EP2168211B1 - Speisenetzwerk für eine gruppenantenne - Google Patents
Speisenetzwerk für eine gruppenantenne Download PDFInfo
- Publication number
- EP2168211B1 EP2168211B1 EP08802623A EP08802623A EP2168211B1 EP 2168211 B1 EP2168211 B1 EP 2168211B1 EP 08802623 A EP08802623 A EP 08802623A EP 08802623 A EP08802623 A EP 08802623A EP 2168211 B1 EP2168211 B1 EP 2168211B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- radiator
- point
- group antenna
- antenna according
- feed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/0006—Particular feeding systems
Definitions
- the invention relates to a feed network for a group antenna according to the preamble of claim 1.
- a group antenna is understood to mean an antenna in which a plurality of radiators or radiator modules are arranged at an offset from one another in at least one column (or a row).
- a group antenna also generally called antenna array
- the individual emitters used may be, for example, dipoles and patch antennas. Simply polarized radiators or dual polarized radiators can be used, which can radiate and / or receive only in one frequency band or generally in several frequency bands.
- the present group antenna is preferably an antenna for the base station of a stationary mobile radio antenna.
- radiators in a group antenna must be fed with a defined relative phase angle.
- a linear array of radiator elements radiates perpendicular to the array, i. usually perpendicular to a reflector assembly to which the individual emitters are arranged with a corresponding offset.
- a steadily increasing phase difference of two adjacent radiators causes a beam swing.
- adjustable phase shifters the individual, for example, in the vertical direction superposed radiators corresponding signals with offset phase difference can be supplied, with the result that depending on the different predefinable phase difference, a different strong beam reduction (downtilt or downtilt angle) is adjustable. This principle is used above all in mobile radio antennas with a vertical arrangement of the radiators.
- the object of the present invention is to feed the emitters and / or groups of emitters with a definite phase in a group antenna (an antenna array), and this with an improved construction compared to the prior art.
- the invention proposes that the feed network for the at least two emitters comprehensive group antenna comprises at least two different types of coaxial cable, which propagates the signals allow different phase velocities.
- the desired phase positions can nevertheless be maintained accordingly in the case of the radiators fed thereon.
- the different length cable loops can thereby be shortened or avoided that correspondingly different coaxial cables are used with different phase velocities.
- a dielectric array antenna with an associated waveguide branching network is basically of the DE 40 35 793 A1 known. According to this prior publication, an antenna with particularly small antenna groups can be created with a minimized number of individual elements in the array. In this solution, which is completely unusual for conventional antenna technology, it is provided that a feed signal from a waveguide feed point is to be led via branched waveguide sections to individual waveguide outlet openings, to which the radiator elements can then be connected.
- a waveguide material is a metal such as brass, brass / gold alloy or a plastic, in which the waveguide walls are metallized.
- a waveguide block is assembled from two symmetrical metal blocks, which are provided with the integrated trained differently long waveguide channels.
- a coaxial cable with low phase velocity is used where the actual distance between a branch point and a feed point (at a respective radiator or a radiator group fed above it) is shorter than the distance between the branch point and a radiator group adjacent thereto or an adjacent radiator.
- a coaxial cable with low phase velocity is used in particular for the intended in the central region of the radiator arrangement emitter or radiator groups.
- feed point may be any suitable connection of a radiator to a coaxial cable, ie any connection point and / or connection point between the radiator and the coaxial feed cable.
- connection or connection point that is to say also a so-called feed input or a feed point
- connection, connection and / or feed point can be provided directly on dipole arms.
- adaptation elements such as capacitances, inductances, line sections with different characteristic impedances and lengths as well as a stub line are still used.
- the connection, connection and / or feed point can be provided in front of the aforementioned adaptation elements, ie at a distance in front of the actual radiator elements.
- Coax lines can also be used for resistance transformation and spur lines in distribution circuits.
- even in the further course of the feed coaxial cable may still be present, for example, are connected to a filter. In dual-band antennas, the signals of the other band are attenuated.
- this is at least one or more coaxial cable according to the invention (along which the phase of a wave propagates to the network further coaxial cables of different speeds) provided on the whole or on only a part of a connection or feed line, about which a radiator is fed from a distribution and / or sum circuit starting, that is, emitting signals emitted or received signals are received.
- At least three different coaxial cables with three different phase velocities are used, in particular if at least three radiators or radiator groups arranged offset to one another and jointly supplied are arranged with offset from one another.
- radiators or radiator groups which are fed with a predefinable or preselectable phase difference or subgroups to be fed with preselectable or predetermined phase difference, for example, by using several different coaxial cables with different phase velocities (ie different speeds, with the the phase of a wave propagates) a corresponding shortening of cable loops or even the avoidance of cable loops can be effected.
- many antennas are constructed symmetrically to a central radiator or a central radiator group, so that when using three radiators (or three radiator groups), only a second type of coaxial cable is necessary.
- a solution which is preferred in the sense of the invention can then be realized with three different coaxial cables (with different phase velocities).
- devices for phase adjustment and / or power distribution can also be provided in such inventively designed group antennas.
- group antennas according to the invention not only phase shifters in the network for an adjustable radiator pivoting, but also means for adjustable power distribution be provided.
- an inversion of a signal means a frequency-independent phase rotation of 180 °.
- the radiation of an inverted signal can be effected in a dipole, for example, by interchanging the feed points or by total rotation of the dipole by 180 °.
- the coaxial cables with a different phase velocity can be realized by any suitable means. It is possible, for example, the use of coaxial cable, which have a special structure of the inner conductor, whereby the phase velocity is changed. It is possible to use a helically arranged inner conductor, a corrugated inner conductor, etc.
- the different phase velocity in the coaxial cables can in principle also be changed by a special structure of the outer conductor, which can be, for example, corrugated, spirally corrugated, etc.
- FIG. 1 is a schematic side view of a group antenna (antenna array) shown in the prior art.
- a group antenna can be used, for example, for the base station of a mobile radio antenna.
- the array antenna comprises three radiators 3 or radiator arrangements arranged offset from one another (it may also be radiator modules, etc.).
- these emitters 3 are arranged in a mobile antenna at the same distance in the vertical direction offset from each other lying, usually in front of a reflector.
- the emitters 3 may be dipole emitters, patch emitters or other emitters. Simply polarized emitters or dual polarized emitters can be used.
- the antenna may, in principle, be constructed to radiate or receive in one or more frequency bands.
- a connection or feeding point 5 is provided for the network 7, wherein the network 7 has a connected via a line 6 to the connection or feed point 5 distribution and / or sum circuit 9, of the three lines 11 ', in particular three coaxial lines 11 are arranged between the distribution and / or sum circuit 9 and the respective feed input 13 on the radiator 3 .
- the three lines 11 ' ie in the embodiment shown, the three coaxial lines 11 are formed from the same coaxial cables 11.1, 11.2 and 11.3, which have an equal length.
- FIG. 2 for an otherwise comparable group antenna 1 while the leading to the upper and lower radiator 3.1 and 3.3 leading coaxial cable 11.1 and 11.3 is the same length and consists of a coaxial cable 11 same phase velocity, whereas now between the distribution and / or summing point 9 and the feed inlet 13 of the middle Spotlight 3 a different coaxial cable 11.2 is used, which has a lower phase velocity (ie a slower rate at which the phase of an electromagnetic wave propagates in the coaxial cable). Therefore, the in FIG. 1 According to the prior art provided cable loop 111 for the central coaxial cable 11.2 significantly shortened, for example by 10% to 90%, by 20% to 80%, by 30% to 70% or for example by 40% to 60%. In the illustrated embodiment, a shortening of about 50% is possible. In today often a high cabling density having antenna arrangements, in particular mobile radio antenna arrays, this is a significant advantage realized, in particular a space and cost reduction.
- the radiator may also comprise "internal coaxial cable lengths", in particular when provided adaptation elements (such as capacitance and inductance) and thus line sections with different characteristic impedances and lengths are also provided with regard to any stub line that may still be provided.
- the connection and / or connection and / or feeding point can also be offset relative to the actual radiator elements.
- feeder, connection and / or connection point is therefore meant in no way limited or limited connection point for a radiator.
- connection and / or feeding point 13 and the distribution and / or sum circuit 9 the coaxial cable in question with reduced phase velocity is not provided on the entire route be. It is sufficient if such a cable is possibly realized only on a partial length and cooperates with other Koaxialraitabitesen that allow the propagation of a phase with deviating phase velocity.
- the inventive principle is such that on a branch line starting from a distribution and / or sum circuit 9 (ie, a distribution and / or summing point 9) and the at least two connection, connection and / or supply points 13 (the may also be designed again in the manner of a branching, distribution and / or sum circuit to subsequent emitters) in one and / or at least other coaxial branch line different types and / or lengths of coaxial cables are used, optionally in different lengths, by a different phase velocity are characterized.
- a distribution and / or sum circuit 9 ie, a distribution and / or summing point 9
- the at least two connection, connection and / or supply points 13 the may also be designed again in the manner of a branching, distribution and / or sum circuit to subsequent emitters
- different types and / or lengths of coaxial cables are used, optionally in different lengths, by a different phase velocity are characterized.
- a coaxial cable type with a certain phase velocity is preferably used in a coaxial cable branch line at least on a partial section, and in the at least one further coaxial branch line at least on a partial section a coaxial cable type with a different phase velocity.
- connection and / or feed point 13 of a radiator or a radiator group is shorter than to the connection, connection and / or feed point 13 of a radiator or a Emitter group fed via the other coaxial branch line can be ensured by selecting a slow-phase coaxial cable type, so that the total cable length can be made shorter to avoid the cable loops necessary in the prior art.
- the middle coaxial cable 11.2 compared to the other two coaxial cables 11.1 and 11.3 is significantly shortened, all three emitters 3.1 to 3.3 are fed with the same phase.
- a power divider 109 is provided in the embodiment according to FIG. 3 .
- the power components for the individual emitters 3 can optionally also be set differently, if this appears necessary or expedient.
- a power divider 109 may also be provided at a different location.
- several power dividers may be provided at different locations. There are no restrictions in this respect.
- the embodiment according to FIG. 4 differs from that FIG. 1 only in that the lower third radiator 3.3 has been omitted.
- a coaxial cable 11.2 is also necessary here for the supply of the second radiator 3.2, which is laid with a cable loop 111, so that this coaxial cable 11.2 is the same length as the coaxial cable 11.1 (since both transmit cables with the same phase velocity).
- the antenna arrays 33.1 and 33.2 may also comprise more than just two radiators.
- From the aforementioned distribution and / or summation circuit 9 again go the three mentioned coaxial cables 11.1, 11.2 and 11.3 to the two subgroups 33.1 and 33.2, which at a group point 99.1 and 99.2 again corresponding to the number of belonging to a subgroup Radiating branch.
- the phase position between the distributor and / or sum circuit 9 and the feed inputs 13.1 to the two radiators 3.1 of the first group 33.1 as the inputs 13.2 and 13.3 in the sole radiator 33.3 of the third group 33.3 results from the corresponding cable length.
- the same cables are used with the same phase speeds.
- modified antenna array according to FIG. 7 proposed to use between the distribution and / or sum circuit 9 and the individual antenna groups associated subsequent distribution and / or sum circuits 99.1 and 99.2 coaxial cable with different phase velocity, wherein the coaxial cable 11.2 is one which is characterized by a lower phase velocity.
- the coaxial cable 11.2 has been selected such that the phase of an electromagnetic wave (signal) propagates in the coaxial cable 11.2 at such a speed that a cable loop 111 (FIG. FIG. 6 ) can be completely dispensed with.
- embodiments are also possible and sometimes useful in which at least a reduction and thus a reduction of the necessary according to the prior art cable loop is possible.
- the coaxial cable 11.3 is used over the entire length of the distribution and / or sum circuit 9 to the feed inlet 13.3 running continuously, and in this case has a preferred even lower phase velocity than the coaxial cable 11.2. It will also noted that between the branch point 9 and the feed points 13.2 of the radiator 3.2 of the second group thus two coaxial cables of different types are connected in series, namely the coaxial cable 11.2 with a lower phase velocity, which then at the branch point 99.2 in a downstream coaxial cable 11.2 'with the opposite larger Phase velocity passes, for example, corresponds to that type of coaxial cable 11.1, which leads to the radiators 3.1.
- the coaxial cables can also be provided with, for example, a lower phase velocity, only in a partial path between the distribution and / or summation circuit 9 and any connecting, connecting and / or feeding point 13, so that therefore coaxial cables which control the propagation of a phase allow with different phase velocity, in each case suitable lengths in series (in a row) are connected, that are electrically connected.
- connection, connection and / or supply points 13 can also be offset from the individual radiators 13.
- the further branching point or branching circuit 99.9 can also be understood as connecting, connecting and / or feeding point 13 for the following radiators 13.2.
- the coaxial cables with different phase velocities are drawn in stronger lines relative to the other coaxial cables with generally higher phase velocities. Also in this embodiment according to FIG.
- the coaxial cables with different phase velocities can also only be used on one leg, for example between the distributor and / or summation point 9 and a connection, connection and / or feed point 13 or a subsequent distribution and / or sum circuit 99.2 be provided, especially since this further branch point 99.2 ultimately turn a connection, connection and / or feed point 13 for represents the one or more subsequent radiator 13.
- Coaxial cables or different types of coaxial cable for example, can also be connected to each other alternately in a common transmission path on the mentioned sections or partial sections 11.2 and 11.3.
- a group antenna according to the prior art is shown, in this embodiment, in all subgroups (but this does not have to be so in all subgroups), the at least one further radiator is serially fed.
- the interconnections within the subgroups can be of any type, independent of the rest of the feed network. Possible, for example, stretched lines in which 360 'phase differences correspond to a distance of 0.7 wavelength in air.
- a phase shifter assembly 201 is further provided (namely, a differential phase shifter assembly), wherein the outermost lying (ie remote) emitter groups 33.1 and 33.5 are fed with the largest relative phase shift and the next adjacent groups 33.2 and 33.4 over the two further outputs in the double phase shifter assembly are fed with a lower relative phase offset (for construction and use of the operation of such a double phase shifter assembly reference is made to the pre-publication EP 1 208 614 B1 referred to and incorporated in the content of the present application).
- the middle radiator group 33.3 is usually fed without phase offset via the feed point 6 and the subsequent feed line 5.
- the double-phase shifter assembly 201 ultimately also represents the distributor and / or sum circuit 9 according to the other embodiments.
- the deviating antenna according to the invention according to FIG. 9 comprises the same radiator, radiator groups and basically a comparable structure for generating a comparable radiator diagram, but now in this embodiment, the central radiator group 33.3 for shortening the according to the prior art FIG. 8 having a mean loop 111 a coaxial cable 11.3 with lower phase velocity.
- the above and below adjacent thereto and fed to the two outputs of the double phase shifter module via coaxial cable 11.2 and 11.4 emitters of the second and fourth group are also fed via another coaxial cable with another deviating phase velocity, so that provided for these assemblies cable loops 111th ' according to FIG. 8 eliminated.
- Coaxial cable types are then selected for the individual coaxial cables 11.2 and 11.4 in such a way that the coaxial cables can be routed as much as possible while avoiding cable loops or cable loops of as small dimensions as possible.
- the coaxial cable type in question must be selected to be based on the predetermined optimum length has a correspondingly adapted phase velocity, in order to ensure the feeding of the following radiators with the corresponding defined phase position.
- the coaxial cables may have different dielectric constants to allow different phase velocities depending thereon.
- the coaxial cables can alternatively or additionally be provided with different inner conductor structures, for example, have an inner conductor in the manner of a helix and / or comprise inner conductors which are corrugated.
- the coaxial cables can still be provided with a different outer conductor structure, it also being possible for the outer conductor preferably to be corrugated and / or corrugated in a spiral manner.
- the coaxial cables can emit an inverted signal, a phase shift of 180 ° is possible.
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Waveguide Switches, Polarizers, And Phase Shifters (AREA)
Description
- Die Erfindung betrifft ein Speisenetzwerk für eine Gruppenantenne nach dem Oberbegriff des Anspruches 1.
- Unter einer Gruppenantenne versteht man bekanntermaßen eine Antenne, in der zumindest in einer Spalte (oder auch einer Reihe) mehrere Strahler oder Strahlermodule mit Versatz zueinander angeordnet sind. Eine derartige Gruppenantenne (auch allgemein Antennenarray genannt) kann zudem aber auch mehrere in Horizontal- und Vertikalrichtung versetzt liegende Strahler, d.h. Strahlerelemente oder Strahlereinrichtungen oder Strahlermodule umfassen. Im Mobilfunkbereich werden häufig beispielsweise einspaltige, zweispaltige oder mehrspaltige Antennenarrays angesetzt. Bei den einzelnen verwendeten Strahlern kann es sich dabei z.B. um Dipole und Patchantennen handeln. Es können einfach polarisierte Strahler oder dual polarisierte Strahler zum Einsatz gelangen, die nur in einem Frequenzband oder allgemein in mehreren Frequenzbändern strahlen und/oder empfangen können.
- Bei der vorliegenden Gruppenantenne (Antennenarray) handelt es sich bevorzugt um eine Antenne für die Basisstation einer stationären Mobilfunkantenne.
- In einer Gruppenantenne müssen bekanntermaßen alle Strahler mit einer definierten relativen Phasenlage gespeist werden. Bei einer gleichphasigen Speisung aller Strahler strahlt eine lineare Gruppe von Strahlerelementen senkrecht zur Anordnung, d.h. in der Regel senkrecht zu einer Reflektoranordnung, an welcher mit entsprechendem Versatz die einzelnen Strahler angeordnet sind. Eine stetig steigende Phasendifferenz zweier benachbarter Strahler bewirkt demgegenüber eine Strahlschwenkung. Unter Verwendung von einstellbaren Phasenschiebern können den einzelnen, beispielsweise in Vertikalrichtung übereinander angeordneten Strahlern entsprechende Signale mit versetzt zueinander liegender Phasendifferenz zugeführt werden, mit der Folge, dass in Abhängigkeit der unterschiedlich vorgebbaren Phasendifferenz eine unterschiedlich starke Strahlabsenkung (Downtilt oder Downtilt-Winkel) einstellbar ist. Dieses Prinzip wird vor allem bei Mobilfunkantennen mit einer vertikalen Anordnung der Strahler verwendet.
- Um Strahler mit einer gleichen Phase zu speisen gibt es verschiedene Ansätze.
- Grundsätzlich werden seit jeher zur phasengleichen Speisung von mehreren Strahlern Leitungen und insbesondere Koaxialkabel verwendet, die eine gleiche Leitungslänge (Koaxialkabellänge) von der zentralen Speisestelle (Verzweigungsstelle) zu allen Strahler aufweisen. Mit anderen Worten werden also die gleichlangen Speiseleitungen (Koaxialleitungen) von dem Verzweigungspunkt teilweise in Schlaufen verlegt, damit trotz des unterschiedlichen Abstandes zwischen dem Verzweigungspunkt und dem betreffenden Strahler stets die Signale mit gleicher Phasenlage oder gleicher relativer Phasenlage entsprechend dem eingestellten Downtilt-Winkel an den Strahlern anliegen.
- Sofern Umwegleitungen erforderlich sind, sind auch Leitungslängen verwendbar, die ein Vielfaches einer 360'-Phase aufweisen. Dadurch kann ebenfalls wieder absolute Phasengleichheit oder eine relative Phasendifferenz in Abhängigkeit einer beispielsweise über einen Phasenschieber eingestellten Phasendifferenz zur Einstellung eines bestimmten Downtilt-Winkels an der betreffenden Einspeisstelle der jeweiligen Strahler gewährleistet werden. Dies ist jedoch nur bei einer einzigen Frequenz möglich, so dass sich bei abweichenden Frequenzen Phasenfehler ergeben, die dann zu unerwünschten Diagrammverformungen führen. Dabei ist dieses Prinzip bei breitbandigen Antennen nicht oder nur sehr begrenzt einsetzbar.
- Falls Umwegleitungen erforderlich sind und der Strahler beispielsweise durch Umkehrung der Richtung der Speisung ein invertiertes Signal aussenden kann, kann man dies ausnutzen, um die Leitungslängen um 180° + n x 360° zu verkürzen, wobei n = 0, 1, 2 ....Bei einer Verkürzung von lediglich 180° ergeben sich die geringsten frequenzabhängigen Diagrammverformungen.
- Daneben gibt es auch Antennen, insbesondere auch für den Mobilfunkbereich, die aus sogenannten kolinearen Antennen bestehen (beispielsweise die Kathrein-Antenne Typ K 751 637). Mehrere Strahler werden von einem Ende einer starren, gestreckten Speiseleitung bei derartigen kolinearen Antennen seriell gespeist. Die Strahler befinden sich dabei an Positionen, wo die Phase entlang der Speiseleitung sich um jeweils 360° unterscheidet. Auch dadurch können alle versetzt zueinander liegenden Strahler mit gleicher Phasenlage gespeist werden. Wird eine Speiseleitung mit einem Dielektrikum bestehend aus Luft verwendet, befindet sich diese Position im Abstand von einer Wellenlänge (des zu übertragenden Frequenzbandes, vorzugsweise in der Mittenfrequenz des zu übertragenden Frequenzbandes). Ein solcher Strahlerabstand kann aber gegebenenfalls für die Anforderung an das Strahlungsdiagramm zu groß sein. Von daher wird die gestreckte, feste Speiseleitung teilweise oder ganz mit einem Dielektrikum gefüllt. Dies hat zur Folge, dass die beabstandeten Orte gleicher Phasenlage (die sich um jeweils 360° oder ein Vielfaches von 360° unterscheiden) damit näher zusammenrücken, weshalb auch der Abstand benachbarter Strahler-Positionen entsprechend verringert wird. Zudem lässt sich durch Hinzufügen bzw. Herausnehmen eines Dielektrikums eine Strahlschwenkung realisieren.
- Aufgabe der vorliegenden Erfindung ist es, bei einer Gruppenantenne (ein Antennenarray) die Strahler und/oder Gruppen von Strahlern mit einer definitiven Phase zu speisen, und dies mit einem gegenüber dem Stand der Technik verbesserten Aufbau.
- Die Aufgabe wird erfindungsgemäß entsprechend den im Anspruch 1 angegebenen Merkmalen gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.
- Ausgehend von dem Stand der Technik, bei dem die einzelnen Leitungen, insbesondere in Form von Koaxialkabeln, von einer Verteilstelle bis zu einer Einspeise- oder Verzweigungsstelle für die betreffenden Strahler oder Strahlerelemente oder Gruppen von Strahlern unabhängig von dem tatsächlichen Abstand von der Verteilstelle und Strahlerelement aus gleich langen Koaxialkabeln bestehen (mit der Folge, dass Umweg-Schlaufen auf einer entsprechenden Antenne verlegt werden müssen), wird erfindungsgemäß vorgeschlagen, dass das Speisenetzwerk für die zumindest zwei Strahler umfassende Gruppenantenne zumindest zwei verschiedene Typen von Koaxialkabeln umfasst, die eine Ausbreitung der Signale mit unterschiedlichen Phasengeschwindigkeiten zulassen.
- Dies bietet den wesentlichen Vorteil, dass zur Verkürzung von Umwegschleifen und gegebenenfalls sogar zur Vermeidung von Umwegschleifen in der Zuleitung eines entsprechenden Strahlers oder einer Untergruppe von Strahlern mindestens ein Abschnitt mit einem Koaxialkabel vorgesehen ist, welches eine Signalausbreitung mit einer niedrigeren Phasengeschwindigkeit bewirkt.
- Somit können durch Verwendung unterschiedlich langer Koaxialkabel gleichwohl die gewünschten Phasenlagen bei den hierüber gespeisten Strahlern entsprechend beibehalten werden. Dies gilt gleichermaßen für eine phasengleiche Speisung einer Gruppe oder von Untergruppen oder aber auch in jenem Fall, bei welchem einzelne Strahler oder Strahlergruppen mit einer definierten Phasenlage oder mit einer definierten Phasenlagendifferenz gespeist werden sollen und hier üblicherweise im Stand der Technik unterschiedlich lange Kabelschlaufen eingesetzt werden müssen. Auch hier können die unterschiedlich langen Kabelschlaufen dadurch verkürzt oder vermieden werden, dass entsprechend unterschiedliche Koaxialkabel mit unterschiedlichen Phasengeschwindigkeiten eingesetzt werden.
- Eine dielektrische Array-Antenne mit einem zugehörigen Verzweigungsnetz in Hohlleitertechnik ist grundsätzlich aus der
DE 40 35 793 A1 bekannt geworden. Gemäß dieser Vorveröffentlichung kann eine Antenne mit besonders kleinen Antennengruppen bei minimierter Einzelelementanzahl im Array geschaffen werden. Bei dieser für die übliche Antennentechnik völlig ungewöhnlichen Lösung ist vorgesehen, dass ein Speisesignal von einer Hohlleiterspeisestelle über verzweigte Hohlleiterabschnitte zu einzelnen Hohlleiter-Austrittsöffnungen geführt werden soll, an denen dann die Strahlerelemente angeschlossen werden können. - Als Hohlleitermaterial dient dabei ein Metall wie beispielsweise Messing, Messing/Goldlegierung oder ein Kunststoff, bei dem die Hohlleiterwandungen metallisiert sind. In der Praxis wird ein derartiger Hohlleiterblock aus zwei symmetrischen Metallblöcken zusammengefügt, die mit den integriert ausgebildeten unterschiedlich langen Hohlleiterkanälen versehen sind.
- Eine gleichphasige Ansteuerung der in dieser Vorveröffentlichung beschriebenen fünf Einzelstrahler erfolgt durch Aufteilung des Speisehohlleiters in der E-Ebene. Durch Variation der Hohlleiterbreite werden die Phasengeschwindigkeiten im Hohlleiter und damit die elektrisch wirksamen Längen der verwendeten Hohlleiter variiert.
- Dies betrifft aber eine völlig unterschiedliche Speziallösung. Denn Hohlleiter-Speisenetzwerke werden üblicherweise für Antennenanlagen oder Mobilfunkanlagen nicht benutzt, zumal die Hohlleiter bei den in Rede stehenden Frequenzbereichen viel zu groß wären, um eine noch vertretbare technische Umsetzung zu ermöglichen. Darüber hinaus erfordert die Realisierung einer Hohlleitertechnik mit einem Speisenetzwerk im Gegensatz zu Koaxialleitungen ein ausgesprochenes Spezialwissen, weshalb ein Fachmann auf dem Antennengebiet unter Verwendung von Koaxialkabeln keine Anregungen auf dem Gebiet der Hohlleitertechnik erwarten würde.
- Im Übrigen handelt es sich bei der Verwendung eines Metallblockes und der darin spezifisch ausgebildeten Hohlleiterkanäle um eine individuelle Lösung, die mit der Verlegung von Koaxialkabeln nicht ansatzweise vergleichbar ist. Ein Koaxialkabel kann problemlos in einer Antennenanlage über Kurven und Schleifen in der Regel in beliebiger Länge und über verschiedenste Ebenen geführt werden, ohne dass dies die Antennencharakteristik an sich verändern oder gar verschlechtern würde.
- In einer bevorzugten Ausführungsform der Erfindung ist ein Koaxialkabel mit niedriger Phasengeschwindigkeit dort eingesetzt, wo der tatsächliche Abstand zwischen einer Verzweigungsstelle und einer Einspeisstelle (an einem betreffenden Strahler oder einer darüber gespeisten Strahlergruppe) kürzer ist als der Abstand zwischen der Verzweigungsstelle und einer dazu benachbart liegenden Strahlergruppe oder einem benachbart liegenden Strahler. Insbesondere bei Verwendung von zumindest drei, längs einer Anbaurichtung versetzt zueinander liegenden Strahlern oder Strahlergruppen wird ein Koaxialkabel mit niedriger Phasengeschwindigkeit insbesondere für die im mittleren Bereich der Strahleranordnung vorgesehenen Strahler oder Strahlergruppen verwendet. Unter dem Begriff "Speisepunkt" kann jeder geeignete Anschluss eines Strahlers an einem Koaxialkabel gemeint sein, also eine beliebige Anschlussstelle und/oder Verbindungsstelle zwischen dem Strahler und koaxialem Speisekabel. Mit anderen Worten kann eine derartige Anschluss- oder Verbindungsstelle, also auch ein sogenannter Speiseeingang oder eine Speisestelle direkt an Dipolarmen vorgesehen sein. Üblicherweise werden aber noch Anpassungselemente wie Kapazitäten, Induktivitäten, Leitungsabschnitte mit verschiedenen Wellenwiderständen und -längen sowie auch eine Stichleitung verwendet. In diesem Falle kann die Anschluss-, Verbindungs- und/oder Speisestelle vor den vorstehend genannten Anpassungselementen, also im Abstand vor den eigentlichen Strahlerelementen vorgesehen sein. Auch bei Verteiler-Schaltungen können Koax-Leitungen zur Widerstandstransformation und Stichleitungen eingesetzt werden. Weiterhin können auch im weiteren Verlauf der Zuführung noch Koaxialkabel vorhanden sein, die z.B. zu einem Filter verschaltet sind. In Dual-Bandantennen werden damit die Signale des jeweils anderen Bandes gedämpft. Mit anderen Worten ist das zumindest eine oder sind die mehreren erfindungsgemäß vorgesehenen Koaxialkabel (längs denen sich die Phase einer Welle mit zum Netz vorgesehenen weiteren Koaxialkabeln unterschiedlicher Geschwindigkeit ausbreitet) auf der gesamten oder auf nur einem Teil einer Anschluss- oder Speisestrecke vorgesehen, worüber ein Strahler von einer Verteiler- und/oder Summenschaltung ausgehend gespeist wird, also Sendesignale abgestrahlt oder Empfangssignale empfangen werden.
- In einer besonders bevorzugten Ausführungsform werden zumindest drei unterschiedliche Koaxialkabel mit drei unterschiedlichen Phasengeschwindigkeiten eingesetzt, insbesondere dann, wenn zumindest drei versetzt zueinander angeordnete und gemeinsam gespeiste Strahler oder Strahlergruppen mit Versatz zueinander angeordnet sind.
- Bei Verwendung von drei oder mehreren Strahlern oder Strahlergruppen, die mit vorgebbarer oder vorwählbarer Phasendifferenz gespeist werden oder Untergruppen umfassen, die mit vorwählbarer oder vorgebbarer Phasendifferenz gespeist werden sollen, kann beispielsweise durch Verwendung von mehreren unterschiedlichen Koaxialkabeln mit unterschiedlichen Phasengeschwindigkeiten (also unterschiedlichen Geschwindigkeiten, mit der sich die Phase einer Welle ausbreitet) eine entsprechende Verkürzung von Kabel-schlaufen oder sogar die Vermeidung von Kabelschlaufen bewirkt werden. In der Praxis sind viele Antennen symmetrisch zu einem mittleren Strahler oder einer mittleren Strahlergruppe aufgebaut, so dass bei Verwendung von drei Strahlern (oder drei Strahlergruppen) nur ein zweiter Typ eines Koaxialkabels notwendig ist. Bei einem Netzwerk mit fünf Strahlern oder fünf Strahlergruppen lässt sich dann mit drei verschiedenen Koaxialkabeln (mit unterschiedlichen Phasengeschwindigkeiten) eine im Sinne der Erfindung bevorzugte Lösung realisieren.
- Gleichwohl können auch bei derartigen erfindungsgemäß gestalteten Gruppenantennen Einrichtungen zur Phasenverstellung und/oder Leistungsaufteilung vorgesehen sein. Insbesondere können auch bei den erfindungsgemäßen Gruppenantennen nicht nur Phasenverschieber im Netzwerk für eine einstellbare Strahlerschwenkung, sondern auch Mittel zur einstellbaren Leistungsaufteilung vorgesehen sein.
- Möglich ist natürlich in allen Fällen auch, dass eine Kabellänge um ein Vielfaches einer 360°-Phase verkürzt werden kann, da hierdurch eine Phasenlagenänderung nicht bewirkt wird. Die Verwendung von Kabellängen mit n x 360° ist allerdings nur exakt für eine einzige Frequenz völlig richtig. Bei abweichenden Frequenzen ergeben sich Änderungen der Phasenlage. Die Phasenänderungen sind proportional zur Frequenzabweichung und zur fehlenden Leitungslänge. Berücksichtig man, dass für viele Antennen heutzutage eine immer höhere Bandbreite gefordert wird, hätte dies zur Folge, dass deutliche Frequenz-Abweichungen vorhanden sind, die auch Phasenfehler beinhalten. Je nach dem, ob alle Phasenfehler in die gleiche Richtung gehen oder nicht, führen sie auch zu einer Strahlschwenkung und/oder z.B. zu einem höheren Nebenkeulen-Pegel. Die Anforderungen an das Strahlungsdiagramm zusammen mit der erwähnten geforderten Bandbreite bestimmen damit, ob Speisekabel verwendet werden können, bei denen die Phase eine zusätzliche oder vielfache zusätzliche 360°-Phasenlagenänderung erlaubt.
- Schließlich ist auch eine Kombination aus einer Invertierung eines abgestrahlten Signals mit einer Verkürzung einer Kabellänge um 180° + n x 360°-Phase möglich, wobei n = 0, 1, 2, ... beträgt. Eine "Invertierung" eines Signals (also das Aussenden eines invertierten Signals) bedeutet eine frequenzunabhängige Phasendrehung von 180°. Die Abstrahlung eines invertierten Signals kann bei einem Dipol beispielsweise durch Vertauschen der Speisepunkte oder durch Gesamtdrehung des Dipols um 180° bewirkt werden.
- Die Koaxialkabel mit einer unterschiedlichen Phasengeschwindigkeit können durch alle geeigneten Maßnahmen realisiert sein. Möglich ist beispielsweise die Verwendung von Koaxialkabel, die hierzu eine spezielle Struktur des Innenleiters aufweisen, wodurch die Phasengeschwindigkeit verändert wird. Möglich ist die Verwendung eines helixförmig angeordneten Innenleiters, eines gewellt verlaufenden Innenleiters, etc..
- Die unterschiedliche Phasengeschwindigkeit bei den Koaxialkabeln kann grundsätzlich auch durch eine spezielle Struktur des Außenleiters verändert werden, der beispielsweise gewellt, spiralförmig gewellt, etc. gestaltet sein kann.
- Die Erfindung wird nachfolgend anhand von Zeichnungen erläutert, teilweise auch unter Bezugnahme auf Lösungen, wie sie ansonsten bisher nach dem Stand der Technik notwendig waren. Dabei zeigen im Einzelnen:
- Figur 1 :
- eine schematische seitliche Darstellung einer Gruppenantenne mit drei beispielsweise bevorzugt im gleichen Abstand in Vertikalrichtung versetzt zueinander angeordneten Strahlern nach dem Stand der Technik;
- Figur 2 :
- eine Gruppenantenne vergleichbar nach Figur 1, bei der jedoch die erfindungsgemäße Speisung eines Strahlers über ein Koaxialkabel mit einer niedrigeren Phasengeschwindigkeit erfolgt, wodurch eine KabelSchlaufe gegenüber der nach dem Stand der
- Figur 3 :
- Technik bekannten Lösung nach
Figur 1 gekürzt ist; eine weitere Abwandlung gegenüberFigur 2 , bei der eine Kabel-Schlaufe bei dem Koaxialkabel zur Speisung des mittleren Strahlers völlig eliminiert ist; - Figur 4 :
- eine schematische seitliche Darstellung einer Gruppenantenne mit zwei versetzt zueinander angeordneten Strahlern oder Strahlergruppen nach dem Stand der Technik, wobei alle Strahler mit gleicher Koaxialkabellänge gespeist werden;
- Figur 5 :
- eine entsprechende erfindungsgemäße Lösung in Abweichung zu
Figur 4 , bei der die nach dem Stand der Technik vorgesehene KabelSchlaufe des einen Strahlers völlig eliminiert ist; - Figur 6 :
- eine Gruppenantenne mit einem Verteilnetzwerk mit Bildung von Untergruppen nach dem Stand der Technik, die mit unterschiedlicher Phasenlage durch Verwendung unterschiedlich langer Koaxialkabel zwischen Verteilpunkt und der Einspeisestelle der Strahler angespeist werden;
- Figur 7 :
- eine erfindungsgemäße Gruppenantenne vergleichbar jener nach
Figur 6 , jedoch unter Verwendung von verschiedenen Koaxialkabeln mit unterschiedlichen Phasengeschwindig- keiten; - Figur 8 :
- eine Gruppenantenne mit einem Verteilnetzwerk unter Bildung von Untergruppen nach dem Stand der Technik, wobei innerhalb der Untergruppen die Strahler seriell gespeist sind, und zwar nach dem Stand der Technik; und
- Figur 9 :
- eine erfindungsgemäße Gruppenantenne vergleichbar jener nach
Figur 8 , bei der die inFigur 8 nach dem Stand der Technik vorgesehenen Kabel-Schlaufen nicht nur reduziert, sondern sogar entfallen sind. - In
Figur 1 ist in schematischer Seitenansicht eine Gruppenantenne (Antennenarray) nach dem Stand der Technik gezeigt. Eine deartige Gruppenantenne kann beispielsweise für die Basisstation einer Mobilfunkantenne eingesetzt werden. - Im gezeigten Ausführungsbeispiel umfasst die Gruppenantenne drei versetzt zueinander liegende Strahler 3 oder Strahleranordnungen (es kann sich auch um Strahlermodule etc. handeln). Üblicherweise sind diese Strahler 3 bei einer Mobilfunkantenne im gleichen Abstand in Vertikalrichtung versetzt zueinander liegend angeordnet, üblicherweise vor einem Reflektor. Bei den Strahlern 3 kann es sich dabei um Dipolstrahler, Patchstrahler oder sonstige Strahler handeln. Es können einfach polarisierte Strahler oder dualpolarisierte Strahler verwendet werden. Die Antenne kann grundsätzlich so aufgebaut sein, dass sie in einem oder mehreren Frequenzbändern strahlt oder empfängt.
- Im gezeigten Ausführungsbeispiel ist nur eine Grundvariante wiedergegeben, beispielsweise für eine Polarisation (für eine weitere Polarisation wird eine entsprechende Speisung über ein paralleles zweites Netzwerk erfolgen, wobei die beiden Polarisationen über einen Kombiner zusammengeführt sein können. Für Strahler in einem weiteren Frequenzband können ebenfalls separate Strahler mit einem in der Regel separaten Netzwerk vorgesehen sein).
- Im gezeigten Ausführungsbeispiel ist eine Anschluss- oder Speisestelle 5 für das Netzwerk 7 vorgesehen, wobei das Netzwerk 7 eine über eine Leitung 6 mit der Anschluss- oder Speisestelle 5 verbundene Verteiler- und/oder Summenschaltung 9 aufweist, von der drei Leitungen 11', insbesondere drei Koaxialleitungen 11 zwischen der Verteiler- und/oder Summenschaltung 9 und dem jeweiligen Speiseeingang 13 am Strahler 3 angeordnet sind..
- Um eine phasengleiche Speisung aller Strahler 3 zu gewährleisten, sind die drei Leitungen 11', also im gezeigten Ausführungsbeispiel die drei Koaxialleitungen 11 aus gleichen Koaxialkabeln 11.1, 11.2 und 11.3 gebildet, die eine gleiche Länge aufweisen.
- Bei dem erfindungsgemäßen Ausführungsbeispiel nach
Figur 2 für eine ansonsten vergleichbare Gruppenantenne 1 ist zwar das zum oberen und unteren Strahler 3.1 und 3.3 führende Koaxialkabel 11.1 und 11.3 gleich lang und besteht aus einem Koaxialkabel 11 gleicher Phasengeschwindigkeit, wohingegen nunmehr zwischen dem Verteiler- und/oder Summenpunkt 9 und dem Speiseeingang 13 des mittleren Strahlers 3 ein davon abweichendes Koaxialkabel 11.2 verwendet wird, welches eine niedrigere Phasengeschwindigkeit (also eine niedrigere Geschwindigkeit, mit der sich die Phase einer elektromagnetischen Welle im Koaxialkabel ausbreitet) zulässt. Von daher ist nunmehr die inFigur 1 nach dem Stand der Technik vorgesehene Kabelschlaufe 111 für das mittlere Koaxialkabel 11.2 deutlich verkürzt, beispielsweise um 10% bis 90%, um 20% bis 80%, um 30% bis 70% oder beispielsweise um 40% bis 60%. Im gezeigten Ausführungsbeispiel wird eine Verkürzung um etwa 50% ermöglicht. Bei den heute häufig eine hohe Verkabelungsdichte aufweisenden Antennenanordnungen, insbesondere Mobilfunkantennenanordnungen, wird dadurch ein deutlicher Vorteil realisiert, insbesondere eine Bauraum- und Kostenreduzierung. - Im gezeigten Ausführungsbeispiel gemäß
Figur 2 wird von einem Speiseeingang oder einer Speisestelle 13 gesprochen, die theoretisch bei einem Dipolstrahler direkt an den innenliegenden Enden zweier Dipolarme liegen kann. Der Strahler kann aber auch noch "interne Koaxialkabellängen" umfassen, insbesondere dann, wenn vorgesehene Anpassungselemente (wie Kapazität und Induktivität) und somit Leitungsabschnitte mit verschiedenen Wellenwiderständen und -längen auch im Hinblick auf eine eventuell noch vorgesehene Stichleitung vorgesehen sind. Mit anderen Worten kann die Anschluss- und/oder Verbindungs- und/oder Speisestelle zu den eigentlichen Strahlerelementen auch versetzt liegen. Unter Speise-, Anschluss- und/oder Verbindungsstelle ist von daher eine in keiner Weise eingeschränkte oder beschränkte Anschlussstelle für einen Strahler gemeint. Zudem muss von dieser Anschluss-, Verbindungs- und/oder Speisestelle 13 und der Verteiler- und/oder Summenschaltung 9 das in Rede stehende Koaxialkabel mit verringerter Phasengeschwindigkeit nicht auf der gesamten Strecke vorgesehen sein. Ausreichend ist, wenn ein derartiges Kabel gegebenenfalls nur auf einer Teillänge realisiert ist und mit weiteren Koaxialkabelabschnitten zusammenwirkt, die die Ausbreitung einer Phase mit davon abweichender Phasengeschwindigkeit erlauben. - Mit anderen Worten ist das erfindungsgemäße Prinzip derart, dass auf einer Verzweigungsleitung ausgehend von einer Verteiler- und/oder Summenschaltung 9 (also einem Verteiler- und/oder Summenpunkt 9) und den zumindest beiden Anschluss-, Verbindungs- und/oder Speisestellen 13 (die auch wieder nach Art einer Verzweigungs-, Verteiler- und/oder Summenschaltung zu nachfolgenden Strahlern gestaltet sein können) in der einen und/oder der zumindest anderen koaxialen Verzweigungsleitung verschiedene Typen und/oder Längen von Koaxialkabeln verwendet werden, gegebenenfalls in unterschiedlicher Länge, die durch eine unterschiedliche Phasengeschwindigkeit gekennzeichnet sind. Die Verwendung des betreffenden Koaxialkabel-Typs mit einer betreffenden unterschiedlichen Phasengeschwindigkeit zu einem anderen Koaxialkabel-Typ und die entsprechende Länge wird stets so abgestimmt, dass an einer Anschluss-, Verbindungs- und/oder Speisestelle 13 für einen und mehrere nachfolgende Strahler eine gewünschte und bestimmte (definierte) Phasenlage erzeugt wird, und dies bevorzugt bei möglichst kurzen Kabellängen zur Vermeidung von Kabelschlaufen. Von daher wird bevorzugt in einer koaxialen Kabelverzweigungsleitung zumindest auf einer Teilstrecke ein Koaxialkabel-Typ mit einer bestimmten Phasengeschwindigkeit eingesetzt, und in der zumindest einen weiteren Koaxialverzweigungsleitung zumindest auf einer Teilstrecke ein Koaxialkabel-Typ mit demgegenüber unterschiedlicher Phasengeschwindigkeit. Insbesondere dort, wo der räumliche Abstand zwischen einer Verteiler- und/oder Summenschaltung 9 und einer Anschluss-, Verbindungs- und/oder Speisestelle 13 eines Strahlers oder einer Strahlergruppe kürzer ist als zur Anschluss-, Verbindungs- und/oder Speisestelle 13 eines Strahlers oder einer Strahlergruppe, die über die andere koaxiale Verzweigungsleitung gespeist wird, kann durch Auswahl eines Koaxialkabel-Typs mit langsamer Phasengeschwindigkeit sichergestellt werden, dass die gesamte Kabellänge kürzer gewählt werden kann, um die im Stand der Technik notwendigen Kabelschlaufen zu vermeiden.
- Bei dem Ausführungsbeispiel nach
Figur 3 ist für das Koaxialkabel 11.2 eine Ausführungsform verwendet worden, bei welcher das Koaxialkabel 11.2 eine noch niedrigere Phasengeschwindigkeit zulässt, so dass hier eine Leitung und ein Speisekabel 11.2 verwendet werden kann, das ohne jede Kabelschlaufe 111 auskommt. - Obgleich auch bei diesem Ausführungsbeispiel das mittlere Koaxialkabel 11.2 gegenüber den beiden anderen Koaxialkabeln 11.1 und 11.3 deutlich verkürzt ist, werden alle drei Strahler 3.1 bis 3.3 mit gleicher Phasenlage gespeist.
- Bei dem Ausführungsbeispiel gemäß
Figur 3 ist an der Verteiler- und/oder Summenschaltung 9 auch noch ein Leistungsteiler 109 vorgesehen. Dadurch soll nur angedeutet werden, dass hierüber beispielsweise die Leistungsanteile für die einzelnen Strahler 3 gegebenenfalls auch unterschiedlich eingestellt werden können, falls dies notwendig oder sinnvoll erscheint. Abweichend vom gezeigten Ausführungsbeispiel kann ein Leistungsteiler 109 aber auch an einer anderen Stelle vorgesehen sein. Zudem können auch im gesamten Netzwerk mehrere Leistungsteiler an verschiedenen Stellen vorgesehen sein. Einschränkungen bestehen insoweit nicht. - Das Ausführungsbeispiel gemäß
Figur 4 unterscheidet sich von jenem nachFigur 1 nur dadurch, dass der untere dritte Strahler 3.3 weggelassen wurde. Gleichwohl ist auch hier für die Speisung des zweiten Strahlers 3.2 ein Koaxialkabel 11.2 notwendig, das mit einer Kabelschlaufe 111 verlegt ist, damit dieses Koaxialkabel 11.2 gleich lang ist wie das Koaxialkabel 11.1 (da beide Kabel mit der gleichen Phasengeschwindigkeit übertragen). - Bei der demgegenüber erfindungsgemäßen Ausgestaltung gemäß
Figur 5 wird ein gegenüber dem Koaxialkabel 11.1 abweichendes Koaxialkabel 11.2 eingesetzt, welches eine deutlich niedrigere Phasengeschwindigkeit aufweist. Dadurch kann eine Kabelschlaufe 111, wie bei der Lösung nach dem Stand der Technik gemäßFigur 4 , vermieden werden. - Bei dem Ausführungsbeispiel gemäß
Figur 6 handelt es sich um eine Ausführungsform mit einem Verteilnetzwerk 7 unter Bildung von Untergruppen 33.1, 33.2 und 33.3, wobei die Untergruppen 33.1 und 33.2 beispielsweise zwei Strahler 3.1 bzw. 3.2 und die dritte Untergruppe 33.3 nur einen Strahler 3.3 umfasst. Abweichend von der gezeigten Darstellung gemäßFigur 6 können die Antennengruppen 33.1 und 33.2 auch mehr als nur zwei Strahler umfassen. Von der erwähnten Verteiler- und/oder Summenschaltung 9 gehen wiederum die drei erwähnten Koaxialkabel 11.1, 11.2 und 11.3 zu den beiden Untergruppen 33.1 und 33.2 aus, die sich an einem Gruppenpunkt 99.1 und 99.2 nochmals entsprechend der Anzahl der zu einer Untergruppe gehörender Strahler verzweigen. - Die Phasenlage zwischen der Verteiler- und/oder Summenschaltung 9 und den Speiseeingängen 13.1 an den beiden Strahlern 3.1 der ersten Gruppe 33.1 wie den Eingängen 13.2 bzw. 13.3 bei dem alleinigen Strahler 33.3 der dritten Gruppe 33.3 ergibt sich durch die entsprechende Kabellänge. Verwendet werden dabei gleiche Kabel mit gleichen Phasengeschwindigkeiten.
- Demgegenüber wird bei der nach der Erfindung abgewandelten Antennengruppe gemäß
Figur 7 vorgeschlagen, zwischen der Verteiler- und/oder Summenschaltung 9 und den den einzelnen Antennengruppen zugeordneten nachfolgenden Verteiler- und/oder Summenschaltungen 99.1 und 99.2 Koaxialkabel mit unterschiedlicher Phasengeschwindigkeit zu verwenden, wobei das Koaxialkabel 11.2 eines ist, welches durch eine niedrigere Phasengeschwindigkeit gekennzeichnet ist. Im gezeigten Ausführungsbeispiel ist das Koaxialkabel 11.2 so gewählt worden, dass sich die Phase einer elektromagnetischen Welle (Signal) in dem Koaxialkabel 11.2 mit einer solchen Geschwindigkeit ausbreitet, dass auf eine Kabel- schlaufe 111 (Figur 6 ) völlig verzichtet werden kann. Dafür sind auch Ausführungsformen möglich und manchmal sinnvoll, bei denen zumindest eine Verkürzung und damit eine Verkleinerung der gemäß Stand der Technik notwendigen Kabelschlaufe möglich ist. - Das Koaxialkabel 11.3 wird auf der gesamten Länge von der Verteiler- und/oder Summenschaltung 9 bis zum Speiseeingang 13.3 durchgängig verlaufend eingesetzt, und weist dabei eine bevorzugt nochmals niedrigere Phasengeschwindigkeit als das Koaxialkabel 11.2 auf. Dabei wird auch angemerkt, dass zwischen dem Verzweigungspunkt 9 und den Einspeisestellen 13.2 der Strahler 3.2 der zweiten Gruppe somit zwei Koaxialkabel unterschiedlichen Typs hintereinander geschalten sind, nämlich das Koaxialkabel 11.2 mit einer niedrigeren Phasengeschwindigkeit, welches dann an der Verzweigungsstelle 99.2 in ein nachgeschaltetes Koaxialkabel 11.2' mit demgegenüber größerer Phasengeschwindigkeit übergeht, das beispielsweise jenem Typ von Koaxialkabel 11.1 entspricht, das zu den Strahlern 3.1 führt. Wie bereits erwähnt können die Koaxialkabel mit beispielsweise geringerer Phasengeschwindigkeit auch lediglich in einer Teilstrecke zwischen der Verteiler- und/oder Summenschaltung 9 und einer beliebigen Anschluss-, Verbindungs- und/ oder Speisestelle 13 vorgesehen sein, so dass also Koaxialkabel, die die Ausbreitung einer Phase mit unterschiedlicher Phasengeschwindigkeit erlauben, in jeweils geeigneten Längen in Serie (hintereinander) geschaltet sind, also elektrisch verbunden sind.
- Wie bereits erwähnt wurde, können die Anschluss-, Verbindungs- und/oder Speisestellen 13 auch zu den einzelnen Strahlern 13 versetzt liegen. So kann beispielsweise auch die weitere Verzweigungsstelle oder Verzweigungsschaltung 99.9 als Anschluss-, Verbindungs- und/oder Speisestelle 13 für die nachfolgenden Strahler 13.2 verstanden werden. Auch in dem Ausführungsbeispiel gemäß
Figur 7 sind die Koaxialkabel mit abweichenden Phasengeschwindigkeiten in stärkeren Linien im Verhältnis zu den anderen Koaxialkabeln mit in der Regel höheren Phasengeschwindigkeiten eingezeichnet. Auch in diesem Ausführungsbeispiel gemäßFigur 7 können die Koaxialkabel mit abweichenden Phasengeschwindigkeiten ebenfalls nur auf einer Teilstrecke beispielsweise zwischen dem Verteiler- und/oder Summenpunkt 9 und einer Anschluss-, Verbindungs- und/oder Speisestelle 13 bzw. einer nachfolgenden Verteiler- und/oder Summenschaltung 99.2 vorgesehen sein, zumal diese weitere Verzweigungsstelle 99.2 letztlich wiederum eine Anschluss-, Verbindungs- und/oder Speisestelle 13 für den einen oder die mehreren nachfolgenden Strahler 13 darstellt. Auf den erwähnten Strecken oder Teilstrecken 11.2 und 11.3 können beispielsweise auch Koaxialkabel oder unterschiedliche Koaxialkabel-Typen mehrfach ineinander abwechselnd zu einem gemeinsamen Übertragungsweg verschaltet sein. - Bei dem Ausführungsbeispiel gemäß
Figur 8 ist wiederum eine Gruppenantenne nach dem Stand der Technik gezeigt, wobei in diesem Ausführungsbeispiel bei allen Untergruppen (allerdings muss dies nicht bei allen Untergruppen so sein) der zumindest eine weitere Strahler seriell gespeist wird. Die Verbindungsleitungen innerhalb der Untergruppen können von einem beliebigen Typ sein, unabhängig vom restlichen Speisenetzwerk. Möglich sind z.B. gestreckte Leitungen, bei denen 360'-Phasenunterschiede einer Distanz von 0,7 Wellenlänge in Luft entsprechen. Dabei ist in diesem Ausführungsbeispiel ferner eine Phasenschieberbaugruppe 201 vorgesehen (nämlich eine Differenzphasenschieber-Baugruppe), wobei die zuäußerst liegenden (also entferntest liegenden) Strahlergruppen 33.1 und 33.5 mit der größten relativen Phasenverschiebung gespeist werden und die dabei benachbart näher zueinander liegenden Gruppen 33.2 und 33.4 über die beiden weiteren Ausgänge in der Doppelphasenschieberbaugruppe mit geringerem relativen Phasenversatz gespeist werden (bezüglich des Aufbaus und der Verwendung der Funktionsweise einer derartigen Doppelphasenschieberbaugruppe wird auf die VorveröffentlichungEP 1 208 614 B1 verwiesen und zum Inhalt der vorliegenden Anmeldung gemacht). - Die mittlere Strahlergruppe 33.3 wird üblicherweise ohne Phasenversatz über die Speisestelle 6 und die nachfolgende Speiseleitung 5 gespeist. Mit anderen Worten stellt letztlich die Doppelphasenschieber-Baugruppe 201 gleichzeitig auch die Verteiler- und/oder Summenschaltung 9 entsprechend den anderen Ausführungsbeispielen dar.
- Die dazu abweichende erfindungsgemäße Antennengruppe gemäß
Figur 9 umfasst die gleichen Strahler, Strahlergruppen und grundsätzlich einen vergleichbaren Aufbau zur Erzeugung eines vergleichbaren Strahlerdiagrammes, wobei nunmehr allerdings bei dieser Ausführungsform die mittlere Strahlergruppe 33.3 zur Verkürzung der nach dem Stand der Technik gemäßFigur 8 vorgesehenen mittleren Schlaufe 111 ein Koaxialkabel 11.3 mit niedrigerer Phasengeschwindigkeit aufweist. Die oberhalb und unterhalb dazu angrenzenden und mit den beiden Ausgängen der Doppelphasenschieber-Baugruppe über Koaxialkabel 11.2 und 11.4 gespeisten Strahler der zweiten und vierten Gruppe sind ebenfalls über ein weiteres Koaxialkabel mit einer nochmals abweichen Phasengeschwindigkeit gespeist, so dass auch die für diese Baugruppen vorgesehenen Kabelschlaufen 111' gemäßFigur 8 wegfallen. - Für die einzelnen Koaxialkabel 11.2 und 11.4 werden dann Koaxialkabel-Typen so gewählt, dass die Koaxialkabel möglichst unter Vermeidung von Kabelschlaufen oder nur möglichst kleindimensionierten Kabelschlaufen verlegt werden können. Mit anderen Worten muss der betreffende Koaxialkabel-Typ so ausgewählt werden, dass er bezogen auf die vorgebbare optimale Länge eine entsprechend darauf abgestimmte Phasengeschwindigkeit aufweist, um die Speisung der nachfolgenden Strahler mit der entsprechenden definierten Phasenlage zu gewährleisten.
- Um Koaxialkabel mit unterschiedlichen Phasengeschwindigkeiten bereit zu stellen, können alle hierfür geeigneten und grundsätzlich möglichen Maßnahmen Anwendung finden. So können beispielsweise die Koaxialkabel unterschiedliche Dielektrizitätskonstanten aufweisen, um in Abhängigkeit davon unterschiedliche Phasengeschwindigkeiten zuzulassen. Die Koaxialkabel können aber auch alternativ oder ergänzend mit unterschiedlichen Innenleiter-Strukturen versehen sein, beispielsweise einen Innenleiter nach Art einer Helix aufweisen und/oder Innenleiter umfassen, die gewellt sind. Schließlich können alternativ oder ergänzend die Koaxialkabel noch mit einer unterschiedlichen Außenleiter-Struktur versehen sein, wobei auch der Außenleiter bevorzugt gewellt und/oder spiralförmig gewellt sein kann.
- Weitere technische Maßnahmen zur Veränderung der Phasengeschwindigkeit sind möglich.
- Schließlich wird angemerkt, dass die erwähnten Koaxialkabel 11 mit einem unterschiedlichen Phasenversatz verlängert oder verkürzt sein können, und zwar um n x 360°, wobei n = 1, 2, ... ist.
- Sofern die Koaxialkabel ein invertiertes Signal aussenden können, ist eine Phasendrehung um 180° möglich. Derartige Kabel können um einen entsprechenden Phasenversatz verlängert oder verkürzt werden, und zwar um 180° + n x 360° , wobei auch hier n = 1, 2, ... ist.
Claims (14)
- Gruppenantenne mit zumindest zwei versetzt zueinander angeordneten Strahlern (3), und mit einem zur Speisung der Strahler (3) vorgesehenen Netzwerk (7), welches Koaxialkabel (11.1, 11.2, ...) umfasst, die zwischen einer Verteiler- und/oder Summenschaltung (9) und den Anschluss, Verbindungs- und/oder Speisestellen (13) der betreffenden Strahler (3) verlaufen, dadurch gekennzeichnet, dass das Netzwerk (7) zumindest zwei verschiedene Typen von Koaxialkabeln (11.1, 11.2, ...) umfasst, die durch unterschiedliche Phasengeschwindigkeit gekennzeichnet sind.
- Gruppenantenne nach Anspruch 1, dadurch gekennzeichnet, dass das zumindest eine Koaxialkabel (11.2, 11.3,...) mit niedriger Phasengeschwindigkeit gegenüber dem zumindest einen weiteren Koaxialkabel (11.1) auf der gesamten Länge zwischen einer Verteiler- und/oder Summenschaltung (9) und der Anschluss-, Verbindungs- und/oder Speisestelle (13) eines zugehörigen Strahlers (3) oder einer zugehörigen Strahlergruppe (3.1, 3.2, 3.3 ...) vorgesehen ist.
- Gruppenantenne nach Anspruch 1, dadurch gekennzeichnetn dass das zumindest eine Koaxialkabel (11.2, 11.3,...) mit niedriger Phasengeschwindigkeit gegenüber dem zumindest einen weiteren Koaxialkabel (11.1) lediglich auf einer Teillänge zwischen einer Verteiler- und/oder Summenschaltung (9) und der Anschluss-, Verbindungs- und/oder Speisestelle (13) eines zugehörigen Strahlers (3) oder einer zugehörigen Strahlergruppe (3.1, 3.2, 3.3 ...) vorgesehen ist.
- Gruppenantenne nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Anschluss-, Verbindungs- und/oder Speisestelle (13; 13.2, 13.3, 13.4, ...) zumindest eines Strahlers (3.2, 3.3, 3.4, ...) und/oder eine Verteiler- und/oder Summenschaltung (99.1, 99.2,) zumindest einer Strahlergruppe (33.2, 33.3, 33.4, ...) in einem geringeren Abstand zu einer speiseleitungsseitigen zugehörigen Verteiler- und/oder Summenschaltung (9) liegt, und dass diese Anschluss-, Verbindungs- und/oder Speisestelle (13; 13.2, 13.3, 13.4, ...) mit einem Koaxialkabel (11) mit niedrigerer Phasengeschwindigkeit zumindest auf einer Teilstrecke mit der Speiseleitung (5) verbunden ist, als zumindest eine weitere, demgegenüber entfernter liegende Anschluss-, Verbindungs- und/oder Speisestelle (13) zumindest eines weiteren Strahlers (3.1, 3.5, ...) oder einer weiteren Verteiler- und/oder Summenschaltung (99.1, 99.2).
- Gruppenantenne nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Koaxialkabel (11) eine gegenüber anderen Koaxialkabeln (11) niedrigere Phasengeschwindigkeit derart aufweisen, dass die darüber gespeisten Strahler (3) und/oder Strahlergruppen (33) unter Vermeidung einer Kabelschlaufe (111, 111') gespeist sind.
- Gruppenantenne nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass zumindest zwei und vorzugsweise zumindest drei Strahler (3) oder Strahlergruppen (33) mit unterschiedlicher Phasenlage gespeist sind, und dass zumindest ein oder vorzugsweise zwei Koaxialkabel (11.2, 11.3) zur Speisung des zumindest einen weiteren Strahlers (3.2) oder der zumindest einen weiteren Strahlergruppe (33.2) zur Verkürzung der Gesamtkabellänge zwischen der Verteiler- und/oder Summenschaltung (9) und der Anschluss, Verbindungs- und/oder Speisestelle (13) zumindest auf einer Teillänge ein Koaxialkabel (11) mit niedriger Phasengeschwindigkeit umfasst.
- Gruppenantenne nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Koaxialkabel (11) mit unterschiedlicher Phasengeschwindigkeit unterschiedliche Dielektrizitätskonstanten aufweisen.
- Gruppenantenne nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Koaxialkabel (11) mit unterschiedlicher Phasengeschwindigkeit unterschiedliche Innenleiter-Strukturen umfassen, insbesondere einen Innenleiter der nach Art einer Helix geformt und/oder gewellt ist.
- Gruppenantenne nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Koaxialkabel (11) mit unterschiedlicher Phasengeschwindigkeit unterschiedliche Außenleiter-Strukturen umfassen, wobei der Außenleiter bevorzugt gewellt und/oder spiralförmig gewellt ist.
- Gruppenantenne nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Netzwerk ferner Phasenschieber (302) zur einstellbaren Strahlschwenkung umfasst.
- Gruppenantenne nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass das Netzwerk ferner Mittel zur einstellbaren Leistungsaufteilung (109) umfasst.
- Gruppenantenne nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die Koaxialkabel (11) mit unterschiedlicher Phasengeschwindigkeit verlängert oder verkürzt sind, und zwar um n x 360°, wobei n = 1, 2, ...
- Gruppenantenne nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die Koaxialkabel (11), insbesondere bei Empfang und/oder Aussendung eines invertierten Signals, mit einer Phasendrehung von 180° mit unterschiedlicher Phasengeschwindigkeit verlängert oder verkürzt sind, und zwar um 180° + n x 360°, wobei n = 1, 2, ... .
- Gruppenantenne nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass das Netzwerk (7) mehrere Verzweigungsstellen (9, 99) in Form von Verteiler- und/oder Summenschaltungen (9, 99) umfasst, wobei die weitere Verzweigungsschaltung (99) eine Anschluss-, Verbindungs- und/oder Speisestelle (13) bildet.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102007047741A DE102007047741B4 (de) | 2007-10-05 | 2007-10-05 | Mobilfunk-Gruppenantenne |
PCT/EP2008/008159 WO2009046886A1 (de) | 2007-10-05 | 2008-09-25 | Speisenetzwerk für eine gruppenantenne |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2168211A1 EP2168211A1 (de) | 2010-03-31 |
EP2168211B1 true EP2168211B1 (de) | 2011-12-07 |
Family
ID=40339873
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08802623A Not-in-force EP2168211B1 (de) | 2007-10-05 | 2008-09-25 | Speisenetzwerk für eine gruppenantenne |
Country Status (7)
Country | Link |
---|---|
US (1) | US9531083B2 (de) |
EP (1) | EP2168211B1 (de) |
CN (1) | CN101816101B (de) |
AT (1) | ATE536646T1 (de) |
DE (1) | DE102007047741B4 (de) |
IN (1) | IN2010KN00858A (de) |
WO (1) | WO2009046886A1 (de) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103337711B (zh) * | 2013-05-31 | 2015-08-19 | 中科院杭州射频识别技术研发中心 | 基于光子晶体的超高频近场rfid读写器天线 |
US10439290B2 (en) | 2015-07-14 | 2019-10-08 | At&T Intellectual Property I, L.P. | Apparatus and methods for wireless communications |
US10511346B2 (en) | 2015-07-14 | 2019-12-17 | At&T Intellectual Property I, L.P. | Apparatus and methods for inducing electromagnetic waves on an uninsulated conductor |
US10320586B2 (en) | 2015-07-14 | 2019-06-11 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium |
US9628116B2 (en) | 2015-07-14 | 2017-04-18 | At&T Intellectual Property I, L.P. | Apparatus and methods for transmitting wireless signals |
US10033108B2 (en) | 2015-07-14 | 2018-07-24 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference |
US10129057B2 (en) | 2015-07-14 | 2018-11-13 | At&T Intellectual Property I, L.P. | Apparatus and methods for inducing electromagnetic waves on a cable |
US10033107B2 (en) | 2015-07-14 | 2018-07-24 | At&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
US10341142B2 (en) | 2015-07-14 | 2019-07-02 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor |
US10205655B2 (en) | 2015-07-14 | 2019-02-12 | At&T Intellectual Property I, L.P. | Apparatus and methods for communicating utilizing an antenna array and multiple communication paths |
US9722318B2 (en) * | 2015-07-14 | 2017-08-01 | At&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
US10790593B2 (en) | 2015-07-14 | 2020-09-29 | At&T Intellectual Property I, L.P. | Method and apparatus including an antenna comprising a lens and a body coupled to a feedline having a structure that reduces reflections of electromagnetic waves |
US10148016B2 (en) | 2015-07-14 | 2018-12-04 | At&T Intellectual Property I, L.P. | Apparatus and methods for communicating utilizing an antenna array |
US10170840B2 (en) | 2015-07-14 | 2019-01-01 | At&T Intellectual Property I, L.P. | Apparatus and methods for sending or receiving electromagnetic signals |
WO2017029898A1 (ja) * | 2015-08-20 | 2017-02-23 | 古野電気株式会社 | アレイアンテナ |
US10381750B2 (en) * | 2017-08-17 | 2019-08-13 | Lg Electronics Inc. | Electronic device |
FR3089539B1 (fr) * | 2018-12-10 | 2021-04-09 | Continental Automotive France | Poignée de portière avec des moyens de réduction d’un rayonnement en communication ultra haute fréquence |
WO2024114879A1 (en) * | 2022-11-28 | 2024-06-06 | Telefonaktiebolaget Lm Ericsson (Publ) | Multiband array antenna and multilayer phase shifter |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3277481A (en) * | 1964-02-26 | 1966-10-04 | Hazeltine Research Inc | Antenna beam stabilizer |
US3996592A (en) * | 1965-02-04 | 1976-12-07 | Orion Industries, Inc. | Antenna with rotatable sensitivity pattern |
US3701157A (en) * | 1971-06-03 | 1972-10-24 | Us Air Force | Helicopter uhf antenna system for satellite communications |
US4758685A (en) * | 1986-11-24 | 1988-07-19 | Flexco Microwave, Inc. | Flexible coaxial cable and method of making same |
DE4035793A1 (de) * | 1990-11-10 | 1992-05-14 | Telefunken Systemtechnik | Dielektrische array-antenne |
US5187329A (en) * | 1991-06-28 | 1993-02-16 | At&T Bell Laboratories | Twisted pairs of insulated metallic conductors for transmitting high frequency signals |
EP0582013B1 (de) | 1991-07-09 | 1999-05-12 | Flexco Microwave, Inc. | Herstellungsverfahren eines biegsamen Koaxialkabels und resultierendes Kabel |
JP3316561B2 (ja) * | 1998-07-06 | 2002-08-19 | 株式会社村田製作所 | アレーアンテナ装置および無線装置 |
DE19938862C1 (de) * | 1999-08-17 | 2001-03-15 | Kathrein Werke Kg | Hochfrequenz-Phasenschieberbaugruppe |
US6268828B1 (en) * | 2000-01-11 | 2001-07-31 | Metawave Communications Corporation | Cylindrical antenna coherent feed system and method |
KR20090126300A (ko) * | 2000-07-10 | 2009-12-08 | 앤드류 엘엘씨 | 셀룰러 안테나 |
AUPR196300A0 (en) * | 2000-12-08 | 2001-01-04 | Alcatel | Phase shifter |
US6720934B1 (en) * | 2001-01-25 | 2004-04-13 | Skywire Broadband, Inc. | Parallel fed collinear dipole array antenna |
US6573875B2 (en) * | 2001-02-19 | 2003-06-03 | Andrew Corporation | Antenna system |
DE10150150B4 (de) * | 2001-10-11 | 2006-10-05 | Kathrein-Werke Kg | Dualpolarisiertes Antennenarray |
US6693241B2 (en) * | 2002-04-24 | 2004-02-17 | Andrew Corporation | Low-cost, high performance, moisture-blocking, coaxial cable and manufacturing method |
US7358922B2 (en) * | 2002-12-13 | 2008-04-15 | Commscope, Inc. Of North Carolina | Directed dipole antenna |
US6924776B2 (en) | 2003-07-03 | 2005-08-02 | Andrew Corporation | Wideband dual polarized base station antenna offering optimized horizontal beam radiation patterns and variable vertical beam tilt |
US6806845B2 (en) * | 2003-01-14 | 2004-10-19 | Honeywell Federal Manufacturing & Technologies, Llc | Time-delayed directional beam phased array antenna |
US7034748B2 (en) | 2003-12-17 | 2006-04-25 | Microsoft Corporation | Low-cost, steerable, phased array antenna with controllable high permittivity phase shifters |
US6992632B1 (en) * | 2004-03-09 | 2006-01-31 | Itt Manufacturing Enterprises, Inc. | Low profile polarization-diverse herringbone phased array |
-
2007
- 2007-10-05 DE DE102007047741A patent/DE102007047741B4/de not_active Expired - Fee Related
-
2008
- 2008-09-25 CN CN200880109846.1A patent/CN101816101B/zh active Active
- 2008-09-25 AT AT08802623T patent/ATE536646T1/de active
- 2008-09-25 IN IN858KON2010 patent/IN2010KN00858A/en unknown
- 2008-09-25 EP EP08802623A patent/EP2168211B1/de not_active Not-in-force
- 2008-09-25 US US12/681,678 patent/US9531083B2/en active Active
- 2008-09-25 WO PCT/EP2008/008159 patent/WO2009046886A1/de active Application Filing
Also Published As
Publication number | Publication date |
---|---|
DE102007047741A1 (de) | 2009-04-09 |
WO2009046886A1 (de) | 2009-04-16 |
DE102007047741B4 (de) | 2010-05-12 |
IN2010KN00858A (de) | 2015-08-28 |
CN101816101B (zh) | 2016-08-10 |
US9531083B2 (en) | 2016-12-27 |
CN101816101A (zh) | 2010-08-25 |
EP2168211A1 (de) | 2010-03-31 |
ATE536646T1 (de) | 2011-12-15 |
US20120098726A1 (en) | 2012-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2168211B1 (de) | Speisenetzwerk für eine gruppenantenne | |
EP1327287B1 (de) | Dualpolarisiertes antennenarray | |
EP1532716B1 (de) | Kalibriereinrichtung für ein antennen-array und verfahren zu dessen kalibrierung | |
DE102008023030B4 (de) | Radarantennenanordnung | |
EP1208614B1 (de) | Hochfrequenz-phasenschieberbaugruppe | |
DE60022630T2 (de) | Zweitfrequenzantenne, mehrfrequenzantenne, zwei- oder mehrfrequenzantennengruppe | |
EP2929589B1 (de) | Dualpolarisierte, omnidirektionale antenne | |
DE60315520T2 (de) | Antennenkontrolleinheit und phasengesteuerte Gruppenantenne | |
EP1530816B9 (de) | Kalibriervorrichtung für ein umschaltbares antennen-array sowie ein zugehöriges betriebsverfahren | |
EP0829922B1 (de) | Phasengesteuerte Antenne | |
WO2001069714A1 (de) | Dualpolarisierte dipolgruppenantenne | |
DE102013012305A1 (de) | Breitband-Antennenarray | |
EP3533110B1 (de) | Dual polarisierter hornstrahler | |
DE102018120612A1 (de) | Multibandantennenanordnung für Mobilfunkanwendungen | |
DE3524503A1 (de) | Ebene mikrowellenantenne | |
DE60031838T2 (de) | Gruppenantenne für mehrere frequenzen | |
DE10336072B4 (de) | Antennenanordnung | |
DE3915048C2 (de) | ||
DE102010051094A1 (de) | Gruppenantenne mit frequenzabhängiger Richtwirkung | |
DE10120533B4 (de) | Gruppenantenne mit einer Anzahl von Resonanz-Strahlerelementen | |
DE102017112441B4 (de) | Beamforming-Struktur, Antennenanordnung mit einer Beamforming-Struktur sowie Sende- und/oder Empfangsvorrichtung mit einer Beamforming-Struktur | |
DE4201933C2 (de) | Strahlergruppenantenne | |
DE3545639C1 (en) | Transmitter operating at at least two frequencies - uses single VHF antenna array with different polar diagrams | |
EP0227005B1 (de) | Sendeeinrichtung für mindestens zwei auf unterschiedlichen Sendefrequenzen und mit unterschiedlichen Strahlungsdiagrammen abstrahlende Hochfrequenzsender | |
DE102015013060B4 (de) | Antennenspeisenetzwerk |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20100211 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502008005804 Country of ref document: DE Effective date: 20120209 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20111207 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111207 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20111207 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111207 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111207 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111207 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120308 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111207 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111207 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111207 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111207 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120407 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111207 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111207 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120409 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111207 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111207 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111207 |
|
26N | No opposition filed |
Effective date: 20120910 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111207 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502008005804 Country of ref document: DE Effective date: 20120910 |
|
BERE | Be: lapsed |
Owner name: KATHREIN-WERKE K.G. Effective date: 20120930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120318 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120930 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120930 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111207 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111207 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120925 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080925 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 536646 Country of ref document: AT Kind code of ref document: T Effective date: 20130925 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130925 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20150922 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20160925 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160925 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20180703 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502008005804 Country of ref document: DE Representative=s name: FLACH BAUER & PARTNER PATENTANWAELTE MBB, DE Ref country code: DE Ref legal event code: R082 Ref document number: 502008005804 Country of ref document: DE Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502008005804 Country of ref document: DE Owner name: ERICSSON AB, SE Free format text: FORMER OWNER: KATHREIN-WERKE KG, 83022 ROSENHEIM, DE Ref country code: DE Ref legal event code: R081 Ref document number: 502008005804 Country of ref document: DE Owner name: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL), SE Free format text: FORMER OWNER: KATHREIN-WERKE KG, 83022 ROSENHEIM, DE Ref country code: DE Ref legal event code: R082 Ref document number: 502008005804 Country of ref document: DE Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE Ref country code: DE Ref legal event code: R081 Ref document number: 502008005804 Country of ref document: DE Owner name: KATHREIN SE, DE Free format text: FORMER OWNER: KATHREIN-WERKE KG, 83022 ROSENHEIM, DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180930 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502008005804 Country of ref document: DE Owner name: ERICSSON AB, SE Free format text: FORMER OWNER: KATHREIN SE, 83022 ROSENHEIM, DE Ref country code: DE Ref legal event code: R082 Ref document number: 502008005804 Country of ref document: DE Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE Ref country code: DE Ref legal event code: R081 Ref document number: 502008005804 Country of ref document: DE Owner name: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL), SE Free format text: FORMER OWNER: KATHREIN SE, 83022 ROSENHEIM, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502008005804 Country of ref document: DE Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE Ref country code: DE Ref legal event code: R081 Ref document number: 502008005804 Country of ref document: DE Owner name: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL), SE Free format text: FORMER OWNER: ERICSSON AB, STOCKHOLM, SE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FI Payment date: 20200929 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20200929 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: FI Ref legal event code: PCE Owner name: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL) |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20211126 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: FI Ref legal event code: MAE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210925 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210926 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502008005804 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230401 |