EP2191125B1 - Procede de diagnostic du volet de derivation de l'echangeur dans un systeme de recirculation des gaz d'echappement - Google Patents

Procede de diagnostic du volet de derivation de l'echangeur dans un systeme de recirculation des gaz d'echappement Download PDF

Info

Publication number
EP2191125B1
EP2191125B1 EP08837336.0A EP08837336A EP2191125B1 EP 2191125 B1 EP2191125 B1 EP 2191125B1 EP 08837336 A EP08837336 A EP 08837336A EP 2191125 B1 EP2191125 B1 EP 2191125B1
Authority
EP
European Patent Office
Prior art keywords
egr
exchanger
temperature
mode
tsegr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08837336.0A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP2191125A2 (fr
Inventor
Julien Allard
Clement Petit
Ronan Le Bras
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP2191125A2 publication Critical patent/EP2191125A2/fr
Application granted granted Critical
Publication of EP2191125B1 publication Critical patent/EP2191125B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
    • F02M26/47Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition the characteristics being temperatures, pressures or flow rates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/25Layout, e.g. schematics with coolers having bypasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/33Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage controlling the temperature of the recirculated gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/49Detecting, diagnosing or indicating an abnormal function of the EGR system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • F02D2041/0067Determining the EGR temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0055Special engine operating conditions, e.g. for regeneration of exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor

Definitions

  • the present invention relates to a method for diagnosing a failure of the EGR circuit of an engine, specifically the blocking of the bypass flap of the EGR exchanger.
  • the bypass flap is a key element of the exhaust gas recirculation system (designated by the acronym EGR - Exhaust Gas Recirculation according to the English terminology).
  • the proper functioning of the shutter thus makes it possible to guarantee the depollution of the current diesel engines.
  • the blocking of the shutter in bypass mode or in cooled mode has direct consequences on the pollution emitted at the output of the engine.
  • the risk associated with blocking the flap is also not related solely to pollution. Indeed, a failure of the shutter can have consequences on the reliability of the surrounding components (degradation due to a too high temperature of the EGR valve and its support) and the integrity of the engine control strategies that use it (such as example that the cleaning of the valve and the exchanger, or the priming of the catalyst).
  • a first method uses a temperature sensor located at the entrance of the intake manifold and can diagnose a blockage of the flap by measuring the temperature difference between the cool mode and bypass mode.
  • this method requires the actuation of the shutter to be able to perform the diagnosis.
  • it does not detect the position in which the shutter has blocked; however, the blocking in bypass or cooled mode does not have the same impact on pollution and we want to act differently in these two cases.
  • this process seems relatively imprecise because the temperature sensor located at the inlet of the inlet distributor is influenced by the fresh air admitted.
  • Another process described in the document JP 2003-247459 , implements a strategy based on the monitoring of the air flow before and after the activation of the bypass flap, the air intake flap and the EGR valve being completely open.
  • the advantage of this solution is that it simply uses the flowmeter located on the fresh air intake duct.
  • this strategy can generate a significant rate of false detections, due to the EGR environment (high temperature, fouling of the connectors) and the limited reactivity of the shutter control. Indeed, pressure wave phenomena delay the vacuum control of the bypass flap. In addition, it requires an intrusion into the operation of the engine, since it requires to open the air intake flap and the EGR valve.
  • the document US-2006/0042608 describes in particular a method for diagnosing the operation of an EGR circuit.
  • the document JP-2008144609 describes a method for diagnosing a failure of the EGR circuit of an internal combustion engine and more particularly of the flap regulating the distribution of the exhaust gases between the EGR exchanger and a bypass duct of the exchanger or bypass .
  • An object of the invention is therefore to define a simple and reliable, non-intrusive method for detecting any failure of the bypass flap and, where appropriate, the position in which it has blocked. This method must also make it possible to diagnose a total loss of the cooling function.
  • an engine compartment comprises an internal combustion engine 10, supplied with fresh air by an intake duct 11 and releasing its exhaust gas through an exhaust duct 12.
  • this engine compartment is also provided with a turbocharger 50 comprising a compressor 51 disposed on the intake duct 11 for compressing the air coming from the duct 53.
  • cooling means 40 and a shutter 30 are provided between the compressor 51 and the engine 10. The air which reaches the engine 10 is cold.
  • the turbine 52 of the turbocharger 50 is located at the end of the duct exhaust pipe 12 and is coupled to the compressor 51. The exhaust gas is then discharged from the engine compartment via a pipe 54.
  • the engine compartment further comprises an exhaust gas recirculation circuit (also called EGR circuit 20), the inlet 28 of which is connected to the exhaust duct 12 and whose outlet 29 is connected to the intake duct 11.
  • This EGR circuit 20 comprises an EGR cooler or exchanger 22 connected to the inlet 28 via an upstream pipe 25 and to the outlet 29 via a downstream pipe 27, enabling the exhaust gases to be cooled before being reinjected into the engine 10 .
  • a bypass pipe 24 connected, in its upstream part, to a solenoid valve 23 located upstream of the EGR exchanger 22, and in its downstream part, at the outlet of the exchanger 22.
  • the solenoid valve 23 comprises a flap 23a which, depending on its position, allows a desired quantity of exhaust gas to pass through the bypass duct 24.
  • An EGR valve 21 is further provided at the outlet of the circuit 20 so as to regulate the amount of exhaust gas reinjected into the engine 10.
  • the figure 2 represents an EGR exchanger 22 with an integrated bypass duct 24. If the flap 23a is closed, all the hot exhaust gases (solid arrow) pass into the EGR exchanger where they are cooled (hatched arrows): this is called “cooled mode”. If against the flap 23a is open, at least a portion of the exhaust gas pass into the bypass duct 24 and are not cooled: it is called “bypass mode”. It is therefore understood that the temperature TsEGR of the exhaust gas at the outlet of the exchanger 22 is higher in bypass mode (TsEGR2) than in cooled mode (TsEGR1).
  • the diagnostic strategy is based on measuring or estimating the temperature at the outlet of the EGR exchanger 22. This Depending on the case, the temperature may be measured upstream or downstream of the EGR valve 21.
  • the strategy is based on calculating the difference between the estimated TsEGR in bypass mode (denoted TsEGR est-byp ) and the measured TsEGR (denoted TsEGR mes ).
  • the filling efficiency is determined by means of the temperature Tcol and the pressure Pcol in the intake manifold; these values are given by sensors located in the intake manifold.
  • TsEGR est_byp ⁇ 3 ⁇ Tco + 1 - ⁇ 3 ⁇ Tavt ⁇ 1 - ⁇ 2 + ⁇ 2 ⁇ ⁇ 1 ⁇ Tco - Tavt + Tavt
  • TsEGR temperature sensors
  • the blocking causes of the flap 23a may be a mechanical seizure, the disconnection of the hose of the bypass solenoid valve 23 or a control problem.
  • DTC Diagnostic Trouble Code
  • OBD On Board Diagnosis
  • a degraded mode is activated, consisting in closing the EGR valve 21 in order to reduce the temperature at its terminals.
  • This strategy is implemented in the engine control unit (ECU).
  • the figure 5 illustrates the case of a functional component.
  • the curve C1 in the form of a slot corresponds to the state of the control of the bypass flap: the high value corresponds to the bypass mode, the low value corresponds to the cooled mode.
  • the curve C2 in the form of a slot corresponds to the diagnostic condition: the high values correspond to the diagnostic phases.
  • the EGR circuit is in bypass mode and the temperature difference ⁇ bm is lower than the detection threshold in bypass mode S bm : the flap is therefore considered to be functional.
  • the EGR circuit is in cooled mode, and the temperature difference ⁇ cm is greater than the detection threshold in cooled mode S cm : the flap is thus detected as functional.
  • Curves C1 and C2 are defined in the same way as in the figure 5 .
  • the EGR circuit is in bypass mode.
  • the temperature difference ⁇ bm remains higher than the detection threshold in bypass mode S bm during a duration Tbm: the shutter is thus considered as blocked in cooled mode.
  • Curves C1 and C2 are defined in the same way as in figures 5 and 6 .
  • the EGR circuit is in bypass mode. Since the temperature difference ⁇ bm is less than S bm , the flap is considered functional.
  • the use for the diagnosis of a temperature sensor at the outlet of the EGR exchanger improves the reliability of detection of the process.
  • this temperature sensor can advantageously be used, as needed, for other diagnostic purposes.
  • the method according to the invention makes it possible to detect a total loss of the cooling function; failures leading to this loss - for example, a water leak - are however rarer.
  • the method of the invention also has the advantage of not being intrusive, that is to say that it does not require actuating the bypass flap for check its functionality.
  • the implementation of this method does not cause additional pollution.
  • this strategy makes it possible to know the position in which the bypass pane is blocked: this information is necessary for the proper operation of the degraded mode (ie only if the pane is blocked in bypass mode), which represents an additional gain in terms of depollution.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Analytical Chemistry (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
EP08837336.0A 2007-09-20 2008-09-19 Procede de diagnostic du volet de derivation de l'echangeur dans un systeme de recirculation des gaz d'echappement Not-in-force EP2191125B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0757714A FR2921426B1 (fr) 2007-09-20 2007-09-20 Procede de diagnostic du volet de derivation de l'echangeur dans un systeme de recirculation des gaz d'echappement
PCT/FR2008/051689 WO2009047465A2 (fr) 2007-09-20 2008-09-19 Procede de diagnostic du volet de derivation de l'echangeur dans un systeme de recirculation des gaz d'echappement

Publications (2)

Publication Number Publication Date
EP2191125A2 EP2191125A2 (fr) 2010-06-02
EP2191125B1 true EP2191125B1 (fr) 2017-06-14

Family

ID=39402754

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08837336.0A Not-in-force EP2191125B1 (fr) 2007-09-20 2008-09-19 Procede de diagnostic du volet de derivation de l'echangeur dans un systeme de recirculation des gaz d'echappement

Country Status (5)

Country Link
US (1) US20100307231A1 (ja)
EP (1) EP2191125B1 (ja)
JP (1) JP2010539390A (ja)
FR (1) FR2921426B1 (ja)
WO (1) WO2009047465A2 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8342015B2 (en) 2007-09-20 2013-01-01 Renault S.A.S. Method for diagnosing the exchanger bypass flap in an exhaust gas recirculation circuit
FR2938016B1 (fr) * 2008-10-30 2010-10-29 Renault Sas Procede d'estimation dynamique du debit d'air frais alimentant un moteur avec circuits egr haute et basse pression
JP5251844B2 (ja) * 2009-11-24 2013-07-31 トヨタ自動車株式会社 冷却装置の異常判定装置および冷却装置の異常判定方法
US9127606B2 (en) * 2010-10-20 2015-09-08 Ford Global Technologies, Llc System for determining EGR degradation
US9476387B2 (en) * 2011-05-13 2016-10-25 Ford Global Technologies, Llc System for determining EGR cooler degradation
SE537803C2 (sv) * 2011-09-30 2015-10-20 Scania Cv Ab EGR-kylare samt förbränningsmotor med en sådan EGR-kylare
US9670830B2 (en) * 2014-10-29 2017-06-06 GM Global Technology Operations LLC Method and apparatus for monitoring a coolant system for an exhaust gas recirculation system
KR101896326B1 (ko) * 2016-09-09 2018-09-07 현대자동차 주식회사 수냉식 이지알 쿨러
US20180128145A1 (en) * 2016-11-09 2018-05-10 Ford Global Technologies, Llc Method and system for an exhaust diverter valve
DE102017210714A1 (de) 2017-06-26 2018-12-27 Wafios Aktiengesellschaft Verfahren zur Herstellung eines Biegeteils und Biegemaschine zur Durchführung des Verfahrens
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008144609A (ja) * 2006-12-06 2008-06-26 Isuzu Motors Ltd Egrシステムの故障判定方法及びegrシステムの故障判定システム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6085732A (en) * 1999-01-25 2000-07-11 Cummins Engine Co Inc EGR fault diagnostic system
JP2003336549A (ja) * 2002-05-20 2003-11-28 Denso Corp 内燃機関のegr装置
JP3751930B2 (ja) * 2002-11-01 2006-03-08 トヨタ自動車株式会社 内燃機関のegrガス温度推定装置
JP4498831B2 (ja) * 2004-06-15 2010-07-07 トヨタ自動車株式会社 内燃機関の排気循環装置
DE102004041767A1 (de) * 2004-08-28 2006-03-02 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine mit Abgasrückführung
JP2006242080A (ja) * 2005-03-02 2006-09-14 Denso Corp 排気還流装置の異常診断装置
JP4538363B2 (ja) * 2005-04-14 2010-09-08 本田技研工業株式会社 内燃機関のegr装置
FR2908825B1 (fr) * 2006-11-17 2009-01-30 Renault Sas Estimation d'une temperature de gaz d'echappement en sortie d'un circuit egr d'un moteur a combustion
US8342015B2 (en) * 2007-09-20 2013-01-01 Renault S.A.S. Method for diagnosing the exchanger bypass flap in an exhaust gas recirculation circuit
US7918129B2 (en) * 2008-05-27 2011-04-05 GM Global Technology Operations LLC Diagnostic systems for cooling systems for internal combustion engines

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008144609A (ja) * 2006-12-06 2008-06-26 Isuzu Motors Ltd Egrシステムの故障判定方法及びegrシステムの故障判定システム

Also Published As

Publication number Publication date
JP2010539390A (ja) 2010-12-16
EP2191125A2 (fr) 2010-06-02
US20100307231A1 (en) 2010-12-09
FR2921426A1 (fr) 2009-03-27
WO2009047465A3 (fr) 2009-06-04
FR2921426B1 (fr) 2014-02-14
WO2009047465A2 (fr) 2009-04-16

Similar Documents

Publication Publication Date Title
EP2191125B1 (fr) Procede de diagnostic du volet de derivation de l'echangeur dans un systeme de recirculation des gaz d'echappement
EP2761151B1 (fr) Procédé et système de diagnostic d'un groupe motopropulseur à deux turbocompresseurs étagés.
FR2919677A1 (fr) Procede et dispositif de gestion d'un moteur a combustion interne
EP2361349B1 (fr) Procede d'estimation dynamique du debit d'air frais alimentant un moteur avec circuits egr haute et basse pression
EP3234326B1 (fr) Procédé de diagnostic d'un système de recirculation partielle des gaz d'échappement de moteur automobile
FR2923262A1 (fr) Procede et dispositif de diagnostic de l'etat d'un systeme de commande a ailettes mobiles de la turbine d'un turbocompresseur
EP1903203B1 (fr) Disposititf et procédé de détection d'une avarie dans un système de suralimentation en air d'un moteur
FR2921432A1 (fr) Procede de diagnostic d'une defaillance d'un organe du dispositif egr d'un moteur a combustion interne
FR2884862A1 (fr) Procede et dispositif le diagnostic de l'etat de fonctionnement d'une ligne d'echappement d'un moteur a combustion interne
FR2921425A1 (fr) Procede de diagnostic du volet de derivation de l'echangeur dans un circuit de recirculation des gaz d'echappement
FR2937379A1 (fr) Procede de diagnostic de l'etat d'un dispositif de suralimentation a turbocompresseur d'un moteur thermique de vehicule automobile
US8342015B2 (en) Method for diagnosing the exchanger bypass flap in an exhaust gas recirculation circuit
EP1798403A1 (fr) Procédé d'estimation de température de gaz d'échappement avant turbine
FR2981987A1 (fr) Commande d'un moteur a combustion interne
EP2262997A1 (fr) Systeme et procede de diagnostic de l'etat de fonctionnement d'un dispositif d'admission en gaz d'echappement pour moteur a combustion interne de vehicule automobile
FR2952969A1 (fr) Moteur a combustion interne comportant un circuit de recirculation partielle des gaz d'echappement a basse pression et procede de commande
EP2914827B1 (fr) Gestion du refroidissement d'un système de moteur équipé d'un dispositif de recirculation partielle des gaz d'échappement
EP3353405B1 (fr) Dispositif de refroidissement d'une boucle de recirculation des gaz d'échappement d'un moteur de véhicule automobile
EP2956656B1 (fr) Procédé de pilotage d'une vanne de régulation d'un débit de liquide de refroidissement des gaz de recirculation d'un moteur à combustion interne
WO2019229312A1 (fr) Procédé de diagnostic de fonctionnement d'un turbocompresseur adapte a la gravite de la defaillance
FR3028565A1 (fr) Procede de diagnostic de l'encrassement d'un filtre a air equipant un moteur a combustion interne suralimente
FR2900446A1 (fr) Systeme de recyclage de gaz d'echappement d'un moteur d'un vehicule adapte a evacuer un element present dans une vanne de controle d'un circuit de recirculation de gaz d'echappement
FR2923867A1 (fr) Moteur a combustion interne et procede de diagnostic de l'etat de fonctionnement d'un volet de by-pass pour un systeme de recirculation partielle des gaz d'echappement.
FR3013078A1 (fr) Procede de controle du fonctionnement d'une vanne de recirculation de gaz d'echappement, notamment pour moteur a combustion interne a allumage commande
FR2921722A3 (fr) Procede et dispositif de diagnostic de l'etat de fonctionnement d'un capteur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100319

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160613

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602008050695

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F02M0025070000

Ipc: F02D0041000000

RIC1 Information provided on ipc code assigned before grant

Ipc: F02B 77/08 20060101ALI20170125BHEP

Ipc: F02D 21/08 20060101ALI20170125BHEP

Ipc: F02D 41/22 20060101ALI20170125BHEP

Ipc: F02D 41/00 20060101AFI20170125BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170303

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 901211

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008050695

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170614

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170914

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170915

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 901211

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170914

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171014

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008050695

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602008050695

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20180315

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170919

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180404

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170919

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171002

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614