EP2171496A1 - Sensorvorrichtung mit einem variablen azimutalen erfassungsbereich für ein kraftfahrzeug - Google Patents

Sensorvorrichtung mit einem variablen azimutalen erfassungsbereich für ein kraftfahrzeug

Info

Publication number
EP2171496A1
EP2171496A1 EP08736351A EP08736351A EP2171496A1 EP 2171496 A1 EP2171496 A1 EP 2171496A1 EP 08736351 A EP08736351 A EP 08736351A EP 08736351 A EP08736351 A EP 08736351A EP 2171496 A1 EP2171496 A1 EP 2171496A1
Authority
EP
European Patent Office
Prior art keywords
sensor device
beam path
lens
motor vehicle
aperture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08736351A
Other languages
English (en)
French (fr)
Inventor
Michael Klar
Thomas Binzer
Klaus-Dieter Miosga
Oliver Brueggemann
Joachim Hauk
Juergen Seiz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2171496A1 publication Critical patent/EP2171496A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/44Monopulse radar, i.e. simultaneous lobing
    • G01S13/4409HF sub-systems particularly adapted therefor, e.g. circuits for signal combination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/325Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle
    • H01Q1/3283Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle side-mounted antennas, e.g. bumper-mounted, door-mounted
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/24Polarising devices; Polarisation filters 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • H01Q19/062Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens for focusing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/12Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/12Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems
    • H01Q3/14Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems for varying the relative position of primary active element and a refracting or diffracting device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/93185Controlling the brakes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9321Velocity regulation, e.g. cruise control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9325Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles for inter-vehicle distance regulation, e.g. navigating in platoons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93271Sensor installation details in the front of the vehicles

Definitions

  • the invention relates to a sensor device, in particular a radar sensor device for a motor vehicle, according to the preamble of claim 1
  • Such sensor devices are used for example as distance sensors in speed control systems for motor vehicles, with which the speed of the motor vehicle can be controlled to a desired speed selected by the driver.
  • distance sensors for example radar sensors, lidar sensors or the like
  • the distance to a vehicle in front can be measured.
  • the speed control is then modified in such a way that a predetermined, preferably speed-dependent distance to the preceding vehicle selected as the target object is maintained.
  • Such systems are also referred to as Adaptive Cruise Control (ACC) systems or ACC (Adaptive Cruise Control) systems.
  • ACC Adaptive Cruise Control
  • adaptive speed control radar systems typically exhibit a relatively narrow azimuth-focused directivity.
  • LRR long-range radar
  • sensors are designed to detect and measure vehicles and other objects in the field of view at ranges of up to 200 m or more in a rather narrow angular field of vision or detection range of ⁇ +/- 10 °.
  • PSS pjedictive safety systems
  • the sensor device in particular radar sensor device for a motor vehicle, in whose beam path at least one antenna exciter and at least one lens are arranged, wherein in the beam path between the at least one antenna exciter and the at least one lens at least one aperture with a variable azimuthal opening width for the realization of a variable azimuthal Detection range of the sensor device is arranged, has the advantage that by the sensor device different azimuthal angular field of view, in particular a narrow far-looking detection area (long rlinde radar - LRR) and a closer learnkligerer detection area (mid rnature radar - MRR) can be covered.
  • the at least one aperture between the antenna exciter or the exciter and the lens or the radar lens or the beam-bundling element which can be changed mechanically or electrically in its horizontal or azimuthal opening width, a switching of the field of view possible.
  • the sensor device according to the invention With this adjustment possibility can be very elegant, simple and inexpensive to respond to different requirements for the opening angle of the sensor device.
  • a large opening width of the diaphragm leads to a narrower field of view and a small opening width to a wider field of view of the sensor device according to the invention.
  • it is conceivable to increase the measurement resolution of the sensor device by taking into account different antenna characteristics in the case of several measurements with different aperture widths.
  • the at least one diaphragm has a plurality of cover elements which can be folded into the beam path and which in particular form a shutter.
  • the at least one panel can have one or more cover elements, which can be inserted into the beam path in the manner of a roller shutter.
  • the at least one diaphragm has polarization grating elements with a predetermined polarization direction in the beam path, wherein the antenna exciter to realize a variable azimuthal ⁇ ffhungsbreite emits a correspondingly polarized radiation which passes through the polarization grating elements or is inhibited by them.
  • the aperture effect can be achieved in a simple manner by polarization.
  • polarization gratings with a polarization of less than + 45 ° can be provided in the beam path.
  • the antenna exciter now also emits + 45 ° polarized radiation, the passage of radiation results in a correspondingly narrower field of view of the sensor device according to the invention, since bundling of the radar beam through the lens is assisted. However, if the antenna exciter transmits -45 ° polarized radiation, it is correspondingly inhibited by the polarization grating elements and can not reach the lens. Due to the beam-bundling properties of the lens, this results in a substantially widened beam and thus a wider azimuthal detection range of the sensor device according to the invention.
  • the at least one diaphragm comprises damping elements which are formed from a material having a radiation transmission which can be controlled in particular by means of an electric or magnetic field.
  • the at least one lens is provided with the at least one aperture.
  • the aperture can be arranged on the lens.
  • the damping elements or the polarization grid elements can be applied to the lens accordingly.
  • Claim 7 relates to an adaptive cruise control device for motor vehicles.
  • a motor vehicle is specified in claim 8.
  • FIG. 1 shows a schematic representation of the essential components of an ACC
  • Figure 2 is a schematic diagram of the inventive sensor device in a first embodiment with retractable cover elements
  • Figure 3 is a schematic diagram of the sensor device according to the invention in a second embodiment with retractable cover elements, which form a blind;
  • FIG. 4 shows a schematic illustration of the sensor device according to the invention in a third embodiment with a plurality of cover elements, which in the manner of a
  • Roller shutter can be inserted into the beam path
  • Figure 5 is a schematic diagram of the device according to the invention in a fourth
  • Figure 6 is a schematic diagram of the sensor device according to the invention in a fifth embodiment with a diaphragm, which has damping elements;
  • FIG. 7 shows an antenna diagram of a sensor device without aperture
  • 8 shows an antenna diagram of the sensor device according to the invention with a
  • Figure 9 is an antenna diagram of the sensor device according to the invention with a diaphragm, which has an opening width of 10 mm.
  • a motor vehicle 10 with an ACC system or an adaptive cruise control device 11 shown in greatly simplified form in FIG. 1 has as a distance sensor a sensor device or radar sensor device 12 according to the invention attached to the front part of the motor vehicle 10, in whose housing an ACC control unit 14 is accommodated ,
  • the ACC control unit 14 is connected via a data bus 16 (CAN, MOST or the like) to an electronic drive control unit 18, a brake system control unit 20 and to an HMI control unit 22 of a human-machine interface.
  • the radar sensor device 12 measures by means of a radar beam, the distances, relative velocities and azimuth angles of objects located in front of the vehicle, the radar waves reflect. The at regular intervals, z. B.
  • Every 10 ms received raw data are evaluated in the ACC control unit 14 in order to identify and track individual objects, and in particular to recognize a directly on the own lane ahead driving vehicle and select as the target object.
  • the ACC control unit 14 controls the speed of the vehicle 10 as means for determining the acceleration and deceleration demand. If no preceding vehicle is located, the ACC control unit 14 controls the speed of the motor vehicle 10 to a desired speed selected by the driver. On the other hand, is a vehicle in front, its speed is smaller than that of the own vehicle, has been detected as a target object, the speed of the motor vehicle 10 is controlled so that an appropriate distance to the preceding vehicle is maintained.
  • FIGS. 2 to 6 shows a first embodiment of a radar sensor device 12a according to the invention for motor vehicle 10, in whose beam path 24, which is indicated in FIGS. 2 to 6 as the main beam of the radar waves or as the optical axis, between an antenna exciter 26 and a lens 28 formed beam forming element is a diaphragm 30a with a variable azimuthal opening width bi, b 2 for realizing a variable azimuthal detection range of the radar sensor device 12a is arranged.
  • the panel 30a has retractable cover elements 32a in the beam path 24.
  • the cover elements 32a result in the state folded into the beam path 24 (shown by a solid line) an azimuthal opening width bi, which results in a broad azimuthal detection range of the radar sensor device 12a due to the beam-bundling properties of the lens 28. Whereas the cover elements 32a in the state folded out of the beam path 24 (indicated by dashed lines) result in a substantially larger azimuthal opening width b 2 , resulting in a narrower field of view of the radar sensor device 12a.
  • FIG. 3 shows a second embodiment of a radar sensor device 12b according to the invention, in which the cover elements 32b of a diaphragm 30b form a blind.
  • the cover elements 32b are in the folded state in the beam path 24 at least arranged approximately perpendicular to the main beam direction or to the optical axis and cause an azimuthal opening width bi of the diaphragm 30b.
  • the cover members 32b In the unfolded state of the cover 32b (indicated by dashed lines), the cover members 32b arranged substantially parallel to the main beam direction and there is an azimuthal opening width B2.
  • FIG. 4 shows a third embodiment of a radar sensor device 12c according to the invention.
  • a panel 30c has two cover elements 32c, which can be inserted into the beam path 24 in the manner of a roller shutter.
  • an azimuthal opening width bi results, while in the uncoupled state of the cover elements 32c an azimuthal opening width b 2 results.
  • the azimuthal opening widths bi, b 2 are shown only by way of example in FIGS. 2 to 6. Other opening widths are also conceivable.
  • FIG. 5 shows a fourth embodiment of a radar sensor device 12d according to the invention, in which a diaphragm 30d is arranged in the beam path 24.
  • the diaphragm 30d is preferably arranged on the lens 28 and has polarization grating elements 32d with a predetermined polarization direction of less than + 45 °.
  • the antenna exciter 26 emits a correspondingly polarized radiation which passes through the polarization grating elements 32d (opening width b 2 , with the antenna exciter 26 + 45 ° polarized) or being inhibited by this (opening width bi where the antenna exciter is polarized at -45 °).
  • This also results in different detection ranges for the radar sensor device 12d due to the different opening widths bi, b 2 .
  • FIG. 6 shows a fifth embodiment of a radar sensor device 12e according to the invention, wherein a diaphragm 30e has damping elements 32e, which are formed from a material having a radiation transmissibility controllable by means of an electric or magnetic field.
  • the damping elements 32e attenuate the noise caused by the antenna
  • exciter 26 can be generated radar radiation correspondingly by an opening width bi of the diaphragm 30e or can be made permeable.
  • the damping elements 32e can, as shown in FIG. 6, be arranged on the lens 28 analogously to the polarization grid elements 32d from FIG. Of course, other solutions are conceivable here.
  • the shapes of the diaphragms 30a to 30e are adapted to the shape of the lens 28.
  • FIGS. 7, 8 and 9 Shown in FIGS. 7, 8 and 9 are antenna diagrams and azimuth angle diagrams of horizontal sections of four radar beams Beam 1 to Beam 4 showing the detection range of a radar sensor device according to the prior art and the inventive radar sensor devices 12, 12a to 12e as a result of the effective azimuthal opening width represent the aperture 30a to 30e.
  • Horizontal is the azimuth angle and vertical is the level in decibels.
  • FIG. 7 shows the detection range of a radar sensor device according to the prior art without a diaphragm.
  • FIG. 8 shows the detection range of a radar sensor device 12, 12a to 12e according to the invention with an aperture width of the aperture 30a to 30e of 30 mm.
  • FIG. 9 analogously shows a detection range with an aperture width of the aperture 30a to 30e of 10 mm.
  • the different radar beams Beam 1 to Beam 4 show different reception field strengths / powers at different azimuth angles. It is thereby conceivable to increase the measurement resolution of the radar sensor devices 12, 12a to 12e by taking into account different antenna characteristics in a plurality of measurements (for example, ten measurements per second) by varying the measurements to different opening widths bi, b 2 of the diaphragms 30a to 30e is switched.

Abstract

Die Erfindung betrifft eine Sensorvorrichtung, insbesondere Radarsensorvorrichtung (12a) für ein Kraftfahrzeug, in deren Strahlengang (24) wenigstens ein Antennenerreger (26) und wenigstens eine Linse (28) angeordnet sind, dadurch gekennzeichnet, dass in dem Strahlengang (24) zwischen dem wenigstens einen Antennenerreger (26) und der wenigstens einen Linse (28) wenigstens eine Blende (30a) mit einer veränderbaren azimutalen Öffnungsbreite (b1,b2) zur Realisierung eines variablen azimutalen Erfassungsbereichs der Radarsensorvorrichtung (12a) angeordnet ist.

Description

SENSORVORRICHTUNG MIT EINEM VARIABLEN AZIMUTALEN ERFASSUNGSBEREICH FÜR EIN
KRAFTFAHRZEUG
Stand der Technik
Die Erfindung betrifft eine Sensorvorrichtung, insbesondere Radarsensorvorrichtung für ein Kraftfahrzeug gemäß dem Oberbegriff von Anspruch 1. 5
Derartige Sensorvorrichtungen werden beispielsweise als Abstandssensoren in Geschwindigkeitsregelsystemen für Kraftfahrzeuge eingesetzt, mit welchen die Geschwindigkeit des Kraftfahrzeugs auf eine von dem Fahrer gewählte Wunschgeschwindigkeit geregelt werden kann. Mit Hilfe der Abstandssensoren, beispielsweise Radarsensoren, Lidarsensoren oder derglei-
10 chen, kann der Abstand zu einem vorausfahrenden Fahrzeug gemessen werden. Die Geschwindigkeitsregelung wird dann derart modifiziert, dass ein vorgegebener, vorzugsweise geschwindigkeitsabhängiger Abstand zu dem als Zielobjekt ausgewählten voraus fahrenden Fahrzeug eingehalten wird. Solche Systeme werden auch als adaptive Geschwindigkeitsregel- vorrichtungen/-systeme bzw. ACC (Adaptive Cruise Control)-Systeme bezeichnet. In der
15 Publikation der Robert Bosch GmbH "Adaptive Fahrgeschwindigkeitsregelung ACC, Gelbe Reihe, Ausgabe 2002, Technische Unterrichtung" sind derartige adaptive Geschwindigkeitsregelvorrichtungen beschrieben. Dort ist ebenfalls eine gattungsgemäße Sensorvorrichtung angegeben.
20 Heutzutage basieren Sensoriken für derartige Systeme häufig auf dem Radarprinzip. Typische Vertreter von Radarsensoren arbeiten im Bereich von 77 GHz oder auch im Bereich von 24 GHz. Die aktuellen Systeme arbeiten mit relativ starren Systemeigenschaften. So lässt sich beispielsweise während des Betriebs eines solchen Radargeräts keine Veränderung der Antennencharakteristik vornehmen. Auch andere Parameter sind fest, so dass beispielsweise kei-
25 ne Anpassung der Leistungsmerkmale im Autobahn-, Landstraßen- bzw. Stadtbetrieb vorge- nommen werden kann. Des weiteren zeigen Radargeräte für adaptive Geschwindigkeitsregelsysteme typischerweise eine relativ schmal im Azimut fokussierte Richtwirkung. Derartige LRR (long ränge radar)-Sensoren sind dafür gebaut, bei einem eher schmalen Winkelsichtbereich bzw. Erfassungsbereich von < +/- 10° Fahrzeuge und andere Objekte im Sichtfeld bei Reichweiten bis zu 200 m oder mehr zu erfassen und zu vermessen. Für adaptive Geschwindigkeitsregelsysteme und entsprechende PSS (pjedictive safety systems)-Funktionen reichen derartige azimutale Winkelsichtbereiche jedoch oft nicht aus.
Aus der DE 10 2004 044 067 Al ist es bekannt, bei einer Sensorvorrichtung für ein Fahrzeug die Antennencharakteristik einer Monopulsantenne zum gerichteten Senden und Empfangen elektromagnetischer Signale mit Hilfe einer Elektronikeinrichtung zum Ansteuern der Monopulsantenne und zum Auswerten von Empfangssignalen der Monopulsantenne adaptiv zu gestalten. Die Monopulsantenne kann dazu von der Elektronikeinrichtung mittels DBF (digital beam forming) ansteuerbar sein.
Vorteile der Erfindung
Die erfindungsgemäße Sensorvorrichtung, insbesondere Radarsensorvorrichtung für ein Kraftfahrzeug, in deren Strahlengang wenigstens ein Antennenerreger und wenigstens eine Linse angeordnet sind, wobei in dem Strahlengang zwischen dem wenigstens einen Antennenerreger und der wenigstens einen Linse wenigstens eine Blende mit einer veränderbaren azimutalen Öffnungsbreite zur Realisierung eines variablen azimutalen Erfassungsbereichs der Sensorvorrichtung angeordnet ist, hat den Vorteil, dass durch die Sensorvorrichtung unterschiedliche azimutale Winkelsichtbereiche, insbesondere auch ein schmaler weitschauender Erfassungsbereich (long ränge radar - LRR) und ein näherer weitwinkligerer Erfassungsbereich (mid ränge radar - MRR) abgedeckt werden können. In vorteilhafter Weise ist durch Einfügen der wenigstens einen Blende zwischen dem Antennenerreger bzw. dem Erreger und der Linse bzw. der Radarlinse bzw. dem strahlbündelnden Element, welche mechanisch oder elektrisch in ihrer horizontalen bzw. azimutalen Öffnungsbreite verändert werden kann, eine Umschaltung des Sichtbereichs möglich. Somit lassen sich auch breitere horizontale Öffnungswinkel im Nahbereich mit der erfindungsgemäßen Sensorvorrichtung erfassen. Mit die- ser Einstellmöglichkeit kann sehr elegant, einfach und kostengünstig auf unterschiedliche Anforderungen an den Öffnungswinkel der Sensorvorrichtung reagiert werden. Dabei ist anzumerken, dass aufgrund der Strahlbündelungseigenschaften der Linse eine große Öffnungsbreite der Blende zu einem schmaleren Sichtfeld und eine geringe Öffnungsbreite zu einem breiteren Sichtfeld der erfmdungsgemäßen Sensorvorrichtung führt. Des weiteren ist es denkbar, die Messauflösung der Sensorvorrichtung durch Berücksichtigung unterschiedlicher Anten- nencharakteristika bei mehreren Messungen mit unterschiedlichen Blendenöffnungsbreiten zu erhöhen.
Für die Blende in der erfmdungsgemäßen Sensorvorrichtung kommen mehrere Ausführungs- formen eventuell auch kombiniert in Betracht.
Erfmdungsgemäß kann vorgesehen sein, dass die wenigstens eine Blende mehrere in den Strahlengang einklappbare Abdeckelemente aufweist, welche insbesondere eine Jalousie bilden.
Durch diese Maßnahmen wird eine mechanisch einfache und als Jalousie mit hoher Geschwindigkeit schaltbare Blende geschaffen.
Des weiteren kann die wenigstens eine Blende ein oder mehrere Abdeckelemente aufweisen, welche in der Art eines Rollladens in den Strahlengang einschiebbar sind.
Vorteilhaft ist es, wenn die wenigstens eine Blende Polarisationsgitterelemente mit einer vorgegebenen Polarisationsrichtung in dem Strahlengang aufweist, wobei der Antennenerreger zur Realisierung einer veränderbaren azimutalen Öffhungsbreite eine entsprechend polarisierte Strahlung abgibt, welche die Polarisationsgitterelemente passiert oder durch diese gehemmt wird. Sonach kann die Blendenwirkung in einfacher Weise durch Polarisation erreicht werden. Beispielsweise können im Strahlengang Polarisationsgitter mit einer Polarisation von un- ter +45° vorgesehen sein. Sendet der Antennenerreger nun ebenfalls +45° polarisierte Strahlung aus, so ergibt sich durch das Passieren der Strahlung ein entsprechend schmaleres Sichtfeld der erfindungsgemäßen Sensorvorrichtung, da eine Bündelung des Radarstrahls durch die Linse unterstützt wird. Sendet der Antennenerreger jedoch -45° polarisierte Strahlung, so wird diese entsprechend durch die Polarisationsgitterelemente gehemmt und kann die Linse nicht erreichen. Dadurch ergibt sich aufgrund der strahlbündelnden Eigenschaften der Linse ein wesentlich aufgeweiteter Strahl und somit ein breiterer azimutaler Erfassungsbereich der erfindungsgemäßen Sensorvorrichtung.
Erfindungsgemäß kann ferner vorgesehen sein, dass die wenigstens eine Blende Dämpfungs- elemente aufweist, welche aus einem Material mit einer insbesondere mittels eines elektrischen oder magnetischen Felds steuerbaren Strahlungsdurchlässigkeit gebildet sind.
Vorteilhaft ist außerdem, wenn die wenigstens eine Linse mit der wenigstens einen Blende versehen ist. Die Blende kann dazu auf der Linse angeordnet sein. Beispielsweise können die Dämpfungselemente oder die Polarisationsgitterelemente entsprechend auf der Linse aufgebracht sein.
Anspruch 7 betrifft eine adaptive Geschwindigkeitsregelvorrichtung für Kraftfahrzeuge. Ein Kraftfahrzeug ist in Anspruch 8 angegeben.
Nachfolgend sind anhand der Zeichnung Ausführungsbeispiele der Erfindung prinzipmäßig beschrieben. Kurzbeschreibung der Zeichnung
Es zeigen:
Figur 1 eine schematische Darstellung der wesentlichen Komponenten eines ACC-
Systems bzw. einer adaptiven Geschwindigkeitsregelvorrichtung in einem Kraftfahrzeug mit einer erfmdungsgemäßen Sensorvorrichtung;
Figur 2 eine Prinzipdarstellung der erfmdungsgemäßen Sensorvorrichtung in einer ersten Ausführungsform mit einklappbaren Abdeckelementen;
Figur 3 eine Prinzipdarstellung der erfindungsgemäßen Sensorvorrichtung in einer zweiten Ausführungsform mit einklappbaren Abdeckelementen, welche eine Jalousie bilden;
Figur 4 eine Prinzipdarstellung der erfindungsgemäßen Sensorvorrichtung in einer drit- ten Ausführungsform mit mehreren Abdeckelementen, welche in der Art eines
Rollladens in den Strahlengang einschiebbar sind;
Figur 5 eine Prinzipdarstellung der erfindungsgemäßen Vorrichtung in einer vierten
Ausführungsform mit einer Blende, welche Polarisationsgitterelemente auf- weist;
Figur 6 eine Prinzipdarstellung der erfindungsgemäßen Sensorvorrichtung in einer fünften Ausführungsform mit einer Blende, welche Dämpfungselemente aufweist;
Figur 7 ein Antennendiagramm einer Sensorvorrichtung ohne Blende; Figur 8 ein Antennendiagramm der erfindungsgemäßen Sensorvorrichtung mit einer
Blende, welche eine Öffnungsbreite von 30 mm aufweist; und
Figur 9 ein Antennendiagramm der erfindungsgemäßen Sensorvorrichtung mit einer Blende, welche eine Öffnungsbreite von 10 mm aufweist.
Beschreibung von Ausführungsbeispielen
Ein in Figur 1 stark vereinfacht dargestelltes Kraftfahrzeug 10 mit einem ACC-System bzw. einer adaptiven Geschwindigkeitsregelvorrichtung 11 weist als Abstandssensor eine an der Frontpartie des Kraftfahrzeugs 10 angebrachte erfindungsgemäße Sensorvorrichtung bzw. Radarsensorvorrichtung 12 auf, in deren Gehäuse auch eine ACC-Steuereinheit 14 untergebracht ist. Die ACC-Steuereinheit 14 ist über einen Datenbus 16 (CAN, MOST oder dergleichen) mit einer elektronischen Antriebs-Steuereinheit 18, einer Bremssystem-Steuereinheit 20 sowie mit einer HMI-Steuereinheit 22 einer Mensch/Maschine-Schnittstelle verbunden. Die Radarsensorvorrichtung 12 misst mit Hilfe eines Radarstrahls die Abstände, Relativgeschwindigkeiten und Azimutwinkel von vor dem Fahrzeug befindlichen Objekten, die Radar wellen reflektieren. Die in regelmäßigen Zeitabständen, z. B. alle 10 ms empfangenen Rohdaten werden in der ACC-Steuereinheit 14 ausgewertet, um einzelne Objekte zu identifizieren und zu verfolgen und um insbesondere ein unmittelbar auf der eigenen Fahrspur voraus fah- rendes Fahrzeug zu erkennen und als Zielobjekt auszuwählen. Durch Befehle an die Antriebs- Steuereinheit 18 und die Bremssystem- Steuereinheit 20 regelt die ACC-Steuereinheit 14 als Einrichtung zur Bestimmung des Beschleunigungs- und Verzögerungsbedarfs die Geschwindigkeit des Fahrzeugs 10. Wenn kein vorausfahrendes Fahrzeug geortet wird, regelt die ACC- Steuereinheit 14 die Geschwindigkeit des Kraftfahrzeugs 10 auf eine vom Fahrer gewählte Wunschgeschwindigkeit. Ist dagegen ein vorausfahrendes Fahrzeug, dessen Geschwindigkeit kleiner ist als die des eigenen Fahrzeugs, als Zielobjekt erfasst worden, so wird die Geschwindigkeit des Kraftfahrzeugs 10 so geregelt, dass ein angemessener Abstand zu dem vorausfahrenden Fahrzeug eingehalten wird.
In den Figuren 1 bis 6 sind funktionsgleiche Elemente mit denselben Bezugszeichen versehen. Selbstverständlich können die Ausführungsformen der Blende 30a bis 30e auch in weiteren nicht dargestellten Ausführungsbeispielen kombiniert werden.
In Figur 2 ist eine erste Ausführungsform einer erfindungsgemäßen Radarsensorvorrichtung 12a für das Kraftfahrzeug 10 dargestellt, in deren Strahlengang 24, welcher in den Figuren 2 bis 6 als Hauptstrahl der Radarwellen bzw. als optische Achse angedeutet ist, zwischen einem Antennenerreger 26 und einem als Linse 28 ausgebildeten Strahlformungselement eine Blende 30a mit einer veränderbaren azimutalen Öffnungsbreite bi, b2 zur Realisierung eines variablen azimutalen Erfassungsbereichs der Radarsensorvorrichtung 12a angeordnet ist. Somit lassen sich unterschiedliche azimutale Winkelsichtbereiche, insbesondere ein schmaler, weitschauender Erfassungsbereich und ein näherer weitwinkliger Erfassungsbereich mit nur einer Radarsensorvorrichtung 12a abdecken. Die Blende 30a weist in den Strahlengang 24 einklappbare Abdeckelemente 32a auf. Die Abdeckelemente 32a ergeben im in den Strahlengang 24 eingeklappten Zustand (mit durchgezogener Linie dargestellt) eine azimutale Öffnungs- breite bi, welche aufgrund der strahlbündelnden Eigenschaften der Linse 28 einen breiten azimutalen Erfassungsbereich der Radarsensorvorrichtung 12a ergibt. Wohingegen die Abdeckelemente 32a in aus dem Strahlengang 24 herausgeklapptem Zustand (gestrichelt angedeutet) eine wesentlich größere azimutale Öffnungsbreite b2 ergeben, wodurch sich ein schmaleres Sichtfeld der Radarsensorvorrichtung 12a ergibt.
In Figur 3 ist eine zweite Ausführungsform einer erfindungsgemäßen Radarsensorvorrichtung 12b dargestellt, bei welcher die Abdeckelemente 32b einer Blende 30b eine Jalousie bilden. Die Abdeckelemente 32b sind im in den Strahlengang 24 eingeklappten Zustand wenigstens annähernd senkrecht zur Hauptstrahlrichtung bzw. zur optischen Achse angeordnet und bewirken eine azimutale Öffnungsbreite bi der Blende 30b. In ausgeklapptem Zustand der Abdeckelemente 32b (gestrichelt angedeutet) sind die Abdeckelemente 32b im Wesentlichen parallel zur Hauptstrahlrichtung angeordnet und es ergibt sich eine azimutale Öffnungsbreite b2.
In Figur 4 ist eine dritte Ausführungsform einer erfindungsgemäßen Radarsensorvorrichtung 12c dargestellt. Eine Blende 30c weist dabei zwei Abdeckelemente 32c auf, welche in der Art eines Rollladens in den Strahlengang 24 einschiebbar sind. Im in den Strahlengang 24 eingeschobenen Zustand ergibt sich eine azimutale Öffnungsbreite bi, während sich im ausgescho- benen Zustand der Abdeckelemente 32c eine azimutale Öffnungsbreite b2 ergibt. Die azimutalen Öffnungsbreiten bi, b2 sind in den Figuren 2 bis 6 nur exemplarisch dargestellt. Andere Öffnungsbreiten sind ebenfalls denkbar.
In Figur 5 ist eine vierte Ausführungsform einer erfindungsgemäßen Radarsensorvorrichtung 12d dargestellt, bei welcher in dem Strahlengang 24 eine Blende 30d angeordnet ist. Die Blende 30d ist vorzugsweise auf der Linse 28 angeordnet und weist Polarisationsgitterelemente 32d mit einer vorgegebenen Polarisationsrichtung von unter +45° auf. Der Antennenerreger 26 gibt zur Realisierung einer veränderbaren azimutalen Öffnungsbreite bi, b2 eine entsprechend polarisierte Strahlung ab, welche die Polarisationsgitterelemente 32d passiert (Öff- nungsbreite b2, wobei der Antennenerreger 26 +45° polarisiert ist) oder durch diese gehemmt wird (Öffnungsbreite bi, wobei der Antennenerreger 26 -45° polarisiert ist). Dadurch ergeben sich ebenfalls unterschiedliche Erfassungsbereiche für die Radarsensorvorrichtung 12d aufgrund der unterschiedlichen Öffnungsbreiten bi, b2.
In Figur 6 ist eine fünfte Ausführungsform einer erfmdungsgemäßen Radarsensorvorrichtung 12e dargestellt, wobei eine Blende 30e Dämpfungselemente 32e aufweist, welche aus einem Material mit einer mittels eines elektrischen oder magnetischen Felds steuerbaren Strahlungsdurchlässigkeit gebildet sind. Die Dämpfungselemente 32e dämpfen die durch den Antennen- erreger 26 erzeugte Radarstrahlung entsprechend um eine Öffhungsbreite bi der Blende 3Oe zu erhalten bzw. können durchlässig geschaltet werden, um eine Öffnungsbreite b2 zu erhalten und damit den entsprechenden Erfassungsbereich für die Radarsensorvorrichtung 12e zu bewirken. Die Dämpfungselemente 32e können, wie in Figur 6 dargestellt, analog zu den Polari- sationsgitterelementen 32d aus Figur 5 auf der Linse 28 angeordnet sein. Selbstverständlich sind hier auch andere Lösungen denkbar.
In den Ausführungsbeispielen gemäß den Figuren 2 bis 6 sind die Formen der Blenden 30a bis 30e an die Form der Linse 28 angepasst.
In den Figuren 7, 8 und 9 sind Antennendiagramme bzw. Azimutwinkeldiagramme von Horizontalschnitten von vier Radarstrahlen Beam 1 bis Beam 4 dargestellt, welche den Erfassungsbereich einer Radarsensorvorrichtung gemäß dem Stand der Technik und der erfindungsgemäßen Radarsensorvorrichtungen 12, 12a bis 12e als Folge der wirksamen azimutalen Öffnungsbreite der Blenden 30a bis 30e darstellen.
Dabei ist horizontal der Azimutwinkel und vertikal der Pegel in Dezibel aufgetragen.
In Figur 7 ist der Erfassungsbereich einer Radarsensorvorrichtung gemäß dem Stand der Technik ohne Blende dargestellt.
Figur 8 zeigt im Unterschied dazu den Erfassungsbereich einer erfindungsgemäßen Radarsensorvorrichtung 12, 12a bis 12e bei einer Öffnungsbreite der Blende 30a bis 30e von 30 mm.
Figur 9 zeigt analog einen Erfassungsbereich bei einer Öffnungsbreite der Blende 30a bis 30e von 10 mm.
Die unterschiedlichen Radarstrahlen Beam 1 bis Beam 4 zeigen unterschiedliche Empfangs- feldstärken/-leistungen bei unterschiedlichen Azimutwinkeln. Dadurch ist es denkbar, die Messauflösung der Radarsensorvorrichtungen 12, 12a bis 12e durch Berücksichtigung von unterschiedlichen Antennencharakteristiken bei mehreren Messungen (bei beispielsweise zehn Messungen pro Sekunde) zu erhöhen, indem zwischen den Messungen auf unterschied- liehe Öffnungsbreiten bi, b2 der Blenden 30a bis 30e umgeschaltet wird.

Claims

Patentansprüche
1. Sensorvorrichtung (12, 12a- 12c), insbesondere Radarsensorvorrichtung für ein Kraftfahrzeug (10), in deren Strahlengang (24) wenigstens ein Antennenerreger (26) und we- nigstens eine Linse (28) angeordnet sind, dadurch gekennzeichnet, dass in dem Strahlengang (24) zwischen dem wenigstens einen Antennenerreger (26) und der wenigstens einen Linse (28) wenigstens eine Blende (30a-30e) mit einer veränderbaren azimutalen Öffnungsbreite (bi,b2) zur Realisierung eines variablen azimutalen Erfassungsbereichs der Sensorvorrichtung (12,12a-12e) angeordnet ist.
2. Sensorvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die wenigstens eine Blende (30a,30b) mehrere in den Strahlengang (24) einklappbare Abdeckelemente (32a,32b) aufweist, welche insbesondere eine Jalousie bilden.
3. Sensorvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die wenigstens eine Blende (30c) ein oder mehrere Abdeckelemente (32c) aufweist, welche in der Art eines Rollladens in den Strahlengang (24) einschiebbar sind.
4. Sensorvorrichtung nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass die we- nigstens eine Blende (30d) Polarisationsgitterelemente (32d) mit einer vorgegebenen
Polarisationsrichtung in dem Strahlengang (24) aufweist, wobei der Antennenerreger (26) zur Realisierung einer veränderbaren azimutalen Öffnungsbreite (bi,b2) eine entsprechend polarisierte Strahlung abgibt, welche die Polarisationsgitterelemente (32d) passiert oder durch diese gehemmt wird.
5. Sensorvorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die wenigstens eine Blende (30e) Dämpfungselemente (32e) aufweist, welche aus einem Material mit einer insbesondere mittels eines elektrischen oder magnetischen Felds steuerbaren Strahlungsdurchlässigkeit gebildet sind.
6. Sensorvorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die wenigstens eine Linse (28) mit der wenigstens einen Blende (30d,30e) versehen ist.
7. Adaptive Geschwindigkeitsregelvorrichtung (11) für Kraftfahrzeuge (10) mit wenigstens einer Sensorvorrichtung (12,12a-12e) nach einem der Ansprüche 1 bis 6.
8. Kraftfahrzeug (10) mit wenigstens einer Sensorvorrichtung (12,12a-12e) nach einem der Ansprüche 1 bis 6.
EP08736351A 2007-06-19 2008-04-18 Sensorvorrichtung mit einem variablen azimutalen erfassungsbereich für ein kraftfahrzeug Withdrawn EP2171496A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007027975A DE102007027975A1 (de) 2007-06-19 2007-06-19 Sensorvorrichtung für ein Kraftfahrzeug
PCT/EP2008/054700 WO2008155150A1 (de) 2007-06-19 2008-04-18 Sensorvorrichtung mit einem variablen azimutalen erfassungsbereich für ein kraftfahrzeug

Publications (1)

Publication Number Publication Date
EP2171496A1 true EP2171496A1 (de) 2010-04-07

Family

ID=39537928

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08736351A Withdrawn EP2171496A1 (de) 2007-06-19 2008-04-18 Sensorvorrichtung mit einem variablen azimutalen erfassungsbereich für ein kraftfahrzeug

Country Status (4)

Country Link
US (1) US20110199252A1 (de)
EP (1) EP2171496A1 (de)
DE (1) DE102007027975A1 (de)
WO (1) WO2008155150A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010042276A1 (de) * 2010-10-11 2012-04-12 Robert Bosch Gmbh Sensor, Justageverfahren und Vermessungsverfahren für einen Sensor
JP2015118079A (ja) * 2013-11-12 2015-06-25 オプテックス株式会社 車両検出センサ
DE102014013003A1 (de) * 2014-08-29 2016-03-03 Audi Ag Radarsensor, insbesondere für ein Kraftfahrzeug, und Kraftfahrzeug
US10116060B2 (en) * 2015-08-31 2018-10-30 Commscope Technologies Llc Variable beam width antenna systems
JP7145665B2 (ja) * 2018-07-10 2022-10-03 古河電気工業株式会社 アンテナ装置及びレーダ装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3309704A (en) * 1965-09-07 1967-03-14 North American Aviation Inc Tunable absorber
FR2264407B1 (de) * 1974-03-12 1978-02-10 Thomson Csf
DE3738705A1 (de) * 1987-11-14 1989-05-24 Licentia Gmbh Anordnung zur veraenderung der keulenbreite einer mikrowellenantenne
GB8927905D0 (en) * 1989-12-09 1990-02-14 Lucas Ind Plc Detection device
JP3278871B2 (ja) * 1991-09-13 2002-04-30 株式会社デンソー アンテナ装置
JP3535423B2 (ja) * 1999-10-18 2004-06-07 三菱電機株式会社 レドーム
DE19963004A1 (de) * 1999-12-24 2001-06-28 Bosch Gmbh Robert Kraftfahrzeug-Radarsystem
WO2002014898A2 (en) * 2000-08-16 2002-02-21 Raytheon Company Near object detection system
DE10059891A1 (de) * 2000-12-01 2002-06-13 Continental Teves Ag & Co Ohg Kraftfahrzeugabstandssensor
DE10261027A1 (de) * 2002-12-24 2004-07-08 Robert Bosch Gmbh Winkelauflösendes Antennensystem
DE102004044067A1 (de) 2004-09-11 2006-03-16 Volkswagen Ag Vorrichtung und Verfahren zum Detektieren von Objekten im Bereich eines Fahrzeugs
JP4337781B2 (ja) * 2005-06-27 2009-09-30 パナソニック電工株式会社 熱線式人感センサ装置
JP2007116217A (ja) * 2005-10-18 2007-05-10 Hitachi Ltd ミリ波レーダ装置およびそれを用いたミリ波レーダシステム
US7724180B2 (en) * 2007-05-04 2010-05-25 Toyota Motor Corporation Radar system with an active lens for adjustable field of view
DE102007045013A1 (de) * 2007-09-20 2009-04-02 Robert Bosch Gmbh Radareinrichtung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008155150A1 *

Also Published As

Publication number Publication date
US20110199252A1 (en) 2011-08-18
WO2008155150A1 (de) 2008-12-24
DE102007027975A1 (de) 2008-12-24

Similar Documents

Publication Publication Date Title
EP2729828B1 (de) Radarsystem für kraftfahrzeuge sowie kraftfahrzeug mit einem radarsystem
DE102006049879B4 (de) Radarsystem für Kraftfahrzeuge
EP1789814B1 (de) Verfahren und vorrichtung zur objektdetektion bei einem fahrzeug
DE102016204011A1 (de) Vorrichtung zur Ermittlung einer Dejustage einer an einem Fahrzeug befestigten Detektionseinrichtung
EP2330685B1 (de) Antenneneinrichtung für eine Radarsensorvorrichtung
EP2401630B1 (de) Verfahren zur erkennung von vereisung bei einem winkelauflösenden radarsensor in einem fahrerassistenzsystem für kraftfahrzeuge
WO2020052719A1 (de) Radarsystem mit einer kunststoffantenne mit reduzierter empfindlichkeit auf störwellen auf der antenne sowie auf reflektionen von einer sensorabdeckung
WO2016091677A1 (de) Verfahren zum erfassen eines objekts in einem öffnungsbereich einer tür eines kraftfahrzeugs, fahrerassistenzsystem sowie kraftfahrzeug
DE102016108756A1 (de) Radarsensoreinrichtung für ein Kraftfahrzeug, Fahrerassistenzsystem, Kraftfahrzeug sowie Verfahren zum Erfassen eines Objekts
EP2171496A1 (de) Sensorvorrichtung mit einem variablen azimutalen erfassungsbereich für ein kraftfahrzeug
EP1506432A1 (de) Sensor zum aussenden und empfangen von elektromagnetischen signalen
WO2016180564A1 (de) Radarsensor für kraftfahrzeuge
DE102005007917A1 (de) Kraftfahrzeug-Radarsystem und Auswerteverfahren
EP2073034B1 (de) Kraftfahrzeug mit einer kombination von vorwärtsgerichteten radaren mit überlappenden antennenkeulen
DE102012006368A1 (de) Radarsensoranordnung zur Umgebungsüberwachung für ein Fahrzeug und Fahrzeug mit einer Radarsensoranordnung
DE19754220B4 (de) Verfahren und Vorrichtung zur Erkennung einer bevorstehenden oder möglichen Kollision
EP3239733A1 (de) Verfahren zum betrieb eines radarsensors in einem kraftfahrzeug und kraftfahrzeug
EP2983008B1 (de) Sensorvorrichtung mit kombiniertem ultraschallsensor und radarsensor zum erfassen eines objekts in einem umfeld eines kraftfahrzeugs und kraftfahrzeug
WO2008058785A1 (de) Verfahren zum justieren einer richtantenne eines radarsystems und radarsystem zur durchführung des verfahrens
DE102009009227A1 (de) Verfahren zur automatischen Ausrichtung eines Strahlensensors in einem Fahrzeug
DE102007058241B4 (de) Auswerteverfahren, insbesondere für ein Fahrerassistenzsystem eines Kraftfahrzeugs, zur Objektdetektion mittels eines Radarsensors
EP3136124B1 (de) Verfahren zum betrieb von radarsensoren in einem kraftfahrzeug und kraftfahrzeug
DE19737292C1 (de) Antennenlinse und Kraftfahrzeug-Radarsystem
DE102008034634A1 (de) Sicherheitssystem
EP3688488A1 (de) Verfahren und radarsensor zur reduktion des einflusses von störungen bei der auswertung mindestens eines empfangssignals

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100119

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20131028

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20151103