EP2167097A2 - Metallkomplexe in biologisch abbaubaren nanoteilchen und ihre verwendung - Google Patents

Metallkomplexe in biologisch abbaubaren nanoteilchen und ihre verwendung

Info

Publication number
EP2167097A2
EP2167097A2 EP08756405A EP08756405A EP2167097A2 EP 2167097 A2 EP2167097 A2 EP 2167097A2 EP 08756405 A EP08756405 A EP 08756405A EP 08756405 A EP08756405 A EP 08756405A EP 2167097 A2 EP2167097 A2 EP 2167097A2
Authority
EP
European Patent Office
Prior art keywords
group
silver
poly
complex
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP08756405A
Other languages
English (en)
French (fr)
Other versions
EP2167097A4 (de
EP2167097B1 (de
Inventor
Wiley J. Youngs
Khadijah Hindi
Douglas A. Medvetz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Akron
Original Assignee
University of Akron
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Akron filed Critical University of Akron
Publication of EP2167097A2 publication Critical patent/EP2167097A2/de
Publication of EP2167097A4 publication Critical patent/EP2167097A4/de
Application granted granted Critical
Publication of EP2167097B1 publication Critical patent/EP2167097B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/28Compounds containing heavy metals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/555Heterocyclic compounds containing heavy metals, e.g. hemin, hematin, melarsoprol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the invention relates to metal complexes which may be used in treating cancer.
  • the invention relates to silver metal complexes that are incorporated within biodegradable materials, such as nanoparticles, and are used in treating cancer.
  • Silver has long been used for its antimicrobial properties. This usage predates the scientific or medical understanding of its mechanism. For example, the ancient Greeks and Romans used silver coins to maintain the purity of water. Today silver is still used for this same purpose by NASA on its space shuttles. Treatment of a variety of medical conditions using silver nitrate was implemented before 1800. A 1% silver nitrate solution is still widely used today after delivery in infants to prevent gonorrheal ophthalmia. Since at least the later part of the nineteenth century, silver has been applied in a variety of different forms to treat and prevent numerous types of bacteria related afflictions.
  • Paclitaxel IUPAC name ⁇ -(benzoylamino)- ⁇ -hydroxy-,6,12b-bis (acetyloxy)-12- (benzoyloxy)-2a,3,4,4a,5,6,9,10,l l,12,12a,12b-dodecahydro-4,l l-dihydroxy-4a,8,13,13- tetramethyl-5-oxo-7,l l-methano-lH-cyclodeca(3,4)benz(l,2-b)oxet-9-ylester,(2aR-(2a- ⁇ ,4- ⁇ ,4a- ⁇ ,6- ⁇ ,9- ⁇ ( ⁇ -R*, ⁇ -S*),l l- ⁇ ,12- ⁇ ,12a- ⁇ ,2b- ⁇ ))-benzenepropanoic acid), into PLGA nanoparticles for drug delivery.
  • Paclitaxel IUPAC name ⁇ -(benzoylamino)- ⁇ -hydroxy-,6,12b
  • PEGP poly(di(ethyl glycinato) phosphazene)
  • PEAP poly(di(ethyl alaninato) phosphazene)
  • one aspect of the invention is to provide a compound for treating cancer, the compound comprising a metal complex having predetermined characteristics, and which may be incorporated into a polymeric nanoparticle or other delivery system for delivering the metal complex for action on tumor cells.
  • the metal complex is a silver(I) salt, a silver(I) macrocyclic metal complex, a silver(I) N- heterocyclic carbene or mixtures thereof.
  • the silver(I) macrocyclic metal complex is: wherein each R is independently selected from the group consisting of a proton, an alkyl, an ether, an alcohol, a carboxylic acid, an aryl, an amino acid, a peptide, or null, wherein X 1 , X 2 and X 3 are independently either sulfur or nitrogen, and when X 1 , X 2 or X 3 is sulfur then R is null, wherein the macrocyclic ligand comprised of carbon, R 1-3 , and X 1-3 , represents L, wherein Y is selected from the group consisting of NO 3 , OAc, SCN, BF 4 , OTf, SO 4 , Cl, Br,
  • R 1 and R 2 are selected from the group consisting of a halide, a proton, an alkyl, an ether, an alcohol, a nitro, a cyano, and a carboxylic acid
  • R 3 and R 4 are selected from the group consisting of a proton, an alkyl, an ether, an alcohol, a carboxylic acid, an aryl, an amino acid, and a peptide
  • X is selected from the group consisting of NO 3 , OAc, SCN, BF 4 , OTf, SO 4 , Cl, Br, and I.
  • R 1 and R 2 are selected from the group consisting of a halide, a proton, an alkyl, an ether, an alcohol, a nitro, a cyano, and a carboxylic acid
  • R 3 and R 4 are selected from the group consisting of a proton, an alkyl, an ether, an alcohol, a carboxylic acid, an aryl, an amino acid, and a peptide
  • X is selected from the group consisting of NO 3 , OAc, SCN, BF 4 , OTf, SO 4 , Cl, Br, and I.
  • R 1-4 can are selected from the group consisting of a proton, an alkyl, an ether, an alcohol, a carboxylic acid, an aryl, an amino acid, and a peptide, and wherein X is selected from the group consisting of NO 3 , OAc, SCN, BF 4 , OTf, SO 4 , Cl, Br, and I.
  • a method of treating cancerous cells in a mammal includes the steps of: administering an effective amount of a silver(I) metal salt incorporated into a biodegradable polymeric nanoparticle.
  • a method of treating cancerous cells in a mammal includes the steps of: administering an effective amount of a macrocyclic silver(I) complex, the macrocyclic complex comprising:
  • each R is independently selected from the group consisting of a proton, an alkyl, an ether, an alcohol, a carboxylic acid, an aryl, an amino acid, a peptide, or null, wherein X 1 , X 2 and X 3 are independently either sulfur or nitrogen, and when X 1 , X 2 or X 3 is sulfur then R is null, wherein the macrocyclic ligand comprised of carbon, R 1-3 , and X 1-3 , represents L, wherein Y is selected from the group consisting of NO 3 , OAc, SCN, BF 4 , OTf, SO 4 , Cl, Br, and I, or may represent L, and wherein Y represents L, then the counter anion is selected from the group consisting of NO 3 " , OAc “ , SCN “ , BF 4 “ , OTf “ , SO 4 " , Cl “ , Br “ , and I “ .
  • a method of treating cancerous cells in a mammal includes the steps of: administering an effective amount of a N-heterocyclic silver(I) complex, the N- heterocyclic complex comprising:
  • R 1 and R 2 are selected from the group consisting of a halide, a proton, an alkyl, an ether, an alcohol, a nitro, a cyano, and a carboxylic acid
  • R 3 and R 4 are selected from the group consisting of a proton, an alkyl, an ether, an alcohol, a carboxylic acid, an aryl, an amino acid, and a peptide
  • X is selected from the group consisting of NO 3 , OAc, SCN, BF 4 , OTf, SO 4 , Cl, Br, and I.
  • a method of treating cancerous cells in a mammal includes the steps of: administering an effective amount of a N-heterocyclic silver(I) complex, the N- heterocyclic complex comprising:
  • R 1 and R 2 are selected from the group consisting of a halide, a proton, an alkyl, an ether, an alcohol, a nitro, a cyano, and a carboxylic acid
  • R 3 and R 4 are selected from the group consisting of a proton, an alkyl, an ether, an alcohol, a carboxylic acid, an aryl, an amino acid, and a peptide
  • X is selected from the group consisting of NO 3 , OAc, SCN, BF 4 , OTf, SO 4 , Cl, Br, and I.
  • a method of treating cancerous cells in a mammal includes the steps of: administering an effective amount of a N-heterocyclic silver(I) complex, the N- heterocyclic complex comprising:
  • R 1-4 can are selected from the group consisting of a proton, an alkyl, an ether, an alcohol, a carboxylic acid, an aryl, an amino acid, and a peptide, and wherein X is selected from the group consisting of NO 3 , OAc, SCN, BF 4 , OTf, SO 4 , Cl, Br, and I.
  • a method of treating cancerous cells in a mammal includes the steps of: administering an effective amount of a N-heterocyclic silver(I) complex, the N- heterocyclic complex comprising: wherein R 1-4 can are selected from the group consisting of a proton, an alkyl, an ether, an alcohol, a carboxylic acid, an aryl, an amino acid, and a peptide, and wherein X is selected from the group consisting of NO 3 , OAc, SCN, BF 4 , OTf, SO 4 , Cl, Br, and I.
  • FIG. 1 shows a graph of the activity of compounds in the treatment of the ovarian cancer cell line NuTu- 19;
  • FIG. 2 shows a chart comparing anti-proliferative effects of formula 23, cisplatin and carboplatin on A375 melanoma;
  • FIG. 3 shows a graph measuring the percent control growth of formula 23, cisplatin and carboplatin on A375 melanoma at various concentrations;
  • FIG. 4 shows a chart comparing anti-proliferative effects of formula 23, cisplatin and carboplatin on ACHN renal carcinoma;
  • FIG. 5 shows a graph measuring the percent control growth of formula 23, cisplatin and carboplatin on ACHN renal carcinoma at various concentrations;
  • FIG. 6 shows a chart comparing anti-proliferative effects of formula 23, cisplatin and carboplatin on HT 1376 colon carcinoma
  • FIG. 7 shows a graph measuring the percent control growth of formula 23, cisplatin and carboplatin on HT1376 colon carcinoma at various concentrations.
  • metal compounds including metal complexes
  • biodegradable nanoparticles such as for use in the treatment of cancer
  • the present invention comprises, but is not limited to silver(I) metal complexes as simple salts, silver(I) macrocyclic metal complexes, and silver(I) N-heterocyclic carbenes (NHCs) incorporated within biodegradable nanoparticles for the treatment of cancer.
  • N-heterocyclic carbenes N-heterocyclic carbenes
  • Nanoparticles may generally vary in size from 10 nm to 1000 nm. These sub-micron sized particles possess certain distinct advantages over microparticles.
  • Nanoparticles including nanospheres, unlike microspheres, can be used to directly target the tissues via systemic circulation or across the mucosal membrane. This targeting is possible as a result of the capacity of these nanoparticles to be endocytosed by individual cells. It has also been observed that nanoparticles administered intravenously are taken up by cells of mononuclear phagocyte system, mainly in the Kuppfer cells. Such nanoparticles are rapidly cleared from the blood and are usually concentrated in the liver, spleen and blood marrow.
  • the therapeutic agent is dissolved, encapsulated, entrapped or chemically conjugated to the nanoparticle matrix depending on the method of fabrication of the device.
  • the drug is physically and uniformly incorporated and dispersed within a nanosphere matrix.
  • the drug formulated in such a polymeric device is released by diffusion through the polymeric matrix, erosion of the polymeric matrix or by a combination of diffusion and polymer erosion mechanisms.
  • biodegradable, polymeric nanoparticles including poly(glycolic acid) (PGA), poly(lactic acid) (PLA), and poly(lactic-co-glycolic acid) (PLGA) are used.
  • nanoparticles were investigated primarily for the delivery of simple drug molecules.
  • nanoparticles have attracted considerable attention as potential drug delivery devices in view of their applications in the controlled release of drugs, as carriers of DNA in gene therapy, their ability to target particular organs and tissues and in their ability to encapsulate and delivery peptides, proteins and genes through a peroral route of administration.
  • the methods used to prepare nanoparticles can be broadly classified into two: (1) dispersion of the preformed polymers, and (2) polymerization of monomers, however; several different variations of each of the above methods have been attempted to optimize the product formulation.
  • Some of the more common variations of the first method that have been used to prepare nanoparticles include (a) solvent evaporation method, (b) spontaneous emulsification/solvent diffusion method and salting out/emulsification-diffusion method.
  • a common theme observed in these cases is an attempt to remove the organic solvent in a controlled manner thereby bringing about the precipitation of the polymeric particles.
  • the encapsulation of the drug is carried out by dissolving the drug in the organic phase containing the polymer or an inner aqueous phase depending on the relative hydrophilicity and solubility of the drug.
  • the polymer In case of polymeric nanoparticles prepared by polymerization of monomers, the polymer usually has a lower solubility in the polymerization medium compared to the monomer. This results in the precipitation of the polymer with an increase in the molecular weight of the polymer.
  • a control over the particle size is achieved by altering parameters such as rate of mechanical stirring, type and concentration of surfactant and/or stabilizer used, pH of the polymerization medium, etc.
  • the drug can be encapsulated within the nanoparticles either during the polymerization process or post-polymerization.
  • One group of nanoparticles includes polyphosphazenes [PR 2 N] n .
  • Polyphosphazenes are versatile polymers because they can be functionalized with a large variety of R groups by simply displacing the chlorides of the parent [PCl 2 N] n polymer.
  • the water sensitivity of the polyphosphazene can be varied from water-stable to water- sensitive by the choice of the substituent. In general, most R groups that are bound to the phosphazene backbone via a P-N bond are water sensitive and those that are bound via a P-O bond are water stable.
  • the compounds useful for the treatment of cancer include silver(I) salts that are incorporated within the biodegradable nanomeric polymers including PLA, PGA, and PLGA are generally represented by formula 1 or by formula 2:
  • X is represented by NO 3 , OAc, SCN, BF 4 , OTf, or SO 4 and wherein Y is represented by Li, Na, or K and X is represented by Cl, Br, or I.
  • each R can vary independently and can be a hydrogen atom, an alkyl such as but not limited to a methyl, an ether such as but not limited to methyl ethyl ether, an alcohol such as but not limited to ethanol, a carboxylic acid such as but not limited to acetic acid, an aryl such as but not limited to benzene, an amino acid such as but not limited to serine or threonine, or a peptide such as but not limited to luetinizing hormone.
  • R groups can be modified in order to increase the overall solubility of the complexes.
  • N-heterocyclic carbenes that will be used to bind to Ag(I) are represented by but not limited to formulas 7-8:
  • R 1-2 can be independently or non-independently represented by a halide, a proton, an alkyl, an ether, an alcohol, a nitro, a cyano, or a carboxylic acid
  • R 3 _ 4 can be independently or non-independently represented by a hydrogen atom, an alkyl such as but not limited to a methyl, an ether such as but not limited to methyl ethyl ether, an alcohol such as but not limited to ethanol, a carboxylic acid such as but not limited to acetic acid, an aryl such as but not limited to benzene, an amino acid such as but not limited to serine or threonine, or a peptide such as but not limited to luetinizing hormone
  • X can be represented by NO 3 , OAc, SCN, BF 4 , OTf, SO 4 , PF 6 , BPh 4 , Cl, Br, and I.
  • R 1-4 can vary independently and can be a hydrogen atom, an alkyl such as but not limited to a methyl, an ether such as but not limited to methyl ethyl ether, an alcohol such as but not limited to ethanol, a carboxylic acid such as but not limited to acetic acid, an aryl such as but not limited to benzene, an amino acid such as but not limited to serine or threonine, or a peptide such as but not limited to luetinizing hormone, and wherein X can be represented by NO 3 , OAc, SCN, BF 4 , OTf, SO 4 , PF 6 , BPh 4 , Cl, Br, and I.
  • R groups can be modified for solubility purposes.
  • preparations of the nanoparticles involves the use of large amounts of water combined with a small amount of an organic solvent, it is understood that the silver(I) metal complexes incorporated within the nanoparticles will form in the organic portion of the mixture in the case of some nanoparticles and in the hydrophobic core of the nanoparticles in the case of other nanoparticles. Therefore, the selected silver(I) metal complexes will need to be hydrophobic.
  • the silver(I) N-heterocyclic carbenes as shown in formulas 9-13, have been prepared having hydrophobic substituent groups.
  • the silver(I) N- heterocyclic carbenes as shown in formulas 14 and 15, are further examples wherein R 1 -R 4 represent the same or different hydrophobic alkyl and aryl substituent groups.
  • Formulas 16-21 are further examples of hydrophobic silver(I) N-heterocyclic carbenes.
  • a silver(I) complex as represented in formula 23 has been tested for preliminary anticancer activity against the ovarian cancer cell line NuTu- 19.
  • Silver complex 23 was chosen because of its overall stability. This silver(I)-NHC has shown anticancer activity when tested for a period of 72 hours.
  • R The functional groups, R, as seen in formula 27 serve to alter solubility properties of the complexes.
  • the R group is an alcohol. Suitable alcohols include ethanol and propanol.
  • n has a value between 1 and 200.
  • Formulas 24-27 were found to almost immediately decompose in water at ambient temperature in light. It was also observed that formulas 24-27 exhibited poor stability in a physiological amount of sodium chloride. Decomposition of formulas 23-26 resulted in an active silver and imidazolium cation. Formulas 24 and 26 were shown to produce severe toxicity in rat models via IV tail injection.
  • the method of treatment can be but is not limited to intravenous injection, intraperitoneal injection, inhalation, or oral ingestion.
  • the drug can be dissolved in a suitable solvent.
  • the choice solvent is typically a physiological saline solution. This solution can range from 0.5 to 1.0% sodium chloride in water because at this concentration the saline solution is of biological significance as it is isotonic with blood plasma.
  • Another suitable solvent is dimethyl sulfoxide (DMSO).
  • DMSO dimethyl sulfoxide
  • Other biologically acceptable solvents are also acceptable.
  • the inhalation method will involve nebulization of the drug, as the drug will be inhaled as an aerosol.
  • the oral ingestion method includes ingestion of the drug as a pill, capsule, caplet or tablet.
  • Formulation of the silver(I) metal complexes as a nanoparticle delivery system confers various clinical advantages.
  • the formulation promotes slow leaching of the parent silver(I) metal complexes and active silver cation, thus providing a depot delivery of active drug.
  • This slow-release effect allows for increased dosing intervals and increased patient compliance.
  • these particles can be taken up by alveolar macrophages and delivered to the systemic circulation. Previous studies have shown that aggregate particles in the size range of 1- 5 ⁇ m can be phagocytized by macrophages, which subsequently migrate from the lung surface to the lymphatic system.
  • the lymphatic system is intimately connected to the immune system as a whole, targeting of the silver(I) metal complexes drugs to the macrophages may offer benefits over traditional systemic delivery. If the immune system is targeted in this way, dose reduction is possible, yielding the same clinical outcomes as higher dosed oral or systemic type antimicrobials and eliminating potential dose-related side effects.
  • the silver(I) metal complexes of the present invention can be used to recognize tumor- associated antigens and tumor specific antigens to deliver a therapeutic and cytotoxic agent to cancerous tissue and cells, while minimizing exposure of the cytotoxic agents to non-cancerous, healthy tissue and cells.
  • Antibodies such as, for example, monoclonal antibodies that recognize tumor associated antigen or tumor specific antigen, are complexed with, for example, strepravidin and introduced into a patient. The antibody recognizes the tumor associated antigen and associates with is, thereby localizing the streptavidin in the tumor tissue.
  • the silver(I) metal complexes, which have biotin bound thereto are introduced into the patient. The streptavidin binds the biotin and localizes the silver(I) metal complexes at the tumor tissue.

Landscapes

  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
EP08756405.0A 2007-05-31 2008-05-29 Metallkomplexe in biologisch abbaubaren nanoteilchen und ihre verwendung Not-in-force EP2167097B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US94109007P 2007-05-31 2007-05-31
PCT/US2008/065026 WO2008150830A2 (en) 2007-05-31 2008-05-29 Metal complexes incorporated within biodegradable nanoparticles and their use

Publications (3)

Publication Number Publication Date
EP2167097A2 true EP2167097A2 (de) 2010-03-31
EP2167097A4 EP2167097A4 (de) 2013-07-03
EP2167097B1 EP2167097B1 (de) 2014-07-16

Family

ID=40094350

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08756405.0A Not-in-force EP2167097B1 (de) 2007-05-31 2008-05-29 Metallkomplexe in biologisch abbaubaren nanoteilchen und ihre verwendung

Country Status (6)

Country Link
US (1) US8282944B2 (de)
EP (1) EP2167097B1 (de)
CN (1) CN101754763B (de)
AU (1) AU2008260203B2 (de)
CA (1) CA2688412A1 (de)
WO (1) WO2008150830A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2173357A2 (de) * 2007-07-23 2010-04-14 The University of Akron In biologisch abbaubare nanopartikel integrierte metallkomplexe und ihre verwendung

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8648205B2 (en) * 2003-09-05 2014-02-11 The University Of Akron Metal complexes of N-heterocyclic carbenes
US8648064B2 (en) * 2003-09-05 2014-02-11 The University Of Akron Metal complexes of N-heterocyclic carbenes
AU2012202586B2 (en) * 2003-09-05 2014-05-08 The University Of Akron Metal complexes of N-heterocyclic carbenes as radiopharmaceuticals and antibiotics
WO2013130922A2 (en) * 2012-03-01 2013-09-06 The University Of Akron Silver based gels for antimicrobial applications
GB2528404A (en) 2013-03-11 2016-01-20 Univ North Carolina State Functionalized environmentally benign nanoparticles
CN103724270A (zh) * 2013-12-11 2014-04-16 天津师范大学 基于烷基链链接的氮杂环卡宾金属配合物及其制备方法与应用
US20150299238A1 (en) * 2014-04-22 2015-10-22 The University Of North Texas Synthesis and use of prodrug complexes of cobalt in polymer therapeutics

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005023760A2 (en) * 2003-09-05 2005-03-17 The University Of Akron Metal complexes of n-heterocyclic carbenes as radiopharmaceuticals and antibiotics
WO2005111619A1 (en) * 2004-04-29 2005-11-24 Marc Ramael Method and kit for detecting components in a sample

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3930867A (en) 1974-01-07 1976-01-06 E. I. Du Pont De Nemours And Company Macrocyclic polyamines as sensitizers for silver halide emulsions
US5132231A (en) 1991-05-16 1992-07-21 Case Western Reserve University Carbon monoxide detector using a derivative of Ni(TBC)
US5262532A (en) 1991-07-22 1993-11-16 E.R. Squibb & Sons, Inc. Paramagnetic metalloporphyrins as contrast agents for magnetic resonance imaging
US5405957A (en) 1992-10-30 1995-04-11 The University Of British Columbia Wavelength-specific photosensitive compounds and expanded porphyrin-like compounds and methods of use
DE19610908A1 (de) 1996-03-20 1997-09-25 Hoechst Ag Verfahren zur Herstellung heterocyclischer Carbene
WO1999055714A1 (en) 1998-04-27 1999-11-04 The University Of Akron Supramolecular structures and process for making the same
US6919448B2 (en) 2000-11-10 2005-07-19 The University Of Akron Carbene porphyrins and carbene porphyrinoids, methods of preparation and uses thereof
DE60227992D1 (de) 2001-12-27 2008-09-11 Polychrom Co Ltd Verfahren zur herstellung von funktionellen mikrokapseln mit silbernanoteilchen
US8519146B2 (en) 2004-09-07 2013-08-27 The University Of Akron Metal complexes of N-heterocyclic carbenes as antibiotics
DE10342258A1 (de) 2003-09-11 2005-04-07 Josef Peter Prof. Dr.med. Guggenbichler Antimikrobiell wirkendes Präparat zur äußerlichen Anwendung
AU2005280443B2 (en) 2004-07-30 2011-02-03 Avent, Inc. Antimicrobial silver compositions
US8048870B2 (en) * 2005-01-11 2011-11-01 Batarseh Kareem I Apoptosis-inducing antineoplastic silver (I) coordination complexes
US7967003B2 (en) * 2005-08-19 2011-06-28 Rand Lindsly Windscreen for backpacking stoves

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005023760A2 (en) * 2003-09-05 2005-03-17 The University Of Akron Metal complexes of n-heterocyclic carbenes as radiopharmaceuticals and antibiotics
WO2005111619A1 (en) * 2004-04-29 2005-11-24 Marc Ramael Method and kit for detecting components in a sample

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2008150830A2 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2173357A2 (de) * 2007-07-23 2010-04-14 The University of Akron In biologisch abbaubare nanopartikel integrierte metallkomplexe und ihre verwendung
EP2173357A4 (de) * 2007-07-23 2013-01-09 Univ Akron In biologisch abbaubare nanopartikel integrierte metallkomplexe und ihre verwendung

Also Published As

Publication number Publication date
WO2008150830A2 (en) 2008-12-11
US8282944B2 (en) 2012-10-09
CA2688412A1 (en) 2008-12-11
EP2167097A4 (de) 2013-07-03
CN101754763A (zh) 2010-06-23
EP2167097B1 (de) 2014-07-16
CN101754763B (zh) 2013-03-13
AU2008260203B2 (en) 2013-05-02
WO2008150830A3 (en) 2009-02-05
AU2008260203A1 (en) 2008-12-11
US20100204193A1 (en) 2010-08-12

Similar Documents

Publication Publication Date Title
EP2167097B1 (de) Metallkomplexe in biologisch abbaubaren nanoteilchen und ihre verwendung
Haxton et al. Polymeric drug delivery of platinum-based anticancer agents
Zhang et al. Nanoparticle co-delivery of wortmannin and cisplatin synergistically enhances chemoradiotherapy and reverses platinum resistance in ovarian cancer models
Youngs et al. Nanoparticle encapsulated silver carbene complexes and their antimicrobial and anticancer properties: a perspective
CN107095859B (zh) 一种具有肿瘤细胞生物还原性微环境敏感的载药纳米胶囊及其制备方法
CN109970987B (zh) Mof材料、纳米载药材料、药物组合物及其应用
KR101815030B1 (ko) 킬레이트 복합 미셀을 가지는 약물 전달체 및 그 응용
CN108938594B (zh) 一种药物复合物及其制备方法与应用
Zhang et al. Therapeutic agent-based infinite coordination polymer nanomedicines for tumor therapy
CN113952463B (zh) 一种纳米诊疗剂及其制备方法与应用
Xian et al. Platinum-based chemotherapy via nanocarriers and co-delivery of multiple drugs
AU2008279309B2 (en) Metal complexes incorporated within biodegradable nanoparticles and their use
Yaray et al. Chemoradiation therapy of 4T1 cancer cells with methotrexate conjugated platinum nanoparticles under X-Ray irradiation
Cheng et al. Cisplatin-cross-linked and oxygen-resupply hyaluronic acid-based nanocarriers for chemo-photodynamic therapy
Wang et al. Applications of metal–phenolic networks in nanomedicine: a review
Jalaladdiny et al. Co-delivery of doxorubicin and curcumin to breast cancer cells by a targeted delivery system based on Ni/Ta core-shell metal-organic framework coated with folic acid-activated chitosan nanoparticles
Ghasemian et al. Recent progress in tannic acid based approaches as a natural polyphenolic biomaterial for cancer therapy: A review
Wagers et al. Synthesis and medicinal properties of silver–NHC complexes and imidazolium salts
Ruman et al. Synthesis and Characterization of Chitosan-Based Nanodelivery Systems to Enhance the Anticancer Effect of Sorafenib Drug in Hepatocellular Carcinoma and Colorectal Adenocarcinoma Cells. Nanomaterials 2021, 11, 497
Fathi-karkan et al. NPs loaded with zoledronic acid as an advanced tool for cancer therapy
CN109550053B (zh) 一种双药配位聚合物抗结核纳米药物的制备方法
CN109276720B (zh) 一种金属-有机物配合物纳米材料及其制备方法和应用
Valente et al. Inorganic polymers for potential medicinal applications
EP3849616B1 (de) Wirkstofffreisetzungssystem für platinumbasierte arzneimittel
Hashemi et al. Novel Metal–Organic Framework Nanoparticle for Letrozole Delivery: A New Advancement in Breast Cancer Treatment

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20091229

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20130531

RIC1 Information provided on ipc code assigned before grant

Ipc: A61K 31/28 20060101ALI20130524BHEP

Ipc: A61P 31/00 20060101ALI20130524BHEP

Ipc: C07F 1/08 20060101ALI20130524BHEP

Ipc: C07F 1/00 20060101ALI20130524BHEP

Ipc: A61K 31/555 20060101AFI20130524BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140225

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MEDVETZ, DOUGLAS, A.

Inventor name: HINDI, KHADIJAH

Inventor name: YOUNGS, WILEY, J.

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 677140

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008033330

Country of ref document: DE

Effective date: 20140828

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140716

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 677140

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140716

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141117

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141016

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141016

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141017

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141116

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008033330

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602008033330

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150529

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150529

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151201

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716