EP2169636B1 - Lock, in particular lock cylinder with a device for communication with a transponder and communication device - Google Patents
Lock, in particular lock cylinder with a device for communication with a transponder and communication device Download PDFInfo
- Publication number
- EP2169636B1 EP2169636B1 EP09168547A EP09168547A EP2169636B1 EP 2169636 B1 EP2169636 B1 EP 2169636B1 EP 09168547 A EP09168547 A EP 09168547A EP 09168547 A EP09168547 A EP 09168547A EP 2169636 B1 EP2169636 B1 EP 2169636B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- antenna
- transponder
- communication means
- means according
- threshold value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Revoked
Links
Images
Classifications
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07C—TIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
- G07C9/00—Individual registration on entry or exit
- G07C9/00174—Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys
- G07C9/00309—Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated with bidirectional data transmission between data carrier and locks
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05B—LOCKS; ACCESSORIES THEREFOR; HANDCUFFS
- E05B47/00—Operating or controlling locks or other fastening devices by electric or magnetic means
- E05B47/06—Controlling mechanically-operated bolts by electro-magnetically-operated detents
- E05B47/0611—Cylinder locks with electromagnetic control
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07C—TIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
- G07C9/00—Individual registration on entry or exit
- G07C9/00174—Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys
- G07C2009/00753—Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated by active electrical keys
- G07C2009/00769—Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated by active electrical keys with data transmission performed by wireless means
- G07C2009/00777—Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated by active electrical keys with data transmission performed by wireless means by induction
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07C—TIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
- G07C9/00—Individual registration on entry or exit
- G07C9/00174—Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys
- G07C9/00896—Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys specially adapted for particular uses
- G07C9/00904—Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys specially adapted for particular uses for hotels, motels, office buildings or the like
Definitions
- the invention relates to a device for communication with a transponder, which may be embodied, for example, as a lock or as a lock cylinder.
- the DE 19859 344 A1 describes a communication device with a transmitter and with a receiver device.
- the receiver device has two antennas. One of these antennas should emit a start signal. With the start signal energy is transferred to the transponder. The transponder then corresponds to the receiving device. The transmission energy is transmitted inductively, that is via a magnetic coupling.
- the DE 100 45 631 A1 describes a lock cylinder having a housing in which an electrically actuable locking member and an antenna for receiving an electromagnetic signal for releasing the blocking element is located.
- the antenna cooperates with a transceiver, which is energized by a control device at intervals of 5 - 500 ms, preferably two to four times per second each for a short time.
- the antenna builds an electromagnetic alternating field in the vicinity of the lock cylinder, which has a frequency corresponding to the operating frequency of the transponder.
- the latter is typically 13.56 MHz or 125 kHz. If a transponder is located within this exciter field, then the electromagnetic alternating field inductively couples with the antenna coil of the transponder.
- the transponder has a microchip on which a unique serial number and possibly also data are stored.
- the microchip receives energy via the magnetically coupled alternating voltage and transmits the serial number or data via its antenna coil. These are received by the antenna coil of the transceiver of the lock cylinder and evaluated by an evaluation device. If the transponder has a serial number which is stored as authorized to close, or if a closing authorization is determined by the evaluation device after evaluation of other data, a blocking or coupling element of the locking cylinder is actuated, so that the closing element can be actuated by the actuating element.
- Such lock cylinders are usually battery operated. In the construction of a communication device with the lock cylinder and a transponder is therefore to pay attention to a minimum total energy consumption. On the other hand, it must be ensured that the lock cylinder is unlocked at any time by approaching a transponder. It is therefore important that several times per second the environment of the lock cylinder is queried for the presence of a transponder. In the prior art, it has therefore already been proposed to detect the approach of an object with a proximity switch. A disadvantage of the use of a proximity switch but is its sensitivity to any kind of metals, so that the transceiver is also already activated when only a metal part or a user's hand approaches the lock cylinder.
- motor vehicle door handles are known in which an antenna and a sensor arrangement is arranged.
- the sensor assembly is a capacitive sensor that detects the approach of a person. If the approach of a person is detected, then a transceiver is put into operation to communicate with a transponder in the manner described above.
- the invention has for its object to reduce the electrical energy consumption of a communication device.
- the object is achieved by the specified in claim 1 communication device.
- the second antenna forms an inductive sensor arrangement which, controlled by the control device, temporarily builds up an electromagnetic sensor field at predetermined intervals, the frequency of which essentially corresponds to the operating frequency of the first antenna and thus to the resonance frequency of the antenna of the transponder.
- the sensor field is influenced by the resonant circuit of the transponder.
- the transmitting-receiving device does not transmit the activation signal until the influencing of the sensor field exceeds or falls below a predetermined threshold value.
- the electromagnetic sensor field generating antenna forms a resonant circuit whose frequency is substantially the same with which the transceiver operates.
- the inductive sensor is of an energy-saving type. It can contain a separate high-frequency circuit.
- the periodic control of the sensor and the evaluation of the output signal of the sensor takes place through a microprocessor.
- the detection of a transponder is realized by a threshold value comparison.
- the transceiver for transmitting the activation signal is only turned on when the approach of a transponder has been detected.
- the energy for operating the inductive sensor arrangement is considerably lower than the energy required to emit an activation signal by means of the transceiver.
- the inductive sensor arrangement works together with the resonant circuit of the transponder. Thus, only those transponders are detected whose resonant frequency is close to the operating frequency of the inductive sensor arrangement. An approach of persons or metals is thus not detected. As a result, an erroneous switching on of the transceiver device can be minimized.
- the sensor field is preferably generated by an antenna coupled to a frequency generator.
- the antenna may be an induction coil.
- the antenna coil is acted upon by the frequency generator at intervals, which may be in the range between 5 - 500 msec, for a short time with an alternating voltage.
- the admission takes place over several hundred oscillation periods. If the working frequency of the transponder is 13.56 MHz, then the pulses have a duration of 10 - 50 ⁇ s. If the operating frequency of the transponder is 125 KHz, the pulses are correspondingly longer and lie between 1 and 5 ms.
- the transmission power of this antenna is considerably lower than the transmission power of the antenna, which is supplied by the transceiver with voltage.
- the antenna voltage is tapped. This is preferably done with high impedance.
- the control device has an analog-to-digital converter, which converts the tapped antenna voltage into a digital value.
- the control device also has a threshold comparator, which can be designed as a software module. This threshold comparator compares the digitized antenna voltage with an upper and a lower threshold. The upper and lower thresholds form a window. If the antenna voltage lies within the window, this means that there is no transponder near the antenna. If the antenna voltage lies outside this window, ie above the upper threshold value or below the lower threshold value, then it can be assumed that a transponder is located in the reading area of the communication device. In this case, the transceiver is put into operation.
- the electromagnetic sensor field generating antenna is preferably operated at a frequency which is in the range of the operating frequency of the transponder. It can be a bit bigger or smaller. Due to manufacturing tolerances, the frequencies of the transponder to be detected are not always exactly at 13.56 MHz. The operating frequencies of the transponders of this class can be up to 18 MHz. In this respect, it is sufficient if the frequency of the electromagnetic alternating field of the sensor device is also in this tolerance field. The frequency of the sensor field also does not have to be stabilized.
- the frequency generator may be an LC resonant circuit. However, the frequency generator is preferred by an RC element educated.
- the communication device has two antennas. A first antenna is associated with the transceiver and a second antenna of the inductive sensor array. Since both antennas operate at frequencies that are only slightly different from each other, there is a strongly coupled coil system. Despite the parasitic effects of the other coil and the components connected to it, each coil has the desired properties in terms of resonance frequency and field strength.
- the transmission power of the inductive sensor arrangement needs to be at most 10% of the transmission power of the transceiver device for generating the activation signal.
- inventively designed communication device can average supply currents in the passive phase of the communication device of less than 10 microamps realize.
- the number of futile transmitting and receiving attempts with a transponder is considerably reduced. These currents of 100 milliamps requiring data exchange communication attempts usually take place only when a transponder is actually in close proximity to the antenna array. This, overall low power consumption leads to a longer battery life.
- the sensor coil is a wound air-core coil and has approximately the same number of turns as the read coil formed by a spiral-shaped conductor track.
- the latter can be arranged at the rear of the sensor coil in a housing.
- the detection zone is then located in front of the wound air-core coil.
- the two antenna coils can be arranged coaxially with each other to optimize the magnetic coupling and have a same diameter. It is basically sufficient, however, if the two coils are only partially magnetically coupled.
- the in Fig. 2 shown shooting cylinder has a cylinder housing with a housing bore in which a cylinder core 22 is inserted.
- the cylinder core 22 can be operated with a handle, such as a key.
- the cylinder core 22 may also have a knob beyond.
- the cylinder core 22 is coupled to a closing member 21. With the closing member 21, a closing mechanism of a lock can be actuated.
- the lock cylinder 20 is preferably a standard lock cylinder and can be installed in doors. Within the lock cylinder or in a knob is also a battery for power supply.
- locking member which can lock the rotation of the cylinder core 22.
- the locking member 23 is electrically actuated. In an electrical actuation of the locking member 23, the rotatability of the cylinder core 22 is unlocked, so that the closing member 21 can be actuated by a handle.
- the actuator 22 may also be coupled via a coupling member with the closing member 21. In the non-actuated state of the electric coupling member then the actuator is not coupled to the closing member. Only upon electrical actuation of the coupling member is there a rotationally fixed connection between closing member 21 and actuator 22nd
- the electrical signal for actuating the locking member or the coupling member provides a communication device, as shown for example in the FIG. 1 is shown.
- the switching output is shown there, which is connected to the locking or coupling member.
- the reference numeral 10 indicates the operating voltage supply to a control device 1.
- the control device 1 may be a microcontroller. Within the microcontroller are an evaluation device 4, a timer 19, an analog-digital converter 8 and a comparator 9.
- the communication device also has a transceiver 2, to which an antenna 3 is connected. Furthermore, the communication device has an inductive sensor circuit 6, which is likewise connected to an antenna 7.
- the antenna 3 and the sensor antenna 7 may be formed by coils.
- the communication device communicates with a transponder 5.
- the transponder 5 may be arranged in the shape of a key or in a housing in the form of a coin.
- the transponder 5 has a transponder antenna 12, which is connected to a transponder circuit 13 in the form of a microchip.
- a serial number is stored in the transponder circuit 13.
- further data are stored in the transponder circuit 13.
- the energy supply of the transponder 5 is effected by inductive coupling of the transponder antenna 12 to an electromagnetic alternating field of 13.56 MHz.
- the coupled in the transponder antenna 12 AC voltage is rectified and provides the operating voltage for the transponder circuit 13. Once this is supplied with sufficient energy, it sends via the transponder antenna 12 on the carrier frequency 13.56 MHz data and in particular the unique serial number.
- the aforementioned electromagnetic alternating field for activating the transponder 5 is transmitted by the transceiver 2 via the antenna 3 generated.
- the transceiver 2 receives an activation signal via the line indicated by the reference numeral 14.
- the data signal 15 is evaluated by an evaluation device 4 formed by the transmitting-receiving device. If the transponder and in particular its unique serial number has a locking authorization, the switching signal is output via the switching output 11.
- the sensor circuit 6 with associated sensor antenna 7 is provided.
- the timer 19 formed by the control device 1 supplies a supply voltage 16 for the sensor circuit 6 at intervals of approximately two to four times per second for short times (approximately 10 to 50 ⁇ s).
- the supply voltage 16 is supplied so long that approximately 100 to 500 amplitudes are produced be sent.
- the amplitude is about 3 to 10 V (peak to peak).
- the sensor circuit 6 has a frequency generator 18 which is formed by an RC element. About one or more coupling capacitors and one or more coupling resistors generated by the frequency generator 18 AC voltage is coupled into the sensor antenna 7.
- the frequency of the sensor frequency generated by the frequency generator 18 is substantially at the operating frequency of the transponder. It may be slightly above the working frequency or below the operating frequency of the transponder. It is essential, however, that a resonance coupling with the antenna 3 of the transceiver 2 takes place. This leads to a deliberate weakening of the detection performance of the sensor arrangement and to the fact that the detection area is limited to the area immediately in front of the antenna arrangement.
- the antenna voltage lies in a window formed by a lower and an upper threshold value.
- the antenna voltage of the sensor antenna 7 is coupled out and rectified with an AM demodulation stage.
- the antenna voltage 17 is converted into a digital value in an analog-to-digital converter 8.
- the digital value corresponds to the amplitude of the sensor antenna 7.
- the reference numeral 9 denotes a comparator, which may be formed in the microcontroller but also by a software module.
- the digital output signal of the analog-to-digital converter 8 is compared with a stored lower and a stored upper threshold value. If the digital value lies within the window defined by the two threshold values, no transponder is located in the receiving area of the communication device.
- a transponder 5 is brought into the reception area of the communication device, ie into the effective range of the inductive sensor arrangement 6, 7, the alternating electromagnetic field of the inductive sensor arrangement 6, 7 is thereby influenced. Because of the quasi-resonance, it may be a field attenuation or a field enhancement. A field attenuation leads to a reduction in the amplitude of the sensor antenna 7. Field amplification leads to an increase in this amplitude. It is usually the geometric properties of the approximated transponder that are responsible for whether it is a voltage reduction or a voltage increase. What is relevant, however, is the resonance coupling, which prevents the mere approach of metal parts or the hand of a user from leading to any significant change in the amplitude.
- the digital value obtained from the antenna voltage 17 must therefore lie outside a window, to deliver the output signal.
- the data exchange takes approx. 50 - 100 ms.
- the load is thus more than ten times as high as the load when sending the detection signal.
- the inductive sensor circuit itself but also have a resonant circuit. It may be a self-oscillating resonant circuit that is attenuated, amplified or detuned by approaching the resonant circuit 12 of the transponder 5 or begins to oscillate or stop oscillating. If the resonant circuit of the sensor circuit 6 is detuned, then instead of an amplitude value, the sensor output signal 17 can also be a frequency value which is converted into a digital value and then compared with threshold values.
- the supply voltage of the inductive sensor 6, 7 is also periodically switched on and off in the previously mentioned embodiments by a microprocessor. After switching on the supply voltage starts a frequency generator 18 with a frequency generation, which took place Frequency is close to the working frequency of the transponder system. An electromagnetic alternating field is created at the antenna of the inductive sensor. This alternating electromagnetic field is rectified with an AM demodulator. The rectified signal forms the output signal of the inductive sensor. If no transponder is within range of the antenna, then after a certain settling time of a few hundred periods, a certain voltage level arises as the output voltage. This output voltage corresponds to the idle state when the transponder is not in the field. When the transponder is in the field, the voltage level of the inductive sensor changes. From a certain threshold, it can be safely assumed that a transponder has approached the field of the inductive sensor. Only then is the actual communication with the transponder switched on.
- the field strengths generated by the sensor antenna 7 are considerably lower than the field strengths built up by the antenna 3.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Near-Field Transmission Systems (AREA)
- Lock And Its Accessories (AREA)
- Transmitters (AREA)
Abstract
Description
Die Erfindung betrifft eine Einrichtung zur Kommunikation mit einem Transponder, die bspw. als Schloss oder als Schließzylinder verkörpert sein kann.The invention relates to a device for communication with a transponder, which may be embodied, for example, as a lock or as a lock cylinder.
Die
Aus der
Die
Derartige Schließzylinder sind üblicherweise batteriebetrieben. Bei der Konstruktion einer Kommunikationseinrichtung mit dem Schließzylinder und einem Transponder ist deshalb auf eine minimale Gesamtenergieaufnahme zu achten. Andererseits muss aber sichergestellt werden, dass der Schließzylinder jederzeit durch Annäherung eines Transponders entsperrt wird. Es ist also wichtig, dass mehrmals pro Sekunde das Umfeld des Schließzylinders nach dem Vorhandensein eines Transponders abgefragt wird. Im Stand der Technik hat man deshalb bereits vorgeschlagen, die Annäherung eines Gegenstandes mit einem Näherungsschalter zu detektieren. Nachteilhaft an der Verwendung eines Näherungsschalters ist aber dessen Sensibilität auf jegliche Art von Metallen, so dass die Sende-Empfangseinrichtung auch dann bereits aktiviert wird, wenn lediglich ein Metallteil oder sich die Hand eines Benutzers dem Schließzylinder nähert. Es kommt zu einer Vielzahl von unnötigen Sende-Empfangsversuchen, die eine erhebliche Energie der Batterie des Schließzylinders entziehen. Beispielsweise kann eine ungünstige Anordnung von Metallteilen im Bereich eines Schließzylinders bereits dazu führen, dass permanent oder auch bei jedem x-beliebigen Öffnen der Tür von der Rauminnenseite her eine Aktivierung der Sende-Empfangseinrichtung erfolgt.Such lock cylinders are usually battery operated. In the construction of a communication device with the lock cylinder and a transponder is therefore to pay attention to a minimum total energy consumption. On the other hand, it must be ensured that the lock cylinder is unlocked at any time by approaching a transponder. It is therefore important that several times per second the environment of the lock cylinder is queried for the presence of a transponder. In the prior art, it has therefore already been proposed to detect the approach of an object with a proximity switch. A disadvantage of the use of a proximity switch but is its sensitivity to any kind of metals, so that the transceiver is also already activated when only a metal part or a user's hand approaches the lock cylinder. There are a variety of unnecessary transmission-reception attempts, which withdraw a significant amount of energy from the battery of the lock cylinder. For example, an unfavorable arrangement of metal parts in the region of a lock cylinder can already lead to an activation of the transceiver device occurring permanently or also every time the door is opened arbitrarily from the interior side of the room.
Einen Schließzylinder mit Schlüssel, bei dem das Schließgeheimnis in einem Transponder steckt, beschreibt auch die
Des Weiteren sind Kraftfahrzeugtürgriffe bekannt, in denen eine Antenne und eine Sensoranordnung angeordnet ist. Bei der Sensoranordnung handelt es sich um einen kapazitiven Sensor, der die Annäherung einer Person feststellt. Wird die Annäherung einer Person festgestellt, so wird eine Sende-Empfangseinrichtung in Betrieb genommen, um in der oben beschriebenen Weise mit einem Transponder zu kommunizieren.Furthermore, motor vehicle door handles are known in which an antenna and a sensor arrangement is arranged. The sensor assembly is a capacitive sensor that detects the approach of a person. If the approach of a person is detected, then a transceiver is put into operation to communicate with a transponder in the manner described above.
Der Erfindung liegt die Aufgabe zugrunde, den elektrischen Energieverbrauch einer Kommunikationseinrichtung zu reduzieren.The invention has for its object to reduce the electrical energy consumption of a communication device.
Gelöst wird die Aufgabe durch die im Anspruch 1 angegebene Kommunikationseinrichtung.The object is achieved by the specified in
Bei der erfindungsgemäßen Kommunikationseinrichtung bildet die zweite Antenne eine induktive Sensoranordnung, die, von der Steuereinrichtung gesteuert, in vorgegebenen Intervallen kurzzeitig ein elektromagnetisches Sensorfeld aufbaut, dessen Frequenz im Wesentlichen der Arbeitsfrequenz der ersten Antenne und damit der Resonanzfrequenz der Antenne des Transponders entspricht. Beim Annähern des Transponders wird das Sensorfeld vom Schwingkreis des Transponders beeinflusst. Die Sende-Empfangseinrichtung sendet erst dann das Aktivierungssignals ab, wenn die Beeinflussung des Sensorfeldes einen vorgegebenen Schwellwert über- bzw. unterschreitet. Die das elektromagnetische Sensorfeld erzeugende Antenne bildet einen Schwingkreis, dessen Frequenz im Wesentlichen dieselbe ist, mit der die Sende-Empfangseinrichtung arbeitet. Der induktive Sensor ist von einem energiesparenden Typ. Er kann einen separaten Hochfrequenz-Schaltkreis enthalten. Die periodische Ansteuerung des Sensors und die Auswertung des Ausgangssignals des Sensors erfolgt durch einen Mikroprozessor. Die Detektion eines Transponders wird durch einen Schwellwertvergleich realisiert. Die Sende-Empfangseinrichtung zum Aussenden des Aktivierungssignals wird nur dann eingeschaltet, wenn sicher die Annäherung eines Transponders detektiert wurde. Die Energie zum Betrieb der induktiven Sensoranordnung ist erheblich geringer als die Energie, die erforderlich ist, um mittels der Sende-Empfangseinrichtung ein Aktivierungssignal auszusenden. Die induktive Sensoranordnung arbeitet dabei mit dem Schwingkreis des Transponders zusammen. Es werden somit nur solche Transponder detektiert, deren Resonanzfrequenz nahe bei der Arbeitsfrequenz der induktiven Sensoranordnung liegt. Ein Annähern von Personen oder Metallen wird somit nicht detektiert. Dadurch kann auch ein fehlerhaftes Einschalten der Sende-Empfangseinrichtung minimiert werden. Auch dies führt zu einer Einsparung von elektrischer Energie. Das Sensorfeld wird bevorzugt von einer an einen Frequenzgenerator gekoppelten Antenne erzeugt. Bei der Antenne kann es sich um eine Induktionsspule handeln. Die Antennenspule wird vom Frequenzgenerator in Intervallen, die im Bereich zwischen 5 - 500 msec liegen können, kurzzeitig mit einer Wechselspannung beaufschlagt. Die Beaufschlagung erfolgt über einige Hundert Schwingungsperioden. Beträgt de Arbeitsfrequenz des Transponders 13,56 MHz, so haben die Pulse eine Dauer von 10 - 50 µs. Beträgt die Arbeitsfrequenz des Transponders 125 KHz, so sind die Pulse entsprechend länger und liegen zwischen 1 und 5 ms. Die Sendeleistung dieser Antenne ist erheblich geringer als die Sendeleistung der Antenne, die von der Sende-Empfangseinrichtung mit Spannung versorgt wird. An der Antenne der induk-tiven Sensoranordnung wird die Antennenspannung abgegriffen. Dies erfolgt bevorzugt hochohmig. Die Steuereinrichtung besitzt einen Analog-Digitalwandler, der die abgegriffene Antennenspannung in einen Digitalwert umwandelt. Die Steuereinrichtung besitzt darüber hinaus einen Schwellwert-Vergleicher, welcher als Softwaremodul ausgebildet sein kann. Dieser Schwellwert-Vergleicher vergleicht die digitalisierte Antennenspannung mit einem oberen und einem unteren Schwellwert. Der obere und der untere Schwellwert bilden ein Fenster aus. Liegt die Antennenspannung innerhalb des Fensters, bedeutet dies, dass kein Transponder in der Nähe der Antenne ist. Liegt die Antennenspannung außerhalb dieses Fensters, also oberhalb des oberen Schwellwertes oder unterhalb des unteren Schwellwertes, so ist davon auszugehen, dass sich ein Transponder im Lesebereich der Kommunikationseinrichtung befindet. In diesem Falle wird die Sende-Empfangseinrichtung in Betrieb genommen. Sie sendet das Aktivierungssignal in Form eines elektromagnetischen Wechselfeldes und empfängt vom Transponder die zurückgesandten Daten. Besitzt der Transponder Schließberechtigung, so wird ein entsprechendes Ausgangssignal bereitgestellt, mit dem ein Sperrglied oder ein Kupplungsglied betätigt werden kann. Die das elektromagnetische Sensorfeld erzeugende Antenne wird bevorzugt mit einer Frequenz betrieben, die im Bereich der Arbeitsfrequenz des Transponders liegt. Sie kann etwas größer oder etwas kleiner sein. Auf Grund von herstellungstechnischen Toleranzen liegen die Frequenzen der zu detektierenden Transponder nicht immer exakt bei 13,56 MHz. Die Arbeitsfrequenzen der Transponder dieser Klasse können bis zu 18 MHz betragen. Insofern reicht es, wenn die Frequenz des elektromagnetischen Wechselfeldes der Sensoreinrichtung auch in diesem Toleranzfeld liegt. Die Frequenz des Sensorfeldes muss auch nicht stabilisiert sein. Es ist nicht nur zulässig, wenn die Frequenz des Sensorfeldes um die Arbeitsfrequenz des Transponders bzw. um die Arbeitsfrequenz der Sende-Empfangseinrichtung schwankt bzw. driftet. Dies kann sogar vorteilhaft sein. Der Frequenzgenerator kann ein L-C-Schwingkreis sein. Bevorzugt wird der Frequenzgenerator aber von einem R-C-Glied ausgebildet. Die Kommunikationseinrichtung bezitzt zwei Antennen. Eine erste Antenne ist der Sende-Empfangeinrichtung zugeordnet und eine zweite Antenne der induktiven Sensoranordnung. Da beide Antennen auf nur wenig voneinander verschiedenen Frequenzen arbeiten, liegt ein stark gekoppeltes Spulensystem vor. Trotz der parasitären Effekte der jeweils anderen Spule und der daran angeschlossenen Bauelemente, besitzt jede Spule aber die gewünschten Eigenschaften in Bezug auf Resonanzfrequenz und Feldstärke. Die Sendeleistung der induktiven Sensoranordnung braucht höchstens 10% der Sendeleistung der Sendeempfangseinrichtung zur Erzeugung des Aktivierungssignals betragen. Mit der erfindungsgemäß ausgestalteten Kommunikationseinrichtung lassen sich gemittelte Versorgungsstromstärken in der passiven Phase der Kommunikationseinrichtung von unter 10 Mikroampere realisieren. Zudem wird mit der erfindungsgemäßen Dimensionierung der Sensoranordnung die Anzahl der vergeblichen Sende- und Empfangsversuche mit einem Transponder erheblich reduziert. Diese Stromstärken von 100 Milliampere erfordernden Datenaustausch-Kommunikationsversuche finden in der Regel nur dann statt, wenn tatsächlich ein Transponder in unmittelbarer Nähe vor der Antennenanordnung liegt. Diese, insgesamt geringe Stromaufnahme führt zu einer längeren Batterielebensdauer. Es ist ferner von Vorteil, wenn die Sensorspule eine gewickelte Luftspule ist und etwa gleich viele Windungen aufweist, wie die von einer spiralförmigen Leiterbahn ausgebildete Lesespule. Letztere kann rückwärtig der Sensorspule in einem Gehäuse angeordnet sein. Vor der gewickelten Luftspule befindet sich dann die Detektionszone. Die beiden Antennenspulen können zur Optimierung der magnetischen Kopplung koaxial zueinander angeordnet sein und einen gleichen Durchmesser aufweisen. Es reicht grundsätzlich aber aus, wenn die beiden Spulen sich lediglich bereichsweise magnetisch gekoppelt sind.In the case of the communication device according to the invention, the second antenna forms an inductive sensor arrangement which, controlled by the control device, temporarily builds up an electromagnetic sensor field at predetermined intervals, the frequency of which essentially corresponds to the operating frequency of the first antenna and thus to the resonance frequency of the antenna of the transponder. When approaching the transponder, the sensor field is influenced by the resonant circuit of the transponder. The transmitting-receiving device does not transmit the activation signal until the influencing of the sensor field exceeds or falls below a predetermined threshold value. The electromagnetic sensor field generating antenna forms a resonant circuit whose frequency is substantially the same with which the transceiver operates. The inductive sensor is of an energy-saving type. It can contain a separate high-frequency circuit. The periodic control of the sensor and the evaluation of the output signal of the sensor takes place through a microprocessor. The detection of a transponder is realized by a threshold value comparison. The transceiver for transmitting the activation signal is only turned on when the approach of a transponder has been detected. The energy for operating the inductive sensor arrangement is considerably lower than the energy required to emit an activation signal by means of the transceiver. The inductive sensor arrangement works together with the resonant circuit of the transponder. Thus, only those transponders are detected whose resonant frequency is close to the operating frequency of the inductive sensor arrangement. An approach of persons or metals is thus not detected. As a result, an erroneous switching on of the transceiver device can be minimized. This also leads to a saving of electrical energy. The sensor field is preferably generated by an antenna coupled to a frequency generator. The antenna may be an induction coil. The antenna coil is acted upon by the frequency generator at intervals, which may be in the range between 5 - 500 msec, for a short time with an alternating voltage. The admission takes place over several hundred oscillation periods. If the working frequency of the transponder is 13.56 MHz, then the pulses have a duration of 10 - 50 μs. If the operating frequency of the transponder is 125 KHz, the pulses are correspondingly longer and lie between 1 and 5 ms. The transmission power of this antenna is considerably lower than the transmission power of the antenna, which is supplied by the transceiver with voltage. At the antenna of the inductive Sensor arrangement, the antenna voltage is tapped. This is preferably done with high impedance. The control device has an analog-to-digital converter, which converts the tapped antenna voltage into a digital value. The control device also has a threshold comparator, which can be designed as a software module. This threshold comparator compares the digitized antenna voltage with an upper and a lower threshold. The upper and lower thresholds form a window. If the antenna voltage lies within the window, this means that there is no transponder near the antenna. If the antenna voltage lies outside this window, ie above the upper threshold value or below the lower threshold value, then it can be assumed that a transponder is located in the reading area of the communication device. In this case, the transceiver is put into operation. It sends the activation signal in the form of an alternating electromagnetic field and receives the returned data from the transponder. If the transponder has locking authorization, a corresponding output signal is provided with which a blocking member or a coupling member can be actuated. The electromagnetic sensor field generating antenna is preferably operated at a frequency which is in the range of the operating frequency of the transponder. It can be a bit bigger or smaller. Due to manufacturing tolerances, the frequencies of the transponder to be detected are not always exactly at 13.56 MHz. The operating frequencies of the transponders of this class can be up to 18 MHz. In this respect, it is sufficient if the frequency of the electromagnetic alternating field of the sensor device is also in this tolerance field. The frequency of the sensor field also does not have to be stabilized. It is not only permissible if the frequency of the sensor field fluctuates or drifts about the operating frequency of the transponder or about the operating frequency of the transceiver. This can even be beneficial. The frequency generator may be an LC resonant circuit. However, the frequency generator is preferred by an RC element educated. The communication device has two antennas. A first antenna is associated with the transceiver and a second antenna of the inductive sensor array. Since both antennas operate at frequencies that are only slightly different from each other, there is a strongly coupled coil system. Despite the parasitic effects of the other coil and the components connected to it, each coil has the desired properties in terms of resonance frequency and field strength. The transmission power of the inductive sensor arrangement needs to be at most 10% of the transmission power of the transceiver device for generating the activation signal. With the inventively designed communication device can average supply currents in the passive phase of the communication device of less than 10 microamps realize. In addition, with the inventive dimensioning of the sensor arrangement, the number of futile transmitting and receiving attempts with a transponder is considerably reduced. These currents of 100 milliamps requiring data exchange communication attempts usually take place only when a transponder is actually in close proximity to the antenna array. This, overall low power consumption leads to a longer battery life. It is also advantageous if the sensor coil is a wound air-core coil and has approximately the same number of turns as the read coil formed by a spiral-shaped conductor track. The latter can be arranged at the rear of the sensor coil in a housing. The detection zone is then located in front of the wound air-core coil. The two antenna coils can be arranged coaxially with each other to optimize the magnetic coupling and have a same diameter. It is basically sufficient, however, if the two coils are only partially magnetically coupled.
Ein Ausführungsbeispiel wird nachfolgend anhand beigefügter Zeichnungen erläutert. Es zeigen:
- Fig.
- 1 ein Blockschaltbild der Kommunikationseinrichtung, und
- Fig. 2
- grobschematisch einen Schließzylinder mit einer derartigen Komm unikationseinrichtung.
- FIG.
- 1 is a block diagram of the communication device, and
- Fig. 2
- roughly schematically a lock cylinder with such a comm Unikationseinrichtung.
Der in
Innerhalb des Flanschabschnittes des Schließzylinders 20 befindet sich ein mit der Bezugsziffer 23 angedeutetes Sperrglied, welches die Drehbarkeit des Zylinderkerns 22 sperren kann. Das Sperrglied 23 ist elektrisch betätigbar. Bei einer elektrischen Betätigung des Sperrgliedes 23 wird die Drehbarkeit des Zylinderkernes 22 entsperrt, so dass das Schließglied 21 von einer Handhabe betätigt werden kann.Within the flange portion of the
Alternativ dazu kann das Betätigungsglied 22 aber auch über ein Kupplungsglied mit dem Schließglied 21 gekuppelt sein. Im nicht-betätigten Zustand des elektrischen Kupplungsgliedes ist dann das Betätigungsglied nicht mit dem Schließglied gekuppelt. Erst bei elektrischer Betätigung des Kupplungsgliedes besteht eine drehfeste Verbindung zwischen Schließglied 21 und Betätigungsglied 22.Alternatively, the
Das elektrische Signal zum Betätigen des Sperrgliedes oder des Kupplungsgliedes liefert eine Kommunikationseinrichtung, wie sie beispielsweise in der
Die Kommunikationseinrichtung kommuniziert mit einem Transponder 5. Der Transponder 5 kann in der Raide eines Schlüssels oder in einem Gehäuse in Form einer Münze angeordnet sein. Der Transponder 5 besitzt eine Transponderantenne 12, die mit einer Transponderschaltung 13 in Form eines Mikrochips verbunden ist. In der Transponderschaltung 13 ist eine Seriennummer gespeichert. Gegebenenfalls sind in der Transponderschaltung 13 auch weitere Daten gespeichert. Die Energieversorgung des Transponders 5 erfolgt durch induktive Ankopplung der Transponderantenne 12 an ein elektromagnetisches Wechselfeld von 13,56 MHz. Die in der Transponderantenne 12 eingekoppelte Wechselspannung wird gleichgerichtet und liefert die Betriebsspannung für die Transponderschaltung 13. Sobald diese mit ausreichender Energie versorgt ist, sendet sie über die Transponderantenne 12 auf der Trägerfrequenz 13,56 MHz Daten und insbesondere die eindeutige Seriennummer.The communication device communicates with a
Das zuvor erwähnte elektromagnetische Wechselfeld zur Aktivierung des Transponders 5 wird von der Sende-Empfangseinrichtung 2 über die Antenne 3 erzeugt. Hierzu erhält die Sende-Empfangseinrichtung 2 über die mit der Bezugsziffer 14 gezeichnete Leitung ein Aktivierungssignal. Das Datensignal 15 wird von einer von der Sende-Emfangseinrichtung ausgebildeten Auswerteeinrichtung 4 ausgewertet. Besitzt der Transponder und insbesondere dessen eindeutige Seriennummer eine Schließberechtigung, so wird über den Schaltausgang 11 das Schaltsignal abgegeben.The aforementioned electromagnetic alternating field for activating the
Um das Aktivierungssignal 14 nur dann abzugeben, wenn mit hoher Wahrscheinlichkeit auch der Transponder im Empfangsbereich der Antenne 3 liegt, ist die Sensorschaltung 6 mit zugehöriger Sensorantenne 7 vorgesehen. Der von der Steuereinrichtung 1 ausgebildete Zeitgeber 19 liefert in Intervallen etwa zwei bis viermal pro Sekunde jeweils für kurze Zeiten (ca. 10 - 50 µs) eine Versorgungsspannung 16 für die Sensorschaltung 6. Die Versorgungsspannung 16 so lange geliefert, dass etwa 100 - 500 Amplituden gesendet werden. Die Amplitude liegt bei etwa 3 bis 10 V (Spitze - Spitze).In order to deliver the
Die Sensorschaltung 6 besitzt einen Frequenzgenerator 18, der von einem R-C-Glied ausgebildet ist. Über ein oder mehrere Koppelkondensatoren und ein oder mehrere Koppelwiderstände wird die vom Frequenzgenerator 18 erzeugte Wechselspannung in die Sensorantenne 7 eingekoppelt. Die Frequenz der vom Frequenzgenerator 18 erzeugte Sensorfrequenz liegt im Wesentlichen auf der Arbeitsfrequenz des Transponders. Sie kann geringfügig oberhalb der Arbeitsfrequenz oder unterhalb der Arbeitsfrequenz des Transponders liegen. Wesentlich ist jedoch, dass eine Resonanzkopplung mit der Antenne 3 der Sende-Empfangseinrichtung 2 stattfindet. Dies führt zu einer gewollten Abschwächung der Detektionsleistung der Sensoranordnung und dazu, dass der Detektionsbereich auf den Bereich unmittelbar vor der Antennenanordnung beschränkt wird.The
Befindet sich kein Transponder in der Nähe, so liegt die Antennenspannung in einem, von einem unteren und einem oberen Schwellwert gebildeten Fenster.If there is no transponder in the vicinity, the antenna voltage lies in a window formed by a lower and an upper threshold value.
Über einen hochohmigen Widerstand 24 wird die Antennenspannung der Sensorantenne 7 ausgekoppelt und mit einer AM-Demodulationsstufe gleichgerichtet. Die Antennenspannung 17 wird in einem Analog-Digitalwandler 8 in einen Digitalwert umgewandelt. Der Digitalwert entspricht der Amplitude der Sensorantenne 7.Via a high-
Mit der Bezugsziffer 9 ist ein Komparator bezeichnet, der im Mikrokontroller aber auch von einem Software-Modul ausgebildet sein kann. Im Komparator 9 wird das digitale Ausgangssignal des Analog-Digitalwandlers 8 mit einem abgespeicherten unteren und einem abgespeicherten oberen Schwellwert verglichen. Liegt der Digitalwert innerhalb des von den beiden Schwellwerten definierten Fensters, befindet sich kein Transponder im Empfangsbereich der Kommunikationseinrichtung.The
Wird ein Transponder 5 in den Empfangsbereich der Kommunikationseinrichtung gebracht, also in den Wirkbereich der induktiven Sensoranordnung 6, 7, so wird dadurch das elektromagnetische Wechselfeld der induktiven Sensoranordnung 6, 7 beeinflusst. Wegen der Quasi-Resonanz kann es sich um eine Felddämpfung oder um eine Feldverstärkung handeln. Eine Felddämpfung führt zu einer Verminderung der Amplitude der Sensorantenne 7. Eine Feldverstärkung führt zu einer Erhöhung dieser Amplitude. Es sind in der Regel die geometrischen Eigenschaften der angenäherten Transponder, die dafür verantwortlich sind, ob es sich um eine Spannungsreduktion oder eine Spannungserhöhung handelt. Relevant ist aber die Resonanzankopplung, die verhindert, dass das bloße Annähern von Metallteilen oder der Hand eines Benutzers zu keiner signifikanten Änderung der Amplitude führt. Der aus der Antennenspannung 17 gewonnene Digitalwert muss also außerhalb eines Fensters liegen, um das Ausgangssignal abzugeben. Überschreitet der vom Digitalwandler 8 gewonnene Digitalwert den oberen Schwellwert, oder unterschreitet er den unteren Schwellwert, so gibt der Komparator 9 ein Ausgangssignal ab, welches die Abgabe eines Aktivierungssignals 14 von der Steuereinrichtung 1 und der Empfangsein-richtung 2 zur Folge hat. Erst jetzt baut die Sende-Empfangseinrichtung 2 mit Hilfe der Antenne 3 das elektromagnetische Wechselfeld auf der Arbeitsfrequenz des Transponders 5 auf, um induktiv mit der Antenne 12 des Transponders 5 zu koppeln und die Transponderschaltung 3 dazu anzuregen, in der oben beschriebenen Weise Daten und insbesondere die Seriennummer zu senden. Der Datenaustausch dauert ca. 50 - 100 ms. Die Belastung ist also mehr als zehnmal so hoch, wie die Belastung bei der Absendung des Detektionssignals.If a
In einem nicht dargestellten Ausführungsbeispiel kann die induktive Sensorschaltung selbst aber auch einen Schwingkreis aufweisen. Es kann sich dabei um einen selbstanschwingenden Schwingkreis handeln, der durch Annähern des Schwingkreises 12 des Transponders 5 gedämpft, verstärkt oder verstimmt wird oder anfängt zu schwingen oder aufhört zu schwingen. Wird der Schwingkreis der Sensorschaltung 6 verstimmt, so kann das Sensorausgangssignal 17 anstelle eines Amplitudenwertes auch ein Frequenzwert sein, welcher in einen Digitalwert umgewandelt wird und dann mit Schwellwerten verglichen wird.In an embodiment not shown, the inductive sensor circuit itself but also have a resonant circuit. It may be a self-oscillating resonant circuit that is attenuated, amplified or detuned by approaching the
Anstelle einer digitalen Bearbeitung des Ausgangssignals 17 des induktiven Sensors 6 kann aber auch eine Analogschaltung festgelegt werden.Instead of a digital processing of the
Die Versorgungsspannung des induktiven Sensors 6, 7 wird auch bei den zuvor nur erwähnten Ausführungsbeispielen periodisch von einem Mikroprozessor ein- und ausgeschaltet. Nach dem Einschalten der Versorgungsspannung beginnt ein Frequenzgenerator 18 mit einer Frequenzerzeugung, wobei die erfolgte Frequenz nahe bei der Arbeitsfrequenz des Transpondersystems liegt. An der Antenne des induktiven Sensors entsteht ein elektromagnetisches Wechselfeld. Dieses elektromagnetische Wechselfeld wird mit einem AM-Demodulator gleichgerichtet. Das gleichgerichtete Signal bildet das Ausgangssignal des induktiven Sensors. Ist kein Transponder in der Reichweite der Antenne, so stellt sich nach einer bestimmten Einschwingdauer von wenigen hundert Perioden ein bestimmter Spannungspegel als Ausgangsspannung ein. Diese Ausgangsspannung entspricht bei nicht im Feld befindlichem Transponder dem Ruhezustand. Bei sich im Feld befindlichen Transponder verändert sich der Spannungspegel des induktiven Sensors. Ab einem bestimmten Schwellwert kann sicher angenommen werden, dass sich ein Transponder ins Feld des induktiven Sensors genähert hat. Erst dann wird die eigentliche Kommunikation mit dem Transponder eingeschaltet.The supply voltage of the
Die von der Sensorantenne 7 erzeugten Feldstärken sind erheblich geringer, als die von der Antenne 3 aufgebauten Feldstärken.The field strengths generated by the sensor antenna 7 are considerably lower than the field strengths built up by the
Claims (13)
- Communication means on a lock or in particular on a locking cylinder, comprising two antennas (3, 7) for communicating with a transponder (5) comprising an antenna (12), the antennas (3, 7) forming a magnetically coupled, but galvanically decoupled, coil system, a first antenna (3) being associated with a transceiver means (2) which can transmit an activation signal (14) in the form of an electromagnetic alternating field at an operating frequency of the transponder (5) and receive a data signal (15) returned by the transponder (5), comprising an evaluation means (4) with which the received data signal (15) can be evaluated, and comprising a control means (1), with which the transceiver means (2) can be controlled, characterised in that the second antenna (7) is associated with an inductive sensor arrangement (6, 7) which temporarily creates an electromagnetic sensor field at predetermined intervals controlled by the control means (1), the frequency of which sensor field substantially corresponds to the operating frequency of the first antenna (3), which sensor field is influenced by the resonant circuit of the transponder (5) when said transponder approaches, the control means (1) not actuating the transceiver means (2) to transmit the activation signal (14) until the influence of the sensor field has exceeded or fallen below a predetermined threshold value.
- Communication means according to claim 1, characterised in that the sensor field is generated by an antenna (7) coupled to a frequency generator (18), a voltage (17) tapped at the antenna (7) being compared with the threshold value.
- Communication means according to any one of the preceding claims, characterised in that the sensor field is generated at intervals of, for example, approximately 5 to 500 ms.
- Communication means according to either claim 2 or claim 3, characterised in that the sensor field is generated with an operating frequency of a transponder of 13.56 MHz for approximately 10 to 50 µs, and with a transponder (5) having an operating frequency of 125 kHz for approximately 1 ms to 5 ms.
- Communication means according to any one of the preceding claims, characterised in that the frequency generator (18) actuating the sensor antenna (7) is an RC generator.
- Communication means according to any one of the preceding claims, characterised in that the two antennas (3, 7) are coils arranged coaxially with one another having a substantially identical coil surface.
- Communication means according to any one of the preceding claims, characterised in that the second antenna (7) is formed from a wound air-core coil which is arranged between the first antenna (3) and the detection zone.
- Communication means according to any one of the preceding claims, characterised in that the first antenna (3) is formed from a printed strip conductor and has approximately the same number of turns as the second antenna (7).
- Communication means according to any one of the preceding claims, characterised in that the voltage (17) tapped at the second antenna (7) is compared with an upper and a lower threshold value and the control means (1) actuates the transceiver means (2) to transmit the activation signal (14) if either the upper threshold value is exceeded or the lower threshold value is fallen below.
- Communication means according to any one of the preceding claims, characterised in that the antenna (7) of the inductive sensor arrangement is coupled to an analogue-digital converter (8) in a highly resistive manner.
- Communication means according to any one of the preceding claims, characterised in that the decoupled antenna voltage (17) of the inductive sensor arrangement is compared with an upper and a lower threshold value in the form of digital values, and the activation signal is subsequently only generated if the lower threshold value is fallen below or the upper threshold value is exceeded.
- Communication means according to any one of the preceding claims, characterised in that the transmitting power of the inductive sensor arrangement (6, 7) is at most 10 % of the transmitting power of the transceiver means (2) for generating the activation signal.
- Communication means according to any one of the preceding claims, in the form of a locking cylinder comprising a locking member (21) and an actuating member (22) and comprising a blocking or coupling member (23) which can be electrically actuated, characterised in that the locking member (21) can only be actuated by the actuating member (22) after a transponder (5) returning an appropriate data signal approaches.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102008037376A DE102008037376A1 (en) | 2008-09-22 | 2008-09-22 | Lock, in particular lock cylinder with a device for communication with a transponder and communication device |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2169636A1 EP2169636A1 (en) | 2010-03-31 |
EP2169636B1 true EP2169636B1 (en) | 2012-04-18 |
Family
ID=41078009
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09168547A Revoked EP2169636B1 (en) | 2008-09-22 | 2009-08-25 | Lock, in particular lock cylinder with a device for communication with a transponder and communication device |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2169636B1 (en) |
AT (1) | ATE554467T1 (en) |
DE (1) | DE102008037376A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2978784B1 (en) * | 2011-08-05 | 2013-09-06 | Continental Automotive France | METHOD AND DEVICE FOR RELEASING, BY MEANS OF AN RFID READER, A METHOD OF ACTUATING MEANS FOR CONDEMNATION / DE-CONDEMNATION OF ACCESS DOORS OF A MOTOR VEHICLE |
DE102012025538A1 (en) * | 2012-12-17 | 2014-06-18 | Assa Abloy Sicherheitstechnik Gmbh | Lock cylinder, in particular double lock cylinder |
DE102014118216A1 (en) * | 2014-12-09 | 2016-06-23 | Turck Holding Gmbh | Conveying system with a conveyor and method |
DE102016112007A1 (en) | 2016-06-30 | 2018-01-04 | Rittal Gmbh & Co. Kg | Locking arrangement, in particular door lock arrangement for a control cabinet and a corresponding method |
CN108756499B (en) * | 2018-09-03 | 2023-08-25 | 广东金点原子安防科技股份有限公司 | Improved full-automatic lock body |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5751073A (en) * | 1996-11-20 | 1998-05-12 | General Motors Corporation | Vehicle passive keyless entry and passive engine starting system |
AU742683B2 (en) * | 1998-03-16 | 2002-01-10 | Robert Bosch Gmbh | A door handle and a transponder system |
DE19859344A1 (en) | 1998-12-22 | 2000-06-29 | Mannesmann Vdo Ag | Control of a security system within a road vehicle using a number of directional signals transmitted by a unit carried by driver |
DE10045631C2 (en) | 2000-06-27 | 2003-04-30 | Schulte Zylinderschl Gmbh | Lock cylinder with antenna arranged in the lock cylinder housing |
DE10041801C2 (en) * | 2000-08-25 | 2003-09-04 | Siemens Ag | Anti-theft protection system for a motor vehicle and method for operating the anti-theft system |
DE10105191B4 (en) * | 2001-02-06 | 2005-05-19 | Robert Bosch Gmbh | Antenna arrangement for a motor vehicle for determining the authorization of a portable transponder |
US20050204787A1 (en) | 2004-03-19 | 2005-09-22 | Nick Ernst | Hotel in-room safe automated control and communication system |
DE102005019170A1 (en) | 2005-04-25 | 2006-10-26 | C. Ed. Schulte Gmbh Zylinderschlossfabrik | A cylinder lock has the cylinder normally uncoupled to the locking bolt and a coded key by which the coupling is completed by means of data transfer through aerial coils behind the face of the lock |
-
2008
- 2008-09-22 DE DE102008037376A patent/DE102008037376A1/en not_active Withdrawn
-
2009
- 2009-08-25 EP EP09168547A patent/EP2169636B1/en not_active Revoked
- 2009-08-25 AT AT09168547T patent/ATE554467T1/en active
Also Published As
Publication number | Publication date |
---|---|
ATE554467T1 (en) | 2012-05-15 |
EP2169636A1 (en) | 2010-03-31 |
DE102008037376A1 (en) | 2010-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1023511B2 (en) | Closing device, in particular for motor vehicles | |
EP0993397B1 (en) | Keyless device for controlling access to automobiles and keyless method for checking access authorisation | |
EP1155207B1 (en) | Keyless access control system for motor vehicles as well as method for carrying out a keyless access authorisation control in motor vehicles | |
EP2169636B1 (en) | Lock, in particular lock cylinder with a device for communication with a transponder and communication device | |
DE19603320C2 (en) | Electronically programmable locking system with lock and key | |
DE10012637B4 (en) | Security system to enable the authenticated access of an individual to a protected area | |
DE19827586B4 (en) | Keyless access control device for motor vehicles and method for performing keyless conditional access control of motor vehicles | |
EP1479030B1 (en) | Switching device actuated with a transponder | |
EP3479362B1 (en) | Locking arrangement for a switchgear cabinet and a corresponding method | |
DE102005013102A1 (en) | Non-contact switch | |
DE10132031A1 (en) | Process for enabling authenticated access of an individual to a protected area and security system for carrying out the process | |
DE19745149C2 (en) | Locking system, in particular for motor vehicles | |
EP1013517A2 (en) | System and method for the transmission of data in a security device for a vehicle | |
DE10007500A1 (en) | Motor vehicle door lock system detects approach/contact by detecting transmitted electromagnetic wave reflections, changes in wave field, changes in antenna electrical capacitance | |
DE10163778B4 (en) | Handle with integrated antenna and sensor electrode | |
EP1363400B1 (en) | Safety switch | |
EP1108101B1 (en) | Access and start/drive authorization system for a motor vehicle | |
EP1025616A1 (en) | Antenna device especially for a car anti theft system | |
EP3640896B1 (en) | Vehicle door handle with near field communication electronics | |
WO2005006261A1 (en) | Electronic access control device and method for controlling access | |
DE19937915A1 (en) | Electronic key for remotely unlocking a motor vehicle has a power supply that can be interrupted to prevent transmission of an identification signal | |
DE19902983A1 (en) | Method and system for data transmission in a safety device of a motor vehicle | |
DE19859344A1 (en) | Control of a security system within a road vehicle using a number of directional signals transmitted by a unit carried by driver | |
DE10252025A1 (en) | Lock has interrogation head fixed to housing so as to only receive identification signals from transponders fixed to locking bar and holder if locking bar is in closed position and locked by holder | |
DE102009037168B4 (en) | Method and device for detecting the presence of an RFID tag or handset with an antenna |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
17P | Request for examination filed |
Effective date: 20100518 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: E05B 47/06 20060101ALI20111104BHEP Ipc: G07C 9/00 20060101AFI20111104BHEP |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 554467 Country of ref document: AT Kind code of ref document: T Effective date: 20120515 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502009003290 Country of ref document: DE Effective date: 20120614 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20120418 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20120418 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120418 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120718 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120418 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120418 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120418 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120418 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120818 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120820 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120418 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120418 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120719 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120418 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120418 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120418 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120418 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120418 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120418 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120418 |
|
26 | Opposition filed |
Opponent name: SIMONSVOSS TECHNOLOGIES AG Effective date: 20130118 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
BERE | Be: lapsed |
Owner name: CESTRONICS G.M.B.H. Effective date: 20120831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120418 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120831 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 502009003290 Country of ref document: DE Effective date: 20130118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120729 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20130430 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120831 |
|
PLAF | Information modified related to communication of a notice of opposition and request to file observations + time limit |
Free format text: ORIGINAL CODE: EPIDOSCOBS2 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120718 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120825 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120418 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20130825 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120418 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130831 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120825 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120418 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130825 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090825 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20140811 Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R064 Ref document number: 502009003290 Country of ref document: DE Ref country code: DE Ref legal event code: R103 Ref document number: 502009003290 Country of ref document: DE |
|
RDAF | Communication despatched that patent is revoked |
Free format text: ORIGINAL CODE: EPIDOSNREV1 |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
27W | Patent revoked |
Effective date: 20141208 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R107 Ref document number: 502009003290 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 554467 Country of ref document: AT Kind code of ref document: T Effective date: 20140825 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140825 |