EP2180148A1 - Gasturbine mit Kühleinsatz - Google Patents

Gasturbine mit Kühleinsatz Download PDF

Info

Publication number
EP2180148A1
EP2180148A1 EP08018754A EP08018754A EP2180148A1 EP 2180148 A1 EP2180148 A1 EP 2180148A1 EP 08018754 A EP08018754 A EP 08018754A EP 08018754 A EP08018754 A EP 08018754A EP 2180148 A1 EP2180148 A1 EP 2180148A1
Authority
EP
European Patent Office
Prior art keywords
cooling
gas turbine
cooling air
turbine
insert
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08018754A
Other languages
English (en)
French (fr)
Inventor
Fathi Ahmad
Christian Lerner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP08018754A priority Critical patent/EP2180148A1/de
Priority to PCT/EP2009/061461 priority patent/WO2010049195A1/de
Priority to EP09823098A priority patent/EP2347100B1/de
Priority to US13/125,978 priority patent/US20110255956A1/en
Priority to CN200980142781.5A priority patent/CN102197195B/zh
Priority to JP2011532553A priority patent/JP5281166B2/ja
Publication of EP2180148A1 publication Critical patent/EP2180148A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/14Casings modified therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • F01D5/188Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall
    • F01D5/189Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall the insert having a tubular cross-section, e.g. airfoil shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/201Heat transfer, e.g. cooling by impingement of a fluid

Definitions

  • the invention relates to a gas turbine having a number of rotor blades arranged in each case, arranged on a turbine shaft and with a number of guide vanes combined by vanes on a turbine housing fixed guide vanes, the guide vanes having a number of cooling air holes.
  • Gas turbines are used in many areas to drive generators or work machines.
  • the energy content of a fuel is used to generate a rotational movement of a turbine shaft.
  • the fuel is burned in a combustion chamber, compressed air being supplied by an air compressor.
  • the working medium produced in the combustion chamber by the combustion of the fuel, under high pressure and at high temperature, is guided via a turbine unit arranged downstream of the combustion chamber, where it relaxes to perform work.
  • a number of rotor blades which are usually combined into blade groups or rows of blades, are arranged thereon and drive the turbine shaft via a momentum transfer from the working medium.
  • For guiding the flow of the working medium in the turbine unit also commonly associated between adjacent blade rows with the turbine housing and combined into rows of guide vanes are arranged.
  • the combustor of the gas turbine may be embodied as a so-called annular combustor wherein a plurality of burners circumferentially disposed about the turbine shaft into a common, high temperature resistant combustor Surrounding wall surrounding the combustion chamber space opens.
  • the combustion chamber is designed in its entirety as an annular structure.
  • a plurality of combustion chambers In addition to a single combustion chamber can also be provided a plurality of combustion chambers.
  • first row of guide vanes of a turbine unit which, together with the blade row immediately downstream in the flow direction of the working medium, forms a first turbine stage of the turbine unit, which is usually followed by further turbine stages.
  • the vanes are fixed in each case via a blade root, also referred to as a platform, on a guide vane carrier of the turbine unit.
  • the guide blade carrier for securing the platforms of the guide vanes comprise an insulation segment.
  • a guide ring on the guide vane support of the turbine unit is arranged in each case.
  • Such a guide ring is spaced by a radial gap of the blade tips of the fixed at the same axial position on the turbine shaft blades of the associated blade row.
  • the guide vane carrier of the gas turbine is usually made of cast steel, since this is suitable to withstand the high temperatures within the gas turbine.
  • cooling air bores are usually provided in the guide vane carrier through which cooling air flows from the outer regions of the gas turbine into the interior and thereby cools the vane carrier.
  • a plurality of cooling air reservoirs with different temperatures and pressures between the turbine housing and the guide blade carrier are provided.
  • a strong cooling of the vane carrier also means a high consumption of cooling air, which then flows into the interior of the gas turbine. This lowers the temperature inside the gas turbine and therefore can also reduce the efficiency of the gas turbine.
  • the invention is therefore based on the object to provide a gas turbine, which has a particularly high efficiency while maintaining the greatest possible operational safety.
  • This object is achieved by a cooling insert is introduced into a cooling air hole.
  • the invention is based on the consideration that a particularly high efficiency can be achieved by increasing the temperature inside the gas turbine. This can be achieved by reducing the cooling air consumption, i. H. a reduction of introduced into the interior of the gas turbine amount of cooling air done.
  • a reduction in the amount of cooling air results in an increase in the temperature of the vane carrier, since less air then flows through its cooling air bores and accordingly less heat is removed.
  • this can result in a deformation of the guide vane carrier, which then would have to be considered in the construction of the gas turbine. Therefore, the existing cooling air should be used very effectively for cooling, d. h., It should be removed with the lowest possible amount of cooling air, the largest possible amount of heat.
  • the cooling insert is tubular and provided with arranged in its tube wall, window-shaped wall openings, which are separated by webs. This makes it possible for the cooling air flowing through the cooling insert to continue to come into contact with the wall of the cooling air bores of the guide blade carrier over a large area, in order to remove the heat energy from it.
  • the respective cooling insert comprises at least one turbulator.
  • Turbulators are small elevations, d. H. Generally applied surface perturbations, which turn a laminar flow into a turbulent one. These can be formed, for example, by the webs or in the form of raised wires, sheet corners or the like. Even if the flow in the cooling air bore is already turbulent, these turbulators ensure even better heat transfer and thus overall better cooling of the guide blade carrier with reduced cooling air consumption.
  • the cooling insert can advantageously be designed instead of or in addition to the turbulators as an impingement cooling insert.
  • the cooling air flowing therethrough can radiate out through the impingement cooling holes while impinging transversely on the cooling air bore walls of the vane support. As a result, a particularly efficient cooling of the guide vane carrier is achieved.
  • the respective cooling insert comprises thread-like structures.
  • a thread structure of the flow inside the cooling air hole By a thread structure of the flow inside the cooling air hole, a twist can be imposed, which on the one hand ensures a turbulence of the flow, on the other hand has a longer whereabouts of the cooling air in the cooling air bore. As a result, a better heat transfer from the material of the vane support is ensured on the flowing cooling air also.
  • the respective cooling insert is made of the same material as the guide blade carrier.
  • any complications due to different choice of material of the cooling insert and the guide blade carrier, such as a different thermal expansion, can be avoided and it is a total of a comparatively simpler design possible.
  • cooling air supply to the cooling air holes should advantageously be adapted to the cooling properties of the respective cooling insert. This means that the temperature and pressure of the introduced cooling air are optimized to the new, changed properties with regard to the cooling by the cooling inserts.
  • such a gas turbine is used in a gas and steam turbine plant.
  • the advantages associated with the invention are, in particular, that an overall better efficiency of the gas turbine is achieved by the introduction of cooling inserts in the cooling air holes of the guide blade carrier by the improved cooling while reducing the amount of cooling air. Furthermore, such inserts can be particularly easy to introduce and can therefore also be relatively easily used in the manner of retrofitting in older gas turbines.
  • the cooling inserts can also be flexibly adapted to the respective requirements with regard to cooling and cooling air consumption.
  • the gas turbine 1 has a compressor 2 for combustion air, a combustion chamber 4 and a turbine unit 6 for driving the compressor 2 and a generator, not shown, or a working machine.
  • the turbine unit 6 and the compressor 2 are arranged on a common, also called turbine rotor turbine shaft 8, with which the generator or the working machine is connected, and which is rotatably mounted about its central axis 9.
  • the running in the manner of an annular combustion chamber 4 is equipped with a number of burners 10 for the combustion of a liquid or gaseous fuel.
  • the turbine unit 6 has a number of rotatable blades 12 connected to the turbine shaft 8.
  • the blades 12 are arranged in a ring on the turbine shaft 8 and thus form a number of blade rows.
  • the turbine unit 6 comprises a number of stationary vanes 14, which are also attached in a donut-like manner to a vane support 16 of the turbine unit 6 to form rows of vanes.
  • the blades 12 serve to drive the turbine shaft 8 by momentum transfer from the turbine unit 6 flowing through the working medium M.
  • the vanes 14, however, serve to guide the flow of the working medium M between two seen in the flow direction of the working medium M consecutive blade rows or blade rings.
  • a successive pair of a ring of vanes 14 or a row of vanes and a ring of blades 12 or a blade row is also referred to as a turbine stage.
  • Each vane 14 has a platform 18 which is arranged to fix the respective vane 14 to a vane support 16 of the turbine unit 6 as a wall element.
  • the platform 18 is a thermally comparatively heavily loaded component, the outer boundary of a Hot gas channel for the turbine unit 6 flowing through the working medium M forms.
  • Each blade 12 is attached to the turbine shaft 8 in an analogous manner via a platform 19, also referred to as a blade root.
  • a guide ring 21 is arranged on a guide blade carrier 16 of the turbine unit 6.
  • the outer surface of each guide ring 21 is also exposed to the hot, the turbine unit 6 flowing through the working medium M and spaced in the radial direction from the outer end of the opposite blades 12 through a gap.
  • the guide rings 21 arranged between adjacent rows of guide blades serve in particular as cover elements which protect the inner housing 16 in the guide blade carrier or other housing installation parts from thermal overstress by the hot working medium M flowing through the turbine 6.
  • the combustion chamber 4 is designed in the embodiment as a so-called annular combustion chamber, in which a plurality of circumferentially around the turbine shaft 8 arranged around burners 10 open into a common combustion chamber space.
  • the combustion chamber 4 is configured in its entirety as an annular structure which is positioned around the turbine shaft 8 around.
  • cooling air bores are introduced into the vane support 16, through the cooling air of different temperature and pressure from different chambers outside the region of the vane support 16 through the guide vane 16 into the interior of the gas turbine 1 becomes. This cooling air ensures cooling of the guide blade carrier 16 so that thermal deformations of the guide blade carrier 16 are reduced.
  • cooling inserts 22 are inserted into the cooling air bores. If the cooling insert 22 is designed as an impact-cooling insert, its outer diameter is slightly smaller than the diameter of the cooling-air bore.
  • FIG. 2 A cross section through one half of such a cooling insert 22 is shown in FIG FIG. 2 shown.
  • the cooling insert 22 has a substantially cylindrical shape in order to be used in the existing cooling air holes can. In this way, existing gas turbines can be retrofitted with such a cooling insert 22. In addition, it is tubular, so it can flow through along its axial extent.
  • On one side of the cooling insert 22 includes a flange 23 for fixing.
  • the cooling insert 22 has at its circular cross-section pipe wall a plurality of window-shaped wall openings 25, which can be distributed both along its axial extent and on the circumference.
  • the wall openings are comparatively large area and are separated by webs 26 from each other.
  • Such a cooling insert 22 then has, in contrast to the impingement cooling insert, an outer diameter which corresponds to the diameter of the cooling air bore.
  • the webs 26 extending in the circumferential direction of the cooling insert 22 are designed as turbulators 24, at which the air flow breaks and the laminar flow is transformed into a turbulent flow.
  • Other forms and arrangements of turbulators are also possible.
  • the turbulent flow comes in the region of the wall openings 25 with the wall of the cooling air bore of the vane support for the cooling in contact. This gives a better heat transfer from Material of the vane support 16 ensures the cooling air.
  • the webs 26 and / or the turbulators 24 may also be arranged in the manner of a thread, so that the cooling air is given an additional twist, so that the dwell time and the turbulence in the cooling air hole is larger.
  • FIG. 3 shows the cooling air insert 22 again in the plan. Again, the flanges 23 for fixing in the cooling air holes of the vane support 16 can be seen. Since the heat transfer from the material of the vane support 16 is improved by the cooling insert 22 to the cooling air in the cooling air holes, the cooling air supply into the vane support 16 should still be adapted to the new cooling air properties. As a result, a comparatively better and more effective cooling of the vane support 16 is ensured while at the same time reducing the consumption of cooling air. As a result, the efficiency of the gas turbine 1 can be increased overall.

Abstract

Eine Gasturbine (1) mit einer Anzahl von jeweils zu Laufschaufelreihen zusammengefassten, an einer Turbinenwelle (8) angeordneten Laufschaufeln (12) und mit einer Anzahl von jeweils zu Leitschaufelreihen zusammengefassten, mittels eines Leitschaufelträgers (16) an einem Turbinengehäuse befestigten Leitschaufeln (14), wobei der Leitschaufelträger (16) eine Anzahl von Kühlluftbohrungen aufweist, soll unter Beibehaltung der größtmöglichen betrieblichen Sicherheit einen besonders hohen Wirkungsgrad aufweisen. Dazu ist in eine Kühlluftbohrung ein Kühleinsatz (22) eingebracht.

Description

  • Die Erfindung betrifft eine Gasturbine mit einer Anzahl von jeweils zu Laufschaufelreihen zusammengefassten, an einer Turbinenwelle angeordneten Laufschaufeln und mit einer Anzahl von jeweils zu Leitschaufelreihen zusammengefassten, mittels eines Leitschaufelträgers an einem Turbinengehäuse befestigten Leitschaufeln, wobei der Leitschaufelträger eine Anzahl von Kühlluftbohrungen aufweist.
  • Gasturbinen werden in vielen Bereichen zum Antrieb von Generatoren oder von Arbeitsmaschinen eingesetzt. Dabei wird der Energieinhalt eines Brennstoffs zur Erzeugung einer Rotationsbewegung einer Turbinenwelle genutzt. Der Brennstoff wird dazu in einer Brennkammer verbrannt, wobei von einem Luftverdichter verdichtete Luft zugeführt wird. Das in der Brennkammer durch die Verbrennung des Brennstoffs erzeugte, unter hohem Druck und unter hoher Temperatur stehende Arbeitsmedium wird dabei über eine der Brennkammer nachgeschaltete Turbineneinheit geführt, wo es sich arbeitsleistend entspannt.
  • Zur Erzeugung der Rotationsbewegung der Turbinenwelle sind dabei an dieser eine Anzahl von üblicherweise in Schaufelgruppen oder Schaufelreihen zusammengefassten Laufschaufeln angeordnet, die über einen Impulsübertrag aus dem Arbeitsmedium die Turbinenwelle antreiben. Zur Strömungsführung des Arbeitsmediums in der Turbineneinheit sind zudem üblicherweise zwischen benachbarten Laufschaufelreihen mit dem Turbinengehäuse verbundene und zu Leitschaufelreihen zusammengefasste Leitschaufeln angeordnet.
  • Die Brennkammer der Gasturbine kann als so genannte Ringbrennkammer ausgeführt sein, bei der eine Vielzahl von in Umfangsrichtung um die Turbinenwelle herum angeordneten Brennern in einen gemeinsamen, von einer hochtemperaturbeständigen Umfassungswand umgebenen Brennkammerraum mündet. Dazu ist die Brennkammer in ihrer Gesamtheit als ringförmige Struktur ausgestaltet. Neben einer einzigen Brennkammer kann auch eine Mehrzahl von Brennkammern vorgesehen sein.
  • Unmittelbar an die Brennkammer schließt sich in der Regel eine erste Leitschaufelreihe einer Turbineneinheit an, die zusammen mit der in Strömungsrichtung des Arbeitsmediums gesehen unmittelbar nachfolgenden Laufschaufelreihe eine erste Turbinenstufe der Turbineneinheit bildet, welcher üblicherweise weitere Turbinenstufen nachgeschaltet sind.
  • Die Leitschaufeln sind dabei jeweils über einen auch als Plattform bezeichneten Schaufelfuß an einem Leitschaufelträger der Turbineneinheit fixiert. Dabei kann der Leitschaufelträger zur Befestigung der Plattformen der Leitschaufeln ein Isolationssegment umfassen. Zwischen den in axialer Richtung der Gasturbine voneinander beabstandet angeordneten Plattformen der Leitschaufeln zweier benachbarter Leitschaufelreihen ist jeweils ein Führungsring am Leitschaufelträger der Turbineneinheit angeordnet. Ein derartiger Führungsring ist durch einen Radialspalt von den Schaufelspitzen der an gleicher axialer Position an der Turbinenwelle fixierten Laufschaufeln der zugehörigen Laufschaufelreihe beabstandet. Damit bilden die Plattformen der Leitschaufeln und die ihrerseits gegebenenfalls in Umfangsrichtung der Gasturbine segmentiert ausgeführten Führungsringe eine Anzahl von die äußere Begrenzung eines Strömungskanals für das Arbeitsmedium darstellenden Wandelementen der Turbineneinheit.
  • Bei der Auslegung derartiger Gasturbinen ist zusätzlich zur erreichbaren Leistung üblicherweise ein besonders hoher Wirkungsgrad ein Auslegungsziel. Eine Erhöhung des Wirkungsgrades lässt sich dabei aus thermodynamischen Gründen grundsätzlich durch eine Erhöhung der Austrittstemperatur erreichen, mit der das Arbeitsmedium aus der Brennkammer ab- und in die Turbineneinheit einströmt. Daher werden Temperaturen von etwa 1200 °C bis 1500 °C für derartige Gasturbinen angestrebt und auch erreicht.
  • Bei derartig hohen Temperaturen des Arbeitsmediums sind jedoch die diesem ausgesetzten Komponenten und Bauteile hohen thermischen Belastungen ausgesetzt. Daher ist insbesondere der Leitschaufelträger der Gasturbine üblicherweise aus Gussstahl gefertigt, da dieser geeignet ist, den hohen Temperaturen innerhalb der Gasturbine zu widerstehen. Weiterhin sind üblicherweise im Leitschaufelträger Kühlluftbohrungen vorgesehen, durch die Kühlluft aus den äußeren Bereichen der Gasturbine in das Innere strömt und dabei den Leitschaufelträger kühlt. Üblicherweise sind dabei mehrere Kühlluftreservoirs mit unterschiedlichen Temperaturen und Drücken zwischen Turbinengehäuse und Leitschaufelträger vorgesehen.
  • Eine ausreichende Kühlung des Leitschaufelträgers ist u. a. deshalb erforderlich, da zu hohe Temperaturen und damit zu hohe Temperaturunterschiede in verschiedenen Betriebszuständen thermische Verformungen des Leitschaufelträgers zur Folge haben, welche beim Bau der Gasturbine berücksichtigt werden müssen. Dabei müssen die Spaltmaße insbesondere der Radialspalte zwischen Laufschaufelenden und Innenwand entsprechend groß gewählt werden, um durch die Verformung des Leitschaufelträgers erzeugte Varianzen zu kompensieren und so Beschädigungen der Gasturbine vorzubeugen. Eine Vergrößerung der Spalte hat jedoch eine Erniedrigung des Wirkungsgrades der Gasturbine zur Folge. Dementsprechend sollte stets für eine ausreichende Kühlung zur Verminderung der Verformung des Leitschaufelträgers gesorgt werden.
  • Andererseits bedeutet eine starke Kühlung des Leitschaufelträgers auch einen hohen Verbrauch an Kühlluft, die dann ins Innere der Gasturbine strömt. Diese senkt die Temperatur im Inneren der Gasturbine und kann daher ebenfalls den Wirkungsgrad der Gasturbine senken.
  • Der Erfindung liegt daher die Aufgabe zugrunde, eine Gasturbine anzugeben, die unter Beibehaltung der größtmöglichen betrieblichen Sicherheit einen besonders hohen Wirkungsgrad aufweist.
  • Diese Aufgabe wird erfindungsgemäß gelöst, indem in eine Kühlluftbohrung ein Kühleinsatz eingebracht ist.
  • Die Erfindung geht dabei von der Überlegung aus, dass ein besonders hoher Wirkungsgrad durch eine Erhöhung der Temperatur im Inneren der Gasturbine erreicht werden kann. Dies kann durch eine Reduktion des Kühlluftverbrauchs, d. h. eine Reduktion der in das Innere der Gasturbine eingebrachten Menge an Kühlluft geschehen. Eine Reduktion der Kühlluftmenge hat jedoch eine Erhöhung der Temperatur des Leitschaufelträgers zur Folge, da durch dessen Kühlluftbohrungen dann weniger Luft strömt und dementsprechend weniger Wärme abtransportiert wird. Dies kann jedoch eine Verformung des Leitschaufelträgers zur Folge haben, die beim Bau der Gasturbine dann berücksichtigt werden müsste. Daher sollte die vorhandene Kühlluft besonders effektiv zur Kühlung genutzt werden, d. h., es sollte mit einer geringstmöglichen Kühlluftmenge eine möglichst große Menge an Wärme abtransportiert werden. Ausgehend von der Erkenntnis, dass eine turbulente Strömung einen besseren Wärmeübertrag ermöglicht als eine laminare Strömung, ist es daher sinnvoll, in den Kühlluftbohrungen eine Verwirbelung der Strömung zu erzeugen. Dies ist erreichbar, indem in die Kühlluftbohrungen ein Kühleinsatz eingebracht wird.
  • Nach einer besonders bevorzugten Ausgestaltung ist der Kühleinsatz rohrförmig ausgebildet und mit in seiner Rohrwand angeordneten, fensterförmigen Wandöffnungen versehen, welche durch Stege voneinander getrennt sind. Hierdurch ist es möglich, dass die durch den Kühleinsatz strömende Kühlluft weiterhin großflächig mit der Wand der Kühlluftbohrungen des Leitschaufelträgers in Kontakt kommen kann, um diesen die Wärmeenergie zu entziehen.
  • In vorteilhafter Ausgestaltung umfasst der jeweilige Kühleinsatz zumindest einen Turbulator. Turbulatoren sind kleine Erhebungen, d. h. generell aufgebrachte Oberflächenstörungen, welche eine laminare Strömung in eine turbulente umschlagen lassen. Diese können beispielsweise von den Stegen gebildet werden oder in Form von erhöhten Drähten, Blechecken oder ähnlichem ausgebildet sein. Selbst wenn die Strömung in der Kühlluftbohrung bereits turbulent ist, sorgen diese Turbulatoren für einen noch besseren Wärmeübertrag und damit insgesamt für eine bessere Kühlung des Leitschaufelträgers bei reduziertem Kühlluftverbrauch.
  • Der Kühleinsatz kann vorteilhafterweise anstelle oder ergänzend zu den Turbulatoren auch als Prallkühleinsatz ausgebildet sein. Die durch diesen strömende Kühlluft kann durch die Prallkühlöffnungen strahlenartig austreten und dabei quer auf die Kühlluftbohrungswände des Leitschaufelträgers auftreffen. Hierdurch wird eine besonders effiziente Kühlung der Leitschaufelträgers erreicht.
  • Vorteilhafterweise umfasst der jeweilige Kühleinsatz gewindeartige Strukturen. Durch eine Gewindestruktur kann der Strömung im Inneren der Kühlluftbohrung ein Drall aufgezwungen werden, was einerseits für eine Verwirbelung der Strömung sorgt, andererseits einen längeren Verbleib der Kühlluft in der Kühlluftbohrung zur Folge hat. Dadurch wird ebenfalls ein besserer Wärmeübertrag vom Material des Leitschaufelträgers auf die durchströmende Kühlluft gewährleistet.
  • Vorteilhafterweise ist der jeweilige Kühleinsatz aus dem gleichen Material wie der Leitschaufelträger gefertigt. Dadurch können evtl. Komplikationen aufgrund unterschiedlicher Materialauswahl des Kühleinsatzes und des Leitschaufelträgers, wie beispielsweise eine unterschiedliche thermische Ausdehnung, vermieden werden und es ist insgesamt eine vergleichsweise einfachere Konstruktion möglich.
  • Durch die Einbringung von Kühleinsätzen in die Kühlluftbohrungen des Leitschaufelträgers werden die Kühleigenschaften dieser Kühlluftbohrungen verändert. Zur Erreichung derselben Kühlwirkung ist eine geringere Menge an eingebrachter Kühlluft notwendig. Dementsprechend sollte vorteilhafterweise die Kühlluftzuleitung zu den Kühlluftbohrungen an die Kühleigenschaften des jeweiligen Kühleinsatzes angepasst werden. Dies bedeutet, dass Temperatur und Druck der eingebrachten Kühlluft an die neuen, veränderten Eigenschaften hinsichtlich der Kühlung durch die Kühleinsätze optimiert werden.
  • Vorteilhafterweise kommt eine derartige Gasturbine in einer Gas- und Dampfturbinenanlage zum Einsatz.
  • Die mit der Erfindung verbundenen Vorteile bestehen insbesondere darin, dass durch die Einbringung von Kühleinsätzen in die Kühlluftbohrungen des Leitschaufelträgers ein insgesamt besserer Wirkungsgrad der Gasturbine durch die verbesserte Kühlung bei gleichzeitig verringerter Kühlluftmenge erzielt wird. Weiterhin lassen sich derartige Einsätze besonders einfach einbringen und können auch dementsprechend relativ einfach in der Art einer Nachrüstung bei älteren Gasturbinen verwendet werden. Die Kühleinsätze lassen sich außerdem flexibel an die jeweiligen Erfordernisse hinsichtlich Kühlung und Kühlluftverbrauch anpassen.
  • Ein Ausführungsbeispiel der Erfindung wird anhand einer Zeichnung näher erläutert. Darin zeigen:
  • FIG 1
    einen Halbschnitt durch eine Gasturbine,
    FIG 2
    einen Halbschnitt durch die untere Hälfte eines Kühleinsatzes, und
    FIG 3
    eine Aufsicht auf einen Kühleinsatz.
  • Gleiche Teile sind in allen Figuren mit denselben Bezugszeichen versehen.
  • Die Gasturbine 1 gemäß FIG 1 weist einen Verdichter 2 für Verbrennungsluft, eine Brennkammer 4 sowie eine Turbineneinheit 6 zum Antrieb des Verdichters 2 und eines nicht dargestellten Generators oder einer Arbeitsmaschine auf. Dazu sind die Turbineneinheit 6 und der Verdichter 2 auf einer gemeinsamen, auch als Turbinenläufer bezeichneten Turbinenwelle 8 angeordnet, mit der auch der Generator bzw. die Arbeitsmaschine verbunden ist, und die um ihre Mittelachse 9 drehbar gelagert ist. Die in der Art einer Ringbrennkammer ausgeführte Brennkammer 4 ist mit einer Anzahl von Brennern 10 zur Verbrennung eines flüssigen oder gasförmigen Brennstoffs bestückt.
  • Die Turbineneinheit 6 weist eine Anzahl von mit der Turbinenwelle 8 verbundenen, rotierbaren Laufschaufeln 12 auf. Die Laufschaufeln 12 sind kranzförmig an der Turbinenwelle 8 angeordnet und bilden somit eine Anzahl von Laufschaufelreihen. Weiterhin umfasst die Turbineneinheit 6 eine Anzahl von feststehenden Leitschaufeln 14, die ebenfalls kranzförmig unter der Bildung von Leitschaufelreihen an einem Leitschaufelträger 16 der Turbineneinheit 6 befestigt sind. Die Laufschaufeln 12 dienen dabei zum Antrieb der Turbinenwelle 8 durch Impulsübertrag vom die Turbineneinheit 6 durchströmenden Arbeitsmedium M. Die Leitschaufeln 14 dienen hingegen zur Strömungsführung des Arbeitsmediums M zwischen jeweils zwei in Strömungsrichtung des Arbeitsmediums M gesehen aufeinander folgenden Laufschaufelreihen oder Laufschaufelkränzen. Ein aufeinander folgendes Paar aus einem Kranz von Leitschaufeln 14 oder einer Leitschaufelreihe und aus einem Kranz von Laufschaufeln 12 oder einer Laufschaufelreihe wird dabei auch als Turbinenstufe bezeichnet.
  • Jede Leitschaufel 14 weist eine Plattform 18 auf, die zur Fixierung der jeweiligen Leitschaufel 14 an einem Leitschaufelträger 16 der Turbineneinheit 6 als Wandelement angeordnet ist. Die Plattform 18 ist dabei ein thermisch vergleichsweise stark belastetes Bauteil, das die äußere Begrenzung eines Heißgaskanals für das die Turbineneinheit 6 durchströmende Arbeitsmedium M bildet. Jede Laufschaufel 12 ist in analoger Weise über eine auch als Schaufelfuß bezeichnete Plattform 19 an der Turbinenwelle 8 befestigt.
  • Zwischen den beabstandet voneinander angeordneten Plattformen 18 der Leitschaufeln 14 zweier benachbarter Leitschaufelreihen ist jeweils ein Führungsring 21 an einem Leitschaufelträger 16 der Turbineneinheit 6 angeordnet. Die äußere Oberfläche jedes Führungsrings 21 ist dabei ebenfalls dem heißen, die Turbineneinheit 6 durchströmenden Arbeitsmedium M ausgesetzt und in radialer Richtung vom äußeren Ende der ihm gegenüber liegenden Laufschaufeln 12 durch einen Spalt beabstandet. Die zwischen benachbarten Leitschaufelreihen angeordneten Führungsringe 21 dienen dabei insbesondere als Abdeckelemente, die das Innengehäuse 16 im Leitschaufelträger oder andere Gehäuse-Einbauteile vor einer thermischen Überbeanspruchung durch das die Turbine 6 durchströmende heiße Arbeitsmedium M schützen.
  • Die Brennkammer 4 ist im Ausführungsbeispiel als so genannte Ringbrennkammer ausgestaltet, bei der eine Vielzahl von in Umfangsrichtung um die Turbinenwelle 8 herum angeordneten Brennern 10 in einen gemeinsamen Brennkammerraum münden. Dazu ist die Brennkammer 4 in ihrer Gesamtheit als ringförmige Struktur ausgestaltet, die um die Turbinenwelle 8 herum positioniert ist.
  • Da auch der Leitschaufelträger 16 durch die hohen Temperaturen des Arbeitsmediums M aufgeheizt wird, sind in den Leitschaufelträger 16 Kühlluftbohrungen eingebracht, durch die Kühlluft unterschiedlicher Temperatur und unterschiedlichen Druckes aus verschiedenen Kammern außerhalb des Bereichs des Leitschaufelträgers 16 durch den Leitschaufelträger 16 ins Innere der Gasturbine 1 geführt wird. Diese Kühlluft sorgt für eine Kühlung des Leitschaufelträgers 16, so dass thermische Verformungen des Leitschaufelträgers 16 verringert werden.
  • Da eine große Menge Kühlluft jedoch die Temperatur im Inneren der Gasturbine 1 verringert und somit den Wirkungsgrad erniedrigt, soll die benutzte Kühlluftmenge möglichst gering gehalten werden. Um dennoch eine ausreichende Kühlung des Leitschaufelträgers 16 zu gewährleisten, sind in die Kühlluftbohrungen Kühleinsätze 22 eingesetzt. Sofern der Kühleinsatz 22 als Prallkühleinsatz ausgebildet ist, ist sein Außendurchmesser geringfügig geringer als der Durchmesser der Kühlluftbohrung.
  • Ein Querschnitt durch eine Hälfte eines derartigen Kühleinsatzes 22 ist in FIG 2 dargestellt. Der Kühleinsatz 22 hat eine im Wesentlichen zylindrische Form, um in die vorhandenen Kühlluftbohrungen eingesetzt werden zu können. Auf diese Weise können auch bestehende Gasturbinen mit einem derartigen Kühleinsatz 22 nachgerüstet werden. Zudem ist er rohrförmig, also entlang seiner Axialerstreckung durchströmbar. An einer Seite umfasst der Kühleinsatz 22 dabei einen Flansch 23 zur Fixierung.
  • Der Kühleinsatz 22 weist an seiner im Querschnitt kreisförmigen Rohrwand mehrere, fensterförmige Wandöffnungen 25 auf, die sowohl entlang seiner Axialerstreckung als auch am Umfang verteilt sein können. Die Wandöffnungen sind vergleichsweise großflächig und werden durch Stege 26 voneinander getrennt. Ein derartiger Kühleinsatz 22 weist dann im Gegensatz zu dem Prallkühleinsatz einen Außendurchmesser auf, welcher dem Durchmesser der Kühlluftbohrung entspricht.
  • Die in Umfangsrichtung des Kühleinsatzes 22 sich erstreckenden Stege 26 sind als Turbulatoren 24 ausgebildet, an denen sich der Luftstrom bricht und die laminare Strömung in eine turbulente Strömung verwandelt. Andere Formen und Anordnungen von Turbulatoren sind dabei auch möglich. Die turbulente Strömung kommt im Bereich der Wandöffnungen 25 mit der Wand der Kühlluftbohrung des Leitschaufelträgers zu dessen Kühlung in Berührung. Dadurch ist eine bessere Wärmeübertragung vom Material des Leitschaufelträgers 16 an die Kühlluft gewährleistet. Die Stege 26 und/oder die Turbulatoren 24 können auch in der Art eines Gewindes angeordnet sein, so dass der Kühlluft noch ein zusätzlicher Drall gegeben wird, so dass die Verweildauer und die Verwirbelung in der Kühlluftbohrung größer wird.
  • FIG 3 zeigt den Kühllufteinsatz 22 noch einmal in der Aufsicht. Auch hier sind die Flansche 23 zur Fixierung in den Kühlluftbohrungen des Leitschaufelträgers 16 erkennbar. Da durch den Kühleinsatz 22 der Wärmeübertrag vom Material des Leitschaufelträgers 16 an die Kühlluft in den Kühlluftbohrungen verbessert wird, sollte weiterhin die Kühlluftzufuhr in den Leitschaufelträger 16 noch an die neuen Kühllufteigenschaften angepasst werden. Dadurch ist eine vergleichsweise bessere und effektivere Kühlung des Leitschaufelträgers 16 gewährleistet bei gleichzeitig geringerem Kühlluftverbrauch. Dadurch lässt sich der Wirkungsgrad der Gasturbine 1 insgesamt steigern.

Claims (8)

  1. Gasturbine (1) mit einer Anzahl von jeweils zu Laufschaufelreihen zusammengefassten, an einer Turbinenwelle (8) angeordneten Laufschaufeln (12) und mit einer Anzahl von jeweils zu Leitschaufelreihen zusammengefassten, mittels eines Leitschaufelträgers (16) an einem Turbinengehäuse befestigten Leitschaufeln (14),
    wobei der Leitschaufelträger (16) eine Anzahl von Kühlluftbohrungen aufweist, und wobei in eine Kühlluftbohrung ein Kühleinsatz (22) eingebracht ist.
  2. Gasturbine (1) nach Anspruch 1,
    bei der Kühleinsatz (22) rohrförmig ausgebildet ist und mit in seiner Rohrwand angeordneten Wandöffnungen (25) versehen ist, welche durch Stege (26) voneinander getrennt sind.
  3. Gasturbine (1) nach Anspruch 1 oder 2,
    bei der der jeweilige Kühleinsatz (22) zumindest einen Turbulator (24) umfasst.
  4. Gasturbine (1) nach Anspruch 1, 2 oder 3,
    der Kühleinsatz (22) als rohrförmiger Prallkühleinsatz mit Prallkühlöffnungen ausgebildet ist.
  5. Gasturbine (1) nach einem der Ansprüche 1 bis 4,
    bei der der jeweilige Kühleinsatz (22) gewindeartige Strukturen umfasst.
  6. Gasturbine (1) nach einem der Ansprüche 1 bis 5,
    bei der der jeweilige Kühleinsatz (22) aus dem gleichen Material wie der Leitschaufelträger (16) gefertigt ist.
  7. Gasturbine (1) nach einem der Ansprüche 1 bis 6,
    bei der die Kühlluftzuleitung zu den Kühlluftbohrungen an die Kühleigenschaften des jeweiligen Kühleinsatzes (22) angepasst ist.
  8. Gas- und Dampfturbinenanlage mit einer Gasturbine (1) nach einem der Ansprüche 1 bis 7.
EP08018754A 2008-10-27 2008-10-27 Gasturbine mit Kühleinsatz Withdrawn EP2180148A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP08018754A EP2180148A1 (de) 2008-10-27 2008-10-27 Gasturbine mit Kühleinsatz
PCT/EP2009/061461 WO2010049195A1 (de) 2008-10-27 2009-09-04 Gasturbine mit kühleinsatz
EP09823098A EP2347100B1 (de) 2008-10-27 2009-09-04 Gasturbine mit kühleinsatz
US13/125,978 US20110255956A1 (en) 2008-10-27 2009-09-04 Gas turbine having cooling insert
CN200980142781.5A CN102197195B (zh) 2008-10-27 2009-09-04 具有冷却嵌件的燃气涡轮机
JP2011532553A JP5281166B2 (ja) 2008-10-27 2009-09-04 冷却用インサートを有したガスタービン

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08018754A EP2180148A1 (de) 2008-10-27 2008-10-27 Gasturbine mit Kühleinsatz

Publications (1)

Publication Number Publication Date
EP2180148A1 true EP2180148A1 (de) 2010-04-28

Family

ID=40474905

Family Applications (2)

Application Number Title Priority Date Filing Date
EP08018754A Withdrawn EP2180148A1 (de) 2008-10-27 2008-10-27 Gasturbine mit Kühleinsatz
EP09823098A Not-in-force EP2347100B1 (de) 2008-10-27 2009-09-04 Gasturbine mit kühleinsatz

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP09823098A Not-in-force EP2347100B1 (de) 2008-10-27 2009-09-04 Gasturbine mit kühleinsatz

Country Status (5)

Country Link
US (1) US20110255956A1 (de)
EP (2) EP2180148A1 (de)
JP (1) JP5281166B2 (de)
CN (1) CN102197195B (de)
WO (1) WO2010049195A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103075202A (zh) * 2013-01-15 2013-05-01 上海交通大学 涡轮叶片内部带有栅格扰流的冲击冷却结构
EP3023600A1 (de) * 2014-11-24 2016-05-25 Alstom Technology Ltd Motorgehäuseelement

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2740069C1 (ru) * 2017-12-01 2020-12-31 Сименс Энерджи, Инк. Впаянный теплопередающий элемент для охлаждаемых компонентов турбины
CN112177689A (zh) * 2020-09-29 2021-01-05 中国航发湖南动力机械研究所 发动机的涡轮导向器定位结构和发动机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3864056A (en) * 1973-07-27 1975-02-04 Westinghouse Electric Corp Cooled turbine blade ring assembly
GB1524956A (en) * 1975-10-30 1978-09-13 Rolls Royce Gas tubine engine
US5253976A (en) * 1991-11-19 1993-10-19 General Electric Company Integrated steam and air cooling for combined cycle gas turbines
EP1028230A1 (de) * 1999-02-09 2000-08-16 ABB Alstom Power (Schweiz) AG Gekühlte Gasturbinenkomponente mit verstellbarer Kühlung
US20040219009A1 (en) * 2003-03-06 2004-11-04 Snecma Moteurs Turbomachine with cooled ring segments
EP1526251A1 (de) * 2003-10-22 2005-04-27 General Electric Company Kühlkonfiguration für eine Turbinenschaufel
US20060140754A1 (en) * 2004-12-27 2006-06-29 Mitsubishi Heavy Industries, Ltd. Gas turbine
EP1923538A2 (de) * 2006-11-15 2008-05-21 General Electric Company Turbine mit Regelung des Schaufelspitzenspiels durch Transpiration

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4274666B2 (ja) * 2000-03-07 2009-06-10 三菱重工業株式会社 ガスタービン
CN1573018B (zh) * 2003-05-20 2010-09-15 株式会社东芝 蒸汽涡轮机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3864056A (en) * 1973-07-27 1975-02-04 Westinghouse Electric Corp Cooled turbine blade ring assembly
GB1524956A (en) * 1975-10-30 1978-09-13 Rolls Royce Gas tubine engine
US5253976A (en) * 1991-11-19 1993-10-19 General Electric Company Integrated steam and air cooling for combined cycle gas turbines
EP1028230A1 (de) * 1999-02-09 2000-08-16 ABB Alstom Power (Schweiz) AG Gekühlte Gasturbinenkomponente mit verstellbarer Kühlung
US20040219009A1 (en) * 2003-03-06 2004-11-04 Snecma Moteurs Turbomachine with cooled ring segments
EP1526251A1 (de) * 2003-10-22 2005-04-27 General Electric Company Kühlkonfiguration für eine Turbinenschaufel
US20060140754A1 (en) * 2004-12-27 2006-06-29 Mitsubishi Heavy Industries, Ltd. Gas turbine
EP1923538A2 (de) * 2006-11-15 2008-05-21 General Electric Company Turbine mit Regelung des Schaufelspitzenspiels durch Transpiration

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103075202A (zh) * 2013-01-15 2013-05-01 上海交通大学 涡轮叶片内部带有栅格扰流的冲击冷却结构
EP3023600A1 (de) * 2014-11-24 2016-05-25 Alstom Technology Ltd Motorgehäuseelement
CN106065789A (zh) * 2014-11-24 2016-11-02 通用电器技术有限公司 发动机罩壳元件
CN106065789B (zh) * 2014-11-24 2020-08-07 安萨尔多能源英国知识产权有限公司 发动机罩壳元件

Also Published As

Publication number Publication date
JP5281166B2 (ja) 2013-09-04
EP2347100B1 (de) 2012-10-17
CN102197195B (zh) 2014-03-26
WO2010049195A1 (de) 2010-05-06
JP2012506964A (ja) 2012-03-22
CN102197195A (zh) 2011-09-21
EP2347100A1 (de) 2011-07-27
US20110255956A1 (en) 2011-10-20

Similar Documents

Publication Publication Date Title
EP1443275B1 (de) Brennkammer
EP0991850B1 (de) Turbinenwelle einer dampfturbine mit interner kühlung sowie verfahren zur kühlung einer turbinenwelle
EP2342427B1 (de) Axial segmentierter leitschaufelträger für eine gasturbine
DE19812380A1 (de) Träger für Dichtung mit geringer Wärmeausdehnung
EP2342425B1 (de) Gasturbine mit sicherungsplatte zwischen schaufelfuss und scheibe
DE102014100087A1 (de) Innenaufbau einer Turbinenlaufschaufel
EP2344723B1 (de) Gasturbine mit dichtplatten an der turbinenscheibe
EP1409926A1 (de) Prallkühlvorrichtung
WO2008052846A1 (de) Turbinenschaufel
EP2347100B1 (de) Gasturbine mit kühleinsatz
EP2347101B1 (de) Gasturbine und zugehörige Gas- bzw. Dampfturbinenanlage
EP2236759A1 (de) Laufschaufelsystem
WO2009109430A1 (de) Dichtungsanordnung und gasturbine
EP2823154B1 (de) Kühlmittelüberbrückungsleitung, zugehörige turbinenschaufel, gasturbine und kraftwerksanlage
EP2206885A1 (de) Gasturbine
EP1731715A1 (de) Übergangsbereich zwischen einer Brennkammer und einer Turbineneinheit
EP2196628A1 (de) Leitschaufelträger
EP2218882A1 (de) Leitschaufelträgersystem
DE102006010863B4 (de) Turbomaschine, insbesondere Verdichter
EP2194236A1 (de) Turbinengehäuse
EP2184449A1 (de) Leitschaufelträger, und Gasturbine und Gas- bzw. Dampfturbinenanlage mit solchem Leitschaufelträger
EP0799971B1 (de) Wärmedämmung für einen Turbinenrotor
EP2218880A1 (de) Aktives Spaltkontrollsystem für Gasturbinen
DE102018210598A1 (de) Gehäusestruktur für eine Strömungsmaschine, Strömungsmaschine und Verfahren zum Kühlen eines Gehäuseabschnitts einer Gehäusestruktur einer Strömungsmaschine
EP1420208A1 (de) Brennkammer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

AKY No designation fees paid
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20101029

REG Reference to a national code

Ref country code: DE

Ref legal event code: R108

Effective date: 20110405

Ref country code: DE

Ref legal event code: 8566