EP2184750A1 - Explosionsgeschützte Schalteinrichtung und Verfahren zum Betreiben einer Schalteinrichtung mit einem explosionsgeschützten Gehäuse - Google Patents

Explosionsgeschützte Schalteinrichtung und Verfahren zum Betreiben einer Schalteinrichtung mit einem explosionsgeschützten Gehäuse Download PDF

Info

Publication number
EP2184750A1
EP2184750A1 EP09174742A EP09174742A EP2184750A1 EP 2184750 A1 EP2184750 A1 EP 2184750A1 EP 09174742 A EP09174742 A EP 09174742A EP 09174742 A EP09174742 A EP 09174742A EP 2184750 A1 EP2184750 A1 EP 2184750A1
Authority
EP
European Patent Office
Prior art keywords
housing
switching device
switching
state
protection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09174742A
Other languages
English (en)
French (fr)
Other versions
EP2184750B1 (de
Inventor
Thomas Lammel
Michael Knögel
Thomas Michelbach
Gisbert Schmahl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Quintex GmbH
Original Assignee
Quintex GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41510989&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2184750(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Quintex GmbH filed Critical Quintex GmbH
Publication of EP2184750A1 publication Critical patent/EP2184750A1/de
Application granted granted Critical
Publication of EP2184750B1 publication Critical patent/EP2184750B1/de
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/02Bases, casings, or covers
    • H01H9/04Dustproof, splashproof, drip-proof, waterproof, or flameproof casings
    • H01H9/042Explosion-proof cases

Definitions

  • the invention relates to an explosion-proof switching device, a method for operating a switching device for switching electrical equipment in hazardous environments, as well as an explosion-proof housing for electrical equipment, which are connected by a switching device.
  • Switching devices for switching electrically operated devices in technical or industrial environments, especially for devices with high electrical power, can operate on different principles.
  • electromechanical, electrical, electronic, pneumatic or thermal switching devices for applications in a variety of technical and industrial areas are known and used. These switching devices are usually referred to as contactors or relays.
  • Contactors are technically similar to the relays, but have a much higher switching capacity. Typical loads of an electromechanical or electric contactor start at about 500 watts and go up to several hundred kilowatts. Typically, currents of a few amps up to 80 amps can be switched. Contactors with high switching capacity are called power contactors.
  • Such switching devices are used to supply by means of the closing of electrical contacts electrical equipment and apparatus with power and voltage and thus on or off.
  • contactors are used, for example, To turn on a high power consuming consumer (eg, a motor or machines) via a manual switch with a low switching capacity.
  • Contactors allow faster and safer switching than is possible with purely mechanical or manual switching designs. With a contactor switching operations from a distance via control cables with a relatively small conductor cross-section are possible.
  • the typical application areas of the contactor therefore also include the control and automation technology (eg in the motor control, control of electrical heating elements and in lighting systems).
  • switching devices in the above-mentioned general sense, where "contactor” is mentioned here.
  • contactor the embodiments illustrated by means of a contactor are merely exemplary and to be understood as one of several possible variants.
  • An electromechanical contactor usually has a strong electromagnet as actuating magnet.
  • a control current flows through the solenoid coil, the magnetic field pulls mechanical contacts into the active state. Without power, a spring restores the idle state by returning all contacts to their original position.
  • the connections for the control current for the magnetic coil and the contacts for the currents to be switched are carried out in the contactor against each other isolated, i. there is no conductive connection between control and switch contacts. Because of the high switching performance, the switching contacts are usually strong and solid, and they are operated quickly by the strong electromagnet and have a high contact force.
  • the pneumatic contactor is also similar in function to the electromechanical contactor, but it is operated with compressed air instead of an electromagnet.
  • the electromagnet is replaced by pneumatic actuators (pressure boxes), which act on the switch contacts via an armature. Instead of applying a control current, the switching to the active state takes place here by increasing the pressure.
  • contactors based on power semiconductors were also developed (solid-state contactors). Common are, for example, so-called thyristors. Unlike the mechanical contactor, a reliable disconnection of the power contacts in the opened switch position can not be provided with the semiconductor contactor. It can flow a small residual current and the dielectric strength is often lower than that of open mechanical contacts.
  • the control circuit is usually galvanically isolated from the load circuit by means of an optocoupler, so that a reliable separation is also provided in the case of the semiconductor contactor. The control is usually carried out with a safety extra-low voltage of usually 3 to 30 volts.
  • switching devices in particular contactors
  • contactors are used in special applications in potentially explosive atmospheres, for example in the chemical industry or mining underground, where flammable gases, dusts or other explosive substances may be present, it may be due to the disconnection of the switch contacts or at A current flow over the air or creepage distances resulting break-off sparks or switching arcs come to an explosion.
  • the contactor must therefore be designed so that sparks or electric arcs do not even arise, or that the resulting sparks or arcs do not come into contact with the flammable, potentially explosive atmosphere in order not to form an ignition source for an explosion.
  • the components that can trigger an ignition of an explosive atmosphere are located in a housing that withstands the explosion pressure in the event of the explosion of an explosive mixture inside the housing.
  • the housing is designed so that a transmission of the explosion to the outside, in particular on the surrounding the housing explosive atmosphere is prevented.
  • Typical applications for "Flameproof Enclosure” protection include equipment that is subject to sparks or arcs and / or hot parts such as switchgear and equipment, transformers, slip rings, collectors, variable resistors, fuses or lamps, cartridge heaters or friction brakes. This type of protection is also suitable for the use of contactors in the area of potentially explosive atmospheres, as discussed in detail below.
  • a housing in which non-explosion-proof electrical equipment or devices are housed is filled with a protective gas (air, inert gas or another suitable gas).
  • the protective gas inside the housing is kept under an overpressure against the surrounding atmosphere, so that the surrounding atmosphere of an explosive gas mixture can not reach the inside of the housing arranged equipment or devices that may be sources of ignition.
  • the overpressure in the housing can be maintained with or without running ZERO gas purging. Prior to commissioning the electrical equipment or devices housed in the enclosure, the enclosure must be flushed or pre-flushed.
  • the flushed housing must have a high strength. Also important is the possibility of switching off the system or a warning in case of failure of the purge gas or inert gas pressure.
  • the "overpressure encapsulation" type of protection is predominantly used for equipment with larger outputs, such as typically for large machines, large motors, slip ring or collector motors, switchgear and control cabinets or analyzers, as well as equipment in which sparks, electric arcs or hot parts occur during operation , Complex industrial designs (control systems) can be operated by this type of protection in potentially explosive atmospheres.
  • the type of protection "pressurized enclosure” (“p") is regulated in the standard DIN EN 60079-2: 2007.
  • Intrinsic safety With the type of protection "intrinsic safety" (symbol “Ex-i”), the supply of the electrical equipment is conducted via a safety barrier that limits the current and voltage so far that the minimum ignition energy and ignition temperature of an explosive mixture is not reached.
  • Intrinsically safe equipment contains only circuits that meet the requirements for intrinsically safe circuits. Intrinsically safe circuits are only considered for low power circuits. Intrinsically safe circuits are circuits in which no spark or thermal effect, which occurs under the test conditions specified in the standard, can cause ignition of an explosive atmosphere of certain normalized (sub) groups or of a dust / air mixture. Constructively, the allowable load of the components is reduced compared to common industrial applications in terms of voltage (for electrical strength) and current (for heating).
  • the voltage and current values are, including a safety factor, constantly limited to such a low level that unduly high temperatures do not occur and sparks and arcs in the event of an open circuit or short circuit have such low energy that they are insufficient to ignite an explosive atmosphere.
  • Application finds the type of protection "intrinsic safety" z. As in measuring, control, monitoring and information systems, circuits and equipment and for the electrical connection of sensors and actuators.
  • the type of protection "pressurized enclosure” (Ex-p) enables non-explosion-proof devices to be operated in potentially explosive atmospheres.
  • the type of protection "pressurized enclosure” is based on the idea of keeping explosive gas mixtures away from the non-explosion-protected equipment used.
  • Explosion protection is realized with type of protection "Ex-p" by operating the non-explosion-proof devices in a pressurized enclosure (Ex p housing).
  • This housing is protected against ingress of any potentially explosive atmosphere in the environment by a permanent overpressure with air or an inert gas.
  • the Ex-p housing is flushed during commissioning of the device. This ensures that an ignitable gas / air mixture that may be present in the housing is removed. This process is called pre-rinsing or flushing.
  • Prior art positive pressure containment systems consist of an integrated controller which contains all electronic and pneumatic components such as control, pressure sensors, flow meter, spark arrestor, exhaust valve, etc.
  • an adjustable throttle or a solenoid valve for purge gas supply is used on the input side of the Ex p housing. Both components can be mounted inside or outside the Ex-p housing.
  • the production and maintenance of the state of the pressurized enclosure is carried out by a controller (controller) which is provided on or in the area of the Ex-p housing.
  • This control device first controls and monitors the first rinsing process (pre-rinsing phase), by means of which the possibly ignitable gas mixture of the surrounding atmosphere is removed from the housing or control cabinet. After the purging phase, only so much compressed air is supplied that the leaks in the housing and any built-in components in the housing (control cabinet) are compensated.
  • an internal pressure of approximately 10 to 12 mbar and in the operating state of approximately 2.5 to 3.5 mbar is typically built up and held in the housing.
  • the control device accomplishes the Spülzeit- and pressure monitoring and control, with the inflowing into the Ex-p cabinet control purge and the connection of the internals in the cabinet controlled by expiration of Vor Schweizerzeit and the pressure over the atmosphere inside the cabinet be kept and monitored.
  • the hot spots that may occur on individual components inside the control cabinet are monitored by temperature sensors so that the affected components can be switched off safely when required. This ensures that no impermissible surface temperature can occur.
  • Serving for the purge gas, controlled by the controller purge valves are based in their dimensions (purge) to the size of the control cabinet.
  • the switching device can be provided in particular to switch the housed in the housing or the cabinet consumers, such as appliances, apparatus, motors and the like, in particular on and off. If such devices as such are not originally explosion-proof, however, this switching operation may only be carried out if the housing surrounding the devices or the control cabinet are in the state of overpressure encapsulation.
  • the switching device in such a way and secure that sparks or arcs either not even arise, or that resulting from a switching operation of the switching device Abrmony or switching arcs then in any case not with a possibly existing flammable, explosive atmosphere, so as not to be an ignition source for an explosion.
  • the switching device for example the contactor
  • the switching device for example the contactor
  • suitable protective measures against explosion For example, either the entire contactor or at least the switching contacts were encapsulated explosion-proof.
  • the contactor was typically housed in its own pressure-resistant housing, ie a housing that fulfills the "flameproof enclosure” type of protection ("Ex-d enclosure”).
  • This pressure-resistant housing with the contactor therein was then usually mounted outside, in particular on the outside or in the outer region of the cooperating with the contactor overpressure housing or cabinet system.
  • An attachment of the pressure-resistant housing with the therein contactor inside the pressurized enclosure would have been possible in principle, but has not offered for reasons of space requirements of the pressure-resistant housing in the rule.
  • the switching device itself could not be accommodated in the prior art directly inside the pressurized enclosure (Ex-p) housing or cabinet, since the contactor itself was not sufficiently explosion-proof, so it would have come to explosions due to possibly existing explosive atmosphere (eg due to sparks or arcs across the contactor's creepage or clearance) before the enclosure or cabinet is commissioned and before they are in the pressurized enclosure.
  • Ex-D housing the housing of the switching device in its own flameproof enclosure
  • the invention is therefore based on the object to avoid these disadvantages.
  • improved and simpler measures for explosion protection are to be provided for switching devices (such as contactors or relays) used in connection with devices, apparatus, machines and the like in pressurized enclosure or enclosure systems ("Ex-p" type of protection).
  • This object is achieved by a switching device for switching electrical equipment for explosive atmospheres applications according to claim 1.
  • the above object is also achieved by a method for operating a switching device for switching electrical equipment for applications in explosive atmospheres according to claim 5.
  • the above object is finally achieved by a housing for the protection of in Housing housed electrical equipment against explosions according to claim 9.
  • a switching device for switching electrical devices for applications in explosive atmospheres and a method for operating a corresponding switching device wherein the devices to be switched in a protected in the type of protection "overpressure encapsulation" (Ex-p) against explosions housing (Ex-p Housing) are arranged.
  • a control device is provided which cooperates with the Ex-p-housing such that it controls the state of the pressurized enclosure of the Exp-housing and monitors, in particular the production and / or maintenance and / or termination of this state.
  • the switching device is in particular itself protected against explosions, or it is protected against explosions, and it is arranged in the interior of the ex-p-housing.
  • the control device cooperates with the switching device and controls it in such a way that it permits switching of the switching device only when the Ex p housing is in the state of pressurized enclosure.
  • switching devices can be used in connection with pressurized enclosure or enclosure systems (Zschutzart “Ex-p”), in which the switching device is particularly intended for the housed in the housing or the cabinet consumers, such as appliances, apparatus, motors and the like to turn on, in particular turn on and off. Since these devices themselves are not explosion-proof, this switching process may only be carried out when the housing or the control cabinet is in the state of overpressure encapsulation. Since the switching device itself is designed explosion-proof, no explosions can be triggered by the switching device as such prior to this switching operation despite the presence of an explosive atmosphere.
  • the explosion-proof design of the switching device can for example provide clearance and creepage distances, which are extended compared to a non-explosion-proof design, so that in the switching device itself no sparks or arcs can arise as sources of ignition for an explosion. This can not lead to explosions before the housing or the control cabinet are put into operation and before they are in the state of pressurized enclosure (Ex-p).
  • the switching device is now housed directly inside the pressurized enclosure (Ex-p) housing or cabinet.
  • the control device which controls and monitors the state of the pressurized enclosure of the Ex p housing and in particular the production and / or maintenance and / or termination of this state, also controls the switching device and ensures that the switching device first switches ( and thus possibly produces break-off sparks or switching arcs), when the pressurized enclosure (Ex-p) is completely active, ie if the explosion-free state prevails inside the Ex-p housing after completion of the pre-purge phase.
  • the connection or switching on or off of the housed in the pressurized enclosure or cabinet devices by the switching device can not therefore lead to an explosion.
  • the switching device As soon as the operating state of the pressurized enclosure of the housing is reached, the switching device is protected at the same time by its own explosion-proof design as well as by the housing in the "overpressure encapsulation" type of protection (Ex-p).
  • the protected area of the Ex-p housing is therefore also used at the same time for the protection of the switching device.
  • the switching device can be protected as such against explosions, for example by meeting the technical requirements and / or electrical properties of the type of protection "Increased safety" (Ex-e) or the type of protection “intrinsic safety” (Ex-i). This is especially true for the switching device in a state in which it does not switch (in which, however, creepage currents may be present, for example).
  • the switching device fulfills the normatively regulated requirements and specifications of an affected type of protection in its electrical properties for its explosion-proof design and uses certain technical features of the relevant protection standard for this explosion-proof design.
  • a switching device for example, be a contactor in regular industrial quality, which meets the requirements of the type of protection "Increased safety" (Ex-e) insofar as it has extended clearance and creepage distances that meet the requirements of this standard.
  • this contactor does not have to be officially approved for this type of protection.
  • the higher costs can be saved, which are usually used over conventional components for components that are certified in certain types of protection.
  • certain features or specifications of a specific protection standard in their application for the switching device are combined with the type of protection "overpressure encapsulation" (Ex-p) provided for the housing.
  • These ignition protection features of the switching device are thus transferred to the pressurized enclosure or applied in the pressurized enclosure, without being part of the standard for the type of protection "overpressure encapsulation”.
  • This combination of different explosion protection measures a good or higher level of safety is achieved, and in particular such a safety level, which would be approved by an accredited test center.
  • This also refers to the existence of the type of protection "special protection" (symbol "Ex-s”) become. This type of protection thus applies to the combination of the switching device with the housing.
  • the housing or the control cabinet can be designed to be movable, in particular mobile.
  • the housing or the control cabinet can then be first prepared in a non-hazardous area and placed in the Ex-p state (pressurized enclosure), in which case no pre-rinsing of the housing / cabinet is necessary.
  • the housing or the cabinet are then brought into the hazardous area, in particular driven, and they are here now regularly working under explosion protection conditions.
  • the switching device contactor
  • the switching device protected by the use in the housing / control cabinet and the production of its Ex-p state with.
  • the solution according to the invention also has the further, especially economic advantage that a separate, pressure-tight encapsulated housing (Ex-D housing) for explosion-proof housing of the switching device (contactor) is no longer required.
  • Ex-D housing separate, pressure-tight encapsulated housing
  • contactor switching device
  • the figures show the overpressure-encapsulated housing (Ex p housing) or the control cabinet 10 with a switching device housed therein, in particular a contactor 20.
  • the contactor itself is protected against explosions by the electrical properties of the type of protection "Increased safety" (Ex -e) fulfilled.
  • the requirements of other suitable types of protection can alternatively also be met (for example "intrinsic safety" Ex-i).
  • the switching device does not have to be independently protected against explosions (eg by meeting the requirements of one of the aforementioned additional types of protection Ex-e or Ex-i). Rather, the switching device 20 is protected here alone by the arrangement in the housing / cabinet 10 and the production of its Ex-p state.
  • this embodiment requires that the housing or the cabinet first prepared in a non-hazardous area and in the Ex-p state (pressurized capsule) are brought.
  • the housing or the cabinet can be movable, in particular mobile, constructed. Once the Ex p condition has been established, the enclosure or control cabinet can then be brought into the potentially explosive area, where they are normally able to work under explosion protection conditions.
  • the contactor can be seen through an explosion-proof disc 12 at the front of the housing. This disc can optionally be present and is provided here in particular for better representation of the contactor.
  • the contactor 20 is seated in the interior of the Ex-p housing 10, that is, in the area flushed by flushing gas.
  • the contactor is suitably mounted in the housing, here for example by conventional device support rails 14th
  • control device (controller) 30 can be seen on the right upper outer side of the housing 10. This control device controls and monitors the state of the pressurized enclosure of the housing 10 and the switching of the contactor 20, as explained above.
  • the control device 30 cooperates with the contactor 20 and controls it in such a way that it only permits and releases switching of the contactor 20 when the state of the pressurized enclosure is present for the Ex p housing 10. Circuit and control technology are thus high demands on the controller and to make their reliability so that they only releases a switch of the contactor and allows, when in fact the state of the pressurized enclosure of the housing is present.
  • valve 40 which serves as a fan valve for the supply of purge gas (inert gas) or compressed air to the housing 10.
  • purge gas inert gas
  • compressed air the state of the pressurized enclosure of the housing 10 is prepared and maintained, as explained above.
  • the control valve 40 is controlled and monitored by the controller 30 to supply the proper amount of purge gas or compressed air.
  • control valve 40 On the control valve 40 (in the drawing from the right), a line or hose 42 is fixed, through which / the purge gas or the compressed air are supplied.
  • the control valve 40 shown here also has a pressure gauge 44 and a handwheel 46, over which the pressure and the amount of the purge gas supplied or the compressed air can be controlled manually.
  • an outlet valve 50 is shown on the right upper outer side of the housing 10 next to the control device (controller) 30.
  • the purging gas (inert gas) supplied through the control valve 40 or the compressed air is discharged from the housing again.
  • this valve 50 may typically be controlled and monitored by the controller 30 to release the proper amount of purge gas or pressurized air.
  • sockets and / or line feedthroughs 60 can be seen on the right-hand outside of the housing 10, by means of which electrical lines and the like for supplying the devices and apparatus housed in the housing 10 can be inserted into the housing 10 in explosion-proof fashion.
  • the housing 10 on its outer side typical for explosion-proof housing or cabinets other components and controls on.
  • buttons or switches 72 buttons 74 and indicator lights 76 are provided. These components can be used to operate and monitor the housing system and / or the devices and devices housed therein.
  • closure elements 78 such as bolts or screws, the housing 10 can be opened.
  • Ex p housing 10 Those to be protected by the Ex p housing 10; in this housed equipment and apparatus are not shown here for the sake of clarity. They are located immediately next to the contactor 20 and are switched by this.

Landscapes

  • Casings For Electric Apparatus (AREA)
  • Switch Cases, Indication, And Locking (AREA)

Abstract

Erfindungsgemäß sind eine Schalteinrichtung zum Schalten von elektrischen Geräten für Anwendungen in explosionsfähigen Atmosphären sowie ein Verfahren zum Betreiben einer entsprechenden Schalteinrichtung vorgesehen, wobei die zu schaltenden Geräte in einem in der Zündschutzart "Überdruckkapselung" (Ex-p) gegen Explosionen geschützten Gehäuse (Ex-p-Gehäuse) angeordnet sind. Dabei ist eine Steuerungseinrichtung vorgesehen, die derart mit dem Ex-p-Gehäuse zusammenarbeitet, dass sie den Zustand der Überdruckkapselung des Exp-Gehäuses steuert und überwacht. Die Schalteinrichtung selbst ist oder wird dabei gegen Explosionen geschützt, und sie ist in dem Innenraum des Ex-p-Gehäuses angeordnet. Die Steuerungseinrichtung arbeitet derart mit der Schalteinrichtung zusammen und steuert diese derart, dass sie ein Schalten der Schalteinrichtung erst zulässt, wenn sich das Ex-p-Gehäuse im Zustand der Überdruckkapselung befindet. Die Schalteinrichtung als solche kann gegen Explosionen geschützt sein, indem sie die technischen Anforderungen oder elektrischen Eigenschaften der Zündschutzart "Erhöhte Sicherheit" (Ex-e) oder der Zündschutzart "Eigensicherheit" (Ex-i) erfüllt.

Description

  • Die Erfindung betrifft eine explosionsgeschützte Schalteinrichtung, ein Verfahren zum Betreiben einer Schalteinrichtung zum Schalten von elektrischen Geräten in explosionsgefährdeten Umgebungen, sowie ein explosionsgeschütztes Gehäuse für elektrische Geräte, die von einer Schalteinrichtung geschaltet werden.
  • Schalteinrichtungen zum Schalten von elektrisch betriebenen Geräten in technischen oder industriellen Umgebungen, insbesondere für Geräte mit großen elektrischen Leistungen, können nach unterschiedlichen Prinzipien arbeiten. So sind elektromechanische, elektrische, elektronische, pneumatische oder thermische Schalteinrichtungen für Anwendungen in vielfältigen technischen und industriellen Bereichen bekannt und gebräuchlich. Diese Schalteinrichtungen werden in der Regel als Schütze oder Relais bezeichnet. Schütze sind den Relais technisch ähnlich, weisen aber eine wesentlich höhere Schaltleistung auf. Typische Lasten eines elektromechanischen oder elektrischen Schützes beginnen bei etwa 500 Watt und gehen bis hin zu mehreren hundert Kilowatt. Typischerweise können Stromstärken von einigen Ampere bis hin zu 80 Ampere geschaltet werden. Schütze mit hoher Schaltleistung werden als Leistungsschütze bezeichnet. Neben elektromechanischen oder elektrischen Schalteinrichtungen (Schützen) sind auch pneumatisch betätigte Schalteinrichtungen, elektronische Schalteinrichtungen bzw. Halbleiterschütze sowie thermisch (z.B. mittels der Verformung eines Bimetalls) arbeitende Schalteinrichtungen bekannt und gebräuchlich. Diese verschiedenen Arten von Schalteinrichtungen haben teilweise unterschiedliche Charakteristika und Anwendungsgebiete (siehe unten).
  • Derartige Schalteinrichtungen werden dazu verwendet, mittels des Schließens von elektrischen Kontakten elektrische Geräte und Apparate mit Strom und Spannung zu versorgen und damit ein- bzw. auszuschalten. Insbesondere Schütze werden beispielsweise dazu verwendet, einen Verbraucher mit großer Leistungsaufnahme (z. B. einen Motor oder Maschinen) über einen handbetätigten Schalter mit kleiner Schaltleistung einzuschalten. Schütze ermöglichen schnellere und sicherere Schaltvorgänge als dies mit rein mechanischen oder handbetätigten Schaltkonstruktionen möglich ist. Mit einem Schütz sind Schaltvorgänge aus der Ferne über Steuerleitungen mit relativ geringem Leiterquerschnitt möglich. Zu den typischen Anwendungsbereichen des Schützes gehört daher auch die Steuerungs- und Automatisierungstechnik (z.B. in der Motorsteuerung, Steuerung elektrischer Heizstäbe und in lichttechnischen Anlagen). Sofern hier von "Schütz" die Rede ist, sind für die Zwecke der vorliegenden Erfindung jedoch immer "Schalteinrichtungen" im oben genannten, allgemeinen Sinne gemeint. Die anhand eines Schützes dargestellten Ausführungsbeispiele sind lediglich exemplarisch und als eine von mehreren möglichen Varianten zu verstehen.
  • Ein elektromechanisches Schütz weist in der Regel einen starken Elektromagneten als Betätigungsmagneten auf. Fließt ein Steuerstrom durch die Magnetspule, zieht das Magnetfeld mechanische Kontakte in den aktiven Zustand. Ohne Strom stellt eine Feder den Ruhezustand wieder her, indem alle Kontakte in ihre Ausgangslage zurückkehren. Die Anschlüsse für den Steuerstrom für die Magnetspule sowie die Kontakte für die zu schaltenden Ströme sind im Schütz gegeneinander isoliert ausgeführt, d.h. es gibt keine leitende Verbindung zwischen Steuer- und Schaltkontakten. Wegen der hohen Schaltleistungen sind die Schaltkontakte in der Regel stark und massiv ausgeführt, und sie werden durch den starken Elektromagneten schnell betätigt und haben eine hohe Kontaktkraft.
  • Das pneumatische Schütz (auch: Druckluftschütz) ist dem elektromechanischen Schütz von der Funktion her gleich, es wird jedoch mit Druckluft anstelle eines Elektromagneten betätigt. Der Elektromagnet wird durch pneumatische Stellglieder (Druckdosen) ersetzt, welche über einen Anker auf die Schaltkontakte wirken. Statt durch Anlegen eines Steuerstromes erfolgt das Umschalten in den aktiven Zustand hier durch Druckerhöhung.
  • Um bei häufiger Betätigung die Abnutzung (Kontaktabbrand, Verschleiß beweglicher Bauteile etc.) zu vermeiden, wurden daneben Schütze auf Basis von Leistungshalbleitern entwickelt (Halbleiterschütze). Gebräuchlich sind z.B. so genannte Thyristoren. Anders als beim mechanischen Schütz kann beim Halbleiterschütz eine sichere Trennung der Leistungskontakte in der geöffneten Schaltstellung nicht gegeben sein. Es kann ein kleiner Reststrom fließen und die Spannungsfestigkeit ist oft niedriger als diejenige offener mechanischer Kontakte. Der Steuerkreis ist üblicherweise mittels eines Optokopplers galvanisch vom Laststromkreis getrennt, sodass auch beim Halbleiterschütz eine sichere Trennung gegeben ist. Die Ansteuerung erfolgt in der Regel mit einer Schutzkleinspannung von üblicherweise 3 bis 30 Volt.
  • Insbesondere bei elektromechanischen oder elektrischen oder pneumatischen Schalteinrichtungen (Schützen) können beim Trennen der Kontakte Abreißfunken oder ein Schaltlichtbogen auftreten, insbesondere, wenn induktive Lasten geschaltet werden. Dieses kann zu Kontaktabbrand und elektrischen Störemissionen führen. So genannte Luftschütze verfügen über Lichtbogen-Löschkammern, in die sich der Lichtbogen aufgrund seines Magnetfeldes ausbreitet und in denen er gekühlt wird, sodass er verlöscht. Je nach Anwendungsfall kann ständig eine Spannung an dem Schütz anliegen. Im Falle eines Fehlers, z.B. bedingt durch nicht sachgemäße Anwendung oder bei ungünstigen Umgebungsbedingungen (wie Nässe oder Verschmutzung), kann es hierbei auch zu einem Stromfluss über die in dem Schütz vorhandenen Luft- oder Kriechstrecken kommen, was ebenfalls Funken oder Lichtbögen verursachen kann.
  • Wenn Schalteinrichtungen (insbesondere Schütze) in besonderen Anwendungsfällen in explosionsgefährdeten Bereichen eingesetzt werden, beispielsweise in der chemischen Industrie oder im Bergbau unter Tage, wo brennbare Gase, Stäube oder andere explosionsfähige Stoffe vorhanden sein können, kann es durch die beim Trennen der Schaltkontakte oder die bei einem Stromfluss über die Luft- oder Kriechstrecken entstehenden Abreißfunken oder Schaltlichtbögen zu einer Explosion kommen. Um dieses zu verhindern, bedarf es besonderer Schutz- und Sicherheitsmaßnahmen bei einem Einsatz von Schützen in derartigen Umgebungen, insbesondere unter dem Gesichtspunkt des Explosionsschutzes. Dabei muss das Schütz folglich so ausgebildet sein, dass Funken oder Lichtbögen gar nicht erst entstehen, oder dass die entstehenden Funken oder Lichtbögen nicht mit der brennbaren, explosionsgefährdeten Atmosphäre in Kontakt kommen, um nicht eine Zündquelle für eine Explosion zu bilden. Die Regeln des Explosionsschutzes sehen hierfür verschiedene technische Maßnahmen vor, u. a. so genannte "Kapselungen". Dabei werden entweder das gesamte Schütz oder jedenfalls die Schaltkontakte gekapselt und damit entweder von der brennbaren, explosionsfähigen Atmosphäre getrennt gehalten oder umgekehrt in einem Gehäuse untergebracht, in das zündfähiges Gemisch eindringen darf, im Falle einer Explosion in dem Gehäuse diese aber nicht aus dem Gehäuse nach außen übertragen werden darf
  • Die in nationalen und internationalen gesetzlichen Normen und Richtlinien definierten Regeln des Explosionsschutzes unterscheiden verschiedene so genannte "Zündschutzarten", in die elektrische Geräte abhängig von dem für sie jeweils geltenden Explosionsschutz klassifiziert und entsprechend gekennzeichnet werden. Für die Zwecke der vorliegenden Erfindung sind die nachfolgend dargestellten Zündschutzarten von besonderer Bedeutung.
  • Bei der Zündschutzart "Druckfeste Kapselung" (Symbol "Ex-d") sind die Komponenten, die eine Zündung einer explosionsfähigen Atmosphäre auslösen können, in einem Gehäuse angeordnet, das bei der Explosion eines explosionsfähigen Gemischs im Inneren des Gehäuses dem Explosionsdruck standhält. Dabei ist das Gehäuse so beschaffen, dass eine Übertragung der Explosion nach außen, insbesondere auf die das Gehäuse umgebende explosionsfähige Atmosphäre, verhindert wird. Typische Anwendungsfälle für die Zündschutzart "Druckfeste Kapselung" sind Betriebsmittel, bei denen betriebsmäßig Funken oder Lichtbögen und/oder heiße Teile auftreten, wie Schaltgeräte und -anlagen, Transformatoren, Schleifringe, Kollektoren, Stellwiderstände, Schmelzsicherungen bzw. Lampen, Heizpatronen oder Reibungsbremsen. Auch für den Einsatz von Schützen im Bereich von explosionsfähigen Atmosphären ist diese Zündschutzart geeignet, wie unten weiter im Detail diskutiert wird.
  • Bei der Zündschutzart "Erhöhte Sicherheit" (Symbol "Ex-e") wird das Entstehen von Funken, Lichtbögen oder unzulässigen Temperaturen, die als Zündquelle wirken könnten, im Inneren und an äußeren Teilen von elektrischen Betriebsmitteln, bei denen unzulässig hohe Temperaturen, Funken oder Lichtbögen im normalen Betrieb sonst nicht auftreten, durch zusätzliche Maßnahmen und einen erhöhten Grad an Sicherheit verhindert. Typische Anwendungsfälle für diese Zündschutzart sind Installationsmaterialien, wie Anschluss-; Abzweig- und Verbindungskästen, Anschlussräume für Heizungen, Akkumulatoren, Transformatoren, induktive Vorschaltgeräte, Kurzschlussläufermotoren oder Käfigläufermotoren. Auch für den Einsatz von Schützen im Bereich von explosionsfähigen Atmosphären ist diese Zündschutzart geeignet, indem beispielsweise Luft- und Kriechstrecken größer bemessen sind als sonst üblich. Durch diese Maßnahme wird bei anliegender Spannung verhindert, dass Kriechströme fließen oder sich Lichtbögen über die Luftstrecke aufbauen, wodurch wiederum verhindert wird, dass es zu einer Explosion kommt. Typische Luftstreckenlängen können hierbei ca. 15 mm betragen.
  • Bei der Zündschutzart "Überdruckkapselung" (Symbol "Ex-p") wird ein Gehäuse, in dem nicht explosionsgeschützte elektrische Betriebsmittel oder Geräte untergebracht sind, mit einem Zündschutzgas (Luft, inertes oder ein anderes geeignetes Gas) gefüllt. Das Zündschutzgas im Gehäuseinneren wird unter einem Überdruck gegenüber der umgebenden Atmosphäre gehalten, so dass die umgebende Atmosphäre aus einem explosiven Gasgemisch nicht zu den im Inneren des Gehäuses angeordneten Betriebsmitteln oder Geräten, die mögliche Zündquellen bilden, gelangen kann. Der Überdruck in dem Gehäuse kann mit oder ohne laufender Zündschutzgasdurchspülung aufrechterhalten werden. Vor der Inbetriebnahme der in dem Gehäuse untergebrachten elektrischen Betriebsmittels oder Geräte muss das Gehäuse frei-oder vorgespült werden.
  • Aufgrund des Betriebsüberdruckes muss das durchspülte Gehäuse eine hohe Festigkeit aufweisen. Wichtig ist außerdem die Möglichkeit der Abschaltung des Systems oder eine Warnung bei einem Ausfall des Spülgasstromes oder Schutzgasüberdruckes. Anwendung findet die Zündschutzart "Überdruckkapselung" vorwiegend bei Betriebsmitteln mit größeren Leistungen, wie typischerweise bei Großmaschinen, großen Motoren, Schleifring- bzw. Kollektormotoren, Schalt- und Steuerschränken oder bei Analysengeräte, sowie bei Betriebsmitteln, bei denen betriebsmäßig Funken, Lichtbögen oder heiße Teile auftreten. Komplexe industriemäßige Ausführungen (Steuerungen) können durch diese Zündschutzart im explosionsgefährdeten Bereich betrieben werden. Die Zündschutzart "Überdruckkapselung" ("p") ist in der Norm DIN EN 60079-2:2007 geregelt.
  • Bei der Zündschutzart "Eigensicherheit" (Symbol "Ex-i") wird die Versorgung der elektrischen Betriebsmittel über eine Sicherheitsbarriere geführt, die Strom und Spannung soweit begrenzt, dass die Mindestzündenergie und Zündtemperatur eines explosiven Gemisches nicht erreicht wird. Eigensichere Betriebsmittel enthalten nur Stromkreise, die den Anforderungen an eigensichere Stromkreise genügen. Eigensichere Stromkreise kommen nur für Stromkreise mit geringen Leistungen in Betracht. Eigensichere Stromkreise sind Stromkreise, in denen kein Funke oder kein thermischer Effekt, der unter den in der Norm festgelegten Prüfbedingungen auftritt, eine Zündung einer explosionsfähigen Atmosphäre bestimmter normierter (Unter-)Gruppen beziehungsweise eines Staub-Luft-Gemisches verursachen kann. Konstruktiv wird die zulässige Belastung der Bauelemente gegenüber üblichen industriellen Anwendungen in Bezug auf Spannung (wegen der elektrischen Festigkeit) und Strom (hinsichtlich der Erwärmung) reduziert. Die Spannungs- und Stromwerte sind, einschließlich eines Sicherheitsfaktors, ständig auf ein so geringes Niveau begrenzt, dass mit Sicherheit unzulässige Temperaturen nicht auftreten und Funken und Lichtbögen bei Unterbrechung oder Kurzschluss eine so geringe Energie aufweisen, dass sie zur Zündung einer explosionsfähigen Atmosphäre nicht ausreichen. Anwendung findet die Zündschutzart "Eigensicherheit" z. B. bei Mess-, Steuer-, Überwachungs- und Informationsanlagen, -kreisen und -geräten sowie für den elektrischen Anschluss von Sensoren und Aktoren.
  • Weitere Zündschutzarten, die für die Zwecke der vorliegenden Erfindung weniger relevant sind, umfassen eine Einkapselung möglicher Zündquellen in Form einer Sand- oder Ölfüllung oder durch eine geeignete Vergussmasse in Verbindung mit einer entsprechenden Begrenzung der Oberflächentemperatur.
  • Detaillierter dargestellt ermöglicht es die Zündschutzart "Überdruckkapselung" (Ex-p), nicht explosionsgeschützte Geräte in explosionsgefährdeten Bereichen zu betreiben. Der Zündschutzart "Überdruckkapselung" liegt der Gedanke zugrunde, explosionsfähige Gasgemische von den eingesetzten nicht explosionsgeschützten Geräten fernzuhalten.
  • Der Explosionsschutz wird bei der Zündschutzart "Ex-p" dadurch realisiert, dass die nicht explosionsgeschützten Geräte in einem überdruckgekapselten Gehäuse (Ex-p-Gehäuse) betrieben werden. Dieses Gehäuse wird durch einen dauerhaften Überdruck mit Luft oder einem Inertgas vor dem Eindringen der evtl. in der Umgebung vorliegenden explosionsfähigen Atmosphäre geschützt. Abhängig von der jeweiligen Anwendung und der vorhandenen Explosionsschutz-Zone bzw. der vorhandenen Atmosphäre (z.B. Gas oder Staub) wird bei einer Inbetriebnahme des Gerätes das Ex-p-Gehäuse vorgespült. Hierdurch wird sichergestellt, dass ein eventuell im Gehäuse vorhandenes, zündfähiges Gas-/Luftgemisch entfernt wird. Dieser Vorgang wird als Vorspülen oder Freispülen bezeichnet.
  • Überdruckkapselungssysteme aus dem Stand der Technik bestehen aus einem integrierten Steuergerät, welches alle elektronischen und pneumatischen Bauelemente wie Steuerung, Drucksensoren, Durchflussmesseinrichtung, Funkensperre, Auslassventil, etc. enthält. Zusätzlich wird eingangsseitig am Ex-p-Gehäuse eine einstellbare Drossel bzw. ein Magnetventil für die Spülgaszufuhr eingesetzt. Beide Komponenten können innerhalb oder außerhalb des Ex-p-Gehäuses montiert werden. Man unterscheidet die Betriebsarten "ständige Durchspülung", bei der das Ex-p-Gehäuse permanent mit einem Zündschutzgas durchströmt wird, sowie "Ausgleich der Leckverluste", bei der nach der Vorspülphase das Auslassventil geschlossen wird und nur so viel Spülgas in das Gehäuse eingeleitet wird, dass ein Mindestüberdruck aufrecht erhalten wird. Eingangsseitig können für die Spülgaszufuhr sowohl digital arbeitende Magnetventile (auf/zu) als auch Proportionalventile eingesetzt werden.
  • Die meisten Anwendungsfälle basieren auf der Betriebsart "Ausgleich der Leckverluste". In dieser Betriebsart wird nach Abschluss der Vorspülphase das Auslassventil geschlossen und dann nur noch soviel Spülgas in das Ex-p-Gehäuse eingeleitet, dass ein Mindestüberdruck im mBar-Bereich innerhalb des Ex-p-Gehäuses gegenüber der Atmosphäre aufrechterhalten wird. Damit wird in dem Ex-p-Gehäuse ein nicht explosionsgefährdeter Bereich geschaffen, in dem elektrische Betriebsmittel montiert und betrieben werden können, die selbst nicht explosionsgeschützt sind.
  • Die Herstellung und Aufrechterhaltung des Zustands der Überdruckkapselung erfolgt durch eine Steuerungseinrichtung (Controller), die an dem oder im Bereich des Ex-p-Gehäuses vorgesehen ist. Diese Steuerungseinrichtung steuert und überwacht zunächst den ersten Spülvorgang (Vorspülphase), durch den das unter Umständen zündfähige Gasgemisch der umgebenden Atmosphäre aus dem Gehäuse oder Schaltschrank entfernt wird. Nach Ablauf der Vorspülphase wird dann nur soviel Druckluft nachgeführt, dass die Undichtigkeiten des Gehäuses und der eventuellen Einbauten im Gehäuse (Schaltschrank) ausgeglichen werden. Während der Vorspülphase wird dabei in dem Gehäuse typischerweise ein Innendruck von ca. 10 bis 12 mBar und im Betriebszustand von ca. 2,5 bis 3,5 mBar aufgebaut und gehalten.
  • Die Steuerungseinrichtung (Controller) bewerkstelligt somit die Spülzeit- und Drucküberwachung und -steuerung, wobei die in den Ex-p-Schaltschrank einströmende Spülgasmenge sowie das Zuschalten der Einbauten in dem Schrank nach Ablauf der Vorspülzeit gesteuert und der Überdruck gegenüber der Atmosphäre im Inneren des Schaltschrankes gehalten und überwacht werden. Die an einzelnen Bauteilen im Inneren des Schaltschrankes eventuell auftretenden Heißpunkte werden über Temperatursensoren überwacht, so dass die betroffenen Bauteile bei Bedarf sicher abgeschaltet werden können. Dieses gewährleistet, dass keine unzulässige Oberflächentemperatur auftreten kann. Die für die Spülgaszufuhr dienenden, von der Steuerungseinrichtung gesteuerten Spülventile (Digitalventile oder Proportionalventile) richten sich in ihrer Dimensionierung (Spülmenge) nach den Schaltschrankgrößen.
  • In besonderen Anwendungsfällen in explosionsgefährdeten Bereichen, beispielsweise in der chemischen Industrie oder im Bergbau unter Tage, kann es nun erforderlich oder erwünscht sein, eine oder mehrere der diversen Schalteinrichtungen für große elektrische Leistungen (z.B. Schütze), deren Aufbau und Funktion oben erläutert wurde, in Verbindung mit überdruckgekapselten Gehäuse- oder Schaltschranksystemen (die also unter der Zünschutzart "Exp" gegen Explosionen geschützt sind) einzusetzen. Dabei kann die Schalteinrichtung (Schütz) insbesondere dafür vorgesehen sein, die in dem Gehäuse oder dem Schaltschrank untergebrachten Verbraucher, wie Geräte, Apparate, Motoren und dergleichen, zu schalten, insbesondere ein- und auszuschalten. Wenn derartige Geräte als solche ursprünglich selbst nicht explosionsgeschützt sind, darf dieser Schaltvorgang jedoch erst durchgeführt werden, wenn das die Geräte umgebende Gehäuse oder der Schaltschrank in dem Zustand der Überdruckkapselung sind. Wie oben erläutert wurde, ist es in solchen Fällen außerdem erforderlich, die Schalteinrichtung so auszubilden und abzusichern, dass Funken oder Lichtbögen entweder gar nicht erst entstehen, oder dass die bei einem Schaltvorgang der Schalteinrichtung entstehenden Abreißfunken oder Schaltlichtbögen dann jedenfalls nicht mit einer ggfs. vorhandenen brennbaren, explosionsfähigen Atmosphäre in Kontakt kommen, um nicht eine Zündquelle für eine Explosion zu bilden.
  • Im Stand der Technik war es dabei bisher üblich und notwendig, die Schalteinrichtung (z.B. das Schütz) getrennt von dem überdruckgekapselten Gehäuse- oder Schaltschranksystem durch geeignete Zündschutz-Maßnahmen gegen Explosionen zu sichern. Dabei wurden beispielsweise entweder das gesamte Schütz oder jedenfalls die Schaltkontakte explosionsgeschützt gekapselt.
  • Typischerweise wurde das Schütz bei diesen Anwendungen in einem eigenen druckfesten Gehäuse untergebracht, also einem Gehäuse, das die Zündschutzart "Druckfeste Kapselung" erfüllt ("Ex-d-Gehäuse"). Dieses druckfeste Gehäuse mit dem darin befindlichen Schütz wurde dann in der Regel außerhalb, insbesondere an der Außenseite oder im Außenbereich des mit dem Schütz zusammenarbeitenden überdruckgekapselten Gehäuse- oder Schaltschranksystems angebracht. Eine Anbringung des druckfesten Gehäuses mit dem darin befindlichen Schütz im Inneren des überdruckgekapselten Gehäuses wäre grundsätzlich zwar auch möglich gewesen, hat sich aber aus Gründen des Platzbedarfs des druckfesten Gehäuses in der Regel nicht angeboten.
  • Die Schalteinrichtung (Schütz) selbst konnte im Stand der Technik nicht unmittelbar im Inneren des überdruckgekapselten (Ex-p) Gehäuses oder Schaltschranks untergebracht werden, da das Schütz selbst nicht ausreichend explosionsgeschützt war, weshalb es aufgrund einer ggfs. vorhandenen explosionsfähigen Atmosphäre zu Explosionen hätte kommen können (z.B. aufgrund von Funken oder Lichtbögen an Luft- oder Kriechstrecken des Schützes), bevor das Gehäuse oder der Schaltschrank in Betrieb genommen wurden und bevor sie in dem Zustand der Überdruckkapselung waren.
  • Eine Schalteinrichtung konnte im Stand der Technik somit nicht unmittelbar im Inneren des Ex-p-Gehäuses untergebracht werden, da dieses die Anforderungen der gesetzlichen Normen und Richtlinien für die Zündschutzart "Überdruckkapselung" (Ex-p) nicht erfüllt hätte, mithin also auch aus rechtlichen und gesetzlichen Gründen unzulässig war.
  • Die Unterbringung der Schalteinrichtung in einem eigenen druckfest gekapselten Gehäuse (Ex-d-Gehäuse) entsprechend dem Stand der Technik hat jedoch den Nachteil, dass diese Gehäuse aufgrund der technischen Gegebenheiten und Anforderungen ein hohes Gewicht und große Abmessungen haben. Folglich verursachen Ex-d-Gehäuse in ihrer Herstellung, Handhabung und ihrem Transport einen hohen Aufwand, großen Zeitbedarf und damit hohe Kosten. Dieser Aufwand und diese Kosten stehen in der Regel jedoch nicht in einem angemessenen Verhältnis zu dem Aufwand und den Kosten für das gesamte System.
  • Der Erfindung liegt somit die Aufgabe zugrunde, diese Nachteile zu vermeiden. Insbesondere sollen für Schalteinrichtungen (z.B. Schütze oder Relais), die in Verbindung mit Geräten, Apparaten, Maschinen und dergleichen in Überdruckgekapselten Gehäuse- oder Schaltschranksystemen (Zündschutzart "Ex-p") verwendet werden, verbesserte und einfachere Maßnahmen für einen Explosionsschutz geschaffen werden.
  • Diese Aufgabe wird erfindungsgemäß gelöst durch eine Schalteinrichtung zum Schalten von elektrischen Geräten für Anwendungen in explosionsfähigen Atmosphären entsprechend Patentanspruch 1. Die genannte Aufgabe wird erfindungsgemäß auch gelöst durch ein Verfahren zum Betreiben einer Schalteinrichtung zum Schalten von elektrischen Geräten für Anwendungen in explosionsfähigen Atmosphären entsprechend Patentanspruch 5. Die genannte Aufgabe wird erfindungsgemäß schließlich auch gelöst durch ein Gehäuse für den Schutz von in dem Gehäuse untergebrachten elektrischen Geräten gegen Explosionen entsprechend Patentanspruch 9.
  • Erfindungsgemäß sind eine Schalteinrichtung zum Schalten von elektrischen Geräten für Anwendungen in explosionsfähigen Atmosphären sowie ein Verfahren zum Betreiben einer entsprechenden Schalteinrichtung vorgesehen, wobei die zu schaltenden Geräte in einem in der Zündschutzart "Überdruckkapselung" (Ex-p) gegen Explosionen geschützten Gehäuse (Ex-p-Gehäuse) angeordnet sind. Dabei ist eine Steuerungseinrichtung vorgesehen, die derart mit dem Ex-p-Gehäuse zusammenarbeitet, dass sie den Zustand der Überdruckkapselung des Exp-Gehäuses steuert und überwacht, insbesondere die Herstellung und/oder Aufrechterhaltung und/oder Beendigung dieses Zustands. Die Schalteinrichtung ist dabei insbesondere selbst gegen Explosionen geschützt, oder sie wird gegen Explosionen geschützt, und sie ist in dem Innenraum des Ex-p-Gehäuses angeordnet. Die Steuerungseinrichtung arbeitet derart mit der Schalteinrichtung zusammen und steuert diese derart, dass sie ein Schalten der Schalteinrichtung erst zulässt, wenn sich das Ex-p-Gehäuse im Zustand der Überdruckkapselung befindet.
  • Gemäß der Erfindung können Schalteinrichtungen in Verbindung mit überdruckgekapselten Gehäuse- oder Schaltschranksystemen (Zünschutzart "Ex-p") eingesetzt werden, bei denen die Schalteinrichtung insbesondere dafür vorgesehen ist, die indem Gehäuse oder dem Schaltschrank untergebrachten Verbraucher, wie Geräte, Apparate, Motoren und dergleichen, zu schalten, insbesondere ein- und auszuschalten. Da diese Geräte als solche selbst nicht explosionsgeschützt sind, darf dieser Schaltvorgang erst durchgeführt werden, wenn das Gehäuse oder der Schaltschrank in dem Zustand der Überdruckkapselung sind. Da die Schalteinrichtung selbst explosionsgeschützt ausgeführt ist, können vor diesem Schaltvorgang trotz des Vorhandenseins einer explosionsfähigen Atmosphäre keine Explosionen durch die Schalteinrichtung als solche ausgelöst werden.
  • Die explosionsgeschützte Ausführung der Schalteinrichtung kann beispielsweise Luft- und Kriechstrecken vorsehen, die gegenüber einer nicht explosionsgeschützten Ausführung verlängert sind, so dass in der Schalteinrichtung selbst keine Funken oder Lichtbögen als Zündquellen für eine Explosion entstehen können. Damit kann es nicht zu Explosionen kommen, bevor das Gehäuse oder der Schaltschrank in Betrieb genommen werden und bevor sie in dem Zustand der Überdruckkapselung sind (Ex-p).
  • Gemäß der Erfindung ist die Schalteinrichtung nunmehr unmittelbar im Inneren des überdruckgekapselten (Ex-p) Gehäuses oder Schaltschranks untergebracht. Durch die Steuerungseinrichtung (Controller), die den Zustand der Überdruckkapselung des Ex-p-Gehäuses und insbesondere die Herstellung und/oder Aufrechterhaltung und/oder Beendigung dieses Zustands steuert und überwacht, wird auch die Schalteinrichtung gesteuert und sichergestellt, dass die Schalteinrichtung erst schaltet (und damit evtl. Abreißfunken oder Schaltlichtbögen erzeugt), wenn das überdruckgekapselte (Ex-p) Gehäuse vollständig aktiv ist, d.h. wenn nach Abschluss der Vorspülphase der explosionsfreie Zustand im Inneren des Ex-p-Gehäuses herrscht. Das Zuschalten bzw. Ein- oder Ausschalten der in dem überdruckgekapselten Gehäuse oder Schaltschrank untergebrachten Geräte durch die Schalteinrichtung kann daher nicht zu einer Explosion führen.
  • Sobald der Betriebszustand der Überdruckkapselung des Gehäuses erreicht ist, ist die Schalteinrichtung damit gleichzeitig durch ihre eigene explosionsgeschützte Ausführung sowie durch das Gehäuse in der Zündschutzart "Überdruckkapselung" (Ex-p) geschützt. Der geschützte Bereich des Ex-p-Gehäuses wird somit zugleich auch für den Schutz der Schalteinrichtung genutzt.
  • In besonderen Ausfübrungsformen der Erfindung kann die Schalteinrichtung als solche gegen Explosionen geschützt sein, indem sie beispielsweise die technischen Anforderungen und/oder elektrischen Eigenschaften der Zündschutzart "Erhöhte Sicherheit" (Ex-e) oder der Zündschutzart "Eigensicherheit" (Ex-i) erfüllt. Dieses gilt insbesondere für die Schalteinrichtung in einem Zustand, in dem sie nicht schaltet (in dem aber z.B. Kriechströme vorhanden sein können). Das bedeutet, dass die Schalteinrichtung für ihre explosionsgeschützte Ausführung die normativ geregelten Anforderungen und Vorgaben einer betroffenen Zündschutzart in ihren elektrischen Eigenschaften erfüllt und für diese explosionsgeschützte Ausführung bestimmte technische Merkmale der betroffenen Zündschutznorm verwendet. Es ist dabei aber nicht erforderlich, dass die Schalteinrichtung als solche in der betroffenen Zündschutzart zugelassen oder zertifiziert ist, insbesondere von einer für Zulassungen im Bereich des Explosionsschutzes zuständigen, akkreditierten Prüfstelle oder Prüfbehörde.
  • Damit ist es möglich, dass für die Zwecke der Erfindung für die Schalteinrichtung Standardkomponenten oder -bauteile verwendet werden, die für industrielle Anwendungen verfügbar sind, ohne dass diese Komponenten hinsichtlich eines Explosionsschutzes in bestimmten Zündschutzarten zugelassen sein müssen. Es werden dabei lediglich solche Standardkomponenten oder -bauteile verwendet, die technisch so ausgebildet sind, dass sie einzelne oder alle Merkmale einer betreffenden Zündschutznorm erfüllen.
  • So kann eine erfindungsgemäße Schalteinrichtung beispielsweise ein Schütz in regulärer Industriequalität sein, der die Anforderungen der Zündschutzart "Erhöhte Sicherheit" (Ex-e) insofern erfüllt, als er verlängerte Luft- und Kriechstrecken aufweist, die die Vorgaben dieser Norm erfüllen. Dieser Schütz muss aber nicht für diese Zündschutzart amtlich zugelassen sein. Damit können die höheren Kosten eingespart werden, die gegenüber herkömmlichen Bauteilen üblicherweise für Bauteile aufzuwenden sind, die in bestimmten Zündschutzarten zertifiziert sind.
  • Erfindungsgemäß werden bestimmte Merkmale oder Vorgaben einer konkreten Zündschutznorm in ihrer Anwendung für die Schalteinrichtung kombiniert mit der für das Gehäuse vorgesehenen Zündschutzart "Überdruckkapselung" (Ex-p). Diese Zündschutzmerkmale der Schalteinrichtung werden somit auf das überdruckgekapselte Gehäuse übertragen bzw. in der Überdruckkapselung angewendet, ohne dass sie Bestandteil der Norm für die Zündschutzart "Überdruckkapselung" sind. Durch diese Kombination verschiedener Explosionsschutzmaßnahmen wird ein gutes oder höheres Sicherheitsniveau erreicht, und insbesondere ein solches Sicherheitsniveau, das an sich durch eine akkreditierte Prüfstelle zugelassen werden würde Damit kann hier auch von dem Vorliegen der Zündschutzart "Sonderschutz" (Symbol "Ex-s") gesprochen werden. Diese Zündschutzart gilt somit für die Kombination der Schalteinrichtung mit dem Gehäuse.
  • In einer weiteren besonderen Ausführungsform der Erfindung können das Gehäuse oder der Schaltschrank beweglich, insbesondere fahrbar konstruiert sein. Das Gehäuse oder der Schaltschrank können dann zunächst in einem nicht explosionsgefährdeten Bereich vorbereitet und in den Ex-p-Zustand (Überdruckkapselung) gebracht werden, wobei hier kein Vorspülen des Gehäuses/Schranks notwendig ist. In diesem Zustand werden das Gehäuse bzw. der Schaltschrank dann in den explosionsgefährdeten Bereich gebracht, insbesondere gefahren, und sie sind hier jetzt regulär unter Explosionsschutzbedingungen arbeitsfähig. In dieser Ausführungsform ist es somit nicht erforderlich, dass die Schalteinrichtung (Schütz) eigenständig gegen Explosionen geschützt ist (z.B. durch die Erfüllung der Anforderungen einer der oben genannten weiteren Zündschutzarten Ex-e oder Ex-i). Vielmehr wird die Schalteinrichtung hier durch den Einsatz in dem Gehäuse/Schaltschrank und die Herstellung seines Ex-p-Zustands mit geschützt.
  • Neben den oben diskutierten Sicherheitsaspekten bringt die erfindungsgemäße Lösung darüber hinaus den weiteren, vor allem wirtschaftlichen Vorteil mit sich, dass ein separates, druckfest gekapseltes Gehäuse (Ex-d-Gehäuse) zur explosionsgeschützten Unterbringung der Schalteinrichtung (Schütz) nicht mehr erforderlich ist. Damit entfallen der hohe wirtschaftliche und zeitliche Aufwand, der aufgrund des hohen Gewichts und der großen Abmessungen eines Ex-d-Gehäuses in seiner Herstellung, Handhabung und seinem Transport gegeben ist. Die Erfindung bietet somit eine gegenüber dem Stand der Technik verbesserte und einfachere und damit wesentlich kostengünstigere Lösung.
  • Weitere Vorteile und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibund eines Ausführungsbeispiels anhand der Zeichnungen.
    • Fig. 1 zeigt schematisch eine dreidimensionale Ansicht eines erfindungsgemäßen Ex-p-Gehäuses mit einer darin untergebrachten erfindungsgemäßen Schalteinrichtung.
    • Fig. 2 zeigt schematisch eine dreidimensionale Ansicht entsprechend der Fig. 1, wobei alle Komponenten zur Veranschaulichung durchsichtig dargestellt sind.
  • Die Figuren zeigen das überdruckgekapselte Gehäuse (Ex-p-Gehäuse) bzw. den Schaltschrank 10 mit einer darin untergebrachten Schalteinrichtung, insbesondere einem Schütz 20. Das Schütz selbst ist gegen Explosionen geschützt, indem es die elektrischen Eigenschaften der Zündschutzart "Erhöhte Sicherheit" (Ex-e) erfüllt. Je nach Anwendungsfall können alternativ auch die Anforderungen anderer geeigneter Zündschutzarten erfüllt werden (z.B. "Eigensicherheit" Ex-i).
  • In einer weiteren Alternative muss die Schalteinrichtung (Schütz) nicht eigenständig gegen Explosionen geschützt sein (z.B. durch die Erfüllung der Anforderungen einer der zuvor genannten weiteren Zündschutzarten Ex-e oder Ex-i). Vielmehr wird die Schalteinrichtung 20 hier alleine durch die Anordnung in dem Gehäuse/Schaltschrank 10 und die Herstellung seines Ex-p-Zustands mit geschützt. Diese Ausführungsform setzt allerdings voraus, dass das Gehäuse oder der Schaltschrank zuerst in einem nicht explosionsgefährdeten Bereich vorbereitet und in den Ex-p-Zustand (Überdruckkapselung) gebracht werden. Zu diesem Zweck können das Gehäuse oder der Schaltschrank beweglich, insbesondere fahrbar, konstruiert sein. Nachdem der Ex-p-Zustand hergestellt ist, können das Gehäuse bzw. der Schaltschrank dann in den explosionsgefährdeten Bereich gebracht werden, wo sie regulär unter Explosionsschutzbedingungen arbeitsfähig sind.
  • Das Schütz ist durch eine explosionssichere Scheibe 12 an der Vorderseite des Gehäuses hindurch erkennbar. Diese Scheibe kann optional vorhanden sein und ist hier insbesondere zur besseren Darstellung des Schützes vorgesehen. Das Schütz 20 sitzt im Inneren des Ex-p-Gehäuses 10, also in dem von Spülgas durchspülten Bereich. Das Schütz ist in geeigneter Weise in dem Gehäuse befestigt, hier beispielsweise durch übliche Gerätehalterungsschienen 14.
  • In den Figuren ist an der rechten oberen Außenseite des Gehäuses 10 die Steuerungseinrichtung (Controller) 30 erkennbar. Diese Steuerungseinrichtung steuert und überwacht den Zustand der Überdruckkapselung des Gehäuses 10 sowie das Schalten des Schützes 20, wie es oben erläutert wurde. Die Steuerungseinrichtung 30 arbeitet derart mit dem Schütz 20 zusammen und steuert dieses derart, dass sie ein Schalten des Schützes 20 erst zulässt und freigibt, wenn für das Ex-p-Gehäuse 10 der Zustand der Überdruckkapselung vorliegt. Schaltungs- und steuerungstechnisch sind somit hohe Anforderungen an die Steuerungseinrichtung und ihre Zuverlässigkeit zu stellen, damit diese ein Schalten des Schützes nur freigibt und zulässt, wenn tatsächlich der Zustand der Überdruckkapselung des Gehäuses vorliegt.
  • An der rechten unteren Außenseite des Gehäuses 10 ist ein Ventil 40 dargestellt, das als Seuerventil für die Zufuhr von Spülgas (Inertgas) oder Druckluft zu dem Gehäuse 10 dient. Durch das Spülgas bzw. die Druckluft wird der Zustand der Überdruckkapselung des Gehäuses 10 hergestellt und aufrechterhalten, wie es oben erläutert wurde. Das Steuerventil 40 wird von der Steuerungseinrichtung 30 gesteuert und überwacht, um die jeweils richtige Menge an Spülgas oder Druckluft zuzuführen.
  • An dem Steuerventil 40 ist (in der Zeichnung von rechts kommend) eine Leitung oder ein Schlauch 42 befestigt, durch die/den das Spülgas oder die Druckluft zugeführt werden. Das hier dargestellte Steuerventil 40 weist außerdem ein Manometer 44 sowie ein Handrad 46 auf, über die der Druck und die Menge des zugeführten Spülgases bzw. der Druckluft manuell geregelt werden können.
  • In den Figuren ist des weiteren an der rechten oberen Außenseite des Gehäuses 10 neben der Steuerungseinrichtung (Controller) 30 ein Auslassventil 50 dargestellt. Durch dieses Ventil werden, insbesondere in der Betriebsart "ständig Durchspülung" der Zündschutzart "Überdruckkapselung", wie es oben erläutert wurde, das durch das Steuerventil 40 zugeführte Spülgas (Inertgas) bzw. die Druckluft wieder aus dem Gehäuse abgelassen. Auch dieses Ventil 50 kann typischerweise von der Steuerungseinrichtung 30 gesteuert und überwacht werden, um die jeweils richtige Menge an Spülgas oder Druckluft abzulassen.
  • An der rechten Außenseite des Gehäuses 10 sind des weiteren Buchsen und/oder Leitungsdurchführungen 60 erkennbar, durch die elektrische Leitungen und dergleichen zur Versorgung der in dem Gehäuse 10 untergebrachten Geräte und Apparate explosionsgeschützt in das Gehäuse 10 eingeführt werden können.
  • Im übrigen weist das Gehäuse 10 an seiner Außenseite die für explosionsgeschützte Gehäuse oder Schaltschränke typischen weiteren Komponenten und Bedienelemente auf. Neben einem Not-Aus-Schalter 70 sind Bedienknöpfe oder -schalter 72, Taster 74 und Meldeleuchten 76 vorgesehen. Über diese Komponenten können das Gehäusesystem und/oder die darin untergebrachten Geräte und Apparate bedient und überwacht werden. Über Verschlusselemente 78 (wie Riegel oder Schrauben) kann das Gehäuse 10 geöffnet werden.
  • Die von dem Ex-p-Gehäuse 10 zu schützenden; in diesem untergebrachten Geräte und Apparate sind aus Gründen der Übersichtlichkeit hier nicht dargestellt. Sie sind unmittelbar neben dem Schütz 20 angeordnet und werden von diesem geschaltet.

Claims (15)

  1. Schalteinrichtung zum Schalten von elektrischen Geräten für Anwendungen in explosionsfähigen Atmosphären,
    wobei die zu schaltenden Geräte in einem in der Zündschutzart "Überdruckkapselung" (Ex-p) gegen Explosionen geschützten Gehäuse (Ex-p-Gehäuse) (10) angeordnet sind, und wobei eine Steuerungseinrichtung (30) vorgesehen ist, die derart mit dem Ex-p-Gehäuse (10) zusammenarbeitet, dass sie den Zustand der Überdruckkapselung des Ex-p-Gehäuses (10) steuert und überwacht,
    dadurch gekennzeichnet,
    dass die Schalteinrichtung (20) gegen Explosionen geschützt ist,
    dass die Schalteinrichtung (20) im Innenraum des Ex-p-Gehäuses (10) angeordnet ist, und dass die Steuerungseinrichtung (30) derart mit der Schalteinrichtung (20) zusammenarbeitet, dass sie ein Schalten der Schalteinrichtung (20) erst zulässt, wenn sich das Ex-p-Gehäuse (10) im Zustand der Überdruckkapselung befindet.
  2. Schalteinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass sie ein elektromechanisches oder elektrisches oder pneumatisches Schütz oder Relais (20) oder ein Halbleiterschütz ist.
  3. Schalteinrichtung nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass sie gegen Explosionen geschützt ist, indem sie im nicht schaltenden Zustand die Anforderungen der Zündschutzart "Erhöhte Sicherheit" (Ex-e) erfüllt.
  4. Schalteinrichtung nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass sie gegen Explosionen geschützt ist, indem sie im nicht schaltenden Zustand die Anforderungen der Zündschutzart "Eigensicherheit" (Ex-i) erfüllt.
  5. Verfahren zum Betreiben einer Schalteinrichtung zum Schalten von elektrischen Geräten für Anwendungen in explosionsfähigen Atmosphären, mit folgenden Schritten:
    - Bereitstellen eines Gehäuses (10), das die Explosionszündschutzart "Überdruckkapselung" (Ex-p) aufweist (Ex-p-Gehäuse),
    - Anordnen der zu schaltenden Geräte in dem Ex-p-Gehäuse (10), und
    - Bereitstellen einer Steuerungseinrichtung (30), die derart mit dem Ex-p-Gehäuse (10) zusammenarbeitet, dass sie den Zustand der Überdruckkapselung des Ex-p-Gehäuses (10) steuert und überwacht,
    gekennzeichnet durch die folgenden Schritte:
    - Bereitstellen der Schalteinrichtung (20) derart, dass sie gegen Explosionen geschützt ist oder wird,
    - Anordnen der Schalteinrichtung (20) im Innenraum des Ex-p-Gehäuses (10), und
    - Steuern der Schalteinrichtung (20) durch die Steuerungseinrichtung (30) derart, dass die Steuerungseinrichtung (30) ein Schalten der Schalteinrichtung (20) erst zulässt, wenn sich das Ex-p-Gehäuse (10) im Zustand der Überdruckkapselung befindet.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Schalteinrichtung (20) gegen Explosionen geschützt ist, indem sie im nicht schaltenden Zustand die Anforderungen der Zündschutzart "Erhöhte Sicherheit" (Ex-e) erfüllt.
  7. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Schalteinrichtung (20) gegen Explosionen geschützt ist, indem sie im nicht schaltenden Zustand die Anforderungen der Zündschutzart "Eigensicherheit" (Ex-i) erfüllt.
  8. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass das Gehäuse (10) beweglich ausgebildet ist, dass das Gehäuse (10) zuerst in einem nicht explosionsgefährdeten Bereich in den Zustand der Überdruckkapselung gebracht wird, und dass das Gehäuse (10) in diesem Zustand dann in den explosionsgefährdeten Bereich gebracht wird.
  9. Gehäuse für den Schutz von in dem Gehäuse untergebrachten elektrischen Geräten gegen Explosionen,
    wobei das Gehäuse (10) die Explosionszündschutzart "Überdruckkapselung" (Ex-p) aufweist (Ex-p-Gehäuse),
    wobei eine Steuerungseinrichtung (30) derart mit dem Ex-p-Gehäuse (10) zusammenarbeitet, dass sie den Zustand der Überdruckkapselung des Ex-p-Gehäuses (10) steuert und überwacht, und
    wobei eine Schalteinrichtung (20) zum Schalten der elektrischen Geräte vorgesehen ist,
    dadurch gekennzeichnet,
    dass die Schalteinrichtung (20) gegen Explosionen geschützt ist,
    dass die Schalteinrichtung (20) im Innenraum des Ex-p-Gehäuses (10) angeordnet ist, und
    dass die Steuerungseinrichtung (30) derart mit der Schalteinrichtung (20) zusammenarbeitet, dass sie ein Schalten der Schalteinrichtung (20) erst zulässt, wenn sich das Ex-p-Gehäuse (10) im Zustand der Überdruckkapselung befindet.
  10. Gehäuse nach Anspruch 9, dadurch gekennzeichnet, dass die Schalteinrichtung (20) ein elektromechanisches oder elektrisches oder pneumatisches Schütz oder Relais oder ein Halbleiterschütz ist.
  11. Gehäuse nach einem der Ansprüche 9 oder 10, dadurch gekennzeichnet, dass die Schalteinrichtung (20) gegen Explosionen geschützt ist, indem sie im nicht schaltenden Zustand die Anforderungen der Zündschutzart "Erhöhte Sicherheit" (Ex-e) erfüllt.
  12. Gehäuse nach einem der Ansprüche 9 oder 10, dadurch gekennzeichnet, dass die Schalteinrichtung (20) gegen Explosionen geschützt ist, indem sie im nicht schaltenden Zustand die Anforderungen der Zündschutzart "Eigensicherheit" (Ex-i) erfüllt.
  13. Gehäuse nach einem der Ansprüche 9 oder 10, dadurch gekennzeichnet, dass das Gehäuse (10) beweglich, insbesondere fahrbar, ausgebildet ist, wobei das Gehäuse (10) zuerst in einem nicht explosionsgefährdeten Bereich in den Zustand der Überdruckkapselung bringbar ist, und wobei das Gehäuse (10) in diesem Zustand dann in den explosionsgefährdeten Bereich bringbar, insbesondere fahrbar, ist.
  14. Gehäuse nach einem der Ansprüche 9 bis 13, dadurch gekennzeichnet, dass die Steuerungseinrichtung (30) an der Außenseite des Ex-p-Gehäuses (10) angeordnet ist.
  15. Gehäuse nach einem der Ansprüche 9 bis 14, dadurch gekennzeichnet, dass es ein Ventil (40) für die Zuleitung eines den Zustand der Überdruckkapselung bewirkenden Mediums zu dem Gehäuse (10) aufweist, und/oder dass es ein Ventil (50) für die Ableitung des den Zustand der Überdruckkapselung bewirkenden Mediums aus dem Gehäuse (10) aufweist, wobei das den Zustand der Überdruckkapselung bewirkende Medium insbesondere ein Inertgas und/oder Luft ist.
EP09174742A 2008-11-05 2009-11-02 Explosionsgeschützte Schalteinrichtung und Verfahren zum Betreiben einer Schalteinrichtung mit einem explosionsgeschützten Gehäuse Revoked EP2184750B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102008055866A DE102008055866A1 (de) 2008-11-05 2008-11-05 Explosionsgeschützte Schalteinrichtung und Verfahren zum Betreiben einer Schalteinrichtung mit einem explosionsgeschützten Gehäuse

Publications (2)

Publication Number Publication Date
EP2184750A1 true EP2184750A1 (de) 2010-05-12
EP2184750B1 EP2184750B1 (de) 2011-07-13

Family

ID=41510989

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09174742A Revoked EP2184750B1 (de) 2008-11-05 2009-11-02 Explosionsgeschützte Schalteinrichtung und Verfahren zum Betreiben einer Schalteinrichtung mit einem explosionsgeschützten Gehäuse

Country Status (3)

Country Link
EP (1) EP2184750B1 (de)
AT (1) ATE516590T1 (de)
DE (1) DE102008055866A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112385325A (zh) * 2018-05-23 2021-02-19 费斯托股份两合公司 运行器件和过程阀结构单元

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115954789B (zh) * 2023-03-10 2023-06-02 山东上九电气科技有限公司 一种充气柜

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2052040A1 (de) * 1970-10-23 1971-12-02 Stahl R Fa Sicherungen, Sicherungsautomaten u. dergl. in elektrischen Steuerungen und Lichtverteilungen

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2052040A1 (de) * 1970-10-23 1971-12-02 Stahl R Fa Sicherungen, Sicherungsautomaten u. dergl. in elektrischen Steuerungen und Lichtverteilungen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"VERBANNTE GEFAHR", ELEKTRISCHE ENERGIETECHNIK, HUETHIG, HEIDELBERG, DE, vol. 35, no. 4, 1 July 1990 (1990-07-01), pages 14,16,18, XP000200058, ISSN: 0170-2033 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112385325A (zh) * 2018-05-23 2021-02-19 费斯托股份两合公司 运行器件和过程阀结构单元

Also Published As

Publication number Publication date
DE102008055866A1 (de) 2010-05-06
EP2184750B1 (de) 2011-07-13
ATE516590T1 (de) 2011-07-15

Similar Documents

Publication Publication Date Title
DE102008027274B3 (de) Leistungstransformator mit Stufenschalter
WO2005122352A1 (de) Gasisolierte schaltanlage mit ein sichtfenster zur optischen erfassung die schaltstellung der schaltkontakten
DE112011103758B4 (de) Gasisolierte Schalteinrichtung
DE202006020625U1 (de) Kurzschlusseinrichtung zur Löschung eines Störlichtbogens innerhalb einer Mittel- und Hochspannungsschaltanlage
EP1807852B1 (de) Überwachungsverfahren für eine durch relativ zueinander bewegbare kontaktstücke begrenzte trennstrecke eines elektrischen schaltgerätes sowie zugehörige vorrichtung zur ausführung des überwachungsverfahrens
EP2184750B1 (de) Explosionsgeschützte Schalteinrichtung und Verfahren zum Betreiben einer Schalteinrichtung mit einem explosionsgeschützten Gehäuse
DE1640206A1 (de) Schalteinrichtung mit einem insbesondere in eine Fluessigkeit eingetauchten Vakuum-Trennschalter
WO2022043103A1 (de) Feldgerät
EP3278411B1 (de) Niederspannungs-schaltschrank mit verringertem risiko für das auftreten eines störlichtbogens
DE102016216321A1 (de) Schaltvorrichtung und Verfahren zum Schalten eines Stromes
WO2021239460A1 (de) Schaltvorrichtung
EP3844790B1 (de) Schaltvorrichtung
EP1248928B1 (de) Schutzvorrichtung gegen unerwünschte inbetriebnahme einer maschinenanlage
CH233443A (de) Elektrische Hochspannungsschaltanlage.
DE4302416A1 (en) Automatic earthing device e.g. for metal-encapsulated gas-insulated load isolating switch - increases pressure rapidly after sparking to activate device by pressure activated trigger mechanism
DE112009000515B4 (de) Funkenfreier verbesserter Verbinder
DE102014201809A1 (de) Erdungsschalter für Bahnstromanlagen und Verfahren zum Erden eines Teils einer Bahnstromanlage mittels eines Erdungsschalters
DE2854025A1 (de) Explosionsschutzeinrichtung fuer elektrische anlagen
DE102012005031A1 (de) Installationsschaltgerät
EP0105054B1 (de) Schaltungseinrichtung zur aktiven Kontrolle von paarig angeordneten Endschaltern
DE102010000804A1 (de) Elektrisches Betriebsmittel mit Überdruckkapselung für explosionsgefährdete Bereiche
DE3244675C2 (de)
DE102017131442B4 (de) Ein- oder mehrpoliger Leistungsschalter und modulares System umfassend einen solchen Leistungsschalter
DE966204C (de) Elektrische Unterbrechungseinrichtung, insbesondere fuer schlagwettergefaehrdete Betreibe
DE102014211735A1 (de) Elektromechanisches Relais

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20101110

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHMAHL, GISBERT

Inventor name: LAMMEL, THOMAS

Inventor name: KNOEGEL, MICHAEL

Inventor name: MICHELBACH, THOMAS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H01H 9/04 20060101AFI20110214BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009000938

Country of ref document: DE

Effective date: 20110908

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110713

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110713

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110713

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111113

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111013

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111114

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110713

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110713

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111014

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110713

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110713

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110713

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110713

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110713

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110713

26 Opposition filed

Opponent name: BARTEC GMBH

Effective date: 20120330

26 Opposition filed

Opponent name: R. STAHL SCHALTGERAETE GMBH

Effective date: 20120412

Opponent name: BARTEC GMBH

Effective date: 20120330

26 Opposition filed

Opponent name: GOENNHEIMER ELEKTRONIC GMBH

Effective date: 20120413

Opponent name: SIEMENS AKTIENGESELLSCHAFT

Effective date: 20120410

Opponent name: BARTEC GMBH

Effective date: 20120330

Opponent name: R. STAHL SCHALTGERAETE GMBH

Effective date: 20120412

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110713

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110713

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502009000938

Country of ref document: DE

Effective date: 20120330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110713

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110713

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110713

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111013

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: BARTEC GMBH

Effective date: 20120330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110713

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110713

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

R26 Opposition filed (corrected)

Opponent name: SIEMENS AKTIENGESELLSCHAFT

Effective date: 20120410

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20181122

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181129

Year of fee payment: 10

Ref country code: AT

Payment date: 20181120

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20181122

Year of fee payment: 10

Ref country code: IT

Payment date: 20181122

Year of fee payment: 10

Ref country code: CH

Payment date: 20181126

Year of fee payment: 10

Ref country code: GB

Payment date: 20181126

Year of fee payment: 10

Ref country code: FR

Payment date: 20181127

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R064

Ref document number: 502009000938

Country of ref document: DE

Ref country code: DE

Ref legal event code: R103

Ref document number: 502009000938

Country of ref document: DE

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

27W Patent revoked

Effective date: 20190322

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20190322

REG Reference to a national code

Ref country code: AT

Ref legal event code: MA03

Ref document number: 516590

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190322