- zugt pneumatisch, so dass eine Zerstäubung des Gasstromes möglich ist. Geeignet ist aber jede Vorrichtung, die eine rauchförmige oder näherungsweise rauchförmige Zu- gäbe des Sorptionsmittels in den Rohgasstrom ermöglicht. Zur pneumatischen Förderung des Sorptionsmittels gehören zu der erfindungsgemäßen Vorrichtung beispielhaft auch Zerstäubungseinrichtungen, Förderschnecken oder Gasdruckpumpen.
[0036] Die beanspruchte Vorrichtung enthält außerdem einen Vergasungsreaktor, der mit mindestens einer Öffnung zur separaten Abführung der festen Reaktionsproduktes und mindestens einer weiteren Öffnung zur separaten Abführung des gasförmigen Reaktionsproduktes ausgestattet ist. Dadurch ist es möglich, ein zur Herstellung von Synthese- oder Generatorgas geeignetes Rohgas zu erhalten, das weitgehend frei von Asche- oder Schlackebestandteilen ist. Der Vergasungsreaktor enthält in einer be- vorzugten Ausführungsform eine separate Öffnung zur Ausführung der Schlacke und der übrigen anfallenden Feststoffe, die dann einer weiteren Verwendung oder Entsorgung zugeführt werden. Der Vergasungsreaktor enthält in einer bevorzugten Ausführungsform auch eine separate Öffnung zur Ausführung des Rohgases, wobei spezielle Vorrichtungen dafür sorgen, dass das Rohgas möglichst wenig Schlacke- und Asche- bestandteile enthält. Zur Erlangung einer für die Vergasungsreaktion geeigneten Form des Brennstoffes können Teil einer erfindungsgemäßen Vorrichtung Mühlen, Trockner oder Fliessbetteinrichtungen zur Brennstoffvorbehandlung sein.
[0037] An den eigentlichen Reaktor zur Durchführung der Vergasungsreaktion schließt sich in abwärts oder aufwärts führender Richtung ein Reaktionsraum an, der zur Vermischung des Rohgases mit einem Quenchmedium zur Abführung der hohen inneren Energie nach dem Vergasungsprozess dient. Zur Durchführung dieses Quenchprozesses sind in dem Reaktionsraum Düsen zur Einbringung des Quenchme- diums und des Sorptionsmittels eingebracht. Wird das Sorptionsmittel im Quenchraum nach der Zugabe des Quenchmediums zugeführt, so enthält der Quenchraum zusätzli- che Eindüsungs- oder Einbringungsvorrichtungen zur Zuführung des Sorptionsmittels.
[0038] Unabhängig vom Ort der Zugabe sind die Düsen vorteilhaft mit einer Mischvorrichtung für die Zugabe des festen Sorptionsmittels in den Gas- oder Dampfstrom versehen. Außerdem sind die Düsen vor der Mischvorrichtung mit einer geeigneten Zuführungseinrichtung für das Sorptionsmittel ausgerüstet. Dies können beispiels- weise Förderschnecken oder pneumatische Propfenfördereinrichtungen sein. Je nach Ort der Zugabe des Sorptionsmittels können die Düsen- oder Fördereinrichtungen für das Sorptionsmittel im Prozessfluss auch hinter dem Quenchraum oder in einem nachgeschalteten Feststoffabscheider angebracht sein. Zur Erlangung einer für die Vergasungsreaktion geeigneten Form des Sorptionsmittels können Teil einer erfindungsgemäßen Vorrichtung Mühlen, Trockner oder Fliessbetteinrichtungen zur Sorptionsmittel- Vorbehandlung sein.
[0039] In einer Ausführung der Erfindung enthält die Vorrichtung einen Feststoffabscheider, in den das Rohgas nach der Reaktion mit den Sorptionsmitteln gelangt und in dem die festen Bestandteile aus dem Gas herausgefiltert werden. Die Vorrichtung kann weitere Apparate enthalten, die es beispielsweise erlauben, eine Feststoff- behandlung der abgeschiedenen Feststoffe durchzuführen. Hierzu gehören beispielsweise klassierende Einrichtungen wie Sichter- oder Siebvorrichtungen, die Asche oder Schlackebestandteile von dem abreagierten Sorptionsmittel abtrennen können.
[0040] Geeignete Feststoffabscheidervorrichtungen sind insbesondere Fliehkraftabscheider, auch Zyklone genannt. Geeignete Feststoffabscheidervorrichtungen kön- nen aber auch temperaturbeständige Tuchfilter, keramische Filterelemente, Filterkerzen oder ein Elektroentstauber sein. Der Verfahrensschritt der Feststoffabscheidung findet in der Regel direkt hinter dem Quench- und Sorptionsvorgang statt. Es ist auch möglich, das feststoffbeladene, heiße Rohgas über Rohrleitungen in den Verfahrensschritt der Feststoffabscheidung zu geben. Es ist auch möglich, die Feststoffabschei- düng durch Filtration vorzunehmen. Dieser Verfahrensschritt erfolgt bevorzugt vor der Zugabe des Sorptionsmittels, da die Sintertemperatur der Schlacke sonst absinkt und diese dadurch die Filtrationseinrichtungen verstopft.
[0041] Die Vorrichtung kann auch Apparate enthalten, die es erlauben, nach der Abscheidung des Feststoffes vom Sorptionsmittel eine Regeneration des Sorptionsmit- tels durchzuführen. Hierzu zählen beispielsweise Waschkessel oder Trocken- und KaI- zinierungseinrichtungen. Diese Vorrichtungsbestandteile befinden sich in der Regel im Prozessfluss hinter dem Quenchraum und hinter der Feststoffabscheidung. Das regenerierte Sorptionsmittel wird in einer bevorzugten Ausführungsform der Erfindung durch geeignete Vorrichtungen wieder in den Prozess der Kohlevergasung zurückge- führt. Dies kann am Punkt der Brennstoffvorbehandlung oder direkt in den Kohlevergasungsreaktor geschehen. [0042] Die Vorrichtung zur Ausführung des erfindungsgemäßen Verfahrens kann auch Einrichtungen enthalten, die eine Weiterverwendung des Sorptionsmittels in einem Folgeprozess ermöglichen. Produziert der Folgeprozess seinerseits ein feststoff- beladenes Gas, dann kann die erfindungsgemäße Vorrichtung auch Apparate zur Feststoffabscheidung und Rückführung des abgeschiedenen Feststoffes enthalten.
[0043] In einer weiteren Ausführung der Erfindung ist es möglich, das aus dem Quenchprozess erhaltene Gas vor oder nach der Abtrennung von Feststoffen einem Waschprozess mit einer Waschflüssigkeit zu unterziehen. So kann das mit Feststoffen oder mit beladenem Sorptionsmittel versehene Rohgas bevorzugt mit Wasser gewa- sehen werden, um beladenes Sorptionsmittel oder Feststoff aus dem Rohgas herauszuwaschen. Es ist aber auch möglich, das beladene Rohgas mit anderen für Gaswaschprozesse geeignete Waschflüssigkeiten zu reinigen. Beispiele für häufig verwendete Waschflüssigkeiten sind Ethanolamine oder alkylierte Polyalkylenglykole.
[0044] Die Erfindung ermöglicht eine effiziente und schnelle Reinigung eines aus einem Kohlevergasungsprozess stammenden Synthese- oder Generatorgases durch Zugabe eines festen Sorptionsmittels unmittelbar nach der Kohlevergasungsreaktion. Durch eine schnelle Reaktion des zugegebenen Sorptionsmittels mit Rohgasen, die saure oder schwefelhaltige oder halogenhaltige Stoffe oder eine Kombination dieser Stoffe enthalten, können diese störenden Stoffe schnell und effizient aus dem Rohgas entfernt werden. Dadurch entfällt der energie- und zeitaufwendige mit einer Kühlung verbundene Waschprozess und das sich daran anschließende Wiederaufheizen des Gases. Das erhaltene Sorptionsmittel kann kostengünstig weiter verwendet werden oder regeneriert werden.
[0045] Die erfindungsgemäße Ausgestaltung einer Vorrichtung zur Vergasung fes- ter Brennstoffe wird anhand von zwei Zeichnungnen genauer erläutert, wobei das erfindungsgemäße Verfahren nicht auf diese Ausführungsform beschränkt ist.
[0046] FIG. 1 zeigt einen erfindungsgemäßen Prozessfluss zur Durchführung eines Verfahrens mit der Zugabe eines festen Sorptionsmittels zu einem Rohgasstrom einer Vergasungsreaktion. FIG. 2 zeigt eine erfindungsgemäße Vorrichtung zur Zugabe eines festen Sorptionsmittels in den Rohgasstrom einer Vergasungsreaktion. [0047] FIG.1 zeigt ein stark vereinfachtes Schema zur Durchführung des Verfahrens mit der Zugabe des Sorptionsmittels zum Rohgasstrom in den Mischraum beim Quenchen. Der feste kohlenstoffhaltige Brennstoff (1) wird zur Vorbereitung des Vergasungsprozesses in eine Vorrichtung zum Mahlen und Trocknen (2) gegeben. Der dadurch anfallende kleinteilige oder feinkörnige Brennstoff wird über geeignete Fördereinrichtungen (2a) in einen Vergasungsreaktor gegeben. Über eine weitere Zuführungsleitung und Vorrichtungen zum Einsprühen wird ein Sauerstoff- oder wasserdampf- und sauerstoffhaltiges Reaktionsgas (3) in den Vergasungsreaktor (4) eingeführt, in dem die eigentliche Vergasungsreaktion zur Herstellung von Synthesegas stattfindet. Der Reaktor (4) ist in einer vorteilhaften Ausführungsform mit einer separaten Abführungseinrichtung für feste und verflüssigte Vergasungsprodukte ausgestattet, die es erlauben, die bei dem Vergasungsprozess anfallende Schlacke mit den übrigen festen Bestandteilen separat vom Rohgas aus dem Reaktor auszuführen (5). Das erhaltene Rohgas wird aus dem Reaktor in vertikal abwärts gerichteter Strömung in ei- nen Misch- oder Quenchraum (6) geleitet. Es ist auch möglich, den Misch- oder Quenchraum konstruktiv an den Reaktor anzuschließen. In den Quenchraum wird das heiße Rohgas zur Abführung der hohen inneren Energie mit einem niedriger temperierten Fremdgas (7) versehen. In den Quenchraum wird frisches Sorptionsmittel (8) gegeben, das dort mit den Schadstoffen des Rohgases reagiert. Das heruntergekühlte und sorptionsmittelbeladene Gas wird über eine Rohrleitung (9) in einen Entstauber oder Feststoffabscheider (10), z.B. einen Zyklon, geleitet. Dort werden die groben, festen Bestandteile des Rohgases abgeschieden, so dass dieses in die Feststoffbehandlung geleitet werden kann (13). Diese festen Bestandteile, die im Wesentlichen aus verfestigter Schlacke, beladenem Sorptionsmittel und Asche bestehen, werden dort aufgetrennt. Die Asche und die Schlacke werden aus dem Prozess ausgeschleust (14). Das Sorptionsmittel wird durch geeignete Verfahren regeneriert und ebenfalls aus dem Prozess ausgeschleust (15). Je nach Beladung des Sorptionsmittels kann dieses erneut in der Vorbehandlung mit dem Brennstoff vermischt (13a) und in die Vergasungsreaktion gegeben werden (2a). Bei geeigneter Beschaffenheit des Sorptionsmittels ist es auch möglich, dieses direkt in den Vergasungsreaktor zu geben (13b). Das entstaubte Rohgas (12) der Kohlevergasungsreaktion wird in den Folgeprozess (17) geleitet. Dort wird es in verschiedenen Prozessen eingesetzt. Es ist möglich, das beladene Sorptionsmittel je nach Beschaffenheit in dem Folgeprozess einzusetzen (16). Im Verlauf des Folgeprozesses wird ein Teil des Gases verbraucht, während sich das Sorpti- onsmittel nur wenig ändert. Das restliche feststoff- oder staubhaltige Gas (18) wird einer erneuten Reinigung durch Feststoffabscheidung (19) unterzogen. Der dabei anfallende Feststoff kann je nach Beschaffenheit und Beladung in den Prozess der Feststoffregeneration (19a) gegeben werden. Bei stärkerer Beladung wird der sorptionsmit- telbeladene Feststoff nach Einsatz im Folgeprozess ausgeschleust (20). In einer weiteren Ausführung der Erfindung wird das frische Sorptionsmittel (8) unmittelbar hinter dem Misch- oder Quenchraum in den Prozess gegeben oder in den Feststoffabscheider gegeben, wobei sich die restliche Anlagenkonstruktion wenig ändert.
[0048] FIG. 2 zeigt die Austrittsöffnung eines Vergasungsreaktors (4a), der das Rohgas (21) in aufwärtsführender Richtung aus dem Vergasungsreaktor ausführt. Das Rohgas passiert eine Verengung (4b), die die Geschwindigkeit des Gasstromes erhöht. Hinter der Verengung befindet sich eine Öffnung (23), durch die das feste Sorptionsmittel (8) zusammen mit einem inerten Gas in Form eines Rauches (22) eingeleitet wird. Der Rauch wird mit dem Rohgas (9) mitgerissen und führt dabei einen Reini- gungseffekt durch. Der Rauch wird mit dem gereinigten Rohgas entlang des Rohres zur Rohgasausführung (24) mitgerissen.
[0049] Bezugszeichenliste
1 Brennstoffzufuhr
2 Mahlung und Trocknung
2a Zufuhr von gemahlenem Brennstoff
3 Reaktionsgas
Vergasungsreaktor a Austrittsöffnung eines Vergasungsreaktors b Verengung an der Austrittsöffnung des Vergasungsreaktors
5 Feststoffaustrag (Asche und Schlacke)
6 Mischraum (Quenchraum)
7 Fremdgaszuführung
8 Festes Sorptionsmittel
9 Rohgas, beladen mit Feststoff
10 Feststoffabscheider
11 Feststoffaustrag
12 Gereinigtes Rohgas oder Synthesegas
13 Feststoffbehandlung
13a Feststoffrückführung in die Brennstoffvorbehandlung
13b Feststoffrückführung in den Vergasungsreaktor
14 Austrag von festem, beladenem Sorptionsmittel
15 Austrag von Schlacke
16 Feststoffeintrag in Folgeprozess
17 Folgeprozess
18 Prozessaustrittsgas
19 Feststoffreinigung Prozessaustrittsgas
19a Feststoffrückführung Prozessaustrittsgas
20 Entstaubtes Prozessaustrittsgas
21 Rohgasstrom
22 Rauch aus festem Sorptionsmittel und Rohgas
23 Öffnung
24 Rohr zur Rohgasausführung

Claims

Patentansprüche
1. Verfahren zur Herstellung und Reinigung eines staubhaltigen Rohgases mit Synthesegascharakter, wobei
• das Rohgas durch Vergasung eines festen kohlenstoffhaltigen Materials mit einem sauerstoffhaltigen oder wasserdampf- und sauerstoffhaltigen
Gas in einem hierfür geeigneten Reaktor hergestellt wird, wobei
• ein Rohgas entsteht, das bedingt durch die Zusammensetzung des Brennstoffes saure oder basische oder schwefelhaltige oder halogenhalti- ge gasförmige Schadstoffe umfasst, und • das Rohgas außerdem noch feste, asche- oder schlackehaltige Stoffe umfassen kann, wobei
• das Rohgas aus dem Vergasungsreaktor in einem abwärts- oder aufwärtsführenden Reaktionsraum geleitet wird, wo ein kälteres Gas oder eine verdampfte Flüssigkeit oder eine Flüssigkeit zugegeben wird, womit das Synthesegas zur Abführung der hohen inneren Energie abreagieren kann, dadurch gekennzeichnet, dass
• das staubhaltige Rohgas während oder nach der Zugabe des kälteren Gases oder der verdampften Flüssigkeit zur Reinigung mit einem festen Sorptionsmittel versetzt wird, das mit dem Rohgas in Gasströmungsrichtung mitgerissen und transportiert wird und mit den sauren oder basischen oder schwefelhaltigen oder halogenhaltigen Stoffen innerhalb kurzer Zeit reagiert und diese Stoffe in eine feste und gebundene Form überführt.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das Gas oder die verdampfte Flüssigkeit zur Kühlung des Rohgases und das feste Sorptionsmittel in einem gemeinsamen Strom als Rauch zugeführt werden, wobei Rauch ein heterogenes Gemisch von Feststoffteilchen und Gas bezeichnet.
3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass der Rauch in den Randbereich des Rohgases zugegeben wird.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass das Rohgas überwiegend Kohlenmonoxid und Wasserstoff umfasst.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Rohgas nach der Herstellung und nach der Zugabe des Fremdmediums eine Temperatur von 600 bis 10000C besitzt und unter einem Druck von 0,3 bis 7 MPa steht.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass es sich bei dem festen kohlenstoffhaltigen Material für die Vergasungsreaktion um
Kohle, Petrolkoks oder um ein cellulosehaltiges biologisches Brennmaterial handelt.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Brennstoff zur Erlangung einer für die Vergasungsreaktion geeigneten Form vor der Umsetzung einer Mahlung oder einer Trocknung zugeführt wird.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das feste Sorptionsmittel basische Calciumverbindungen, basische Magnesiumverbindungen oder übergangsmetallhaltige Verbindungen umfasst.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass das Sorptionsmittel Kalkstein, kalzinierten Kalkstein oder Dolomit umfasst.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass das Sorptionsmittel Eisenerz oder Eisenoxide umfasst.
1 1. Verfahren nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass das Sorptionsmittel feste, oxidierende Bestandteile umfasst, das die sulfidi- sehen Bestandteile in Sulfate überführen kann.
12. Verfahren nach einem der Ansprüche 8 bis 11 , dadurch gekennzeichnet, dass das feste Sorptionsmittel eine Korngröße von 0,01 bis 1 mm besitzt.
13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die in dem Rohgas enthaltenen Feststoffe durch einen Feststoffabscheider teil- weise oder vollständig aus dem System ausgeschleust werden.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass der aus dem Rohgas entfernte und aus Flugasche, Schlacke und Sorptionsmittel bestehende Feststoff nach der Abscheidung aus dem Rohgas ohne Klassierung mit dem Brennstoff in den Kohlevergasungsprozess zurückgeführt wird.
15. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass der aus dem
Rohgas entfernte und aus Flugasche, Schlacke und Sorptionsmittel bestehende Feststoff nach der Abscheidung aus dem Rohgas ausgeschleust oder einer Verwendung in einem anderen Prozess zugeführt wird.
16. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass die aus dem Sys- tem ausgeschleusten Feststoffe einer Klassierung unterworfen werden, wodurch man die festen oder verfestigten Schlacke- und Aschebestandteile und das beladene Sorptionsmittel erhält.
17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass das aus dem Rohgas entfernte und von der Flugasche und der Schlacke abgetrennte Sorpti- onsmittel in den erfindungsgemäßen Kohlevergasungsprozess zurückgeführt wird.
18. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass das aus der Feststoffklassierung erhaltene beladene Sorptionsmittel einer Regeneration zugeführt wird.
19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, dass die Regeneration des beladenen Sorptionsmittels eine Wäsche, eine Trocknung oder eine Kalzinierung umfasst.
20. Verfahren nach Anspruch 18, dadurch gekennzeichnet, dass die Regeneration des beladenen Sorptionsmittels eine Überleitung eines Sauerstoff- oder wasserdampf- und sauerstoffhaltigen Gases umfasst.
21. Verfahren nach einem der Ansprüche 18 bis 20, dadurch gekennzeichnet, dass das aus dem Rohgas entfernte und von der Flugasche und der Schlacke abgetrennte und regenerierte Sorptionsmittel in den erfindungsgemäßen Kohlever- gasungsprozess zurückgeführt wird.
22. Verfahren nach einem der Ansprüche 18 bis 20, dadurch gekennzeichnet, dass das aus dem Rohgas entfernte und von der Flugasche und der Schlacke abge- trennte und regenerierte Sorptionsmittel ausgeschleust oder einer Verwendung in einem anderen Prozess zugeführt wird.
23. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass der aus dem Rohgas entfernte Feststoff aus Flugasche, Schlacke und Sorptionsmittel durch Klassierung getrennt werden und das Sorptionsmittel und der restliche Feststoff ausgeschleust oder einer Verwendung in einem anderen Prozess zugeführt wird.
24. Verfahren nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, dass das heiße Rohgas vor der Zugabe des festen Sorptionsmittels einem Verfahrensschritt der Feststoffabscheidung unterzogen wird.
25. Verfahren nach einem der Ansprüche 1 bis 24, dadurch gekennzeichnet, dass das heiße Rohgas statt der oder zusätzlich zur Zugabe eines festen Sorptionsmittels einem Durchleiten durch ein Teilchenbett mit festem Sorptionsmittel unterzogen wird.
26. Verfahren nach einem der Ansprüche 1 bis 25, dadurch gekennzeichnet, dass das von den Fremdgasen gereinigte Rohgas einer Weiterverwendung zur Reduktion von Metallerzen, einer Gewinnung von Wasserstoff oder einer Weiterverwendung zu chemischen Synthesezwecken zugeführt wird.
27. Vorrichtung zur Durchführung eines Verfahrens nach einem der Ansprüche 1 bis 24, wobei
• diese aus einem feuerfesten Reaktionsgefäß besteht, das zur Vergasung von festen, kohlenstoffhaltigen Brennstoffen durch Umsetzung mit einem Sauerstoff- oder wasserdampf- und sauerstoffhaltigen Gas geeignet ist, und
• sich an dieses Reaktionsgefäß ein Reaktionsraum anschließt, der mit Zuführungseinrichtungen für ein festes Sorptionsmittel und gasförmige oder dampfförmige Stoffe zur Kühlung des Rohgases ausgestattet ist, und
• die Zuführungseinrichtung für das feste Sorptionsmittel und die gas- und dampfförmigen Stoffe in Form mindestens einer Öffnung gestaltet ist, die sich vergaserauswärts in Richtung des Gasstromes öffnet und Vorrichtungen umfasst, mit denen sich das Sorptionsmittel im Gemisch mit dem Kühlgas unter Druck in den Gasstrom des Produktgases fördern und einleiten lässt.
28. Vorrichtung nach Anspruch 27, dadurch gekennzeichnet, dass die Öffnung für das Kühlgas und das feste Sorptionsmittel als Schlitz geformt ist.
29. Vorrichtung nach einem der Ansprüche 27 oder 28, dadurch gekennzeichnet, dass es sich bei den Vorrichtungen zur Förderung des festen Sorptionsmittels um pneumatische Fördereinrichtungen handelt.
30. Vorrichtung nach einem der Ansprüche 27 bis 29, dadurch gekennzeichnet, dass sich vor dem Reaktionsgefäß zur Vergasung eine Vorrichtung zum Trocknen und Mahlen befindet.
31. Vorrichtung nach einem der Ansprüche 27 bis 30, dadurch gekennzeichnet, dass der Reaktor zur Durchführung des Vergasungsprozesses mit einer mindestens einer Öffnung zur separaten Abführung der flüssigen und festen Reaktionsproduktes und mindestens einer weiteren Öffnung zur separaten Abführung des gasförmigen Reaktionsproduktes ausgestattet ist.
32. Vorrichtung nach einem der Ansprüche 27 bis 31 , dadurch gekennzeichnet, dass der Reaktionsraum zur Zugabe der gasförmigen, flüssigen oder festen Medien zur Abführung der hohen inneren Energie mit Einrichtungen zur Zugabe der Quenchmedien ausgestattet ist.
33. Vorrichtung nach einem der Ansprüche 27 bis 32, dadurch gekennzeichnet, dass der Reaktionsraum zur Zugabe der gasförmigen, flüssigen oder festen Medien zur Abführung der hohen inneren Energie mit Einrichtungen zur Zugabe des festen Sorptionsmittels ausgestattet ist.
34. Vorrichtung nach einem der Ansprüche 27 bis 33, dadurch gekennzeichnet, dass sie mit Einrichtungen zur Zuführung des festen Sorptionsmittels hinter dem Reaktionsraum ausgestattet ist.
35. Vorrichtung nach einem der Ansprüche 27 bis 34, dadurch gekennzeichnet, dass sie mindestens eine zur Feststoffabscheidung geeignete Vorrichtung um- fasst.
36. Vorrichtung nach einem der Ansprüche 27 bis 35, dadurch gekennzeichnet, dass sie im Prozessfluss hinter den Zuführungseinrichtungen für das Sorptionsmittel mindestens eine zur Feststoffabscheidung geeignete Vorrichtung um- fasst.
37. Vorrichtung nach einem der Ansprüche 33 bis 36, dadurch gekennzeichnet, dass sie mit Einrichtungen zur Zuführung des festen Sorptionsmittels im Feststoffabscheider ausgestattet ist.
38. Vorrichtung nach einem der Ansprüche 33 bis 37, dadurch gekennzeichnet, dass es sich bei der Vorrichtung zur Entfernung des Feststoffs aus dem Rohgas um einen Trägheitsabscheider, einen Fliehkraftabscheider, um kerami- sehe Filterelemente, einen Tuchfilter oder um eine Elektroentstaubung handelt.
39. Vorrichtung nach einem der Ansprüche 27 bis 38, dadurch gekennzeichnet, dass sie ein Teilchenbett mit festem Sorptionsmittel zum Durchleiten des Rohgases umfasst.
40. Vorrichtung nach einem der Ansprüche 33 und 39, dadurch gekennzeichnet, dass sie den aus der Feststoffabscheidung stammenden Feststoff einer Regeneration für das Sorptionsmittel zuführt und das im Feststoff enthaltene Sorptionsmittel regenerieren kann.
41. Vorrichtung nach einem der Ansprüche 33 und 40, dadurch gekennzeichnet, dass sie die aus dem Feststoffabscheider stammenden abgeschiedenen Feststoffe klassieren und in Flugasche- oder Schlackebestandteile und Sorptionsmittel trennen kann.
42. Vorrichtung nach Anspruch 41 , dadurch gekennzeichnet, dass sie das aus der Klassierung des abgeschiedenen Feststoffes stammende Sorptionsmittel regenerieren kann.
43. Vorrichtung nach einem der Ansprüche 27 bis 42, dadurch gekennzeichnet, dass sie Einrichtungen zur Weiterleitung des abgeschiedenen oder abgeschiedenen und regenerierten Feststoffes in den Kohlevergasungsprozess umfasst.
44. Vorrichtung nach einem der Ansprüche 27 bis 43, dadurch gekennzeichnet, dass sie Einrichtungen zur Weiterleitung des abgeschiedenen oder abgeschiedenen und regenerierten Sorptionsmittels in den Kohlevergasungsprozess umfasst.
45. Vorrichtung nach einem der Ansprüche 27 bis 44, dadurch gekennzeichnet, dass sie einen Folgeprozess umfasst, der das durch das feste Sorptionsmittel gereinigte Rohgas verwendet.
46. Vorrichtung nach einem der Ansprüche 27 bis 45, dadurch gekennzeichnet, dass sie Einrichtungen zur Weiterleitung des abgeschiedenen oder abgeschiedenen und regenerierten Feststoffes in den Folgeprozess umfasst.
47. Vorrichtung nach einem der Ansprüche 27 bis 46, dadurch gekennzeichnet, dass sie Einrichtungen zur Weiterleitung des abgeschiedenen oder abgeschiedenen und regenerierten Sorptionsmittels in den Folgeprozess umfasst.
48. Vorrichtung nach Anspruch 47, dadurch gekennzeichnet, dass die Feststoffbestandteile des Gases eines Folgeprozesses mit den aus dem Kohleverga- sungsprozess abgeschiedenen Feststoffen oder Feststoffbestandteilen vereinigt werden und einer weiteren Verwendung zugeführt können.
EP08802648A 2007-09-26 2008-09-26 Verfahren zur reinigung des rohgases aus einer feststoffvergasung Withdrawn EP2193184A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007046260A DE102007046260A1 (de) 2007-09-26 2007-09-26 Verfahren zur Reinigung des Rohgases aus einer Feststoffvergasung
PCT/EP2008/008194 WO2009043540A1 (de) 2007-09-26 2008-09-26 Verfahren zur reinigung des rohgases aus einer feststoffvergasung

Publications (1)

Publication Number Publication Date
EP2193184A1 true EP2193184A1 (de) 2010-06-09

Family

ID=40223747

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08802648A Withdrawn EP2193184A1 (de) 2007-09-26 2008-09-26 Verfahren zur reinigung des rohgases aus einer feststoffvergasung

Country Status (11)

Country Link
US (2) US8529792B2 (de)
EP (1) EP2193184A1 (de)
KR (1) KR101566335B1 (de)
CN (1) CN101802143B (de)
AU (1) AU2008306154B9 (de)
BR (1) BRPI0817286A2 (de)
CA (2) CA2694584A1 (de)
DE (1) DE102007046260A1 (de)
RU (1) RU2466179C2 (de)
WO (1) WO2009043540A1 (de)
ZA (1) ZA201000342B (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8357216B2 (en) * 2009-04-01 2013-01-22 Phillips 66 Company Two stage dry feed gasification system and process
CN101880553B (zh) * 2010-06-22 2013-03-13 沈阳航空航天大学 一种适用于煤基气体的一体化中高温煤气净化方法与设备
CN102259835B (zh) 2011-06-20 2013-03-27 中国科学院广州能源研究所 一种基于熔融盐特性的粗合成气净化提质方法
GB2513154B (en) * 2013-04-17 2015-10-28 Tetronics International Ltd Precious Metal Recovery
CN103657368B (zh) * 2013-12-30 2015-12-23 昆明理工大学 一种同时脱硫脱硝脱汞干法烟气净化方法及装置
US9810146B2 (en) * 2014-07-17 2017-11-07 Saudi Arabian Oil Company Calcium sulfate looping cycles for sour gas combustion and electricity production
WO2016066716A1 (de) * 2014-10-31 2016-05-06 Man Diesel & Turbo Se Verfahren und anlage zur herstellung von synthesegas
CN105548456B (zh) * 2015-12-15 2018-11-09 北京雪迪龙科技股份有限公司 一种汞催化剂转化效率检测方法和检测装置
KR102520557B1 (ko) * 2022-02-03 2023-04-13 주식회사 에이피그린 탄소 포집 방법 및 장치

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4260412A (en) 1980-01-16 1981-04-07 Midrex Corporation Method of producing direct reduced iron with fluid bed coal gasification
DE3340204A1 (de) * 1983-11-07 1985-05-15 Klöckner-Humboldt-Deutz AG, 5000 Köln Verfahren und vorrichtung zur reinigung heisser gase mit waermerueckgewinnung
DE3439600A1 (de) * 1984-10-30 1986-05-07 Carbon Gas Technologie GmbH, 4030 Ratingen Verfahren zur erzeugung von schwefelarmem gas aus feingemahlenen kohlenstoffhaltigen feststoffen
US4776388A (en) * 1985-03-13 1988-10-11 Westinghouse Electric Corp. Method and apparatus for cooling a high temperature waste gas using a jetting bed, fluidized bed technique
RU2015158C1 (ru) * 1987-10-02 1994-06-30 Студевик АБ Способ очистки загрязненного горючего газа
DE3808729A1 (de) * 1988-03-16 1989-10-05 Krupp Koppers Gmbh Verfahren und vorrichtung zur abkuehlung des aus einem vergasungsreaktor austretenden heissen produktgases
DK315289A (da) * 1988-06-30 1989-12-31 Shell Int Research Fremgangsmaade til omdannelse af forureninger i en raa hoejtrykssyntesegasstroem med hoej temperatur
DE3873083D1 (de) * 1988-08-31 1992-08-27 Gutehoffnungshuette Man Verfahren zum vergassen von kohle und weiterbehandeln des produktgases.
AT393232B (de) * 1989-11-24 1991-09-10 Voest Alpine Ind Anlagen Verfahren zum entfernen von schadstoffen aus heissen produktgasen
ES2083787T3 (es) * 1993-03-16 1996-04-16 Krupp Koppers Gmbh Aparato de gasificacion para gasificar a presion combustibles finamente divididos.
US5401282A (en) * 1993-06-17 1995-03-28 Texaco Inc. Partial oxidation process for producing a stream of hot purified gas
JP3125907B2 (ja) * 1993-09-27 2001-01-22 株式会社ミツバ 結晶配向薄膜製造装置
RU2095396C1 (ru) * 1994-02-03 1997-11-10 Акционерное общество открытого типа "НовосибирскНИИХиммаш" Способ переработки твердого топлива на высококалорийный газ или синтез-газ
US5688479A (en) 1994-12-22 1997-11-18 Uop Process for removing HCl from hydrocarbon streams
US5567228A (en) * 1995-07-03 1996-10-22 Foster Wheeler Energy Corporation System for cooling and cleaning synthesized gas using ahot gravel bed
US7056487B2 (en) * 2003-06-06 2006-06-06 Siemens Power Generation, Inc. Gas cleaning system and method
CA2606846C (en) * 2005-05-02 2013-12-10 Shell Internationale Research Maatschappij B.V. Method and system for producing synthesis gas
US20080134666A1 (en) * 2006-12-11 2008-06-12 Parag Prakash Kulkarni Systems and Methods Using an Unmixed Fuel Processor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009043540A1 *

Also Published As

Publication number Publication date
US8529792B2 (en) 2013-09-10
CA2734601C (en) 2016-11-08
BRPI0817286A2 (pt) 2015-03-10
AU2008306154B2 (en) 2013-02-21
DE102007046260A1 (de) 2009-04-09
RU2010116168A (ru) 2011-11-10
CA2694584A1 (en) 2009-04-09
CN101802143A (zh) 2010-08-11
US20140044601A1 (en) 2014-02-13
AU2008306154B9 (en) 2013-03-21
KR101566335B1 (ko) 2015-11-05
CN101802143B (zh) 2015-08-26
KR20100063812A (ko) 2010-06-11
WO2009043540A1 (de) 2009-04-09
AU2008306154A1 (en) 2009-04-09
WO2009043540A4 (de) 2009-05-22
CA2734601A1 (en) 2009-04-09
RU2466179C2 (ru) 2012-11-10
US20100311847A1 (en) 2010-12-09
ZA201000342B (en) 2010-12-29

Similar Documents

Publication Publication Date Title
EP2193184A1 (de) Verfahren zur reinigung des rohgases aus einer feststoffvergasung
AT506837B1 (de) Verfahren und vorrichtung zur herstellung von roheisen oder flüssigen stahlvorprodukten
EP2227312B1 (de) Verfahren und vorrichtung zur wiederaufbereitung von co2-haltigen abgasen
EP0670910B1 (de) Verfahren zur herstellung von roheisen aus eisenerzen und vorrichtung zur thermischen und/oder chemischen behandlung eines leicht zerfallenden materials oder zur herstellung von roheisen mittels dieses verfahrens
DE60204353T2 (de) Verfahren und vorrichtung zum vergasen von kohlenstoffhaltigem material
EP2229429A2 (de) Entfernung von flüssigasche und alkalien aus einem synthesegas
WO2022157619A1 (de) Vorrichtung zum verwerten von prozessgas unter umsetzung von altstoffen und bildung von synthesegas
DE4307484A1 (de) Verfahren zur Direktreduktion von eisenoxidhaltigen Materialien mit festen kohlenstoffhaltigen Reduktionsmitteln
DE102007006982B4 (de) Verfahren und Vorrichtung zur Vergasung fester Brennstoffe in der Wirbelschicht unter erhöhtem Druck
EP3580312B1 (de) Herstellung von synthesegas aus kohlenstoffreichen substanzen mittels eines kombiniertes gleichstrom-gegenstrom verfahrens
EP1537905B1 (de) Verfahren und Vorrichtung zur Sorption von Schadstoffen aus Verbrennungsabgasen mittels einer fluidisierenden Wirbelschicht
CH701016B1 (de) Verfahren zum Entfernen von Stickstoff aus Gichtgas um eine zusätzliche Einspeisung in eine Gasturbinenmaschine zu bilden.
AT393232B (de) Verfahren zum entfernen von schadstoffen aus heissen produktgasen
DE102008009132A1 (de) Verfahren und Vorrichtung zum Verbrennen fester Brennstoffe
AT392911B (de) Verfahren zum stabilisieren von festen reinigungsmitteln fuer schadstoffhaltige gase
DE102009007879A1 (de) Verfahren und Vorrichtung zur Gaserzeugung aus chlorhaltigen Brenn- und Abfallstoffen
DE2633491A1 (de) Verfahren zum vergasen fester, kohlenstoffhaltiger, teilchenfoermiger stoffe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100329

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THYSSENKRUPP UHDE GMBH

17Q First examination report despatched

Effective date: 20130903

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THYSSENKRUPP INDUSTRIAL SOLUTIONS AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20161025